
MobiLink Synchronization
User’s Guide

Last modified: October 2002
Part Number: 38132-01-0802-01

Copyright © 1989–2002 Sybase, Inc. Portions copyright © 2001–2002 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Library, APT-Translator, ASEP, Backup Server, BayCam, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data
Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct
Connect Anywhere, DirectConnect, Distribution Director, Dynamo, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAY, ECMAP,
ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server,
Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion Server, First Impression, Formula One, Gateway Manager, GeoPoint, iAnywhere, iAnywhere Solutions,
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intellidex,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, MainframeConnect, Maintenance
Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet, ML Query, MobiCATS, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket PowerBuilder,
PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft,
Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Relational Beans, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, S.W.I.F.T. Message Format Libraries,
SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere,
SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT, SQL Server/DBM, SQL SMART,
SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase
SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare,
Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise
Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are
trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright © 1997–2000
Certicom Corp. Portions are Copyright © 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All rights
reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028; 4,745,568;
5,761,305. Patents pending.

All other trademarks are property of their respective owners.

Last modified October 2002. Part number 38132-01-0802-01.

iii

Contents

About This Manual.. xiii
SQL Anywhere Studio documentation....................................xiv
Documentation conventions...xvii
The sample database.. xx
Finding out more and providing feedback...............................xxi

PART ONE
Using MobiLink Technology ... 1

1 Introducing MobiLink Synchronization............................ 3
The MobiLink synchronization process.....................................4
MobiLink terminology ..7

2 Synchronization Basics .. 9
Parts of the synchronization system10
The consolidated database...12
The MobiLink synchronization server18
MobiLink clients...21
The synchronization process ..24
Options for writing synchronization logic38
Character set considerations ..42
Security ...45

3 Writing Synchronization Scripts..................................... 47
Introduction to synchronization scripts....................................48
Scripts and the synchronization process53
Script types ...55
Script parameters..60
Script versions...61
Adding and deleting scripts in your consolidated
database ...63
Writing scripts to upload rows ...66
Writing scripts to download rows ..70
Writing scripts to handle errors ...75

iv

Example scripts for UltraLite ... 77
Testing script syntax ... 78
DBMS-dependent scripts .. 80

4 Synchronization Techniques.. 83
Introduction ... 84
Development tips .. 85
Timestamp-based synchronization ... 86
Snapshot synchronization... 88
Partitioning rows among remote databases 91
Maintaining unique primary keys .. 95
Handling conflicts.. 104
Data entry.. 110
Handling deletes ... 111
Handling failed downloads .. 112
Downloading a result set from a stored procedure
call... 113
Schema changes in remote databases 116

5 Adaptive Server Anywhere Clients............................... 117
Creating a remote database ... 118
Publishing data ... 119
Creating MobiLink users ... 125
Subscribing MobiLink synchronization users........................ 128
Differences from version 7 .. 132
Initiating synchronization... 138
Using ActiveSync synchronization.. 143
Deploying remote databases .. 148
Partitioning data between remote databases 155
Temporarily stopping synchronization of deletes.................. 156
Customizing the client synchronization process................... 157

6 Writing Synchronization Scripts in Java...................... 165
Introduction ... 166
Setting up Java synchronization logic................................... 167
Running Java synchronization logic 169
Writing Java synchronization logic.. 170
Sample: Java synchronization logic...................................... 177
MobiLink Java API Reference... 183

7 Writing Synchronization Scripts in .NET 187
Introduction ... 188
Setting up .NET synchronization logic 189

v

Running .NET synchronization logic191
Writing .NET synchronization logic194
.NET synchronization example ...200
MobiLink .NET API Reference ..203

8 MobiLink Performance .. 219
Performance tips ...220
Key factors influencing MobiLink performance224
Monitoring MobiLink performance...229

9 MobiLink Monitor... 231
Introduction ...232
Starting the MobiLink Monitor ...233
Using the MobiLink Monitor ..235
Saving Monitor data ..243
Customizing your statistics ...244
Statistical Properties ...247

10 Authenticating MobiLink Users 251
About MobiLink users ...252
Choosing a user authentication mechanism.........................254
User authentication architecture ...255
Providing initial passwords for users.....................................257
Synchronizations from new users ...258
Prompting end users to enter passwords259
Changing passwords ..260
Custom user authentication mechanisms.............................261

11 Synchronizing Through a Web Server 263
Introduction ...264
Configuring MobiLink clients and servers for the
Redirector..266
Configuring the Redirector (all versions)268
Configuring NSAPI Redirector for Netscape Web
servers ..270
Configuring ISAPI Redirector for Microsoft Web
servers ..272
Configuring the servlet Redirector ..273

vi

12 Running MobiLink Outside the Current Session......... 275
Running the UNIX MobiLink server as a daemon 276
Running the Windows MobiLink server as a
service... 277
Troubleshooting MobiLink server startup.............................. 282

13 Transport-Layer Security .. 283
About transport-layer security... 284
Invoking transport-layer security... 293
Certificate authorities .. 298
Certificate chains .. 299
Enterprise root certificates .. 300
Globally signed certificates ... 305
Obtaining server-authentication certificates.......................... 307
Verifying certificate fields .. 310

PART TWO
MobiLink Tutorials... 313

14 Tutorial: Synchronizing Adaptive Server Anywhere
Databases .. 315

Introduction ... 316
Lesson 1: Creating and populating your
databases.. 318
Lesson 2: Running the MobiLink synchronization
server .. 322
Lesson 3: Running the MobiLink synchronization
client.. 324
Tutorial cleanup .. 326
Summary... 327
Further reading ... 328

15 Tutorial: Writing SQL Scripts Using Sybase Central .. 329
Introduction ... 330
Lesson 1: Creating your databases 331
Lesson 2: Creating scripts for your
synchronization ... 335
Lesson 3: Running the MobiLink synchronization
server .. 338
Lesson 4: Running the MobiLink synchronization
client.. 340

vii

Lesson 5: Monitoring your MobiLink
synchronization using log files ..342
Tutorial cleanup...344
Further reading..345

16 Tutorial: Using MobiLink with an Oracle 8i Consolidated
Database... 347

Introduction ...348
Lesson 1: Create your databases ...349
Lesson 2: Starting the MobiLink synchronization
server ..355
Lesson 3: Running the MobiLink synchronization
client..356
Summary...357
Further reading..358

17 Using MobiLink Sample Applications 359
Introduction ...360
The CustDB sample..361
The Contact sample..365

PART THREE
MobiLink Reference... 377

18 MobiLink Synchronization Server Options 379
MobiLink synchronization server...380

19 MobiLink Synchronization Client.................................. 409
MobiLink synchronization client ..410
dbmlsync options ..413

20 Synchronization Events .. 433
Overview of MobiLink events ..436
authenticate_user connection event446
authenticate_user_hashed connection event450
begin_connection connection event......................................452
begin_download connection event..454
begin_download table event ...456
begin_download_deletes table event....................................458
begin_download_rows table event..460
begin_synchronization connection event..............................462

viii

begin_synchronization table event 464
begin_upload connection event .. 466
begin_upload table event.. 468
begin_upload_deletes table event .. 470
begin_upload_rows table event .. 472
download_cursor cursor event.. 474
download_delete_cursor cursor event.................................. 477
download_statistics connection event 479
download_statistics table event .. 482
end_connection connection event .. 485
end_download connection event .. 487
end_download table event .. 489
end_download_deletes table event 491
end_download_rows table event .. 493
end_synchronization connection event................................. 495
end_synchronization table event .. 497
end_upload connection event ... 499
end_upload table event... 502
end_upload_deletes table event... 504
end_upload_rows table event ... 506
example_upload_cursor table event..................................... 508
example_upload_delete table event 509
example_upload_insert table event 510
example_upload_update table event.................................... 511
handle_error connection event ... 512
handle_odbc_error connection event 515
modify_last_download_timestamp connection
event ... 517
modify_next_last_download_timestamp
connection event... 519
modify_user connection event .. 521
new_row_cursor cursor event... 523
old_row_cursor cursor event... 525
prepare_for_download connection event.............................. 527
report_error connection event... 529
report_odbc_error connection event..................................... 531
resolve_conflict table event... 533
synchronization_statistics connection event......................... 535
synchronization_statistics table event 537
time_statistics connection event ... 539
time_statistics table event... 541
upload_cursor cursor event .. 543
upload_delete table event... 545
upload_fetch table event... 547
upload_insert table event.. 549
upload_new_row_insert table event 551

ix

upload_old_row_insert table event553
upload_statistics connection event554
upload_statistics table event...557
upload_update table event..560

21 MobiLink SQL Statements .. 563
ALTER PUBLICATION statement...565
ALTER SYNCHRONIZATION DEFINITION
statement (deprecated)...566
ALTER SYNCHRONIZATION SITE statement
(deprecated)..567
ALTER SYNCHRONIZATION SUBSCRIPTION
statement ..568
ALTER SYNCHRONIZATION TEMPLATE
statement (deprecated)...569
ALTER SYNCHRONIZATION USER statement...................570
CREATE PUBLICATION statement......................................571
CREATE SYNCHRONIZATION DEFINITION
statement (deprecated)...572
CREATE SYNCHRONIZATION SITE statement
(deprecated)..573
CREATE SYNCHRONIZATION SUBSCRIPTION
statement ..574
CREATE SYNCHRONIZATION TEMPLATE
statement (deprecated)...575
CREATE SYNCHRONIZATION USER statement................576
DROP PUBLICATION statement..577
DROP SYNCHRONIZATION DEFINITION
statement (deprecated)...578
DROP SYNCHRONIZATION SITE statement
(deprecated)..579
DROP SYNCHRONIZATION SUBSCRIPTION
statement ..580
DROP SYNCHRONIZATION TEMPLATE
statement (deprecated)...581
DROP SYNCHRONIZATION USER statement
[MobiLink]..582
START SYNCHRONIZATION DELETE
statement ..583
STOP SYNCHRONIZATION DELETE statement584

22 Stored Procedures... 585
Stored procedures to add or delete scripts...........................586
Client event-hook procedures ...592

x

23 Utilities ... 609
ActiveSync provider installation utility................................... 610
MobiLink stop utility... 613
MobiLink client database extraction utility 614
MobiLink user authentication utility....................................... 618
Certificate reader utility ... 620
Certificate generation utility... 621

24 Data Type Conversions... 625
Sybase Adaptive Server Enterprise...................................... 626
IBM DB2.. 627
Oracle.. 629
Microsoft SQL Server.. 630

25 MobiLink Communication Error Messages 631
Communication error messages sorted by code 632
Communication error messages sorted by
message.. 636
Communication error messages sorted by
constant... 640
Communication error descriptions .. 644

26 MobiLink synchronization server Warning Messages 683
MobiLink synchronization server warning
messages sorted by code... 684
MobiLink synchronization server warning
messages sorted by message .. 688
MobiLink synchronization server warning
descriptions... 692

A ODBC Drivers .. 707
ODBC drivers supported by MobiLink 708

27 Deploying MobiLink Applications 711
Deployment overview.. 712
Deploying the MobiLink server ... 713
Deploying Adaptive Server Anywhere MobiLink
clients .. 714
Deploying UltraLite MobiLink clients..................................... 715

xi

Index ... 717

xii

xiii

About This Manual

This manual describes MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication
and is well suited to mobile computing environments.

This manual is for users of Adaptive Server Anywhere and other relational
database systems who wish to add synchronization or replication to their
information systems.

$ For a comparison of MobiLink with other synchronization and
replication technologies, see "Replication Technologies" on page 19 of the
book Introducing SQL Anywhere Studio.

Subject

Audience

Before you begin

xiv

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere Studio documentation set

The SQL Anywhere Studio documentation set consists of the following
books:

♦ Introducing SQL Anywhere Studio This book provides an overview
of the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

 ♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere database-
management system and introductory material on designing, building,
and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book
describes how to build and deploy database applications using the C,
C++, and Java programming languages. Users of tools such as Visual
Basic and PowerBuilder can use the programming interfaces provided
by those tools.

xv

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ Adaptive Server Anywhere C2 Security Supplement Adaptive
Server Anywhere 7.0 was awarded a TCSEC (Trusted Computer System
Evaluation Criteria) C2 security rating from the U.S. Government. This
book may be of interest to those who wish to run the current version of
Adaptive Server Anywhere in a manner equivalent to the C2-certified
environment. The book does not include the security features added to
the product since certification.

♦ MobiLink Synchronization User’s Guide This book describes all
aspects of the MobiLink data synchronization system for mobile
computing, which enables sharing of data between a single Oracle,
Sybase, Microsoft or IBM database and many Adaptive Server
Anywhere or UltraLite databases.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ UltraLite User’s Guide This book describes how to build database
applications for small devices such as handheld organizers using the
UltraLite deployment technology for Adaptive Server Anywhere
databases.

♦ UltraLite User’s Guide for PenRight! MobileBuilder This book is for
users of the PenRight! MobileBuilder development tool. It describes
how to use UltraLite technology in the MobileBuilder programming
environment.

♦ SQL Anywhere Studio Help This book is provided online only. It
includes the context-sensitive help for Sybase Central, Interactive SQL,
and other graphical tools.

In addition to this documentation set, SQL Modeler and InfoMaker include
their own online documentation.

Documentation formats

SQL Anywhere Studio provides documentation in the following formats:

xvi

♦ Online books The online books include the complete SQL Anywhere
Studio documentation, including both the printed books and the context-
sensitive help for SQL Anywhere tools. The online books are updated
with each maintenance release of the product, and are the most complete
and up-to-date source of documentation.

To access the online books on Windows operating systems, choose
Start➤Programs➤Sybase SQL Anywhere 8➤Online Books. You can
navigate the online books using the HTML Help table of contents,
index, and search facility in the left pane, and using the links and menus
in the right pane.

To access the online books on UNIX operating systems, run the
following command at a command prompt:

dbbooks

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in the pdf_docs directory.
You can choose to install them when running the setup program.

♦ Printed books The following books are included in the
SQL Anywhere Studio box:

♦ Introducing SQL Anywhere Studio.

♦ Adaptive Server Anywhere Getting Started.

♦ SQL Anywhere Studio Quick Reference. This book is available only
in printed form.

The complete set of books is available as the SQL Anywhere
Documentation set from Sybase sales or from e-Shop, the Sybase online
store, at http://e-shop.sybase.com/cgi-bin/eshop.storefront/.

xvii

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions

The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords are shown like the words ALTER
TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the words owner and table-name in the
following example.

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element
of the list followed by an ellipsis (three dots), like column-constraint in
the following example:

ADD column-definition [column-constraint, …]

One or more list elements are allowed. If more than one is specified,
they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-name is optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square
brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces.

[QUOTES { ON | OFF }]

xviii

If the QUOTES option is chosen, one of ON or OFF must be provided.
The brackets and braces should not be typed.

♦ One or more options If you choose more than one, separate your
choices with commas.

{ CONNECT, DBA, RESOURCE }

Graphic icons

The following icons are used in this documentation:

xix

Icon Meaning

A client application.

A database server, such as Sybase Adaptive Server
Anywhere or Adaptive Server Enterprise.

An UltraLite application and database server. In
UltraLite, the database server and the application are
part of the same process.

A database. In some high-level diagrams, the icon
may be used to represent both the database and the
database server that manages it.

Replication or synchronization middleware. These
assist in sharing data among databases. Examples are
the MobiLink Synchronization Server, SQL Remote
Message Agent, and the Replication Agent (Log
Transfer Manager) for use with Replication Server.

A Sybase Replication Server.

API
A programming interface.

xx

The sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The UltraLite sample database is held in a file named custdb.db, and is
located in the Samples\UltraLite\CustDB subdirectory of your
SQL Anywhere directory. A complete application built on this database is
also supplied.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they
are related to each other.

emp_id = pool_emp_id

cust_id = cust_id

emp_id = emp_id

cust_id = cust_id

emp_id = emp_id

prod_id = prod_id
emp_id = pool_emp_id

ULIdentifyEmployee
emp_id integer

ULCustomer
cust_id integer
cust_name varchar(30)
last_modified timestamp

ULEmpCust
emp_id integer
cust_id integer
action char(1)
last_modified timestamp

ULOrder
order_id integer
cust_id integer
prod_id integer
emp_id integer
disc integer
quant integer
notes varchar(50)
status varchar(20)
last_modified timestamp

ULEmployee
emp_id integer
emp_name varchar(30)
last_download timestamp

ULCustomerIDPool
pool_cust_id integer
pool_emp_id integer
last_modified timestamp

ULOrderIDPool
pool_order_id integer
pool_emp_id integer
last_modified timestamp

ULProduct
prod_id integer
price integer
prod_name varchar(30)

xxi

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on the forums.sybase.com news server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on
the newsgroup service when they have time available. They offer their
help on a volunteer basis and may not be available on a regular basis to
provide solutions and information. Their ability to help is based on their
workload.

xxii

1

P A R T O N E

Using MobiLink Technology

This part introduces MobiLink synchronization technology and describes how
to use it to replicate data between two or more databases.

2

3

C H A P T E R 1

Introducing MobiLink Synchronization

This chapter introduces you to MobiLink synchronization technology. It
describes the purpose and characteristics of MobiLink.

$ For hands-on tutorials introducing MobiLink, see

♦ "Tutorial: Synchronizing Adaptive Server Anywhere Databases" on
page 315

♦ "Tutorial: Writing SQL Scripts Using Sybase Central" on page 329

♦ "Tutorial: Using MobiLink with an Oracle 8i Consolidated
Database" on page 347

♦ "Using MobiLink Sample Applications" on page 359

$ For a more detailed introduction to MobiLink technology, see
"Synchronization Basics" on page 9.

Topic Page

The MobiLink synchronization process 4

MobiLink terminology 7

About this chapter

Contents

The MobiLink synchronization process

4

The MobiLink synchronization process
MobiLink is a session-based synchronization system that allows two-way
synchronization between a main database, called the consolidated database,
and many remote databases. The consolidated database, which can be any
ODBC-compliant database, holds the master copy of all the data. Remote
databases can be either Adaptive Server Anywhere or UltraLite databases.

Synchronization begins when a MobiLink remote site opens a connection to
a MobiLink synchronization server. During synchronization a MobiLink
client at the remote site uploads database changes that were made to the
remote database since the previous synchronization. On receiving this data,
the MobiLink synchronization server updates the consolidated database, and
then sends back all relevant changes to the remote site.

MobiLink features

The MobiLink synchronization server is adaptable and flexible. MobiLink
behavior can be adjusted using a comprehensive range of command line
options for the MobiLink synchronization server, dbmlsrv8, and the
Adaptive Server Anywhere synchronization client, dbmlsync. You can set a
number of options on the typical MobiLink server or client command line to
manage the following:

♦ Data coordination MobiLink allows you to choose selected portions
of the data for synchronization. MobiLink synchronization also allows
you to resolve conflicts between changes made in different databases.
The synchronization process is controlled by synchronization logic,
which can be written as a SQL, Java, or .NET application. Each piece of
logic is called a script.

♦ Automation MobiLink has a number of automated capabilities. The
MobiLink synchronization server can be instructed to generate scripts
suitable for snapshot synchronization, or instructed to generate example
synchronization scripts. It can also automatically add users for
authentication.

♦ Monitoring and reporting MobiLink provides two mechanisms for
monitoring your synchronizations: the MobiLink Monitor, and statistical
scripts. You can monitor scripts, schema contents, row-count values,
script names, translated script contents, and row values.

$ For more information about monitoring your synchronizations, see
"Monitoring MobiLink performance" on page 229.

Chapter 1 Introducing MobiLink Synchronization

5

♦ Performance tuning There are a number of mechanisms for tuning
MobiLink performance. For example, you can adjust the degree of
contention, upload cache size, number of database connections, number
of worker threads, logging verbosity, or BLOB cache size.

$ For more information about performance tuning, see "MobiLink
Performance" on page 219.

MobiLink synchronization characteristics

Following are some of the features of MobiLink synchronization.

♦ Two-way synchronization Changes to a database can be made at any
location.

♦ Choice of communication streams Synchronization can be carried
out over TCP/IP, HTTP, or HTTPS. Palm devices can synchronize
through HotSync. Windows CE devices can synchronize using
ActiveSync.

♦ Remote-initiated Synchronization between a remote database and a
consolidated database is initiated at the remote database.

♦ Session-based All changes are uploaded in a single transaction and
downloaded in a single transaction. At the end of each successful
synchronization, the consolidated and remote databases are consistent.

♦ Transactional integrity Either a whole transaction is synchronized, or
none of it is synchronized. This ensures transactional integrity at each
database.

♦ Data consistency MobiLink operates using a loose consistency
policy. All changes are synchronized with each site over time in a
consistent manner, but different sites may have different copies of data
at any instant.

♦ Wide variety of hardware and software platforms A variety of
widely-used database management systems can be used as a MobiLink
consolidated database: Adaptive Server Anywhere, Adaptive Server
Enterprise, Oracle, IBM DB2, or Microsoft SQL Server. Remote
databases can be Adaptive Server Anywhere or UltraLite databases.
MobiLink synchronization server runs on Windows or UNIX platforms.
Adaptive Server Anywhere runs on Windows, Windows CE, or UNIX
machines. UltraLite runs on Palm, Windows CE, VxWorks, or Java-
based devices.

The MobiLink synchronization process

6

♦ Flexibility The MobiLink synchronization server uses SQL, Java, or
.NET scripts to control the upload and download of data. The scripts are
executed according to an event model during each synchronization.
Event-based scripting provides great flexibility in the design of the
synchronization process, including such features as conflict resolution,
error reporting, and user authentication.

♦ Scalability and performance The MobiLink synchronization server is
multi-threaded, and multiple MobiLink servers can be run
simultaneously using load balancing. MobiLink provides extensive
monitoring and reporting facilities.

♦ Easy to get started Simple MobiLink installations can be constructed
quickly. More complex refinements can be added incrementally for full-
scale production work.

Chapter 1 Introducing MobiLink Synchronization

7

MobiLink terminology
client In MobiLink contexts, client can refer to any application, database
engine or executable that receives data resources from a server or requests a
service.

client communication stream Clients can communicate with the
synchronization server via a number of supported communications protocols.

consolidated database A database that contains all of the data, typically
an enterprise level database. Supported products include Oracle, IBM’s DB2,
Microsoft SQL Server, Adaptive Server Anywhere, and Adaptive Server
Enterprise.

download The stage in synchronization where data is transferred from a
consolidated database to a remote database.

MobiLink synchronization server A Sybase session-based
synchronization technology designed to synchronize UltraLite and Adaptive
Server Anywhere databases with industry-standard SQL database-
management systems.

MobiLink client There are two kinds of MobiLink clients. For Adaptive
Server Anywhere remote databases the MobiLink client is the dbmlsync
command line utility. For UltraLite remote databases, the MobiLink client is
built in to the UltraLite runtime library.

publication A database object on the remote database that identifies data
to be synchronized. A publication consists of articles that identify tables and
columns to be synchronized.

Redirector

A Web server plug-in that routes requests and responses

between a client and the MobiLink synchronization server. This plug-in also
implements load-balancing and fail-over mechanisms.

reference database An Adaptive Server Anywhere database used in the
development of UltraLite clients, or as a convenience in the creation of
remote Adaptive Server Anywhere clients. You can use a single Adaptive
Server Anywhere database as both reference and consolidated database
during development. Databases made with other products cannot be used as
reference databases.

remote database An Adaptive Server Anywhere or UltraLite database that
exchanges synchronization messages with a consolidated database. Remote
databases may share all or some of the data in the consolidated database.

scripts Code written to handle MobiLink events. Scripts programmatically
control data exchange to meet business needs.

MobiLink terminology

8

session-based synchronization A type of synchronization where a
synchronization results in consistent data representation across both the
consolidated and remote databases.

subscription A database object that serves as a link in a remote database
between a publication and a MobiLink user allowing the data described by
the publication to be synchronized.

synchronization The coordination of data between multiple databases
towards the end of consistent data representation.

transactional integrity The guaranteed maintenance of transactions across
the synchronization system. Either a complete transaction is synchronized, or
no part of the transaction is synchronized.

upload The stage in synchronization where data is transferred from a
remote database to a consolidated database.

9

C H A P T E R 2

Synchronization Basics

This chapter is an introduction to using MobiLink technology.

$ For an introduction to MobiLink features, see

♦ "Introducing MobiLink Synchronization" on page 3

$ For hands-on tutorials introducing MobiLink, see

♦ "Tutorial: Synchronizing Adaptive Server Anywhere Databases" on
page 315

♦ "Tutorial: Writing SQL Scripts Using Sybase Central" on page 329

♦ "Tutorial: Using MobiLink with an Oracle 8i Consolidated
Database" on page 347

♦ "Using MobiLink Sample Applications" on page 359

Topic Page

Parts of the synchronization system 10

The consolidated database 12

The MobiLink synchronization server 18

MobiLink clients 21

The synchronization process 24

Options for writing synchronization logic 38

Character set considerations 42

Security 45

About this chapter

Contents

Parts of the synchronization system

10

Parts of the synchronization system
The following diagram shows the major parts of the synchronization system.

MobiLink
synchronization server

Consolidated
database

network

Consolidated
database server Adaptive Server

Anywhere or UltraLite
MobiLink clients

ODBC

♦ consolidated database This database contains the master copy of all
information in the synchronization system.

$ For more information, see "The consolidated database" on page 12.

♦ consolidated database server The server, or DBMS, that manages the
consolidated database. This server can be a Sybase product, such as
Adaptive Server Anywhere or Adaptive Server Enterprise, or it may be a
supported system made by another company.

$ For more information, see "Consolidated database server
requirements" on page 12.

♦ ODBC connection All communication between the MobiLink
synchronization server and the consolidated database occurs through an
ODBC connection. ODBC allows the synchronization server to utilize a
variety of consolidated database systems.

$ For more information, see "ODBC Drivers" on page 707.

♦ MobiLink synchronization server This server manages the
synchronization process and provides the interface between all
MobiLink clients and the consolidated database server.

$ For more information, see "The MobiLink synchronization server"
on page 18.

Chapter 2 Synchronization Basics

11

♦ Network The connection between the MobiLink synchronization server,
dbmlsrv8, and the MobiLink client utility, dbmlsync, can use a number
of protocols.

$ For more information, see "-x option" on page 396.

♦ MobiLink client Two types of clients are supported: UltraLite and
Adaptive Server Anywhere databases. Either or both may be used in a
single MobiLink installation.

$ For more information, see "MobiLink clients" on page 21.

The consolidated database

12

The consolidated database
Applications synchronize with a central, consolidated database. This
database is the master repository of information in the synchronization
system.

The consolidated database can be any supported ODBC-compliant product.
You can use a Sybase product, such as Adaptive Server Anywhere or
Adaptive Server Enterprise, or you can use a product sold by other
companies, such as Oracle, IBM DB2, or Microsoft SQL Server.

There are many ways to structure the relations between consolidated and
remote databases. Following are two examples.

The schema of the remote databases can be a subset of the schema of the
consolidated database. For example, a table EMP might be repeated among a
number of different remote sites, and the consolidated database might use
column data from emp.salary in a table called expense. In this instance, the
schemas of the consolidated and remote databases are different, though data
is shared.

The schema of the remote database can also be parallel in structure to the
schema of the consolidated database. Here, the schema of the consolidated
database is a reference for the remote database. In the consolidated database,
you may already have tables that correspond to each of the remote tables. In
this instance, the schemas in the consolidated and remote databases are
virtually the same, and the data in the remote is only a subset of the data on
the consolidated.

You write synchronization scripts for each table in the remote database and
you save these scripts on the consolidated database. These scripts, from their
central location on the consolidated database, direct the synchronization
server in moving data between remote and consolidated databases. One script
for a particular remote table tells the synchronization server where to store
data uploaded from that remote table in the consolidated database. Another
script tells the synchronization server which data to download to the same
remote table.

Consolidated database server requirements

MobiLink synchronization was designed to work with Sybase database
products as well as other ODBC-supporting database-management systems,
such as Oracle, IBM DB2, and Microsoft SQL Server. You can use
synchronization scripts to exploit the features of your particular consolidated
server.

Chapter 2 Synchronization Basics

13

$ For a list of the supported platforms, see "MobiLink synchronization
consolidated databases" on page 141 of the book Introducing SQL Anywhere
Studio.

$ For information about writing synchronization scripts for specific
consolidated databases, see "DBMS-dependent scripts" on page 80.

How remote tables relate to consolidated tables

Synchronization designs can specify mappings between tables and rows in
the remote database with tables and rows in the consolidated database. The
only restriction is that columns match across both databases.

Tables in a remote database need not be identical to those in the consolidated
database. Synchronized data in one remote application table can be
distributed between columns in different tables, and even between tables in
different consolidated databases. You specify these relationships using
synchronization scripts.

Note
Synchronization scripts are stored only in the consolidated database.

You can often simplify your design using a table structure in the remote
database that is a subset of that in the consolidated database. Using this
method, every table in the remote database exists in the consolidated
database. Corresponding tables have the same structure and foreign key
relationships as those in the consolidated database.

Tables in the consolidated database will frequently contain extra columns
that are not synchronized. Indeed, extra columns can aid synchronization.
For example, a timestamp column can identify new or updated rows in the
consolidated database. In other cases, extra columns or tables in the
consolidated database may hold information that is not required at remote
sites.

Creating a consolidated database

To create a database that can be used as a MobiLink consolidated database,
you must install the MobiLink system tables. Setup scripts are provided for
Sybase Adaptive Server Anywhere, Sybase Adaptive Server Enterprise,
Oracle 8, Microsoft SQL Server, and IBM DB2. A setup script is not
required for Adaptive Server Anywhere databases.

Arbitrary
relationships
permitted

Direct relationships
are simple

The consolidated database

14

The way you install the MobiLink system tables depends on the DBMS you
wish to use as a consolidated database.

♦ Sybase Adaptive Server Anywhere Adaptive Server Anywhere
databases are automatically configured so that they can be used as a
MobiLink consolidated database without running a setup script.
However, there is a setup script provided for Adaptive Server Anywhere
databases. It is called syncasa.sql and it is located in the scripts
subdirectory of your SQL Anywhere installation. This file is provided so
that you can examine its source code. For example, it includes source
code for the ml_add_connection_script stored procedure that can be
used if you want to directly insert scripts into system tables.

♦ Sybase Adaptive Server Enterprise For Adaptive Server Enterprise
version 12.5 or later, run the syncase125.SQL script, located in the
MobiLink\setup subdirectory of your SQL Anywhere installation. For
versions prior to 12.5, run syncase.SQL from the same location.

♦ Microsoft SQL Server Run the syncmss.SQL script, located in the
MobiLink\setup subdirectory of your SQL Anywhere installation.

♦ Oracle Run the syncora.SQL script, located in the MobiLink\setup
subdirectory of your SQL Anywhere installation.

♦ IBM DB2 For IBM DB2 version 6 or later, run the syncdb2long.SQL
script, located in the MobiLink\setup subdirectory of your
SQL Anywhere installation. For IBM DB2 prior to version 6, run the
syncdb2.SQL script from the same location.

The syncdb2.SQL and syncdb2long.SQL scripts contain a default
connection statement, connect to DB2Database. You should make a
copy of the script and alter this line to be appropriate for your
installation.

Also, there are columns that require a LONG tablespace. If there is no
default LONG tablespace, the creation statements for the tables
containing these columns must be qualified appropriately, as in the
following example.

CREATE TABLE ... (...)
IN tablespace
LONG IN long-tablespace

The stored procedures in syncdb2.SQL and syncdb2long.SQL are
implemented in Java in the files SyncDB2.class and syncdb2long.class.
The source code is provided in SyncDB2.java and SyncDB2long.java.
These scripts use the tilde character (~) as a command delimiter.

Install the system
tables

Chapter 2 Synchronization Basics

15

The default tablespace (usually called USERSPACE1) of a DB2
database that you wish to use as a consolidated database must use 8 kb
pages.

$ For an example using the sample application, see "Creating a DB2
consolidated database for CustDB" on page 362.

$ For instructions on running scripts, see the documentation for your
DBMS. For tips on using specific consolidated databases with MobiLink, see
"DBMS-dependent scripts" on page 80.

To carry out synchronization, the MobiLink synchronization server needs an
ODBC connection to your consolidated database. You must have an ODBC
driver for your server and create an ODBC data source for the database on
the machine on which your MobiLink synchronization server is running.

$ For more information on ODBC drivers, see "ODBC Drivers" on
page 707.

MobiLink system tables

The MobiLink system tables store information for MobiLink users, tables,
scripts, and script versions. The MobiLink system tables are stored in the
consolidated database. You will probably not directly access these tables, but
you will alter them when you perform actions such as adding
synchronization scripts.

♦ The following section shows details of the MobiLink system tables. In
some DBMSs, the data types are slightly different.

♦ IBM DB2 only supports column names and other identifiers of
18 characters or less. In a DB2 consolidated database, MobiLink system
tables are truncated where necessary.

ml_connection_script

Stores the mapping for connection scripts.

Row Description

version_id INTEGER. Primary key.

event VARCHAR(128). Primary key.

script_id INTEGER.

Create an ODBC
data source

Notes

The consolidated database

16

ml_script

Stores the text of all scripts, and an ID for mapping.

Row Description

script_id INTEGER. Primary key.

script LONG VARCHAR.

script_language VARCHAR(128).

ml_script_version

Stores the name, ID and comment of script versions.

Row Description

version_id INTEGER. Primary key.

name VARCHAR(128).

description LONG VARCHAR

ml_scripts_modified

Keeps track of the last time script tables were changed.

Row Description

last_modified TIMESTAMP. Primary key.

ml_subscription

Keeps track of the log offsets per subscription for Adaptive Server Anywhere
remote databases.

Row Description

user_id INTEGER. Primary key.

publication_name VARCHAR(128). Primary key.

progress NUMERIC(20,0).

Chapter 2 Synchronization Basics

17

ml_table

Stores the ID and name of tables that MobiLink can synchronize.

Row Description

table_id INTEGER. Primary key.

name VARCHAR(128).

ml_table_script

Stores the mapping for table scripts.

Row Description

version_id INTEGER. Primary key.

table_id INTEGER. Primary key.

event VARCHAR(128). Primary key.

script_id INTEGER.

ml_user

Stores all registered MobiLink users, including their password and their
synchronization state. The state is used only for UltraLite remotes.

Row Description

user_id INTEGER. Primary key.

name VARCHAR(128).

commit_state INTEGER.

progress NUMERIC(20,0)

hashed_password BINARY(20)

The MobiLink synchronization server

18

The MobiLink synchronization server
The MobiLink synchronization server manages (but does not initiate) the
synchronization process. Thus, much of the built-in logic for the system
resides in this application.

The MobiLink synchronization server also provides the interface between the
consolidated database and the remote clients. Given sufficient resources, you
can have as many remote applications synchronize simultaneously as you
can specify on the command line using the -w option, making MobiLink
synchronization well suited to large-scale deployment.

The MobiLink synchronization server controls the synchronization process.
Each time a client synchronizes, a pre-defined sequence of events occurs.

You customize the synchronization process by writing synchronization
scripts. You store these scripts in the consolidated database. Scripts are
typically SQL statements or stored procedures and are stored in the
consolidated database. You associate each script with a particular event in
the pre-defined sequence. Whenever that event occurs, the MobiLink
synchronization server automatically executes your script.

Running the MobiLink synchronization server

All MobiLink clients synchronize through the MobiLink synchronization
server. None can connect directly to a database server. You must start the
MobiLink synchronization server before asking a MobiLink client to
synchronize.

The MobiLink synchronization server opens connections, via ODBC, with
your consolidated database server. It then accepts connections from remote
applications and controls the synchronization process.

v To start the MobiLink synchronization server

♦ Run dbmlsrv8. Use the –c option to specify the ODBC connection
parameters for your consolidated database.

You must specify the database connection parameters. Other options are
available, but are not required.

$ For information about connection parameters, see "-c option" on
page 384.

$ For more information about dbmlsrv8 options, see "MobiLink
Synchronization Server Options" on page 379.

Chapter 2 Synchronization Basics

19

The following command starts the MobiLink synchronization server,
identifying the ODBC data source UltraLite Sample 8.0 as the consolidated
database. Enter the entire command on one line.

dbmlsrv8
-c "dsn=UltraLite Sample 8.0;uid=DBA;pwd=SQL"

 -zs MyServer
–o mlsrv.log
-vcr
-x tcpip

In this example, the -zs option provides a server name. The –o option
specifies that the log file should be named mlsrv.log. The contents of
mlsrv.log are verbose because of the –vcr option. The –x option specifies that
MobiLink clients will be permitted to connect via TCP/IP.

$ You can also start the MobiLink synchronization server as a Windows
service or UNIX daemon. For more information, see "Running MobiLink
Outside the Current Session" on page 275.

Stopping the MobiLink synchronization server

The MobiLink synchronization server can be stopped from the computer
where the server was started. You can stop the MobiLink server by:

♦ Clicking Shutdown on the MobiLink server window.

♦ Letting it shut down automatically by default when the application
disconnects.

♦ Using the dbmlstop utility.

$ For more information, see "MobiLink stop utility" on page 613.

Logging MobiLink synchronization server actions

Logging the actions that the server takes is particularly useful during the
development process, and when troubleshooting. Verbose output is
recommended for normal operation of a production environment.

Logging output is sent to the MobiLink synchronization server window. In
addition, you can send the output to a log file using the -o option. The
following command sends output to a log file named mlsrv.log.

dbmlsrv8 -o mlsrv.log -c ...

$ For more information, see "-o option" on page 387, "-os option" on
page 388, and "-ot option" on page 389.

Example

Logging output to a
file

The MobiLink synchronization server

20

You can control the amount of output that is logged using the -v option.

$ For more information, see "-v option" on page 393.

You can also control which error messages are reported.

$ For more information, see "-zw option" on page 405, "-zwd option" on
page 406, and "-zwe option" on page 407.

Controlling the
amount of logging
output
Controlling which
errors are reported

Chapter 2 Synchronization Basics

21

MobiLink clients
Each remote database, together with its applications, is referred to as a
MobiLink client. Two types of MobiLink client are supported:

♦ Adaptive Server Anywhere

♦ UltraLite

Adaptive Server Anywhere clients

Synchronization is initiated by running a command line utility called
dbmlsync. This utility connects to the remote database and prepares the
upload stream using information contained in the transaction log of the
remote database. It then uses information stored in a synchronization
publication and synchronization subscription to connect to the MobiLink
synchronization server and exchange data.

$ For more information about Adaptive Server Anywhere clients, see
"Adaptive Server Anywhere Clients" on page 117.

UltraLite clients

Applications built with the UltraLite technology available in SQL Anywhere
Studio are automatically MobiLink-enabled whenever the application
includes a call to the appropriate MobiLink synchronization function. The
UltraLite development tools included in SQL Anywhere Studio
automatically include synchronization logic when you build your UltraLite
application.

The UltraLite application and libraries handle the synchronization actions at
the application end. You can write your UltraLite application with little
regard to synchronization. The UltraLite runtime keeps track of changes
made since the previous synchronization.

Synchronization is initiated from your application by a single call to a
synchronization function when using TCP/IP, HTTP, or HTTPS. The
interface for HotSync is slightly different.

Once synchronization is initiated from the application or from HotSync, the
MobiLink synchronization server and the UltraLite runtime control the
actions that occur during synchronization.

Initiating
synchronization
from an UltraLite
application

MobiLink clients

22

$ For more information on initiating synchronization, see "Adding
synchronization to your application" on page 94 of the book UltraLite User’s
Guide.

Specifying the communications protocol for clients

The MobiLink synchronization server has command line options to specify
the communications protocol or protocols for the synchronization client to
connect to the MobiLink server.

The -x option allows you to specify a communications protocol through
which MobiLink communicates with synchronization clients. The kind of
communication protocol you choose must match the synchronization
protocol used by the client. The syntax for this command line option is:

dbmlsrv8 -c "connection-string" -x protocol

In the following example, the TCP/IP protocol is selected with no additional
communications parameters.

dbmlsrv8 -c "dsn=ASA 8.0 Sample" -x tcpip

You can configure your protocol using communication parameters of the
form:

(keyword=value;…)

For example:

dbmlsrv8 -c "dsn=ASA 8.0 Sample" -x
tcpip(host=localhost;port=2439)

$ For more information about communication protocols, see "-x option"
on page 396.

The MobiLink user

There is one MobiLink user name for each remote database in the MobiLink
system. This name uniquely identifies each MobiLink client. The ml_user
MobiLink system table, located in the consolidated database, holds a list of
MobiLink user names. The synchronization state of each user is recorded in
the commit_state column or the progress column. This information ensures
proper recovery if synchronization is interrupted.

$ For more information, see

♦ "About MobiLink users" on page 252

♦ "Creating MobiLink users" on page 125

Chapter 2 Synchronization Basics

23

♦ "ml_user" on page 17

The synchronization process

24

The synchronization process
A synchronization session is the process of bi-directional data exchange
between the MobiLink client and synchronization server. During this
process, the client must establish and maintain a connection to the
synchronization server. If successful, the session leaves the remote and
consolidated databases in a mutually consistent state.

The client always initiates the synchronization process. It begins by
establishing a connection to the MobiLink synchronization server.

To upload rows, MobiLink clients prepare and send an upload stream that
contains a list of all the rows that have been updated, inserted, or deleted on
the MobiLink client since the last synchronization. Similarly, to download
rows, the MobiLink synchronization server prepares and sends a download
stream that contains a list of inserts, updates, and deletes.

1 Upload stream The MobiLink client automatically keeps track of
which rows in the remote database have been inserted, updated, or
deleted since the previous successful synchronization. Once the
connection is established, the MobiLink client uploads a list of all these
changes to the synchronization server.

The upload stream consists of a set of new and old row values for each
row modified in the remote database. If a row has been updated or
deleted, the old values are those that were present immediately
following the last successful synchronization. If a row has been inserted
or updated, the new values are the current row values. No intermediate
values are sent, even if the row was modified several times before
arriving at its current state.

The MobiLink synchronization server receives the upload stream and
applies the changes to the consolidated database. It applies all the
changes in a single transaction. When it has finished, the MobiLink
synchronization server commits the transaction.

Note
MobiLink operates using a default isolation level of 2 for the
consolidated database. MobiLink does so because repeatable reads
are required for conflict detection purposes. If you have no conflict
detection scripts or if you want to select an isolation level more suited
to your needs, you can set this level in your begin_connection script.

The upload stream
and the download
stream

Chapter 2 Synchronization Basics

25

2 Download stream The MobiLink synchronization server compiles a
list of rows to be inserted, updated, or deleted on the MobiLink client. It
downloads these rows to the MobiLink client. To compile this list, the
MobiLink synchronization server opens a new transaction on the
consolidated database.

The MobiLink client receives the download stream. It takes the arrival
of this stream as confirmation that the consolidated database has
successfully applied all uploaded changes. It will then ensure these
changes are not sent to the consolidated database again.

Next, the MobiLink client automatically processes the download stream,
deleting old rows, inserting new rows, and updating rows that have
changed. It applies all these changes in a single transaction in the remote
database. When finished, it commits the transaction.

3 Optional download acknowledgement The MobiLink client sends a
short confirmation message to the MobiLink synchronization server.

The MobiLink synchronization server receives the confirmation
message. This message tells the synchronization server that the client
has received and processed all downloaded changes. In response, it
commits the download transaction begun in step 2.

$ For more information about the SendDownloadAck extended
option, see "-e extended options" on page 414.

During MobiLink synchronization, there are few distinct exchanges of
information. The client builds and uploads the entire upload stream. In
response, the synchronization server builds and downloads the entire
download stream. Limiting the chattiness of the protocol is especially
important when communication is slower and has higher latency, as is the
case when using telephone lines or public wireless networks.

MobiLink events

MobiLink synchronization is an event-driven process. When the MobiLink
client initiates a synchronization, a number of synchronization events occur
inside the MobiLink server. On the occurrence of an event, MobiLink looks
for a script to match the synchronization event. This script contains your
instructions outlining what you want done. The basic sequence is:

Event occurs➤Script is invoked (if it exists)

Prior to a begin_connection event, MobiLink waits for a synchronization
request to occur. When the synchronization request happens, the
begin_connection event is fired and synchronization starts.

The synchronization process

26

begin_connection

do synchronization(s)

end_connection

Following the synchronization, MobiLink again waits for a synchronization
request for the current script version. If no requests are initiated, the
end_connection event is fired. But if another synchronization request for the
same version is received, then MobiLink handles the next synchronization
request on the same connection. Between the begin_connection and
end_connection events are a number of other important events that all affect
the current synchronization.

authenticate_user

begin_synchronization upload
transaction

download
transaction

end_synchronization

do transactions

do synchronization(s)

$ For more information on these initial events, see "Scripts and the
synchronization process" on page 53.

The events contained in the upload and download transactions are outlined
below.

Chapter 2 Synchronization Basics

27

The upload transaction precedes the download transaction.

The begin_upload event marks the beginning of the upload transaction. The
upload transaction is a two-part process. First, inserts and updates are
performed for all remote tables, and second, the rows are deleted for all
remote tables.

insert new rows

update rows

last remote table?

No

Yes

delete rows

last remote table?

No

Yes

upload transaction

begin_upload

end_upload

The end_upload event marks the end of the upload transaction.

The upload
transaction

The synchronization process

28

$ For more information on the events that happen during upload, see
"Writing scripts to upload rows" on page 66.

The download transaction consists of a begin_download event.

The download transaction is also a two-part process. First, deletes are
performed for all remote tables, and then the rows are added for all remote
tables in the download_cursor. The end_download event ends the download
for all remote tables, and then the end_download event ends the download
for the transaction.

The download
transaction

Chapter 2 Synchronization Basics

29

download transaction

download_delete_cursor

download_cursor

last remote table?

end_download

last remote table?

begin_download

end_download

No

Yes
No

Yes

$ For more information on the events that happen during download see
"Writing scripts to upload rows" on page 66.

The synchronization process

30

MobiLink scripts

Whenever an event occurs, the MobiLink synchronization server executes
the associated script if you have created one. If no script exists, the next
event in the sequence occurs.

Following are some typical synchronization scripts for tables.

Event Script

upload_insert INSERT INTO emp (emp_id,emp_name)
VALUES (?)

upload_delete DELETE FROM emp
WHERE emp_id=?

upload_update UPDATE emp
SET emp_name=?
WHERE emp_id=?

upload_old_row_insert INSERT INTO old_emp
(emp_id,emp_name)
VALUES (?,?)

upload_new_row_insert INSERT INTO new_emp
(emp_id,emp_name)
VALUES (?,?)

The first event, upload_insert, triggers the running of the upload_insert
script, which inserts the emp_id and emp_name into the emp table. In like
fashion, the upload_delete and upload_update tables will perform similar
functions for delete and update actions on the same emp table.

Other synchronization scripts for tables can be generated using cursors. The
following table shows examples of two cursor-based scripts.

Event Script

upload_cursor SELECT cust_id, emp_id, cust_name
FROM cust
WHERE cust_id = ?

download_cursor SELECT emp_id, emp_name
FROM emp
WHERE emp_name = ?

The first event, upload_cursor, triggers the running of the upload_cursor
script. The upload_cursor script acquires data from cust for a specified
cust_id. Similarly, the second event, download_cursor, acquires data from
emp for a specified emp_name.

Statement-based events recommended
For most purposes, it is recommended that you use the statement-based
events upload_delete, upload_insert, and upload_update instead of the
upload_cursor event to process the upload stream.

Chapter 2 Synchronization Basics

31

You can write scripts using the native SQL dialect of your consolidated
database, or using Java or .NET synchronization logic. Java and .NET
synchronization logic allow you to write code, invoked by the MobiLink
synchronization server, to connect to a database, manipulate variables, and
create user-defined procedures that can work with MobiLink and any
supported relational database. There is a MobiLink Java API and a MobiLink
.NET API that have routines to suit the needs of synchronization.

$ For more information about programming synchronization logic, see
"Options for writing synchronization logic" on page 38.

$ For more information about your options for writing scripts, see

♦ "Introduction to synchronization scripts" on page 48

♦ "Writing Synchronization Scripts in Java" on page 165

♦ "Writing Synchronization Scripts in .NET" on page 187

$ For information about DBMS-dependent scripting, such as scripting for
Oracle, MS SQL Server, IBM’s DB2 or Adaptive Server Enterprise
databases, see "DBMS-dependent scripts" on page 80.

Scripts are stored in system tables in the consolidated database. You can add
SQL scripts to a consolidated database in two ways:

♦ By using stored procedures that are installed along with the MobiLink
system tables when you create a consolidated database.

♦ By using Sybase Central.

$ For more information, see "Adding and deleting scripts in your
consolidated database" on page 63.

Procedural language

MobiLink procedures are used for programmatic conflict resolution, adding
scripts, user authentication, and other customization procedures.

$ For more information about using MobiLink stored procedures for
customization, see "Stored Procedures" on page 585.

Other means to gain procedural control are commonly used with databases
that don’t have a defined procedural language. For example, with databases
that do not permit user-defined procedures, such as IBM’s DB2, Java
procedures may be employed to act as MobiLink stored procedures.

$ For more information about writing scripts using Java or .NET
synchronization logic, see "Writing Synchronization Scripts in Java" on
page 165 and "Writing Synchronization Scripts in .NET" on page 187.

Storing scripts

The synchronization process

32

Still more control over the synchronization process exists with stored
procedures held on the remote database. A variety of event hook procedures
are available for you to insert your own logic into the MobiLink
synchronization process.

$ For more information, see "Client event-hook procedures" on page 592.

Built-in automation and communications fault recovery

Built-in automation frees you from routine implementation tasks. For
example, the MobiLink client automatically keeps track of the rows in each
table that have been inserted, updated, or deleted since the last
synchronization. When you synchronize, the MobiLink client automatically
identifies the new, modified, or deleted rows and uploads them to the
MobiLink synchronization server.

During the synchronization process, state information is maintained in both
the application and the MobiLink synchronization server. Should the
synchronization be interrupted, both the MobiLink synchronization server
and application retain information regarding their own states. Upon the next
attempt to synchronize, they automatically continue synchronization where
they left off, without explicit direction.

Transactions in the synchronization process

A successful synchronization commits two transactions: an upload
transaction and a download transaction.

The MobiLink synchronization server incorporates changes uploaded from
each MobiLink client into the consolidated database in one transaction. The
MobiLink synchronization server commits these changes once it has
completed inserting new rows, deleting old rows, making updates, and
resolving any conflicts.

The MobiLink synchronization server prepares the download stream,
including all deletes, inserts, and updates, using another transaction. By
default, it does not commit this transaction until it receives a positive
confirmation from the MobiLink client. If the client confirms a successful
download, the MobiLink synchronization server commits the download
transaction. If the application encounters problems or cannot reply, the
MobiLink synchronization server instead rolls back the download
transaction.

Chapter 2 Synchronization Basics

33

Do not commit or roll back transactions within a script
COMMIT or ROLLBACK statements within scripts alter the transactional
nature of the synchronization steps. If you use them, you cannot guarantee
the integrity of your data in the event of a failure. There should be no
implicit or explicit commit or rollback in your synchronization scripts or
the procedures or triggers that are called from your synchronization
scripts.

The primary role of the download transaction is to select rows in the
consolidated database. If the download fails being sent to the remote, the
remote will upload the same timestamp over again, and no data will be lost.

The MobiLink synchronization server uses two other transactions, one at the
beginning of synchronization, and one at the end. These transactions allow
you to record information regarding each synchronization and its duration.
Thus, you can record statistics about attempted synchronizations, successful
synchronizations, and the duration of synchronizations. Since data is
committed at various points in the process, these transactions also let you
commit data useful when analyzing failed synchronization attempts.

Similarly, the MobiLink client processes information in the download stream
in one transaction. Rows are inserted, updated, and deleted to bring the
remote database up to date with the consolidated data.

How synchronization failure is handled

MobiLink synchronization is fault tolerant. For example, if a communication
link fails during synchronization, both the remote database and the
consolidated database are left in a consistent state.

On the client, failure is indicated by a return code. For example, in an
embedded SQL UltraLite application, the SQLCode is set to
SQLE_COMMUNICATION_ERROR when ULSynchronize returns.

There are three cases that are handled in different ways:

♦ Failure during upload If the failure occurs while building or applying
the upload stream, the remote database is left in exactly the same state as
at the start of synchronization. At the server, any part of the upload
stream that has been applied will be rolled back.

Tracking
downloaded
information

The synchronization process

34

♦ Failure between upload and download If the failure occurs once the
upload stream is complete, but before the MobiLink client receives the
download stream, the client cannot be certain whether the uploaded
changes were successfully applied to the consolidated database. The
upload stream might be fully applied and committed, or the failure may
have occurred before the server applied the entire upload stream. The
MobiLink synchronization server automatically rolls back incomplete
transactions in the consolidated database.

The MobiLink client maintains a record of all uploaded changes in case
they must be sent again. The next time the client synchronizes, it
requests the state of the previous upload stream before building the new
upload stream. If the previous upload was not committed, the new
upload stream contains all changes from the previous upload stream.

♦ Failure during download If the failure occurs in the remote device
while applying the download stream, any part of the download that has
been applied is rolled back and the remote database is left in the same
state as before the download. The MobiLink synchronization server
automatically rolls back the download transaction in the consolidated
database.

In all cases where failure may occur, no data is lost. The MobiLink server
and the MobiLink client manage this for you. The developer/user need not
worry about maintaining consistent data in their application.

How the upload stream is processed

When the MobiLink synchronization server receives an upload stream from a
MobiLink client, the entire upload stream is stored until the synchronization
is complete. This is done for three purposes.

♦ Deadlock When an upload stream is being applied to the consolidated
database, it may encounter deadlock due to concurrency with other
transactions. These transactions might be upload transactions from other
MobiLink synchronization server database connections, or transactions
from other applications using the consolidated database. When an
upload transaction is deadlocked, it is rolled back and the MobiLink
synchronization server automatically starts applying the upload stream
from the beginning again.

Chapter 2 Synchronization Basics

35

Performance tip
It is important to write your synchronization scripts to avoid
contention as much as possible. Contention has a significant impact
on performance when multiple users are synchronizing
simultaneously.

♦ Filtering download rows The most common technique for
determining rows to download is to download rows that have been
modified since the previous download. When synchronizing, the upload
precedes the download. Any rows inserted or updated during the upload
will be rows that have been modified since the previous download.

It would be difficult to write a download_cursor script that omits from
the download stream rows that were sent as part of the upload. For this
reason, the MobiLink synchronization server automatically removes
these rows from the download stream. When a row is being added to the
download stream, the MobiLink synchronization server locates the row
in the upload stream and omits the row from the download stream when
it is found to be the same.

♦ Processing deletes after inserts and updates The upload stream is
applied to the consolidated database in an order that avoids referential
integrity violations. The upload stream is formatted so all operations
(inserts, updates, and deletes) for a single table are grouped together.
The tables in the upload stream are ordered based on foreign key
relationships. All tables in the remote database that are referenced by
another table in the remote database will be in the upload stream before
the referencing table.

For example, if table A and table C both have foreign keys that reference
a primary key column in B, then table B rows are uploaded first.

When the upload stream is applied to the consolidated database, the
inserts and updates are applied in the order they appear in the upload
stream. When an inserted or updated row references a newly inserted
row, this ensures the referenced row will be inserted before the
referencing row. Deletes are applied in the opposite order after all inserts
and updates have been applied. When a row being deleted references
another row that is also being deleted, this order of operations ensures
the referencing row is deleted before the referenced row is deleted.

Referential integrity and synchronization

All MobiLink clients enforce referential integrity when they incorporate the
download stream into the remote database.

The synchronization process

36

Rather than failing the download transaction, the MobiLink client
automatically deletes all rows that violate referential integrity.

This feature affords you these key benefits.

♦ Protection from mistakes in your synchronization scripts. Given the
flexibility of the scripts, it is possible to accidentally download rows that
would break the integrity of the remote database. The MobiLink client
automatically maintains referential integrity without requiring
intervention.

♦ You can use this referential integrity mechanism to delete information
from a remote database efficiently. By only sending a delete to a parent
record, the MobiLink client will remove all the child records
automatically for you. This can greatly reduce the amount of traffic
MobiLink must send to the remote database.

The MobiLink client incorporates changes from the download stream in a
single transaction. To offer more flexibility, referential integrity checking
occurs at the end of this transaction. Because checking is delayed, the
database may temporarily pass through states where referential integrity is
violated as rows are inserted, updated, and deleted, but the rows that violate
referential integrity are automatically removed before the download is
committed.

The MobiLink client resolves referential integrity violations automatically.
This feature minimizes administration requirements. It also prevents an error
in a synchronization script from disabling an MobiLink client.

You can exploit the automatic referential integrity mechanism of MobiLink
clients to delete large quantities of information in a very efficient manner. If
your MobiLink client contains a primary row, and other rows that reference
it, you can delete all the referencing rows simply by synchronizing a delete
of the primary row.

Suppose that an UltraLite sales application contains, among others, the
following two tables. One table contains sales orders. Another table contains
items that were sold in each order. They have the following relationship.

id = id

sales_order
id <pk>
cust_id
order_date
fin_code_id
region
sales_rep

sales_order_items
id <pk,fk>
line_id <pk>
prod_id
quantity
ship_date

If you use the download_delete_cursor for the sales_order table to delete an
order, the automatic referential integrity mechanism automatically deletes all
rows in the sales_order_items table that point to the deleted sales order.

Referential integrity
checked at the end
of the transaction

Errors are avoided

An efficient means
to delete rows

Example

Chapter 2 Synchronization Basics

37

This arrangement has the following advantages.

♦ You do not require a sales_order_items script because rows from this
table will be deleted automatically.

♦ The efficiency of synchronization is improved. You need not download
rows to delete from the sales_order_item table. If each sales order
contains many items, the performance improves because the download
stream is now smaller. This technique is particularly valuable when
using slow communication methods.

Options for writing synchronization logic

38

Options for writing synchronization logic
MobiLink synchronization scripts can be written in SQL, in Java, or in .NET
programming languages. Java or .NET are a good choice whenever your
design is restricted by the limitations of the SQL language or by the
capabilities of your database-management system.

Program synchronization logic can function just as SQL logic functions, as
shown in the figure below. The MobiLink synchronization server can make
calls to Java or .NET methods on the occurrence of MobiLink events just as
it can access SQL scripts on the occurrence of MobiLink events. However,
the upload and download streams are not directly accessible from Java or
.NET synchronization logic. A SQL string may be returned to MobiLink.

Java or .NET
Synchronization Logic

consolidated
data store

MobiLink
synchronization

server

ODBC

INSERT...
AUTHENTICATE_

USER

Other
scripts

Calls for
events

SQL string
returned

network

client
applications

Chapter 2 Synchronization Basics

39

SQL synchronization logic is restricted to the procedural language
capabilities of your consolidated database. Few SQL languages offer all the
programming logic given by Java or .NET programming languages. You
might want to use Java or .NET synchronization logic when your SQL logic
is limited, when you need to perform operations across database platforms,
and when you need portability across RDBMSs and operating systems.
Following are some scenarios where you might want to consider writing
scripts in Java or .NET.

♦ A user authentication procedure can be written in Java or .NET that
inserts the user ID of a MobiLink user into a table on the consolidated
database for audit purposes.

♦ If your database lacks the ability to handle variables, you can create a
variable in Java or .NET that persists throughout your connection or
synchronization.

♦ If your database lacks the ability to make user-defined stored
procedures, you can make a method in Java or .NET that can perform
the needed functionality.

♦ If your program calls for contacting an external server midway through a
synchronization event, you can use Java or .NET synchronization logic
to perform actions triggered by synchronization events. Java and .NET
synchronization logic can be shared across multiple connections.

♦ With Java and .NET synchronization logic, you can use MobiLink to
access data from application servers, Web servers, and files. You can
use JDBC or iAnywhere classes in your synchronization logic to access
data in relational databases other than the consolidated database. For
example, an external server can be used to validate a user ID and
password. The figure below shows the links between Java or .NET
synchronization logic and both a consolidated database and a second
data server.

Options for writing synchronization logic

40

Java or .NET
synchronization

logic

consolidated
data store

MobiLink
synchronization

server

client applications

ODBC

External data
server

network

The MobiLink APIs are sets of classes and interfaces for MobiLink
synchronization. There are two MobiLink APIs: Java and .NET.

The MobiLink Java API offers you:

♦ Access to the existing ODBC connection as a JDBC connection.

♦ The ability to create new JDBC connections to perform commits or
connects outside the current synchronization connection. For example,
you can use this for error logging.

♦ The ability to write and debug Java code before it is executed by the
MobiLink server. SQL development environments for many database
management systems are relatively primitive compared to those
available for Java applications.

♦ Code that runs inside the Java virtual machine and allows access to all
Java libraries and Java Native Interface calls.

MobiLink APIs

Chapter 2 Synchronization Basics

41

$ For more information, see "MobiLink Java API Reference" on
page 183.

The MobiLink .NET API offers you:

♦ Access to the existing ODBC connection using iAnywhere classes that
call ODBC from .NET.

♦ Code that runs inside the .NET Common Language Runtime (CLR) and
allows access to all .NET libraries and unmanaged calls.

$ For more information, see "MobiLink .NET API Reference" on
page 203.

$ For more information about your options for writing synchronization
scripts, see

♦ "Writing Synchronization Scripts" on page 47

♦ "Synchronization Techniques" on page 83

♦ "Writing Synchronization Scripts in Java" on page 165

♦ "Writing Synchronization Scripts in .NET" on page 187

Further reading

Character set considerations

42

Character set considerations
Each character of text is represented in one or more bytes. The mapping from
characters to binary codes is called the character set encoding. Some
character sets used for languages with small alphabets, such as European
languages, use a single-byte representation. Others, such as Unicode, use a
double-byte representation. Because they use twice the storage space for
each character, double-byte character sets can represent a much larger
number of characters.

When the character set of your MobiLink remote database is the same as
your consolidated database, character translation issues are avoided. The
characters you type can be transferred reliably.

Errors can occur or data can be lost when text using one character set must
be translated to another character set. Not all characters can be represented in
all character sets. In particular, single-byte character sets can represent a
much smaller number of characters than multi-byte systems because of the
limited number of codes available.

Most text needs to be sorted to build indexes and to prepare ordered result
sets, such as directory listings. The sort order identifies the order of the
characters. For example, a sort order typically states that the letter a comes
before the letter b, which comes before the letter c.

Each database has a collation sequence. You set the collation sequence
when you create the database, although how you do so can differ between
database systems. The collation sequence defines both the character set and
the sort order for that database.

Tip
Whenever possible, define the collation sequence of your reference
database to be the same as that of your consolidated database. Doing so
ensures that the collation sequence of your MobiLink remote database
will match that of your consolidated database as closely as possible. This
arrangement reduces the chance of erroneous translations.

$ For more information, see "Character sets in UltraLite" on page 64 of
the book UltraLite User’s Guide

Character-set translation during synchronization: Windows

During synchronization, characters may need to be translated from one
character set to another. The following translations occur as characters are
passed between the remote application and the consolidated database.

Chapter 2 Synchronization Basics

43

The MobiLink client sends data to the MobiLink synchronization server
using the character set of the remote database.

1 The MobiLink synchronization server communicates with the
consolidated database using the Unicode ODBC API. To do so, the
MobiLink synchronization server translates all characters received from
the remote database into Unicode.

2 If necessary, the ODBC driver for the consolidated database server
translates the characters from Unicode into the character set of your
consolidated database. This translation is controlled solely by the ODBC
driver for your consolidated database system. Hence, behavior can differ
between two different database systems, particularly systems made by
different manufacturers. MobiLink synchronization works with a
number of database systems. Check the documentation of your particular
consolidated server for details.

1 The ODBC driver for the consolidated database system receives
characters in the coding of the consolidated database. It translates these
characters into Unicode to pass them through the Unicode API to the
MobiLink synchronization server. This translation is controlled solely
by the ODBC driver for your consolidated database system. Check the
documentation of your particular consolidated server for details.

2 The MobiLink synchronization server receives characters through the
Unicode ODBC API. If the remote database uses a different character
set, the MobiLink synchronization server translates the characters before
downloading them.

♦ UltraLite applications on Windows CE devices use the Unicode
character set.

When you synchronize a Windows CE application, no character
translation occurs within the MobiLink synchronization server. The
server finds that data arriving from the application is already in Unicode
and passes it directly to the ODBC driver. Similarly, no character-set
translation is necessary when downloading data.

♦ All Adaptive Server Anywhere databases and all UltraLite applications
on platforms other than Windows CE use the character set determined
by the collating sequence of the database.

When you synchronize a remote database, the MobiLink
synchronization server performs character set translations between the
character set of the remote database and Unicode.

Character-set
translation during
upload

Character-set
translation during
download

Examples

Character set considerations

44

Character set translation during synchronization: non-Windows

ODBC drivers on non-Windows platforms do not have Unicode entry points.
The MobiLink synchronization server exchanges data with the ODBC driver
using the character set determined by the collating sequence of the remote
database.

When the remote database is an UltraLite application running under
Windows CE, the MobiLink synchronization server performs character-set
translation between Unicode and the character set being used with ODBC.

Controlling ODBC driver character-set translation

Because most consolidated databases are unlikely to use Unicode, it is
important to understand how the ODBC driver for your consolidated
database system converts data to and from Unicode. Some ODBC drivers use
the language settings of the machine running MobiLink to determine what
character set to use. In these cases, it is best if the language and code-page
settings of the machine running the MobiLink synchronization server match
those of the consolidated database.

Other ODBC drivers, such as the driver for Sybase Adaptive Server
Enterprise, allow each connection to use a specific character set. To avoid
translation errors, the character set used by MobiLink should be set to match
that of the consolidated database.

$ For a detailed description of how character-set translations take place in
your database server’s ODBC driver, consult that product’s ODBC driver
documentation.

Chapter 2 Synchronization Basics

45

Security
There are several aspects to securing data throughout a widely distributed
system such as a MobiLink installation:

♦ Protecting data in the consolidated database Data in the
consolidated database is protected by the DBMS user authentication
system and other security features.

$ For more information, see your DBMS documentation. If you are
using an Adaptive Server Anywhere consolidated database, see
"Keeping Your Data Secure" on page 387 of the book ASA Database
Administration Guide.

♦ Protecting data in the remote databases If you are using Adaptive
Server Anywhere MobiLink clients, the data is protected using the
Adaptive Server Anywhere security features. These are designed to
prevent unauthorized access through client/server communications, but
not to be proof against a serious attempt to extract information directly
from the database file.

Files on the client are protected by the security features of the client
operating system.

$ If you are using an Adaptive Server Anywhere consolidated
database, see "Keeping Your Data Secure" on page 387 of the book ASA
Database Administration Guide.

♦ Protecting data during synchronization Communication from
MobiLink clients to MobiLink synchronization servers is protected by
the MobiLink transport layer security features.

$ For more information, see "Transport-Layer Security" on
page 283.

♦ Protecting the synchronization system from unauthorized users
MobiLink synchronization is secured by a password-based user
authentication system. This mechanism prevents unauthorized users
from downloading data or uploading changes.

$ For more information, see "Authenticating MobiLink Users" on
page 251.

Security

46

47

C H A P T E R 3

Writing Synchronization Scripts

You control the synchronization process by writing synchronization scripts
and storing them in the consolidated database.

You can write scripts in SQL, Java, or .NET. This chapter applies to all kinds
of scripts, but focuses on how to write synchronization scripts in SQL.

Topic Page

Introduction to synchronization scripts 48

Scripts and the synchronization process 53

Script types 55

Script parameters 60

Script versions 61

Adding and deleting scripts in your consolidated database 63

Writing scripts to upload rows 66

Writing scripts to download rows 70

Writing scripts to handle errors 75

Example scripts for UltraLite 77

Testing script syntax 78

DBMS-dependent scripts 80

About this chapter

Contents

Introduction to synchronization scripts

48

Introduction to synchronization scripts
MobiLink Synchronization logic consists of scripts, which may be
individual statements or stored procedure calls, stored in your consolidated
database. During synchronization, the MobiLink synchronization server
reads the scripts and executes them against the consolidated database. Scripts
provide you with opportunities to perform tasks at various points of time
during the synchronization process. You can use Sybase Central to add
scripts to the consolidated database or you can use stored procedures.

upload_insert

upload_delete

other scripts

consolidated
server

MobiLink
synchronization

server

remote
applications

client data
store

synchronization scripts

network

The synchronization process is composed of multiple steps. A unique event
name identifies each step. You control the synchronization process by
writing scripts associated with some of these events. You write a script only
when some particular action must occur at a particular event. The MobiLink
synchronization server executes each script when its associated event occurs.
If you do not define a script for a particular event, the MobiLink
synchronization server simply proceeds to the next step.

Chapter 3 Writing Synchronization Scripts

49

For example, one event is begin_upload_rows. You can write a script and
associate it with this event. The MobiLink synchronization server reads this
script when it is first needed, and executes it during the upload phase of
synchronization. If you write no script, the MobiLink synchronization server
proceeds immediately to the next step, which is processing the uploaded
rows.

Some scripts, called table scripts, are associated not only with an event, but
also with a particular table in the remote database. The MobiLink
synchronization server performs some tasks on a table-by-table basis; for
example, downloading rows. You can have many scripts associated with the
same event, but each with different application tables. Alternatively, you can
define many scripts for some application tables, but none for others.

$ For an overview of events, see "The synchronization process" on
page 24.

You can write scripts in SQL, Java, or .NET. This chapter applies to all kinds
of scripts, but focuses on how to write synchronization scripts in SQL.

$ For a description and comparison of SQL, Java, and .NET, see
"Options for writing synchronization logic" on page 38.

$ For information about writing scripts in .NET, see "Writing
Synchronization Scripts in .NET" on page 187.

$ For information about writing scripts in Java, see "Writing
Synchronization Scripts in Java" on page 165.

$ For information about how to implement synchronization scripts, see
"Synchronization Techniques" on page 83.

A simple synchronization script

MobiLink provides many events that you can exploit, but it is not mandatory
to provide scripts for each event. In a simple synchronization model, you
may need only a few scripts.

Downloading all the rows from the table to each remote database
synchronizes the ULProduct table in the CustDB sample application. In this
case, no additions are permitted at the remote databases. You can implement
this simple form of synchronization with a single script; in this case only one
event has a script associated with it.

Introduction to synchronization scripts

50

The MobiLink event that controls the rows to be downloaded during each
synchronization is named the download_cursor event. Cursor scripts must
contain SELECT statements. The MobiLink synchronization server uses
these queries to define a cursor. In the case of a download_cursor script, the
cursor selects the rows to be downloaded to one particular table in the remote
database.

In the CustDB sample application, there is a single download_cursor script
for the ULProduct table in the sample application, which consists of the
following query.

SELECT prod_id, price, prod_name
FROM ULProduct

This query generates a result set. The rows that make up this result set are
downloaded to the client. In this case, all the rows of the table are
downloaded.

The MobiLink synchronization server knows to send the rows to the
ULProduct application table because this script is associated with both the
download_cursor event and ULProduct table by the way it is stored in the
consolidated database. Sybase Central allows you to make these associations.

Note
In this example, the query selects data from a consolidated table also
named ULProduct. The names need not match. You could, instead,
download data to the ULProduct application table from any table, or any
combination of tables, in the consolidated database by rewriting the query.

You can write more complicated synchronization scripts. For example, you
could write a script that downloads only recently modified rows, or one that
provides different information to each remote database.

Generating scripts automatically

You can use the dbmlsrv8 -za and -zac options to generate default
synchronization scripts. The synchronization scripts perform a snapshot
synchronization of your consolidated database with your remote database
using table and column names that are sent from the client.

To use this feature with Adaptive Server Anywhere clients, set the
SendColumnNames extended option to ON to cause dbmlsync to send the
column names with the upload header. To use this feature with UltraLite
clients, set the send_column_names parameter to ul_true.

Chapter 3 Writing Synchronization Scripts

51

When you use -za, scripts are generated the first time that a remote
synchronizes with a script version that doesn’t exist. If the given script
version already exists, -za has no effect. This means that you cannot use -za
to generate scripts one table at a time for the same script version. Using -za,
you must generate scripts for all tables and publications at once.

$ For more information, see "-za option" on page 402.

The -zac option creates the cursor-based scripts upload_cursor and
download_cursor.

$ For more information, see "-zac option" on page 403.

Start the MobiLink synchronization server using the -za switch. At a
command prompt, type:

dbmlsrv8 -c "dsn=YourDBDSN" -za

Run dbmlsync and set the SendColumnNames extended option to ON. At a
command prompt, type:

dbmlsync -c dsn=dsn_remote -e "SendColumnNames=ON"

Scripts are generated for all tables specified in the publication. On
synchronization, these automatically-generated scripts control the upload and
download of data to and from your client and consolidated databases. The
following table describes these scripts for the emp table.

Script name Script contents

upload_insert INSERT INTO emp (emp_id,
emp_name)

VALUES (?,?)

upload_update UPDATE emp SET emp_name=?
WHERE emp_id=?

upload_delete DELETE FROM emp

WHERE emp_id=?

download_cursor SELECT emp_id, emp_name
FROM emp

Generating example scripts

You can use the dbmlrv8 -ze and -zec options to generate example
synchronization scripts. The example synchronization scripts are capable of
performing a snapshot synchronization of your consolidated database with
your remote database using the table and column names sent from the client,
but they are not enabled. If the consolidated database has different table or
column names, then activating these scripts causes an error during the
synchronization.

Example

Introduction to synchronization scripts

52

To use this feature with Adaptive Server Anywhere clients, set the
SendColumnNames extended option to ON to cause dbmlsync to send the
column names with the upload header. To use this feature with UltraLite
clients, set the send_column_names parameter to ul_true.

The -ze option generates the example scripts example_upload_insert,
example_upload_update, and example_upload_delete.

$ For more information, see "-ze option" on page 403.

The -zec option creates the cursor-based scripts example_upload_cursor and
example_download_cursor.

$ For more information, see "-zec option" on page 404.

The following example generates scripts for an Adaptive Server Anywhere
remote database.

At a command prompt, type:

dbmlsrv8 -c "dsn=YourDBDSN" -ze

At a command prompt, type:

dbmlsync -c dsn=dsn_remote -e "SendColumnNames=ON"

In the example above, example scripts are generated for all tables specified
in the synchronization definition. The scripts exist for each table specified in
the synchronization definition. The following table lists these scripts for the
emp table.

Script name Script

example_upload_insert INSERT INTO emp (emp_id,emp_name)
VALUES (?,?)

example_upload_update UPDATE emp SET emp_name=?
WHERE emp_id=?

example_upload_delete DELETE FROM emp
WHERE emp_id=?

example_download_cursor SELECT emp_id, emp_name FROM emp

The example scripts select and upload all records from any table in the
synchronization subscription that meet the conditions specified in the
statement. So, for example, the upload_insert script for emp inserts all
records from emp. The example scripts are generated for each table in the
remote database specified in the synchronization subscription. The MobiLink
synchronization server generates complete scripts needed for a snapshot
synchronization. The scripts are added right after the synchronization
description is processed. The synchronization is aborted after scripts are
generated.

Example

Chapter 3 Writing Synchronization Scripts

53

Scripts and the synchronization process
Each script corresponds to a particular event in the synchronization process.
You write a script only when some action must occur. All unnecessary
events can be left undefined.

The two principal parts of the process are the processing of uploaded
information and the preparation of rows for downloading.

The MobiLink synchronization server reads and prepares each script once,
when it is first needed. The script is then executed whenever the event is
invoked.

For information about the full sequence of MobiLink events, see "Overview
of MobiLink events" on page 436.

$ For the details of upload stream processing, see "Writing scripts to
upload rows" on page 66.

$ For the details of download stream processing, see "Writing scripts to
download rows" on page 70.

♦ MobiLink technology allows multiple clients to synchronize
concurrently. In this case, each client uses a separate connection to the
consolidated database.

♦ The begin_connection and end_connection events are independent of
any one synchronization as one connection can handle many
synchronization requests. These scripts have no parameters. These are
examples of connection-level scripts.

♦ Some events are invoked only once for each synchronization and have a
single parameter. This parameter is the user name, which uniquely
identifies the MobiLink client that is synchronizing. These are also
examples of connection-level scripts.

♦ Some events are invoked once for each table being synchronized. Scripts
associated with these events are called table-level scripts. They provide
two parameters. The first is the user name supplied in the call to the
synchronization function, and the second is the name of the table in the
remote database being synchronized.

While each table can have its own table scripts, you can also write table-
level scripts that are shared by several tables.

♦ Some events, such as begin_synchronization, occur at both the
connection level and the table level. You can supply both connection
and table scripts for these events.

The sequence of
events

Notes

Scripts and the synchronization process

54

♦ The COMMIT statements illustrate how the synchronization process is
broken up into distinct transactions.

♦ Errors are a separate event that can occur at any point within the
synchronization process. Errors are handled using the following script.

handle_error(error_code, error_message, user_name,
table_name)

$ For reference material, including detailed information about each script
and its parameters, see "Synchronization Events" on page 433.

Chapter 3 Writing Synchronization Scripts

55

Script types
Synchronization scripts can be cursor-based or statement-based.

♦ cursor scripts These scripts perform the actions associated with the
upload and download of data. Each script is associated with one
particular remote table. It is recommended that you use statement-based
scripts to handle the upload stream.

♦ statement-based scripts Statement-based scripts perform upload of
data, including insert, update and delete functions.

Synchronization scripts can apply to connections or connections and tables.

♦ connection scripts These scripts perform actions that are connection-
specific or synchronization-specific and that are independent of any one
remote table. These scripts are used in conjunction with other scripts
when implementing more complex synchronization schemes.

♦ table scripts These scripts perform actions specific to one
synchronization and one particular remote table. These scripts are used
in conjunction with other scripts when implementing more complex
synchronization schemes.

Cursor scripts

Each cursor script must contain a SELECT statement. The MobiLink
synchronization server defines a cursor based on this statement.

The following cursor scripts are used most frequently:

♦ upload_cursor This script defines a cursor through which the
MobiLink synchronization server applies the upload stream to the
consolidated database during the first step of synchronization.

Note
It is recommended that you use statement-based scripts to handle the
upload stream.

$ For more information, see "Writing scripts to upload rows" on
page 66, and "upload_cursor cursor event" on page 543.

♦ download_cursor This script prepares inserts and updates for
download to remote databases during the second step of
synchronization. You must define a download_cursor cursor script for
each remote table to which you want to download rows.

Script types

56

$ For more information, see "Writing scripts to download rows" on
page 70, and "download_cursor cursor event" on page 474.

♦ download_delete_cursor This script prepares deletes for download to
remote databases during the second step of synchronization. You use
this script to select rows that are to be deleted from the remote database.

$ For more information, see "Writing download_delete_cursor
scripts" on page 72, and "download_delete_cursor cursor event" on
page 477.

The following cursor script events are also available. These scripts are used
for conflict resolution.

♦ old_row_cursor Defines a cursor that the MobiLink synchronization
server uses to insert the old values of uploaded rows.

$ For more information, see "old_row_cursor cursor event" on
page 525.

♦ new_row_cursor Defines a cursor that the MobiLink synchronization
server uses to insert the new values of uploaded rows.

$ For more information, see "new_row_cursor cursor event" on
page 523.

$ For more information about conflict resolution, see "Handling
conflicts" on page 104.

Statement-based scripts

Unlike cursor scripts, statement-based scripts do not require a SELECT
statement. Following are some of the statement-based script events that are
available.

♦ upload_delete MobiLink synchronization server uses this event
during processing of the upload stream to handle rows deleted from the
remote database.

$ For more information, see "Writing upload_delete scripts" on
page 67, and "upload_delete table event" on page 545.

♦ upload_insert MobiLink synchronization server uses this event
during processing of the upload stream to handle rows inserted into the
remote database.

$ For more information, see "Writing upload_insert scripts" on
page 67, and "upload_insert table event" on page 549.

Chapter 3 Writing Synchronization Scripts

57

♦ upload_update MobiLink synchronization server uses this event
during processing of the upload stream to handle rows updated at the
remote database.

$ For more information, see "Writing upload_update scripts" on
page 67, and "upload_update table event" on page 560.

♦ upload_fetch MobiLink synchronization server uses this event during
processing of the upload stream to identify conflicts for rows updated at
the remote database.

$ For more information, see "Writing upload_fetch scripts" on
page 67, and "upload_fetch table event" on page 547.

♦ upload_old_row_insert MobiLink synchronization server uses this
event when conflicts are detected during processing of the upload stream
to handle the old values of the updated row.

$ For more information, see "upload_old_row_insert table event" on
page 553.

♦ upload_new_row_insert MobiLink synchronization server uses this
event when conflicts are detected during processing of the upload stream
to handle the new values of the updated row.

$ For more information, see "upload_new_row_insert table event"
on page 551.

$ For more information about uploading rows, see "Writing scripts to
upload rows" on page 66.

The statement-based scripts can be written using the following syntax:

Script name Script syntax

upload_insert INSERT INTO table_name
(column_name1,column_name2, …)
VALUES (?,?,…)

upload_delete DELETE FROM table_name
WHERE pk1=?, pk2=?

upload_update UPDATE table_name
SET column_name1=?,column_name2=?, …
WHERE pk1=?, pk2=?

upload_old_row_insert INSERT INTO old_table_name
(column_name1,column_name2, …)
VALUES (?,?,…)

upload_new_row_insert INSERT INTO new_table_name
(column_name1,column_name2, …)
VALUES (?,?,…)

Script types

58

Following are examples of some of the scripts:

Script name Script example

upload_insert INSERT INTO emp (emp_id,emp_name)
VALUES (?)

upload_delete DELETE FROM emp
WHERE emp_id=?

upload_update UPDATE emp
SET emp_name=?
WHERE emp_id=?

upload_old_row_insert INSERT INTO old_emp
(emp_id,emp_name)
VALUES (?,?)

upload_new_row_insert INSERT INTO new_emp
(emp_id,emp_name)
VALUES (?,?)

Connection scripts

Connection scripts control actions centered on connecting and disconnecting.
They also permit actions at synchronization-level events such as beginning
and ending the upload or download process.

You only need to write a connection-level script when some action must
occur at a particular event. You may need to create scripts for only a few
events. The default action at any event is for the MobiLink synchronization
server to carry out no actions. Some simple synchronization schemes need no
connection scripts.

Table scripts

Table scripts allow actions at specific events relating to the synchronization
of a specific table, such as the start or end of uploading rows, resolving
conflicts, or selecting rows to download.

The names of tables in the remote databases need not match the names of the
tables in the consolidated database. The MobiLink synchronization server
determines which scripts are associated with a table by looking up the remote
table name in the ml_table system table.

Table names need
not match

Chapter 3 Writing Synchronization Scripts

59

The synchronization scripts for a given table can refer to any table, or
combination of tables, in the consolidated database. You can use this feature
to fill a particular remote table with data stored in one or more consolidated
tables, or to store data uploaded from a single remote table into multiple
tables in the consolidated database.

Script parameters

60

Script parameters
Most synchronization scripts receive parameters from the MobiLink
synchronization server. You can use these parameters in your scripts by
placing question marks in the script.

The following parameters are typically available within scripts.

♦ last download timestamp The last download timestamp is the value
obtained from the consolidated database during the last successful
synchronization immediately prior to the download phase. If the current
MobiLink user has never synchronized, or has never synchronized
successfully, this value is set to 1900-01-01.

♦ MobiLink user name The value of this parameter is the string that
uniquely identifies a MobiLink client. Each client must identify itself by
this name when initiating synchronization with a MobiLink
synchronization server. This parameter is available within most
connection-level scripts, all table-level scripts, and some cursor scripts.

The user name can be used to partition tables among remote databases.

♦ table name This parameter identifies a table in the remote database.
The consolidated database may or may not contain a table with the same
name. Only table scripts use this parameter.

To use parameters, place a single question mark in your SQL script for each
parameter. Some parameters are optional. The MobiLink synchronization
server replaces each question mark with the value of a parameter. It
substitutes values in the order the parameters appear in the script definition.

$ For reference material, including detailed information about each script
and its parameters, see "Synchronization Events" on page 433.

Chapter 3 Writing Synchronization Scripts

61

Script versions
Scripts are organized into groups called script versions. By specifying a
particular version, MobiLink clients can select which set of synchronization
scripts will be used to process the upload stream and prepare the download
stream.

$ For information about how to add a script version to the consolidated
database, see "Adding a script version" on page 62.

Script versions allow you to organize your scripts into sets, which are run
under different circumstances. This ability provides flexibility and is
especially useful in the following circumstances.

♦ customization Using a different set of scripts to process information
from different types of remote users. For example, you could write a
different set of scripts for use when managers synchronize their
databases than would be used for other people in the organization.
Although you could achieve the same functionality with one set of
scripts, these scripts would be more complicated.

♦ upgrading applications When you wish to upgrade a database
application, new scripts may be needed because the new version of your
application may handle data differently. New scripts are almost always
necessary when the remote database changes. It is usually impossible to
upgrade all users simultaneously. MobiLink clients can request that a
new set of scripts be used during synchronization. Since both old and
new scripts can coexist on the server, all users can synchronize no
matter which version of your application they are using.

♦ multiple applications A single MobiLink synchronization server may
need to synchronize two entirely different applications. For example,
some employees may use a sales application, whereas others require an
application designed for inventory control. When two applications
require different sets of data, you can create two versions of the
synchronization scripts, one version for each application.

A script version name is a string. You specify this name when you add a
script to the consolidated database. For example, if you add your scripts with
the ml_add_connection_script and the ml_add_table_script stored
procedures, the script version name is the first parameter. Alternatively, if
you add your scripts using Sybase Central, you are prompted for the version
name.

Whenever a remote site fails to supply a script version, the MobiLink
synchronization server uses the first version defined in the ml_script_version
table. If no script version has been defined, the synchronization fails.

Application of
script versions

Assigning version
names

The default script
version

Script versions

62

Adding a script version

All scripts are associated with a script version. You must add a version name
to your consolidated database before you can add any connection scripts.

$ For more information, see "Script versions" on page 61.

v To add a script version to a database (Sybase Central):

1 From Sybase Central, right-click MobiLink Synchronization and
connect to the consolidated database.

2 Open the Versions folder.

3 Double-click Add Version and follow the instructions in the wizard.

v To remove a script version from a database (Sybase Central):

1 From Sybase Central, right-click MobiLink Synchronization and
connect to the consolidated database.

2 Open the Versions folder.

3 Right-click the version name and select Delete.

4 The Confirm Delete dialog appears. Click OK.

v To add a script version to a database (stored procedures):

♦ You can add a script version in the same operation as adding a
connection script or table script.

$ For more information, see "Stored procedures to add or delete scripts"
on page 586.

Chapter 3 Writing Synchronization Scripts

63

Adding and deleting scripts in your consolidated
database

When you have created scripts, you must add them to MobiLink system
tables in the consolidated database. There are stored procedures and Sybase
Central wizards that make this easy.

$ For information about the MobiLink system tables, see "MobiLink
system tables" on page 15.

Adding or deleting scripts with Sybase Central

You can add synchronization scripts using Sybase Central wizards. The
procedure is different for connection scripts and table scripts. Table scripts
correspond to tables in the remote database, so before you can add a table
script, you must add the name of the remote database table to the
consolidated database.

If you are using Sybase Central, you must add a synchronization version to
the database before you can add individual scripts. For more information, see
"Adding a script version" on page 62.

v To add or delete a connection script:

1 From Sybase Central, right-click MobiLink Synchronization and
connect to the consolidated database.

2 Open Connection Scripts.

3 To add a connection script, double-click Add Connection Script and
follow the instructions in the wizard.

or

To delete a connection script, right-click the script name and select
Delete. The Confirm Delete dialog appears. Click OK.

v To add or delete a remote table in the list of synchronized tables:

1 From Sybase Central, right-click MobiLink Synchronization and
connect to the consolidated database.

2 Open Synchronized Tables.

Adding and deleting scripts in your consolidated database

64

3 To add a remote table to the list of synchronized tables, double-click
Add Synchronized Table. Enter the name of a table at the remote
database for which you are going to write synchronization scripts. The
wizard provides a shortcut if the consolidated database has a table with a
matching name.

or

To delete a remote table from the list of synchronized tables, right-click
the table name and select Delete. The Confirm Delete dialog appears.
Click OK.

v To add or delete a table script in a database:

1 From Sybase Central, right-click MobiLink Synchronization and
connect to the consolidated database.

2 Open Synchronized Tables.

3 Select the table for which you wish to add a script.

4 To add a table script, double-click Add Table Script and follow the
instructions in the wizard.

or

To delete a table script, right-click the script name and select Delete.
The Confirm Delete dialog appears. Click OK.

Adding or deleting scripts with stored procedures

You can add scripts to a consolidated database or delete scripts from a
consolidated database using stored procedures that are installed along with
the MobiLink system tables when you create your consolidated database.

$ For a description of the stored procedures that you can use to add or
delete scripts, see "Stored procedures to add or delete scripts" on page 586.

Direct inserts of scripts

In most cases, it is recommended that you use stored procedures or Sybase
Central to insert scripts into the system tables. However, in some rare cases
you may need to use an INSERT statement to directly insert the scripts. For
example, older versions of some DBMSs may have length limitations that
make it difficult to use stored procedures.

$ For a complete description of the MobiLink system tables, see
"MobiLink system tables" on page 15.

Chapter 3 Writing Synchronization Scripts

65

The format of the INSERT statements that are required to directly insert
scripts can be found in the source code for the ml_add_connection_script and
ml_add_table_script stored procedures. The source code for these stored
procedures is located in the MobiLink setup scripts. There is a different setup
script for each supported RDBMS. The setup scripts are:

Consolidated database Setup file

Adaptive Server Anywhere scripts\syncasa.sql

Oracle MobiLink\setup\syncora.sql

IBM DB2 version 6 and later MobiLink\setup\syncdb2long.sql

IBM DB2 prior to version 6 MobiLink\setup\syncdb2.sql

Microsoft SQL Server MobiLink\setup\syncmss.sql

Adaptive Server Enterprise
version 12.5 and later

MobiLink\setup\syncase125.sql

Adaptive Server Enterprise
prior to version 12.5

MobiLink\setup\syncase.sql

Note: IBM DB2 prior to version 6 only supports column names and other
identifiers of 18 characters or less, and so the names are truncated. For
example, ml_add_connection_script is shortened to ml_add_connection_.

Writing scripts to upload rows

66

Writing scripts to upload rows
To upload information contained in your remote database to your
consolidated database, you must define upload scripts.

There are two approaches to handling uploaded rows:

♦ Statement-based scripts In this approach, you write separate scripts
to handle rows that are updated, inserted, or deleted at the remote
database. A simple implementation would carry out corresponding
actions (update, insert, delete) at the consolidated database.

$ For an overview, see "Statement-based scripts" on page 56.

♦ Cursor-based scripts In this approach, you write a single script that
defines a cursor in the consolidated database. The script is commonly a
SELECT statement or a stored procedure that returns a result set. The
uploaded rows are inserted, deleted, or updated through this cursor.

Note: For most purposes, statement-based scripts are recommended. For
more information about the performance benefits of statement-based scripts,
see "Performance tips" on page 220.

The MobiLink synchronization server uploads data in a single transaction.
For a description of the upload process, see "Events during upload" on
page 438.

♦ The upload starts and ends with connection events. Other events are
table-level events.

♦ The begin_upload and end_upload scripts for each remote table hold
logic that is independent of the individual rows being updated.

♦ The upload stream consists of single row inserts, updates, and deletes.
These actions are typically performed using upload_insert,
upload_update and upload_delete scripts.

♦ To prepare the upload for Adaptive Server Anywhere clients, the
dbmlsync utility requires access to all transaction logs written since the
last successful synchronization. For more information, see "Transaction
log files" on page 140.

♦ The upload_cursor script takes a different set of parameters from the
other scripts. Its parameters are the primary key values identifying the
row being uploaded.

Notes

Chapter 3 Writing Synchronization Scripts

67

Writing upload_insert scripts

The MobiLink synchronization server uses this event during processing of
the upload stream to handle rows inserted into the remote database. The
following INSERT statement shows how you use the upload_insert
statement.

INSERT INTO emp (emp_id,emp_name)
VALUES (?,?)

$ For more information, see "upload_insert table event" on page 549.

Writing upload_update scripts

The MobiLink synchronization server uses this event during processing of
the upload stream to handle rows updated at the remote database. The
following UPDATE statement illustrates use of the upload_update statement.

UPDATE emp
SET emp_name=?
WHERE emp_id=?

$ For more information, see "upload_update table event" on page 560.

Writing upload_delete scripts

The MobiLink synchronization server uses this event during processing of
the upload stream to handle rows deleted from the remote database. The
following statement shows how to use the upload_delete statement.

DELETE FROM emp
WHERE emp_id=?

$ For more information, see "upload_delete table event" on page 545.

Writing upload_fetch scripts

The upload_fetch script is a SELECT statement that defines a cursor in the
consolidated database table. This cursor is used to compare the old values of
updated rows, as received from the remote database, against the value in the
consolidated database. In this way, the upload_fetch script identifies conflicts
when updates are being processed.

Given a synchronized table defined as:

Writing scripts to upload rows

68

CREATE TABLE uf_example (
pk1 integer NOT NULL,
pk2 integer NOT NULL,
val varchar(200),
PRIMARY KEY(pk1, pk2))

Then one possible upload_fetch script for this table is:

SELECT pk1, pk2, val
FROM uf_example
WHERE pk1 = ? and pk2 = ?

$ For more information, see "upload_fetch table event" on page 547.

The MobiLink synchronization server requires the WHERE clause of the
query in the upload_fetch script to identify exactly one row in the
consolidated database to be checked for conflicts.

Writing upload_cursor scripts

The upload_cursor script is a SELECT statement that defines a cursor in the
consolidated database table. This cursor is used to apply uploaded inserts,
updates, and deletes. The upload_cursor script takes one parameter for each
column in the primary key of the table. The script must be a SELECT
statement. The WHERE clause of the SELECT statement must use the
parameters to uniquely identify rows in the consolidated database.

Although both upload_cursor and download_cursor scripts contain SELECT
statements, the meaning of the two statements is quite different. The
download script selects all rows to be downloaded, but the MobiLink
synchronization server requires the WHERE clause of the query in the
upload_cursor script to identify exactly one row in the consolidated database
to be updated or deleted.

If a table is to have only inserts at all remote databases, with no updates or
deletes, no WHERE clause is required. No rows are being deleted or
updated, and so the WHERE clause does not need to uniquely identify the
row.

The old_row_cursor and new_row_cursor scripts are always used only for
inserts. Therefore, they never require parameters or a WHERE clause.

SELECT statements in the upload_cursor script define cursors through which
updates, deletes, and inserts are performed. SELECT statements in the
new_row_cursor or old_row_cursor scripts are used in conflict resolution to
define cursors through which inserts are performed.

Meaning of the
SELECT statement

Inserts are a
special case

SELECT FOR
UPDATE

Chapter 3 Writing Synchronization Scripts

69

Some database-management systems use an additional clause on the
SELECT statement to indicate that the query defines a cursor that may be
used for changes. If the DBMS you are using as a consolidated database uses
such a clause, you may wish to include it in SELECT statements in your
upload cursors.

Microsoft SQL Server, Sybase Adaptive Server Enterprise, IBM DB2, and
Oracle use a FOR UPDATE clause to indicate queries that may be updated.
No additional clause is required for Adaptive Server Anywhere.

Writing scripts to download rows

70

Writing scripts to download rows
There are two cursor scripts that can be used for processing each table during
the download transaction. These are the download_cursor script, which
carries out inserts and updates, and the download_delete_cursor script, which
carries out deletes.

These scripts are either SELECT statements or calls to procedures that return
result sets. The MobiLink synchronization server downloads the result set of
the script to the remote database. The MobiLink client automatically inserts
or updates rows based on the download_cursor script result set, and deletes
rows based on the download_delete_cursor event.

$ For more information about using stored procedures, see "Downloading
a result set from a stored procedure call" on page 113.

The MobiLink synchronization server downloads data in a single transaction.
For a description of the download process, see "Events during download" on
page 444.

♦ Like the upload stream, the download stream starts and ends with
connection events. Other events are table-level events.

♦ By default, if no confirmation of the download is received from the
client, the entire download transaction is rolled back in the consolidated
database. You can change this behavior with the dbmlsync option
"SendDownloadACK" on page 420 or UltraLite "send_download_ack
synchronization parameter" on page 389 of the book UltraLite User’s
Guide.

♦ The begin_download and end_download scripts for each remote table
hold logic that is independent of the individual rows being updated.

♦ The download stream does not distinguish between inserts and updates.
The script associated with the download_cursor event is a SELECT
statement that defines the rows to be downloaded. The client detects
whether the row exists or not and carries out the appropriate insert or
update operation.

♦ At the end of the download processing, the client automatically deletes
rows if necessary to avoid referential integrity violations.

$ For more information, see "Referential integrity and
synchronization" on page 35.

Notes

Chapter 3 Writing Synchronization Scripts

71

Writing download_cursor scripts

You write download_cursor scripts to download information from the
consolidated database to your remote database. You must write one of these
scripts for each table in the remote database for which you want to download
changes. You can use other scripts to customize the download process, but
no others are necessary.

♦ Each download_cursor script must contain a SELECT statement or a call
to a procedure that contains a SELECT statement. The MobiLink
synchronization server uses this statement to define a cursor in the
consolidated database.

♦ The script must select all columns that correspond to the columns in the
corresponding table in the remote database. The columns in the
consolidated database can have different names than the corresponding
columns in the remote database, but they must be of compatible types.

♦ The columns must be selected in the order that the corresponding
columns are defined in the remote database. This order is identical to the
order of the columns in the reference database.

The following script could serve as a download_cursor script for a remote
table that holds employee information. The MobiLink synchronization server
would use this SQL statement to define the download cursor. This script
downloads information about all the employees.

SELECT emp_id, emp_fname, emp_lname
FROM employee

The MobiLink synchronization server passes specific parameters to some
scripts. To use these parameters, you include a question mark in your SQL
statement. The MobiLink synchronization server substitutes the value of the
parameter before executing the statement against the consolidated database.
The following script shows how you can use these parameters:

call ml_add_table_script(’Lab’, ’ULOrder’,
’download_cursor’,
’SELECT o.order_id, o.cust_id, o.prod_id, o.emp_id,
o.disc, o.quant, o.notes, o.status
FROM ULOrder o
WHERE o.last_modified >= ?
AND o.emp_name = ?’)

In this example, the MobiLink synchronization server replaces the question
mark with the value of the parameter to the download_cursor script.

♦ Row values can be selected from a single table or from a join of multiple
tables.

Example

Notes

Writing scripts to download rows

72

♦ The script itself need not include the name of the remote table. The
remote table need not have the same name as the table in the
consolidated database. The name of the remote table is identified by an
entry in the ml_table table. In Sybase Central, the remote tables are listed
together with their scripts.

♦ The rows in the remote table must contain the values of emp_id,
emp_fname, and emp_lname. The remote columns must be in that order,
although they can have different names. The columns in the remote
database are in the same order as those in the reference database.

UltraLite tip
The example scripts list the columns in the order that they are defined
in the reference database. Inspect the example_download_cursor and
example_upload_cursor scripts to see the column order.

♦ All cursor scripts must select the columns in the same order as the
columns are defined in the remote database. Where column names or
table structure is different in the consolidated database, columns should
be selected in the correct order for the remote database, or equivalently,
the reference database. Columns are assigned to columns in the remote
database based on their order in the SELECT statement.

♦ When you build an UltraLite application, the UltraLite generator creates
a sample download script for each table in your UltraLite application. It
inserts these sample scripts into your reference database. The example
scripts assume that the consolidated database contains the same tables as
your application. You must modify the sample scripts if your
consolidated database differs in design, but these scripts provide a
starting point.

Writing download_delete_cursor scripts

You write download_delete_cursor scripts to delete rows from your remote
database. You must write one of these scripts for each table in the remote
database from which you want to delete rows during synchronization.

The MobiLink synchronization server deletes rows by selecting values from
the consolidated database and passing those values to the remote database. If
the values match those of a primary key in the remote database, then that row
is deleted. If the primary key values match no remote row, the values are
ignored.

Chapter 3 Writing Synchronization Scripts

73

♦ Each download_delete_cursor script must contain a SELECT statement
or a call to a stored procedure that returns a result set. The MobiLink
synchronization server uses this statement to define a cursor in the
consolidated database.

♦ This statement must select all the columns that correspond to the
primary key columns in the table in the remote database. The columns in
the consolidated database can have different names than the
corresponding columns in the remote database, but they must be of
compatible types.

♦ The values must be selected in the same order as the corresponding
columns are defined in the remote database. That order is the order of
the columns in the CREATE TABLE statement used to make the table,
not the order they appear in the statement that defines the primary key.

Each download_delete_cursor script must select all the column values
present in the primary key of the corresponding remote table. However, it
may, optionally, select all the other columns, too. This feature is present only
for compatibility with older clients. Selecting the additional columns is less
efficient, as the database engine must retrieve more data. Unless the client is
of an old design, the MobiLink synchronization server discards the extra
values immediately. The extra values are downloaded only to older clients.

When MobiLink detects a download_delete_cursor with a row that contains
all NULLs, it deletes all the data in the remote table. The number of NULLs
in the download_delete_cursor can be the number of primary key columns or
the total number of rows in the table.

For example, the following download_delete_cursor SQL script deletes
every row in a table in which there are two primary key columns. This
example works for Adaptive Server Anywhere, Adaptive Server Enterprise,
and Microsoft SQL Server databases.

SELECT NULL, NULL

In IBM DB2 and Oracle consolidated databases, you must specify a dummy
table to select NULL. For IBM DB2, you can use the following syntax:

SELECT NULL FROM SYSIBM.SYSTABLES

For Oracle consolidated databases, you can use the following syntax:

SELECT NULL FROM DUAL

The following example is a download_delete_cursor script for a remote table
that holds employee information. The MobiLink synchronization server uses
this SQL statement to define the delete cursor. This script deletes
information about all employees who are both in the consolidated and remote
databases at the time the script is executed.

Deleting all the
rows in a table

Examples

Writing scripts to download rows

74

SELECT emp_id
FROM employee

The download_delete_cursor accepts the parameters last_download and
ml_username. The following script shows how you can use each parameter
to narrow your selection.

SELECT order_id
FROM ULOrder
WHERE last_modified > ?

AND status = ’Approved’
AND user_name = ?

Tips
The above examples could prove inefficient in an organization with many
employees. You can make the delete process more efficient by selecting
only rows that could be present in the remote database. For example, you
could limit the number of rows by selecting only those people who have
recently been assigned a new manager.
Another strategy is to allow the client application to delete the rows itself.
This method is possible only when a rule identifies the unneeded rows.
For example, rows might contain a timestamp that indicates an expiry
date. Before you delete the rows, use the STOP SYNCHRONIZATION
DELETE statement to stop these deletes being uploaded during the next
synchronization. Be sure to execute START SYNCHRONIZATION
DELETE immediately afterwards if you want other deletes to be
synchronized in the normal fashion.

$ You can use the referential integrity checking built into all MobiLink
clients to delete rows in a particularly efficient manner. For details, see
"Referential integrity and synchronization" on page 35.

$ For more information about download_delete_cursor, see
"download_delete_cursor cursor event" on page 477.

Chapter 3 Writing Synchronization Scripts

75

Writing scripts to handle errors
An error in a synchronization script occurs when an operation in the script
fails while the MobiLink synchronization server is executing it. The DBMS
returns a SQLCODE to the MobiLink synchronization server indicating the
nature of the error. Each consolidated database DBMS has its own set of
SQLCODE values.

When an error occurs, the MobiLink synchronization server invokes the
handle_error event. You should provide a connection script associated with
this event to handle errors. The MobiLink synchronization server passes
several parameters to this script to provide information about the nature and
context of the error, and requires an output value to tell it how to respond to
the error.

Some actions you may wish to take in an error-handling script are:

♦ Log the error in a separate table.

♦ Instruct the MobiLink synchronization server whether to ignore the error
and continue, or rollback the synchronization, or rollback the
synchronization and shut down the MobiLink synchronization server.

♦ Send an e-mail message.

$ For more information, see "handle_error connection event" on
page 512.

Reporting errors

Since errors can disrupt the natural progression of the synchronization
process, it can be difficult to create a log of errors and their resolutions. The
report_error script provides a means of accomplishing this task. The
MobiLink synchronization server executes this script whenever an error
occurs. If the handle_error script is defined, it is executed immediately prior
to the reporting script.

The parameters to the report_error script are identical to those of the
handle_error script, except that the report_error script can not modify the
action code. Since the value of the action code is that returned by the
handle_error script, this script can be used to debug error-handling problems.

This script typically consists of an insert statement, which records the values,
perhaps with other data, such as the time or date, in a table for later
reference. To ensure that this data is not lost, the MobiLink synchronization
server always runs this script in a separate transaction and automatically
commits the changes as soon as this script completes.

Error handling
actions

Writing scripts to handle errors

76

$ For more information, see "report_error connection event" on page 529.

The following report_error script, which consists of a single insert statement,
adds the script parameters into a table, along with the current date and time.
The script does not commit this change because the MobiLink
synchronization server always does so automatically.

INSERT INTO errors
VALUES(CURRENT DATE, ?, ? ,?, ?, ?);

Handling multiple errors on a single SQL statement

ODBC allows multiple errors per SQL statement, and some DBMSs make
use of this feature. Microsoft SQL Server, for example, can have two errors
for a single statement. The first is the actual error, and the second is usually
an informational message telling you why the current statement has been
terminated.

When a single SQL statement causes multiple errors, the handle_error script
is invoked once per error. The MobiLink synchronization server uses the
most severe action code (that is, the numerically greatest) to determine the
action to take. The same applies to the handle_error script.

If the handle_error script itself causes a SQL error, then the default action
code (3000) is assumed.

Example

Chapter 3 Writing Synchronization Scripts

77

Example scripts for UltraLite
When you build an UltraLite application, the UltraLite generator
automatically inserts an example_upload_cursor script and an
example_download_cursor script into the UltraLite reference database. The
action of the example download script is to download all rows of a
corresponding table that exists in the remote database. These scripts specify
the select list in the correct order, and the example upload_cursor script also
includes the correct WHERE clause.

The example scripts are inserted into the ml_scripts table, but they are not
used unless you insert an entry in the ml_table_script table that associates
them with the upload_cursor or download_cursor event, respectively.

Minimally, the example scripts for download cursors provide the order of
columns expected by the remote database.

Testing script syntax

78

Testing script syntax
As you develop your synchronization scripts, you can use Sybase Central to
test for syntax errors in your scripts.

Testing the scripts is done without any remote site in place. No data is added
to the database or downloaded from the database during testing. The validity
of the synchronized data itself is not tested.

v To test your synchronization scripts

1 Start Sybase Central and connect to a database from MobiLink
Synchronization. In this case, use the CustDB sample database.

$ For a description of how to carry out this step, see "Lesson 8:
Browse the consolidated database" on page 35 of the book UltraLite
User’s Guide.

2 Under the UltraLite Sample database icon, right-click the Synchronized
Tables folder or the Connection scripts folder, and select Test Scripts
from the popup menu. The Test Script window appears.

3 Click Test. If prompted, enter parameters. The results of the test are
displayed in the window.

Chapter 3 Writing Synchronization Scripts

79

The test results include a listing of which scripts are executed, in which
order. They also include a listing of any syntax errors or data type errors
found during the test.

DBMS-dependent scripts

80

DBMS-dependent scripts
Some aspects of scripts depend on the DBMS you are using. A number of
factors determine the kind of scripting needed for your synchronization with
your ODBC compliant database, and these factors include, but are not
limited to:

♦ Session-wide connection variables

♦ User defined procedures

♦ Autoincrement methods

The chart below outlines the most common supported databases and their
properties.

Feature Oracle DB2 Adaptive Server
Anywhere and other

Session-wide variables No No Yes

User-defined procedures Yes No Yes

Autoincrement for primary keys. No Yes Yes

One strategy for using MobiLink with these supported databases is to write
your table scripts and synchronization logic in the DBMS version of the SQL
language. Another strategy for using MobiLink with any supported
consolidated database uses Java synchronization logic. When you use Java
synchronization logic you can hold session-wide variables and create user-
defined procedures in Java.

$ For information about Java synchronization logic, see "Writing Java
synchronization logic" on page 170.

$ For information about .NET synchronization logic, see "Writing
Synchronization Scripts in .NET" on page 187.

Supported DBMS scripting strategies

The MobiLink synchronization server can work with a variety of
consolidated databases. The following considerations should help guide you
while you use MobiLink for your database synchronization.

Oracle does not provide session-wide variables. You can store session-wide
information in variables within Oracle packages. Oracle packages allow
variables to be created, modified and destroyed and these variables may last
as long as the Oracle package is current.

Oracle

Chapter 3 Writing Synchronization Scripts

81

Oracle does not have autoincrementing primary key values. You can use an
Oracle sequence to maintain primary key uniqueness. The CustDB sample
database provides coding examples, which can be found in
Samples\MobiLink\CustDB\custora.sql.

$ For an example of using an Oracle sequence, see "Tutorial: Using
MobiLink with an Oracle 8i Consolidated Database" on page 347.

IBM DB2 does not have the ability to make session-wide variables. It also
does not support packages which would allow you to run user-defined
procedures. A convenient solution is to use a base table with an extra varchar
column for the MobiLink user name. This column effectively partitions the
rows of the base table between concurrent synchronizations.

IBM DB2 does not have the ability to make user-defined procedures.
However, you can use Java or .NET to manipulate SQL statements and
substitute new values.

$ For an example of Java as a procedural language for DB2, see the
CustDB scripts in the files Samples\MobiLink\CustDB\custdbq.sql and
Samples\MobiLink\CustDB\custdbq.java.

$ For more information about Java and .NET, see

♦ "Options for writing synchronization logic" on page 38

♦ "Writing Synchronization Scripts in Java" on page 165

♦ "Writing Synchronization Scripts in .NET" on page 187

To download BLOB data from an Adaptive Server Enterprise consolidated
database, you need to set an ODBC driver connection option to allow column
sizes greater than 4096 bytes. To do this, use the ODBC driver connection
option called StaticCursorLongColBuffLen. For example,

dbmlsrv8 -c "...;StaticCursorLongColBuffLen=number"

where number is in bytes, and is larger than the largest expected BLOB.

Note that using this option consumes significantly more disk space on the
computer that runs the MobiLink synchronization server.

Some database-management systems provide no convenient mechanism to
store the identity of the current user.

$ For more information, see "Storing the user name" on page 108.

Some databases, such as Microsoft SQL Server, require that procedure calls
with parameters be written using the ODBC syntax.

{ CALL procedure_name(?, ?, ...) }

IBM DB2

Adaptive Server
Enterprise

Storing the
MobiLink user
name

Invoking
procedures from
scripts

DBMS-dependent scripts

82

On these systems, an error-handler that uses a RETURN value can also be in
the following form. For example, you can return values in OUTPUT
parameters in IBM DB2.

{ ? = CALL procedure_name(?, ?, ...) }

Adaptive Server Enterprise also requires the latter format when returning a
value from a procedure.

The MobiLink synchronization server requires that primary key values of
type numeric or decimal be explicitly converted to their types under
Adaptive Server Enterprise.

You must add an explicit conversion to the numeric parameters in the script
as displayed in the following examples.

SELECT ...
WHERE numeric_col = CONVERT(NUMERIC, ?)
...

The above statement explicitly converts the first parameter to type
NUMERIC.

SELECT ...
WHERE decimal_col = CONVERT(DECIMAL(10,8), ?)
...

The above statement explicitly converts the first parameter to type
DECIMAL (10,8).

In Adaptive Server Anywhere databases (including UltraLite), CHAR is the
same as VARCHAR: values are not blank-padded to a fixed width. In many
other DBMSs, CHAR data types are blank-padded to the full length of the
string. You should take care when using CHAR.

For information about the conversion of data that must take place when a
MobiLink synchronization server communicates with a consolidated
database that was not made with Adaptive Server Anywhere, see "Data Type
Conversions" on page 625.

Numeric and
decimal columns

CHAR columns

Data conversion

83

C H A P T E R 4

Synchronization Techniques

This chapter describes a variety of techniques that you can use to tackle
common synchronization tasks encountered in MobiLink installations.

$ There are sample applications that provide examples of the techniques
that are described in this chapter. For more information, see "Using
MobiLink Sample Applications" on page 359.

The techniques in this chapter are illustrated using SQL scripts. Many of the
same techniques can be implemented in Java or .NET synchronization logic.
For more information, see

♦ "Writing Synchronization Scripts in Java" on page 165

♦ "Writing Synchronization Scripts in .NET" on page 187

Topic Page

Introduction 84

Development tips 85

Timestamp-based synchronization 86

Snapshot synchronization 88

Partitioning rows among remote databases 91

Maintaining unique primary keys 95

Handling conflicts 104

Data entry 110

Handling deletes 111

Handling failed downloads 112

Downloading a result set from a stored procedure call 113

Schema changes in remote databases 116

About this chapter

Contents

Introduction

84

Introduction
The chapter "Writing Synchronization Scripts" on page 47 describes how to
write simple synchronization scripts, store them in your database, and test
that they are free of syntax errors.

Many useful synchronization features require not just one script, but a set of
scripts working together. This chapter describes how to implement some
common synchronization techniques. The examples describe SQL
synchronization scripts. You can also use Java or .NET synchronization
logic, although the upload and download events still require a knowledge of
the SQL scripts.

The timestamp-based synchronization of the Customer table used in the
Contact sample application requires the following scripts:

♦ An upload_insert script to handle new rows added at remote databases
at the consolidated database.

♦ An upload_delete script to handle modifications made at remote
databases at the consolidated database.

♦ An upload_insert script to handle rows deleted from remote databases
at the consolidated database.

♦ A download_cursor script to download new and updated rows to
remote databases.

♦ A download_delete_cursor script to download rows to be deleted from
remote databases.

Example

Chapter 4 Synchronization Techniques

85

Development tips
Adding synchronization functionality to an application adds an added level
of complexity to your application. The following tips may be useful.

♦ Wait If you try to add synchronization to a prototype application, it can
be difficult to deduce which functional components are causing
problems. This is particularly the case with UltraLite applications, where
database and application are compiled together. When developing a
prototype, temporarily hard code INSERT statements in your application
to provide data for testing and demonstration purposes. Once your
prototype is working correctly, enable synchronization and discard the
temporary INSERT statements.

♦ Go step-by-step Start with straightforward synchronization
techniques. Operations such as a simple upload or download require
only one or two scripts. Once those are working correctly, you can
introduce more advanced techniques, such as timestamps, primary key
pools, and conflict resolution.

Timestamp-based synchronization

86

Timestamp-based synchronization
The timestamp method is the most useful general technique for efficient
synchronization. The technique involves tracking the last time that each user
synchronized, and using this information to control the rows downloaded to
each remote database.

MobiLink maintains a timestamp value indicating when each MobiLink user
last downloaded data. This value is called the last download timestamp.
The last download timestamp is provided as a parameter to many events, and
can be used in synchronization scripts.

For compatibility with version 7 and earlier versions of the software, some
users who wish to maintain existing scripts may wish to supply the dbmlsrv8
-zd option to alter the position of the last download timestamp parameter.
The current section describes the default behavior.

v To implement timestamp-based synchronization for a table:

1 At the consolidated database, add a column that holds the most recent
time the row was modified. This column is not needed at remote
databases. The column is typically declared as follows:

DBMS last modified column

Adaptive Server Anywhere timestamp DEFAULT timestamp

Adaptive Server Enterprise datetime

Microsoft SQL Server datetime

Oracle date

IBM DB2 timestamp

2 In scripts for the download_cursor and download_delete_cursor events,
compare the first parameter to the value in the timestamp column.

The following table declaration and scripts implement timestamp-based
synchronization on the Customer table in the Contact sample:

♦ Table definition:

Example

Chapter 4 Synchronization Techniques

87

CREATE TABLE "DBA"."Customer"(
 "cust_id" integer NOT NULL
 DEFAULT GLOBAL AUTOINCREMENT,
 "name" char(40) NOT NULL,
 "rep_id" integer NOT NULL,
 "last_modified" timestamp NULL DEFAULT timestamp,
 "active" bit NOT NULL,
 PRIMARY KEY ("cust_id"))

♦ download_delete_cursor script:

SELECT cust_id
FROM Customer JOIN SalesRep
ON Customer.rep_id = SalesRep.rep_id
WHERE Customer.last_modified > ?
 AND (SalesRep.ml_username != ?
 OR Customer.active = 0)

♦ download_cursor script:

SELECT cust_id, Customer.name, Customer.rep_id
FROM Customer key join SalesRep
WHERE Customer.last_modified > ?
AND SalesRep.ml_username = ?
AND Customer.active = 1

$ For more information, see "Synchronizing customers in the Contact
sample" on page 370, and "Synchronizing contacts in the Contact sample" on
page 372.

Snapshot synchronization

88

Snapshot synchronization
Timestamp-based synchronization is appropriate for most synchronizations.
However, occasionally you may want to update a snapshot of your data.

Snapshot synchronization of a table is a complete download of all relevant
rows in the table, even if they have been downloaded before. This is the
simplest synchronization method, but can involve unnecessarily large data
sets being exchanged, which can limit performance.

You can use snapshot synchronization for downloading all the rows of the
table, or in conjunction with a partitioning of the rows as described in
"Partitioning rows among remote databases" on page 91.

The snapshot method is typically most useful for tables that have both the
following characteristics.

♦ Relatively few rows When there are few rows, the overhead
associated with downloading all of them is small.

♦ Rows that change frequently When most rows in a table change
frequently, there is little to be gained by explicitly excluding those that
have not changed since the last synchronization.

A table that holds a list of exchange rates could be suited to this approach
because there are relatively few currencies, but the rates of most change
frequently. Depending on the nature of the business, a table that holds prices,
a list of interest rates, or current news items could all be candidates.

v To implement snapshot-based synchronization:

1 Leave the upload scripts undefined unless remote users update the
values.

2 If the table may have rows deleted, write a download_delete_cursor
script that deletes all the rows from the remote table, or at least all rows
no longer required. Do not delete the rows from the consolidated
database; rather, mark them for deletion. You must know the row values
to delete them from the remote database.

$ For more information, see "Writing download_delete_cursor
scripts" on page 72.

3 Write a download_cursor script that selects all the rows you want to
include in the remote table.

When to use
snapshot
synchronization

Chapter 4 Synchronization Techniques

89

Mark rows for deletion
Rather than deleting rows from the consolidated database, mark them for
deletion. You must know the row values to delete them from the remote
database. Select only unmarked rows in the download_cursor script and
only marked rows in the download_delete_cursor script.

The download_delete_cursor script is executed before the download_cursor
script. If a row is to be included in the download stream, you need not
include a row with the same primary key in the delete list. When a
downloaded row is received at the remote location, it replaces a preexisting
row with the same primary key.

$ For more information, see "Writing scripts to download rows" on
page 70.

Rather than delete rows from the remote database using a download_cursor
script, you can allow the remote application to delete the rows. For example,
immediately following synchronization, you could allow the application to
execute SQL statements that delete the unneeded rows.

Rows deleted by the application are ordinarily uploaded to the MobiLink
synchronization server upon the next synchronization, but you can prevent
this upload using the STOP SYNCHRONIZATION DELETE statement, as
follows.

STOP SYNCHRONIZATION DELETE;
DELETE FROM table-name

WHERE expiry_date < CURRENT TIMESTAMP;
COMMIT;
START SYNCHRONIZATION DELETE;

Naturally, a different condition may be required in the WHERE clause,
depending on the business logic of the application.

The ULProduct table in the sample application is maintained by snapshot
synchronization. The table contains relatively few rows, and for this reason,
there is little overhead in using snapshot synchronization.

1 There is no upload_cursor script. This reflects a business decision that
products cannot be added at remote databases.

2 There is no download_delete_cursor, reflecting an assumption that
products are not removed from the list.

3 The download_cursor script selects the product identifier, price, and
name of every current product. If the product is pre-existing, the price in
the remote table will be updated. If the product is new, a row will be
inserted in the remote table.

An alternative
deletion technique

Example

Snapshot synchronization

90

SELECT prod_id, price, prod_name
FROM ULProduct

$ For another example of snapshot synchronization in a table with very
few rows, see "Synchronizing sales representatives in the Contact sample" on
page 370.

Chapter 4 Synchronization Techniques

91

Partitioning rows among remote databases
Each user of a MobiLink remote database can contain a different subset of
the data in the consolidated database. Stated another way, you can write your
scripts so that data is partitioned among remote databases.

The partitioning may be disjoint, or it may contain overlaps. For example, if
each employee has their own set of customers, with no shared customers, the
partitioning would be disjoint. If there are shared customers, who appear in
more than one remote database, the partitioning contains overlaps.

Partitioning is implemented in the download_cursor and
download_delete_cursor scripts for the table, which define the rows to be
downloaded to the remote database. Each of these scripts has a single
parameter, which is the synchronization user name. By defining your scripts
using this parameter in the WHERE clause, each user gets the appropriate
rows.

Disjoint partitioning

Partitioning is controlled by the download_cursor and
download_delete_cursor scripts for each table involved in synchronization.
These scripts take a single parameter, which is the user name supplied in the
call to synchronize.

v To partition a table among remote databases:

1 Include in the table definition a column containing the synchronization
user name in the consolidated database. You need not download this
column to remote databases.

2 Include a condition in the WHERE clause of the download_cursor and
download_delete_cursor scripts requiring this column to match the script
parameter.

The script parameter is represented by a question mark in the script. The
user name is the second parameter in the download_cursor script. For
example, the following download_cursor script partitions a table named
Contact by employee ID.

SELECT id, contact_name
FROM Contact
WHERE last_modified > ?
AND emp_id = ?

$ For more information, see "download_cursor cursor event" on
page 474, and "download_delete_cursor cursor event" on page 477.

Partitioning rows among remote databases

92

The primary key pool tables in the CustDB sample application are used to
supply each remote database with its own set of primary key values. This
technique is used to avoid duplicate primary keys, and is discussed in
"Maintaining unique primary keys" on page 95.

A necessary feature of the method is that primary key-pool tables must be
partitioned among remote databases in a disjoint fashion.

One key-pool table is ULCustomerIDPool, which holds primary key values
for each user to use when they add customers. The table has three columns:

♦ pool_cust_id A primary key value for use in the ULCustomer table.
This is the only column downloaded to the remote database.

♦ pool_emp_id The employee who owns this primary key.

♦ last_modified This table is maintained using the timestamp
technique, based on the last_modified column.

$ For information on timestamp synchronization, see "Timestamp-
based synchronization" on page 86.

The download_cursor script for this table is as follows.

SELECT pool_cust_id
FROM ULCustomerIDPool
WHERE last_modified > ?

AND pool_emp_id = ?

When not using a variable, you should use a join or sub-selection that
includes the ? placeholder.

$ For more information, see "Synchronizing customers in the Contact
sample" on page 370, and "Synchronizing contacts in the Contact sample" on
page 372.

Partitioning with overlaps

Some tables in your consolidated database may have rows that belong to
many remote databases. Each remote database has a subset of the rows in the
consolidated database and the subset overlaps with other remote databases.
This is frequently the case with a customer table. In this case, there is a
many-to-many relationship between the table and the remote databases and
there will usually be a table to represent the relationship. The scripts for the
download_cursor and download_delete_cursor events need to join the table
being downloaded to the relationship table.

Example

Chapter 4 Synchronization Techniques

93

The CustDB sample application uses this technique for the ULOrder table.
The ULEmpCust table holds the many-to-many relationship information
between ULCustomer and ULEmployee.

Each remote database receives only those rows from the ULOrder table for
which the value of the emp_id column matches the MobiLink user name.

The Adaptive Server Anywhere version of the download_cursor script for
ULOrder in the CustDB application is as follows:

SELECT o.order_id, o.cust_id, o.prod_id, o.emp_id,
o.disc, o.quant, o.notes, o.status
FROM ULOrder o , ULEmpCust ec
WHERE o.cust_id = ec.cust_id

AND ec.emp_id = ?
AND (o.last_modified > ?

OR ec.last_modified > ?)
AND (o.status IS NULL

OR o.status != ’Approved’)
AND (ec.action IS NULL)

This script is fairly complex. It illustrates that the query defining a table in
the remote database can include more than one table in the consolidated
database. The script downloads all rows in ULOrder for which:

♦ the cust_id column in ULOrder matches the cust_id column in
ULEmpCust,

♦ the emp_id column in ULEmpCust matches the synchronization user
name,

♦ the last modification of either the order or the employee-customer
relationship was later than the most recent synchronization time for this
user, and

♦ the status is anything other than Approved.

The action column on ULEmpCust is used to mark columns for delete. Its
purpose is not relevant to the current topic.

The download_delete_cursor script is as follows.

SELECT o.order_id
FROM ULOrder o, ULEmpCust ec
WHERE o.cust_id = ec.cust_id
 AND ec.emp_id = ?
 AND (o.last_modified > ? OR
 c.last_modified > ?)
 AND (o.status IS NULL OR
 o.status != ’Approved’)
 AND (ec.action IS NULL)

This script deletes all approved rows from the remote database.

Example

Partitioning rows among remote databases

94

Partitioning child tables

The example above ("Partitioning with overlaps" on page 92) illustrates how
to partition tables based on a criterion in some other table.

Some tables in your remote database may have disjoint subsets or
overlapping subsets, but do not contain a column that determines the subset.
These are child tables that usually have a foreign key (or a series of foreign
keys) referencing another table. The referenced table has a column that
determines the correct subset.

In this case, the download_cursor script and the download_delete_cursor
script need to join the referenced tables and have a WHERE clause that
restricts the rows to the correct subset.

$ For an example, see "Synchronizing contacts in the Contact sample" on
page 372.

Chapter 4 Synchronization Techniques

95

Maintaining unique primary keys
It is often convenient to use a single column as the primary key for tables.
For example, each customer should be assigned a unique identification value.
If all the sales representatives work in an environment where they can
maintain a direct connection to the database, assigning these numbers is
easily accomplished. Whenever a new customer is inserted into the customer
table, automatically add a new primary key value that is greater than the last
value.

In a disconnected environment, assigning unique values for primary keys
when new rows are inserted is not as easy. When a sales representative adds
a new customer, she is doing so to a remote copy of the Customer table. You
must prevent other sales representatives, working on other copies of the
Customer table, from using the same customer identification value.

This section describes the following ways to solve the problem of how to
generate unique primary keys:

♦ Using Universally Unique IDs (UUIDs)

♦ Using global autoincrement values.

♦ Using primary key pools.

Maintaining unique primary keys using UUIDs

You can ensure that primary keys in Adaptive Server Anywhere databases
are unique by using the newid() function to create universally unique values
for your primary key. The resulting UUIDs can be converted to a string using
the uuidtostr() function, and converted back to binary using the strtouuid()
function.

UUIDs are unique across all computers. However, the values are completely
random and so cannot be used to determine when a value was added, or the
order of values. UUID values are also considerably larger than the values
required by other methods (including global autoincrement), and require
more table space in both the primary and foreign key tables. Indexes on
tables using UUIDs are also less efficient.

$ For more information, see

♦ "The NEWID default" on page 73 of the book ASA SQL User’s Guide

♦ "NEWID function " on page 159 of the book ASA SQL Reference
Manual

Maintaining unique primary keys

96

♦ "UUIDTOSTR function " on page 193 of the book ASA SQL Reference
Manual

♦ "STRTOUUID function " on page 185 of the book ASA SQL Reference
Manual

The following CREATE TABLE statement creates a primary key that is
universally unique:

CREATE TABLE customer (
 cust_key BINARY(16) NOT NULL
 DEFAULT newid()
 rep_key VARCHAR(5)
 PRIMARY KEY(cust_key)

Maintaining unique primary keys using global autoincrement

In Adaptive Server Anywhere and UltraLite databases, you can set the
default column value to be GLOBAL AUTOINCREMENT. You can use this
default for any column in which you want to maintain unique values, but it is
particularly useful for primary keys.

v To use global autoincrement columns:

1 Declare the column as a global autoincrement column.

When you specify default global autoincrement, the domain of values
for that column is partitioned. Each partition contains the same number
of values. For example, if you set the partition size for an integer column
in a database to 1000, one partition extends from 1001 to 2000, the next
from 2001 to 3000, and so on.

$ See "Declaring default global autoincrement" on page 97.

2 Set the GLOBAL_DATABASE_ID value.

Adaptive Server Anywhere supplies default values in a database only
from the partition uniquely identified by that database’s number.
For example, if you assigned the database in the above example the
identity number 10, the default values in that database would be chosen
in the range 10001–11000. Another copy of the database, assigned the
identification number 11, would supply default value for the same
column in the range 11001–12000.

$ See "Setting the GLOBAL_DATABASE_ID value" on page 98.

Example

Chapter 4 Synchronization Techniques

97

This section describes how to use global autoincrement columns in Adaptive
Server Anywhere remote databases. For information on using global
autoincrement columns in UltraLite databases, see "Global autoincrement
default column values" on page 58 of the book UltraLite User’s Guide.

$ For information on how global autoincrement columns work in
Adaptive Server Anywhere databases, see "How default values are chosen"
on page 99. For information on how they work in UltraLite databases, see
"Global autoincrement default column values" on page 58 of the book
UltraLite User’s Guide.

Declaring default global autoincrement

You can set default values in your database by selecting the column
properties in Sybase Central, or by including the DEFAULT GLOBAL
AUTOINCREMENT phrase in a CREATE TABLE or ALTER TABLE
statement.

Optionally, the partition size can be specified in parentheses immediately
following the AUTOINCREMENT keyword. The partition size may be any
positive integer, although the partition size is generally chosen so that the
supply of numbers within any one partition will rarely, if ever, be exhausted.

For columns of type INT or UNSIGNED INT, the default partition size is 216

= 65536; for columns of other types the default partition size is 232 =
4294967296. Since these defaults may be inappropriate, especially if our
column is not of type INT or BIGINT, it is best to specify the partition size
explicitly.

For example, the following statement creates a simple table with two
columns: an integer that holds a customer identification number and a
character string that holds the customer’s name.

CREATE TABLE customer (
id INT DEFAULT GLOBAL AUTOINCREMENT (5000)
name VARCHAR(128) NOT NULL
PRIMARY KEY (id)

)

In the above example, the chosen partition size is 5000.

$ For more information on GLOBAL AUTOINCREMENT, see
"CREATE TABLE statement" on page 350 of the book ASA SQL Reference
Manual.

For more
information

Maintaining unique primary keys

98

Setting the GLOBAL_DATABASE_ID value

When deploying an application, you must assign a different identification
number to each database. You can accomplish the task of creating and
distributing the identification numbers by a variety of means. One method is
to place the values in a table and download the correct row to each database
based on some other unique property, such as user name.

v To set the global database identification number:

♦ You set the identification number of a database by setting the value of
the public option GLOBAL_DATABASE_ID. The identification
number must be a non-negative integer.

For example, the following statement sets the database identification number
to 20.

SET OPTION PUBLIC.GLOBAL_DATABASE_ID = 20

If the partition size for a particular column is 5000, default values for this
database are selected from the range 100001–105000.

Setting unique database identification numbers when extracting databases

If you use the extraction utility to create your remote databases, you can
write a stored procedure to automate the task. If you create a stored
procedure named sp_hook_dbxtract_begin, it is called automatically by the
extraction utility. Before the procedure is called, the extraction utility creates
a temporary table named #hook_dict, with the following contents:

name value

extracted_db_global_id user ID being extracted

If you write your sp_hook_dbxtract_begin procedure to modify the value
column of the row, that value is used as the GLOBAL_DATABASE_ID
option of the extracted database, and marks the beginning of the range of
primary key values for GLOBAL DEFAULT AUTOINCREMENT values.

Consider extracting a database for remote user user2 with a user_id of 101.
If you do not define an sp_hook_dbxtract_begin procedure, the extracted
database will have GLOBAL_DATABASE_ID set to 101.

If you define a sp_hook_dbxtract_begin procedure, but it does not modify
any rows in the #hook_dict then the option will still be set to 101.

If you set up the database as follows:

set option "PUBLIC"."Global_database_id" = ’1’;

Example

Example

Chapter 4 Synchronization Techniques

99

create table extract_id (next_id integer not null) ;

insert into extract_id values(1);

create procedure sp_hook_dbxtract_begin
as
 declare @next_id integer
 update extract_id set next_id = next_id + 1000
 select @next_id = (next_id)
 from extract_id
 commit
 update #hook_dict
 set value = @next_id
 where name = ’extracted_db_global_id’

Then each extracted or re-extracted database will get a different
GLOBAL_DATABASE_ID. The first starts at 1001, the next at 2001, and so
on.

To assist in debugging procedure hooks, dbxtract outputs the following when
it is set to operate in verbose mode:

♦ the procedure hooks found

♦ the contents of #hook_dict before the procedure hook is called

♦ the contents of #hook_dict after the procedure hook is called

How default values are chosen

The public option GLOBAL_DATABASE_ID in each database must be set
to a unique, non-negative integer. The range of default values for a particular
database is pn + 1 to p(n + 1), where p is the partition size and n is the value
of the public option GLOBAL_DATABASE_ID. For example, if the
partition size is 1000 and GLOBAL_DATABASE_ID is set to 3, then the
range is from 3001 to 4000.

If GLOBAL_DATABASE_ID is set to a non-negative integer, Adaptive
Server Anywhere chooses default values by applying the following rules:

♦ If the column contains no values in the current partition, the first default
value is pn + 1.

♦ If the column contains values in the current partition, but all are less than
p(n + 1), the next default value will be one greater than the previous
maximum value in this range.

♦ Default column values are not affect by values in the column outside of
the current partition; that is, by numbers less than pn + 1 or greater than
p(n + 1). Such values may be present if they have been replicated from
another database via MobiLink synchronization.

Maintaining unique primary keys

100

If the public option GLOBAL_DATABASE_ID is set to the default value of
2147483647, a null value is inserted into the column. Should null values not
be permitted, the attempt to insert the row causes an error. This situation
arises, for example, if the column is contained in the table’s primary key.

Because the public option GLOBAL_DATABASE_ID cannot be set to
negative values, the values chosen are always positive. The maximum
identification number is restricted only by the column data type and the
partition size.

Null default values are also generated when the supply of values within the
partition has been exhausted. In this case, a new value of
GLOBAL_DATABASE_ID should be assigned to the database to allow
default values to be chosen from another partition. Attempting to insert the
null value causes an error if the column does not permit nulls. To detect that
the supply of unused values is low and handle this condition, create an event
of type GlobalAutoincrement.

Should the values in a particular partition become exhausted, you can assign
a new database id to that database. You can assign new database id numbers
in any convenient manner. However, one possible technique is to maintain a
pool of unused database id values. This pool is maintained in the same
manner as a pool of primary keys.

You can set an event handler to automatically notify the database
administrator (or carry out some other action) when the partition is nearly
exhausted. For more information, see "Defining trigger conditions for
events" on page 237 of the book ASA Database Administration Guide.

$ For more information, see "Setting the GLOBAL_DATABASE_ID
value" on page 98, and "GLOBAL_DATABASE_ID option" on page 569 of
the book ASA Database Administration Guide.

Maintaining unique primary keys using key pools

One efficient means of solving this problem is to assign each user of the
database a pool of primary key values to assign as the need arises. For
example, you can assign each sales representative 100 new identification
values. Each sales representative can freely assign values to new customers
from his own pool.

v To implement a primary key pool:

1 Add a new table to the consolidated database and to each remote
database to hold the new primary key pool. Apart from a column for the
unique value, these tables should contain a column for a user name, to
identify who has been given the right to assign the value.

Chapter 4 Synchronization Techniques

101

2 Write a stored procedure to ensure that each user is assigned enough
new identification values. Assign more new values to remote users who
insert many new entries or who synchronize infrequently.

3 Write a download_cursor script to select the new values assigned to each
user and download them to the remote database.

4 Modify the application that uses the remote database so that when a user
inserts a new row, the application uses one of the values from the pool.
The application must then delete that value from the pool so it is not
used a second time.

5 Write an upload_cursor script. The MobiLink synchronization server
will then delete rows from the consolidated pool of values that a user has
deleted from his personal value pool in the remote database.

6 Write an end_upload script to call the stored procedure that maintains
the pool of values. Doing so has the effect of adding more values to the
user’s pool to replace those deleted during upload.

A primary key pool example

The sample application allows remote users to add customers. It is essential
that each new row has a unique primary key value, and yet each remote
database is disconnected when data entry is occurring.

The ULCustomerIDPool holds a list of primary key values that can be used
by each remote database. In addition, the ULCustomerIDPool_maintain stored
procedure tops up the pool as values are used up. The maintenance
procedures are called by a table-level end_upload script, and the pools at
each remote database are maintained by upload_cursor and download_cursor
scripts.

1 The ULCustomerIDPool table in the consolidated database holds the pool
of new customer identification numbers. It has no direct link to the
ULCustomer table.

emp_id = pool_emp_id

ULCustomer
cust_id integer
cust_name varchar(30)
last_modified timestamp

ULEmployee
emp_id integer
emp_name varchar(30)
last_download timestamp

ULCustomerIDPool
pool_cust_id integer
pool_emp_id integer
last_modified timestamp

Maintaining unique primary keys

102

2 The ULCustomerIDPool_maintain procedure updates the
ULCustomerIDPool table in the consolidated database. The following
sample code is for an Adaptive Server Anywhere consolidated database.

CREATE PROCEDURE ULCustomerIDPool_maintain (IN
syncuser_id INTEGER)
BEGIN
 DECLARE pool_count INTEGER;

 -- Determine how may ids to add to the pool
 SELECT COUNT(*) INTO pool_count
 FROM ULCustomerIDPool
 WHERE pool_emp_id = syncuser_id;

 -- Top up the pool with new ids
 WHILE pool_count < 20 LOOP
 INSERT INTO ULCustomerIDPool (pool_emp_id)
 VALUES (syncuser_id);
 SET pool_count = pool_count + 1;
 END LOOP;
END

This procedure counts the numbers presently assigned to the current
user, and inserts new rows so that this user has a sufficient supply of
customer identification numbers.

This procedure is called at the end of the upload stream, by the
end_upload table script for the ULCustomerIDPool table. The script is
as follows:

CALL ULCustomerIDPool_maintain(?)

3 The download_cursor script for the ULCustomerIDPool table downloads
new numbers to the remote database.

SELECT pool_cust_id
FROM ULCustomerIDPool
WHERE pool_emp_id = ?
AND last_modified > ?

4 To insert a new customer, the application using the remote database
must select an unused identification number from the pool, delete this
number from the pool, and insert the new customer information using
this identification number. The following embedded SQL function for an
UltraLite application retrieves a new customer number from the pool.

Chapter 4 Synchronization Techniques

103

bool CDemoDB::GetNextCustomerID(void)
/*************************************/
{
 short ind;

 EXEC SQL SELECT min(pool_cust_id)
 INTO :m_CustID:ind FROM ULCustomerIDPool;
 if(ind < 0) {
 return false;
 }
 EXEC SQL DELETE FROM ULCustomerIDPool
 WHERE pool_cust_id = :m_CustID;
 return true;
}

5 The upload_cursor script deletes numbers from the consolidated pool of
numbers once they have been used and hence deleted from the remote
pool.

SELECT pool_cust_id
FROM ULCustomerIDPool
WHERE pool_cust_id = ?

Handling conflicts

104

Handling conflicts
Conflicts arise during the upload of rows to the consolidated database. If two
users modify the same row, a conflict is detected when the second of the
rows arrives at the MobiLink synchronization server. When conflicts can
occur, you should define a process to compute the correct values, or at least
to log the conflict.

Conflicts are detected only during updates of a row. If an attempt to insert a
row finds that the row has already been inserted, an error is generated. If an
attempt to delete a row finds that the row has already been deleted, the
attempt to delete is ignored. An attempt to update a row that has been deleted
is a conflict.

No conflicts arise in the remote database as a result of synchronization. If a
downloaded row contains a new primary key, the values are inserted into a
new row. If the primary key matches that of a pre-existing row, the other
values in the row are updated.

Conflicts are not the same as errors. Conflict handling can be an integral part
of a well-designed application, allowing concurrency, even in the absence of
locking.

Caution
Never update primary keys in a MobiLink environment.

How conflicts are detected

Whenever a row is updated at a remote database, a copy of the values the
row contained at the time of last synchronization is retained. When you next
synchronize, your remote database contains not only the present data, but
also a record of the values that were present the last time you synchronized.

When the client sends an updated row to the MobiLink synchronization
server, it includes not only the new values, but also a copy of the original
values.

The process by which the MobiLink synchronization server detects conflicts
depends on whether you are using statement-based uploads or cursor-based
uploads. For most purposes, statement-based uploads are recommended.

Chapter 4 Synchronization Techniques

105

Detecting conflicts with statement-based uploads

When using upload_update scripts, conflict detection is carried out in one of
the following circumstances:

♦ An upload_fetch script is supplied.

The upload_fetch script typically selects a single row of data from a
table corresponding to the row being updated. A typical upload_fetch
script would conform to the following syntax:

SELECT col1, col2, ...
FROM table-name
WHERE pk1 = ? AND pk2 = ? ...

$ For more information, see "upload_fetch table event" on page 547.

♦ The upload_update script provides a parameter for each element on the
row.

The parameters for an upload_update event are arranged so that
statements with the following syntax update rows correctly:

UPDATE table-name
SET col1 = ?, col2 = ?, ...
WHERE pk1 = ? AND pk2 = ? ...

In this statement, col1, col2 and so on are the non-primary key columns,
while pk1, pk2 and so on are primary key columns.

For a conflict to be detected, the syntax must be as follows:

UPDATE table-name
SET col1 = ?, col2 = ?, ...
WHERE pk1 = ? AND pk2 = ? ...
AND col1 = ? AND col2 = ? ...

$ For more information, see "upload_update table event" on
page 560.

The MobiLink synchronization server processes each uploaded update using
the following procedure.

1 MobiLink synchronization server detects conflicts only if an
upload_fetch or appropriate upload_update script is applied:

♦ If an upload_fetch script is supplied, the MobiLink synchronization
server compares the old uploaded values to the values of the row
returned by the upload_fetch statement with the same primary key
values.

♦ If an upload_update script of the above form is supplied, the
MobiLink synchronization server compares the old uploaded values
to the values of the row returned in the final set of parameters.

Handling conflicts

106

2 If any of the old uploaded values do not match the current consolidated
values, the MobiLink synchronization server detects a conflict.

♦ The MobiLink synchronization server inserts the old values as
defined by the upload_old_row_insert script.

$ For more information, see "upload_old_row_insert table
event" on page 553.

♦ The MobiLink synchronization server inserts the new values as
defined by the upload_new_row_insert script.

$ For more information, see "upload_new_row_insert table
event" on page 551.

♦ The MobiLink synchronization server executes the resolve_conflict
script. In this script you can either call a stored procedure, or define
a sequence of steps to resolve the conflict as appropriate.

$ For more information, see "resolve_conflict table event" on
page 533.

You can resolve conflicts as they occur using the resolve_conflict script, or
you can resolve all conflicts at once using the table’s end_upload script.

$ For an example of conflict resolution using statement-based uploads,
see "Synchronizing products in the Contact sample" on page 374.

Detecting conflicts with cursor-based uploads

When using upload_cursor scripts, the MobiLink synchronization server
processes each uploaded update using the following procedure.

1 The MobiLink synchronization server compares the old uploaded values
to the current values of the row with the same primary key values.

2 If the old uploaded values match the current contents in the consolidated
database, the MobiLink synchronization server detects no conflict.

♦ The MobiLink synchronization server updates the consolidated row
using the new uploaded values. You define the cursor that the
MobiLink synchronization server uses for this operation using the
upload_cursor table script. The old uploaded values are discarded.

3 If any of the old uploaded values do not match the current consolidated
values, the MobiLink synchronization server detects a conflict.

♦ The MobiLink synchronization server inserts the old values row
using the cursor defined by the old_row_cursor script.

♦ The MobiLink synchronization server inserts the new values row
using the cursor defined by the new_row_cursor script.

Chapter 4 Synchronization Techniques

107

♦ The MobiLink synchronization server executes the resolve_conflict
script. In this script you can either call a stored procedure, or define
a sequence of steps to resolve the conflict as appropriate.

You can resolve conflicts as they occur using the resolve_conflict script, or
you can resolve all conflicts at once using the table’s end_upload script.

$ You can gain finer control over the conflict detection and resolution
process. For details, see "Forced conflict resolution" on page 107.

Forced conflict resolution

Forced conflict resolution is a special technique that forces every uploaded
row to be treated as if it were a conflict. Implementation of forced conflict
resolution depends on whether you are using statement-based uploads or
cursor-based uploads.

Forced conflict resolution using statement-based uploads

If no upload_insert, upload_update, or upload_delete script is defined for a
remote table, the MobiLink synchronization server uses forced conflict
resolution. In this mode of operation, MobiLink synchronization server
attempts to insert all uploaded rows from that table using the statements
defined by the upload_old_row_insert and upload_new_row_insert scripts.
In essence, all uploaded rows are then treated as conflicts. You can write
stored procedures or scripts to process the uploaded values in any way you
want.

Without any of the upload_insert, upload_update, or upload_delete scripts,
the normal conflict-resolution procedure is bypassed. This technique has two
principal uses.

♦ Arbitrary conflict detection and resolution The automatic mechanism
only detects errors when updating a row, and only then when the old
values do not match the present values in the consolidated database.

You can capture the raw uploaded data using the upload_old_row_insert
and upload_new_row_insert scripts, then process the rows as you see fit.

♦ Performance When the upload_insert, upload_update, or upload_delete
are not defined, the MobiLink synchronization server is relieved of its
normal conflict-detection tasks, which involve querying the consolidated
database one row at a time. Instead, it needs only to insert the raw
uploaded information using the statements defined by the
upload_old_row_insert and upload_new_row_insert scripts. Since only
inserts are involved, the MobiLink synchronization server performs
these inserts using bulk operations that are more efficient.

Handling conflicts

108

Forced conflict resolution using cursor-based uploads

If no upload_cursor script is defined for a remote table, the MobiLink
synchronization server attempts to insert all uploaded rows from that table
using the cursors defined by the old_row_cursor and new_row_cursor
scripts. In essence, all uploaded rows are then treated as conflicts. You can
write stored procedures or scripts to process the uploaded values in any way
you want.

Without the upload_cursor script, the normal conflict-resolution procedure,
described above, is bypassed. This technique has two principal uses.

♦ Arbitrary conflict detection and resolution The automatic mechanism
only detects errors when updating a row, and only then when the old
values do not match the present values in the consolidated database.

You can capture the raw uploaded data using the old_row_cursor and
new_row_cursor scripts, then analyze it as you see fit.

♦ Performance When the upload_cursor is not defined, the MobiLink
synchronization server is relieved of its normal conflict-detection tasks,
which involve querying the consolidated database one row at a time.
Instead, it needs only to insert the raw uploaded information using the
cursors defined by the old_row_cursor and new_row_cursor scripts.
Since only inserts are involved, the MobiLink synchronization server
performs these inserts using bulk operations that are more efficient.

Storing the user name

When you write old_row_cursor or new_row_cursor scripts, you can include
an extra column in your select statement. If you do so, the MobiLink
synchronization server automatically inserts the user name into the first
column, and then uses the rest of the columns as usual. This mechanism is
available because some database-management systems provide no
convenient mechanism to store the identity of the current user.

You can use this feature to conveniently identify which user inserted each
row. This information allows you to include user-specific logic in the
resolve_conflict script.

For example, an ordinary old_row_cursor script is of the following form. The
items in the select list correspond to the columns of the remote table.

SELECT c1, c2, . . . , cN FROM table

However, the following syntax is also permitted.

SELECT user_name, c1, c2, . . . , cN FROM table

Chapter 4 Synchronization Techniques

109

Normally, the selected columns must match the columns of the remote table
in both number and type. This case is an exception. The single extra column
in the select list must be of a type suitable to hold the user name, for
example, VARCHAR(128). The subsequent columns in the list must match
the columns of the remote table in order and type, as usual. If you include
more than one extra column, an error results.

Data entry

110

Data entry
In some databases, there are tables that are only used for data entry. One way
of processing these tables is to upload all inserted rows at each
synchronization, and remove them from the remote database on the
download stream. After synchronization, the remote table is empty again,
ready for another batch of data.

To achieve this model, you can upload rows into a temporary table and then
insert them into a base table using an end_upload table script. The temporary
table can be used in the download_delete_cursor to remove rows from the
remote database following a successful synchronization.

Alternatively, you can allow the client application to the delete the rows,
using the STOP SYNCHRONIZATION DELETE statement to stop the
deletes being uploaded during the next synchronization.

$ For more information, see "STOP SYNCHRONIZATION DELETE
statement [MobiLink]" on page 563 of the book ASA SQL Reference Manual.

Chapter 4 Synchronization Techniques

111

Handling deletes
When rows are deleted from the consolidated database, there needs to be a
record of the row so it can be removed from any remote databases that have
the row.

One technique is to not delete the row. Data that is no longer required can be
marked as inactive by changing a status column in the row. The
download_cursor and download_delete_cursor can refer to the status of the
row in the WHERE clause. The CustDB sample application uses this
technique for the ULOrder table using the status column, and the Contact
sample uses the technique on the Customer, Contact, and Product tables.

This technique is used in the ULEmpCust table in the CustDB sample
application, in which the action column holds a D for Delete. The scripts use
this value to delete the record from the remote database, and delete the
record from the consolidated database at the end of the synchronization.

A second technique is to have a shadow table that stores the primary key
values of deleted rows. When a row is deleted, a trigger can populate the
shadow table. The download_delete_cursor can use the shadow table to
remove rows from remote databases. The shadow table only needs to have
the primary key columns from the real table.

$ For more information, see

♦ "download_cursor cursor event" on page 474

♦ "Writing download_delete_cursor scripts" on page 72

♦ "download_delete_cursor cursor event" on page 477

♦ "Snapshot synchronization" on page 88

♦ "Temporarily stopping synchronization of deletes" on page 156

♦ "STOP SYNCHRONIZATION DELETE statement [MobiLink]" on
page 563 of the book ASA SQL Reference Manual

Handling failed downloads

112

Handling failed downloads
Bookkeeping information about what is downloaded must be maintained in
the download transaction. This information is updated atomically with the
download being applied to the remote database.

If a failure occurs before the entire download stream is applied to the remote
database, by default the MobiLink synchronization server does not get
confirmation for the download and rolls back the download transaction.
Since the bookkeeping information is part of the download transaction, it is
also rolled back. Next time the download stream is built, it will use the
original bookkeeping information. You can change this default behavior. For
more information, see "SendDownloadACK" on page 420 or
"send_download_ack synchronization parameter" on page 389 of the book
UltraLite User’s Guide.

When testing your synchronization scripts, you should add logic to your
end_download script that causes occasional failures. This will ensure that
your scripts can handle a failed download.

Chapter 4 Synchronization Techniques

113

Downloading a result set from a stored
procedure call

You can download a result set from a stored procedure call. For example,
you might currently have a download_cursor for the following table:

CREATE TABLE MyTable (
 pk INTEGER PRIMARY KEY NOT NULL,
 col1 VARCHAR(100) NOT NULL,
 col2 VARCHAR(20) NOT NULL
)

The download_cursor cursor script might look as follows:

SELECT pk, col1, col2
 FROM MyTable
 WHERE last_modified > ?
 AND employee = ?

If you want your downloads to MyTable to use more sophisticated business
logic, you can now create your script as follows, where DownloadMyTable
is a stored procedure taking two parameters (last-download timestamp and
MobiLink user name) and returning a result set. (This example uses an
ODBC calling convention for portability):

{call DownloadMyTable(?, ?)}

Following are some simple examples for each supported consolidated
database. Consult the documentation for your consolidated database for full
details.

The following example works with Adaptive Server Anywhere, Adaptive
Server Enterprise, and Microsoft SQL Server.

CREATE PROCEDURE SPDownload
 @last_dl_ts DATETIME,
 @u_name VARCHAR(128)
AS
BEGIN
 SELECT pk, col1, col2
 FROM MyTable
 WHERE last_modified > @last_dl_ts
 AND employee = @u_name
END

The following example works with Oracle. Oracle requires that a package be
defined. This package must contain a record type for the result set, and a
cursor type that returns the record type.

Downloading a result set from a stored procedure call

114

Create or replace package SPInfo as
Type SPRec is record (
 pk integer,
 col1 varchar(100),
 col2 varchar(20)
);
Type SPCursor is ref cursor return SPRec;
End SPInfo;

Next, Oracle requires a stored procedure with the cursor type as the first
parameter. Note that the download_cursor script only passes in two
parameters, not three. For stored procedures returning result sets in Oracle,
cursor types declared as parameters in the stored procedure definition define
the structure of the result set, but do not define a true parameter as such.

Create or replace procedure
 DownloadMyTable(spcursor IN OUT SPInfo.SPCursor,
 last_dl_ts IN DATE,
 user_name IN VARCHAR) As
Begin
 Open spcursor For
 select pk, col1, col2
 from MyTable
 where last_modified > last_dl_ts
 and employee = user_name;
End;

The following example works with IBM DB2 UDB.

CREATE PROCEDURE DownloadMyTable(
 IN last_dl_ts TIMESTAMP,
 IN u_name VARCHAR(128))
 EXTERNAL NAME ’DLMyTable!DownloadMyTable’
 RESULT SETS 1
 FENCED
 LANGUAGE JAVA PARAMETER STYLE DB2GENERAL

The following example is a Java implementation of the stored procedure, in
DLMyTable.java. To return a result set, you must leave the result set open
when the method returns:

import COM.ibm.db2.app.*;
import java.sql.*;

public class DLMyTable extends StoredProc
{
 public void DownloadMyTable(
 Date last_dl_ts,
 String u_name) throws Exception
 {
 Connection conn = getConnection();
 conn.setAutoCommit(false);
 Statement s = conn.createStatement();

Chapter 4 Synchronization Techniques

115

 // Execute the select and leave it open.
 ResultSet r = s.executeQuery(
 "select pk, col1, col2 from MyTable"
 + " where last_modified > ’"
 + last_dl_ts
 + "’ and employee = ’"
 + u_name + "’");
 }
}

Schema changes in remote databases

116

Schema changes in remote databases
When the schema of a remote database changes, you need to re-generate the
UltraLite database and build a new application. The application needs to be
re-deployed and the new database populated by synchronizing with the
MobiLink synchronization server. It is usually impractical to have all users
upgrade to the new version of the application at the same time.

You need to be able to have both versions co-existing in the field and
synchronizing with a single consolidated database. You can create two or
more versions of the synchronization scripts that are stored in the
consolidated database and control the actions of the MobiLink
synchronization server. Each version of your application can then select the
appropriate set of synchronization scripts by specifying the correct version
name when it initiates synchronization.

The most common schema changes are to add a new column to an existing
table or to add a new table to the database.

Adding tables to remote databases

You can add tables to remote databases. The only change is that you will
have a new row in ml_table and a new set of scripts that correspond to the
new table. When a user synchronizes, the upload stream contains a list of the
tables in the remote database. The MobiLink synchronization server only
expects data for tables in this list. Only tables listed in the upload stream are
synchronized.

Changing table definitions in remote databases

Changing the number or type of columns in an existing table must be done
carefully. When a newer MobiLink client synchronizes, it expects scripts,
such as upload_update or download_cursor, which have parameters for all
columns in the remote table. An older remote database expects scripts that
have only the original columns.

To accommodate the various versions of your application, you can create
different versions of the synchronization scripts. Each time a client
synchronizes, it specifies the correct script version name. Using this
technique, an arbitrary number of versions of your application can co-exist
while synchronizing with a single consolidated database.

$ For more information, see "Script versions" on page 61.

117

C H A P T E R 5

Adaptive Server Anywhere Clients

This chapter describes how to use Adaptive Server Anywhere databases as
MobiLink clients.

$ For a tutorial to walk you through some of the concepts in this chapter,
see "Tutorial: Synchronizing Adaptive Server Anywhere Databases" on
page 315.

Topic Page

Creating a remote database 118

Publishing data 119

Creating MobiLink users 125

Subscribing MobiLink synchronization users 128

Differences from version 7 132

Initiating synchronization 138

Using ActiveSync synchronization 143

Deploying remote databases 148

Partitioning data between remote databases 155

Temporarily stopping synchronization of deletes 156

Customizing the client synchronization process 157

About this chapter

Contents

Creating a remote database

118

Creating a remote database
Any Adaptive Server Anywhere database can be converted for use as a
remote database in a MobiLink installation. All you need to do is create a
publication, create a MobiLink user, and subscribe the MobiLink user to the
publication.

v To create an Adaptive Server Anywhere remote database:

1 Start with an existing Adaptive Server Anywhere database, or create a
new one and add your tables.

2 Create one or more publications in the new database.

$ See "Publishing data" on page 119.

3 Create a MobiLink user.

$ See "Creating MobiLink users" on page 125.

4 Subscribe a MobiLink user to one or more of the publications.

$ See "Subscribing MobiLink synchronization users" on page 128.

Comparison to SQL Remote
Publications and subscriptions are also used by the Sybase message-based
replication technology, SQL Remote. SQL Remote requires publications
and subscriptions in both the consolidated and remote databases. In
contrast, MobiLink publications appear only in Adaptive Server
Anywhere remote databases. MobiLink consolidated databases are
configured using synchronization scripts.

Chapter 5 Adaptive Server Anywhere Clients

119

Publishing data
A publication is a database object that identifies the data that is to be
replicated. A publication consists of articles, which are subsets of a table’s
columns, rows, or both. Each publication can contain one or more entire
tables, or partial tables consisting of selected rows and columns.

You create publications using Sybase Central or with the CREATE
PUBLICATION statement.

In Sybase Central, all publications and articles appear in the Publications
folder.

♦ DBA authority is required to create and drop publications.

♦ A single publication can publish a subset of columns from a set of tables
and use a WHERE clause to select a set of rows to be replicated.

♦ Views and stored procedures cannot be included in publications.

Publishing whole tables

The simplest publication you can make consists of a single article, which
consists of all rows and columns of one or more tables. These tables must
already exist.

v To publish one or more entire tables (Sybase Central):

1 Connect to the remote database as a user with DBA authority, using the
Adaptive Server Anywhere plug-in.

2 Open the MobiLink Synchronization Client folder.

3 Open the Publications folder and double-click Add Publication.

4 Type a name for the new publication. Click Next.

5 On the Tables tab, select a table from the list of Matching tables.
Click Add. The table appears in the list of Selected tables on the right.

6 Optionally, you may add additional tables. The order of the tables is not
important.

7 Click Finish.

v To publish one or more entire tables (SQL):

1 Connect to the remote database as a user with DBA authority.

Notes about
publications

Publishing data

120

2 Execute a CREATE PUBLICATION statement that specifies the name
of the new publication and the table you want to publish.

The following statement creates a publication that publishes the whole
customer table:

CREATE PUBLICATION pub_customer (
TABLE customer

)

The following statement creates a publication including all columns and
rows in each of a set of tables from the Adaptive Server Anywhere sample
database:

CREATE PUBLICATION sales (
TABLE customer,
TABLE sales_order,
TABLE sales_order_items,
TABLE product

)

$ For more information, see the "CREATE PUBLICATION statement"
on page 314 of the book ASA SQL Reference Manual.

Publishing only some columns in a table

You can create a publication that contains all the rows but only some of the
columns of a table from Sybase Central or by listing the columns in the
CREATE PUBLICATION statement.

v To publish only some columns in a table (Sybase Central):

1 Connect to the remote database as a user with DBA authority using the
Adaptive Server Anywhere plug-in.

2 Open the Publications folder and double-click Add Publication.

3 Type a name for the new publication. Click Next.

4 On the Tables tab, select a table from the list of Matching tables. Click
Add. The table is added to the list of Selected tables on the right.

5 On the Columns tab, double-click the table’s icon to expand the list of
available columns. Select each column you want to publish and
click Add. The selected columns appear on the right.

6 Click Finish.

v To publish only some columns in a table (SQL):

1 Connect to the remote database as a user with DBA authority.

Example

Chapter 5 Adaptive Server Anywhere Clients

121

2 Execute a CREATE PUBLICATION statement that specifies the
publication name and the table name. List the published columns in
parenthesis following the table name.

The following statement creates a publication that publishes all rows of the
id, company_name, and city columns of the customer table:

CREATE PUBLICATION pub_customer (
TABLE customer (id, company_name,

city)
)

$ For more information, see the "CREATE PUBLICATION statement"
on page 314 of the book ASA SQL Reference Manual.

Publishing only some rows in a table

You can create a publication that contains some or all the columns in a table,
but only some of the rows. You do so by writing a search condition that
matches only the rows you want to publish.

Sybase Central and the SQL language each provide two ways of publishing
only some of the rows in a table; however, only one way is compatible with
MobiLink.

♦ WHERE clause Compatible with MobiLink. You can use a WHERE
clause to include a subset of rows in an article.

♦ Subscription expression Ignored by MobiLink.

In MobiLink, you can use the WHERE clause to exclude the same set of
rows from all subscriptions to a publication. All subscribers to the
publication upload any changes to the rows that satisfy the search condition.

v To create a publication using a WHERE clause (Sybase Central):

1 Connect to the remote database as a user with DBA authority using the
Adaptive Server Anywhere plug-in.

2 Open the Publications folder and launch the Add Publication wizard.

3 Type a name for the new publication. Click Next.

4 On the Tables tab, select a table from the list of Matching tables. Click
Add. The table is added to the list of Selected tables on the right.

5 On the Where tab, select the table and type the search condition in the
lower box. Optionally, you can use the Insert dialog to assist you in
formatting the search condition.

6 Click Finish.

Example

Publishing data

122

v To create a publication using a WHERE clause (SQL):

1 Connect to the remote database as a user with DBA authority.

2 Execute a CREATE PUBLICATION statement that includes the rows
you wish to include in the publication and a WHERE condition.

The following statement creates a publication that publishes the id,
company_name, city, and state columns of the customer table, for the
customers marked as active in the status column.

CREATE PUBLICATION pub_customer (
TABLE customer (

id,
company_name,
city,
state)

WHERE status = ’active’
)

In this case, the status column itself is not published. All unpublished
rows must have a default value. Otherwise, an error occurs when rows
are downloaded for insert from the consolidated database.

The following example creates a single-article publication sending relevant
order information to the sales rep Samuel Singer.

CREATE PUBLICATION pub_orders_samuel_singer (
TABLE sales_order WHERE sales_rep = 856

)

$ For more information, see the "CREATE PUBLICATION statement"
on page 314 of the book ASA SQL Reference Manual.

SUBSCRIBE BY
The CREATE PUBLICATION statement also allows a SUBSCRIBE BY
clause. This clause can also be used to selectively publish rows in
SQL Remote. However, it is ignored during MobiLink synchronization.

Altering existing publications

After you have created a publication, you can alter it by adding, modifying,
or deleting articles, or by renaming the publication. If an article is modified,
the entire specification of the modified article must be entered.

You can perform these tasks using Sybase Central or with the ALTER
PUBLICATION statement in Interactive SQL.

♦ Publications can be altered only by the DBA or the publication’s owner.

Examples

Notes

Chapter 5 Adaptive Server Anywhere Clients

123

♦ Altering publications in a running MobiLink setup is likely to cause
replication errors and can lead to loss of data unless carried out with
care.

v To modify the properties of existing publications or articles (Sybase
Central):

1 Connect to the remote database as a user who owns the publication or as
a user with DBA authority.

2 Right-click the publication or article and choose Properties from the
popup menu.

3 Configure the desired properties.

v To add articles (Sybase Central):

1 Connect to the remote database as a user who owns the publication or as
a user with DBA authority using the Adaptive Server Anywhere plug-in.

2 Open the Publications folder (located within the MobiLink
Synchronization Client folder).

3 Open the publication container.

4 Double-click Add Article.

5 In the Article Creation wizard, do the following:

♦ On the first page, select a table.

♦ On the next page, select the number of columns.

♦ On the final page, enter a WHERE clause (if desired).

6 Click OK to create the article.

v To remove articles (Sybase Central):

1 Connect to the database as a user who owns the publication or as a user
with DBA authority using the Adaptive Server Anywhere plug-in.

2 Open the Publications folder (located within the MobiLink
Synchronization Client folder).

3 Open the publication container.

4 Right-click the article you want to delete and choose Delete from the
popup menu.

Publishing data

124

v To modify an existing publication (SQL):

1 Connect to the remote database as a user who owns the publication or as
a user with DBA authority.

2 Connect to a database with DBA authority.

3 Execute an ALTER PUBLICATION statement.

♦ The following statement adds the customer table to the pub_contact
publication.

ALTER PUBLICATION pub_contact (
ADD TABLE customer

)

$ See also the "ALTER PUBLICATION statement" on page 216 of the
book ASA SQL Reference Manual.

Dropping publications

You can drop a publication using either Sybase Central or the DROP
PUBLICATION statement. If you drop a publication, all subscriptions to that
publication are automatically deleted as well.

You must have DBA authority to drop a publication.

v To delete a publication (Sybase Central):

1 Connect to the remote database as a user with DBA authority using the
Adaptive Server Anywhere plug-in.

2 Open the Publications folder.

3 Right-click the desired publications and choose Delete from the popup
menu.

v To delete a publication (SQL):

1 Connect to the remote database as a user with DBA authority.

2 Execute a DROP PUBLICATION statement.

The following statement drops the publication named pub_orders.

DROP PUBLICATION pub_orders

$ See also the "DROP PUBLICATION statement" on page 402 of the
book ASA SQL Reference Manual.

Example

Example

Chapter 5 Adaptive Server Anywhere Clients

125

Creating MobiLink users
MobiLink users are not the same as database users. Each type resides in a
different namespace. You can create a MobiLink user ID that matches the
name of a database user, but neither MobiLink nor Adaptive Server
Anywhere is affected by this coincidence.

$ For information about adding MobiLink users to the consolidated
database, see "About MobiLink users" on page 252.

Adding MobiLink users to a remote database

This section describes how to add a MobiLink user name to a remote
database. For information on supplying MobiLink user properties, including
the password, see "Configuring MobiLink user properties" on page 126.

v To add a MobiLink user to a remote database (Sybase Central):

1 Connect to the database from the Adaptive Server Anywhere plug-in as
a user with DBA authority.

2 Open the MobiLink Synchronization Client folder.

3 Open the MobiLink Users folder and double-click Add MobiLink User.

4 Enter a name for the MobiLink user. This name is supplied to the
MobiLink synchronization server during synchronization.

5 Click Finish.

v To add a MobiLink user to a remote database (SQL):

1 Connect to the database as a user with DBA authority.

2 Execute a CREATE SYNCHRONIZATION USER statement.

The following example adds a MobiLink user named SSinger:

CREATE SYNCHRONIZATION USER SSinger

You can specify properties for the MobiLink user as part of the
CREATE SYNCHRONIZATION USER statement, or you can specify
them separately with an ALTER SYNCHRONIZATION USER
statement.

$ For more information, see "CREATE SYNCHRONIZATION
USER statement [MobiLink]" on page 335 of the book ASA SQL
Reference Manual.

Creating MobiLink users

126

Configuring MobiLink user properties

You can specify the following properties for each MobiLink user in a remote
database:

♦ Connection properties This information includes the address for the
MobiLink synchronization server, the protocol to use for
communications with the server, and other connection parameters.

♦ Extended options Extended options include the password (although it
is more secure to supply a password at synchronization time, and use it
on the dbmlsync command line), the script version, as well as options
that tune the performance and behavior.

You can override connection properties and extended options by setting
properties for individual subscriptions, or setting extended options on the
dbmlsync command line.

$ For more information on the meaning of the MobiLink properties and
extended options, see "CREATE SYNCHRONIZATION USER statement
[MobiLink]" on page 335 of the book ASA SQL Reference Manual and
"MobiLink synchronization client" on page 410.

v To configure MobiLink user properties (Sybase Central):

1 Connect to the database from the Adaptive Server Anywhere plug-in as
a user with DBA authority.

2 Locate the MobiLink user in the MobiLink Users folder, which is in the
MobiLink Synchronization Client folder.

3 Right-click the MobiLink user and choose Properties from the popup
menu.

4 Change the properties as needed.

v To configure MobiLink user properties (SQL):

1 Connect to the database as a user with DBA authority.

2 Execute an ALTER SYNCHRONIZATION USER statement.

The following example changes the extended options for MobiLink user
named SSinger to their default values:

ALTER SYNCHRONIZATION USER SSinger
DELETE ALL OPTION

$ For more information, see "ALTER SYNCHRONIZATION USER
statement " on page 570.

Chapter 5 Adaptive Server Anywhere Clients

127

Dropping MobiLink users

You must drop all subscriptions for a MobiLink user before you drop the
user from a remote database.

v To drop a MobiLink user from a remote database (Sybase Central):

1 Connect to the database from the Adaptive Server Anywhere plug-in as
a user with DBA authority.

2 Locate the MobiLink user in the MobiLink Users folder, which is in the
MobiLink Synchronization Client folder.

3 Right click the MobiLink user and choose Delete from the popup menu.

v To drop a MobiLink user from a remote database (SQL):

1 Connect to the database as a user with DBA authority.

2 Execute a DROP SYNCHRONIZATION USER statement.

The following example removes the MobiLink user named SSinger from
the database:

DROP SYNCHRONIZATION USER SSinger

$ For more information, see "DROP SYNCHRONIZATION USER
statement " on page 582.

Subscribing MobiLink synchronization users

128

Subscribing MobiLink synchronization users
To complete the setup, you must subscribe at least one MobiLink user to one
or more pre-existing publications.

$ For information about creating publications, see "Publishing data" on
page 119. For information about creating MobiLink users, see "Creating
MobiLink users" on page 125.

Subscriptions versus synchronization subscriptions
Do not confuse subscriptions (CREATE SUBSCRIPTION statement)
with synchronization subscriptions (CREATE SYNCHRONIZATION
SUBSCRIPTION statement). Subscriptions work only with SQL Remote.
They create relationships between publications and database users who
have been granted remote privileges. Synchronization subscriptions, used
with MobiLink, create relationships between publications and MobiLink
users.

A synchronization subscription links a particular MobiLink user with a
publication. It can also carry other information needed for synchronization.
For example, you can specify the address of the MobiLink server and any
desired options for a synchronization subscription. Values for a specific
synchronization subscription override those set for MobiLink users.

Synchronization subscriptions are required only in MobiLink Adaptive
Server Anywhere remote databases. Server logic is implemented through
synchronization scripts, stored in the MobiLink system tables in the
consolidated database.

A single Adaptive Server Anywhere database can synchronize with more
than one MobiLink synchronization server. To allow synchronization with
multiple servers, create different subscriptions for each server.

To synchronize the customer and sales_order tables in the Adaptive Server
Anywhere sample database, you could use the following statements.

1 First, publish the customer and sales_order tables. Give the publication
the name testpub.

CREATE PUBLICATION testpub
(TABLE customer, TABLE sales_order)

2 Next, create a MobiLink user. In this case, the MobiLink user is
demo_ml_user.

CREATE SYNCHRONIZATION USER demo_ml_user

3 To complete the process, subscribe the user to the publication.

Example

Chapter 5 Adaptive Server Anywhere Clients

129

CREATE SYNCHRONIZATION SUBSCRIPTION TO testpub
FOR demo_ml_user
TYPE tcpip
ADDRESS ’host=localhost;port=2439;’
OPTION sv=’version1’

Priority order for extended options and connection parameters

The CREATE/ALTER SYNCHRONIZATION USER and
CREATE/ALTER SYNCHRONIZATION SUBSCRIPTION statements
allow you to store extended options and connection parameters in the
database and associate them with subscriptions, users or publications. The
dbmlsync utility reads this information from the database.

If extended options are specified in both the database and the command line,
the option strings are combined. If conflicting options are specified,
dbmlsync resolves them as follows. In the following list, options specified by
methods occurring earlier in the list take precedence over those occurring
later in the list.

1 options specified on the command line with the -eu option.

2 options specified on the command line with the -e option.

3 options specified for the subscription (whether using SQL statements or
Sybase Central).

4 options specified for the user (whether using SQL statements or Sybase
Central).

5 options specified for the publication (whether using SQL statements or
Sybase Central). You can specify options for a publication by creating a
synchronization subscription without specifying a synchronization user.

If the connection TYPE or ADDRESS is specified in more than one place,
the one specified with the highest priority according to the list above
overrides any other specification. The connection TYPE and ADDRESS can
be specified on the command line using adr and ctp extended options.

Altering MobiLink subscriptions

Synchronization subscriptions can be altered using the ALTER
SYNCHRONIZATION SUBSCRIPTION statement. The syntax is similar to
that of the CREATE SYNCHRONZATION SUBSCRIPTION statement, but
provides an extension to more conveniently add, modify, and delete options.

Subscribing MobiLink synchronization users

130

v To alter a synchronization subscription (Sybase Central):

1 Connect to the database as a user with DBA authority.

2 Open the MobiLink Users folder.

3 Right-click the desired user and choose Properties from the popup menu.
The MobiLink user property sheet appears.

4 On the Subscriptions tab, select the subscription you wish to change and
click Advanced.

5 Change the properties as needed
.

v To alter a synchronization subscription (SQL):

1 Connect to the database as a user with DBA authority.

2 Execute an ALTER SYNCHRONIZATION SUBSCRIPTION
statement.

$ For more information, see "ALTER SYNCHRONIZATION
SUBSCRIPTION statement" on page 568.

Dropping MobiLink subscriptions

You can delete a synchronization subscription using either Sybase Central or
the DROP SYNCHRONIZATION SUBSCRIPTION statement.

Note that if you drop all synchronization subscriptions for a particular
MobiLink user, all records of that user are deleted from the database.

You must have DBA authority to drop a synchronization subscription.

v To delete a synchronization subscription (Sybase Central):

1 Connect to the database as a user with DBA authority.

2 Open the MobiLink Users folder.

3 Select a MobiLink user.

4 Right-click the desired subscription and choose Delete from the popup
menu.

v To delete a synchronization subscription (SQL):

1 Connect to the database as a user with DBA authority.

2 Execute a DROP SYNCHRONIZATION SUBSCRIPTION statement.

Chapter 5 Adaptive Server Anywhere Clients

131

The following statement drops the synchronization subscription of MobiLink
user jsmith to a publication named pub_orders.

DROP SYNCHRONIZATION SUBSCRIPTION
FOR jsmith TO pub_orders

$ See also the "DROP SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]" on page 410 of the book ASA SQL Reference Manual.

Example

Differences from version 7

132

Differences from version 7
Adaptive Server Anywhere 7.0 MobiLink clients were configured using SQL
statements that are now deprecated. In particular, synchronization definitions
were used instead of publications and subscriptions. The older statements are
still supported, and have some disadvantages.

1 A synchronization definition is equivalent to a single publication and a
single subscription to it. There is no support for subscriptions to multiple
publications. In contrast, a single MobiLink user can now subscribe to
multiple publications. This allows you to synchronize some portions of
your data without synchronizing all of it.

2 Some people found the old terminology confusing. For example, a
MobiLink user ID was formerly called a site in the context of an
Adaptive Server Anywhere client. A MobiLink user is now called a
MobiLink user or a synchronization user.

3 The new statements are analogous to those used in SQL Remote, the
Sybase message-based replication technology.

You can choose to synchronize all or any portion of the data in a client
Adaptive Server Anywhere database. You can choose to synchronize entire
tables, or you can choose to synchronize only particular columns and rows.

The synchronization definition, located in the client Adaptive Server
Anywhere database, describes the data that is to be replicated and the
location of the appropriate MobiLink synchronization server.

Synchronization scripts, stored in the consolidated database, control how the
uploaded rows are processed and which rows are downloaded to the remote
database. These scripts do not depend on the type of remote database.

A synchronization definition may include data from several database tables.
Each table’s contribution to a synchronization definition is called an article.
Each article may consist of a whole table, or a subset of the rows and
columns in a table.

Synchronization
definitions identify
data to upload in
version 7 remote
databases

Chapter 5 Adaptive Server Anywhere Clients

133

ááá á á

ááá á á

A two-table synchronization definition

Article 1: all of
table A

Article 2: some rows and
columns from table B

+ á

á á

á

á

á

ááá á á

ááá á á

ááá á á

Once a remote database is set up, the two databases must be periodically
brought to a state where they both have the same set of information. This
process of synchronization is carried out using the dbmlsync command line
utility.

A table, once added to a synchronization definition, should not be altered.
Altering the table interferes with the synchronization process. Should it be
necessary to make such an alteration, this step should be performed
immediately following synchronization.

The only way to ensure that the ALTER STATEMENT is executed
immediately following synchronization is to place this statement in a script,
then execute that script using the -i option of the dbmlsync command line
utility.

If you have developed UltraLite applications for use as MobiLink clients, the
following information may be helpful. Many of the elements of a
synchronization definition have an UltraLite counterpart.

Synchronizing a
remote database

Altering a
synchronized table

Comparison to
UltraLite clients

Differences from version 7

134

Adaptive Server
Anywhere 8.0
client

Adaptive Server
Anywhere 7.0
client

UltraLite
clients

MobiLink
synchronization
server

MobiLink
synchronization
user

site user name MobiLink user

type type stream connection type

address address connection
parameters

the server’s address

script version script version version script version

publication part of a definition
in a remote
database, or part of
a template in a
reference database

none—all
tables are
synchronized

publication

subscription part of a definition
in a remote
database, or a part
of a site in a
reference database

none none

Writing synchronization definitions

The synchronization definition is a version 7.0 database object describing
data in an Adaptive Server Anywhere remote database that is to be
synchronized with a particular MobiLink synchronization server. When
using Adaptive Server Anywhere 8.0 or later, publications and
synchronization subscriptions should be used instead.

$ For details, see "Creating a remote database" on page 118.

A synchronization definition should appear only in an Adaptive Server
Anywhere 7.0 remote database. MobiLink consolidated servers are
configured using scripts.

A synchronization definition specifies the following pieces of information

♦ name The name of the synchronization definition, known only within
the remote database.

♦ site A name that uniquely identifies this particular MobiLink client.

♦ type The type of stream to be used to communicate with the MobiLink
synchronization server.

Chapter 5 Adaptive Server Anywhere Clients

135

♦ address The parameters necessary to connect to the MobiLink
synchronization server.

♦ script version The version of the synchronization scripts the
MobiLink synchronization server is to use when synchronizing this
client.

♦ articles A description of the data to be synchronized. You can
synchronize entire tables, or only particular rows and columns.

The following statement creates a synchronization definition named testpub
that defines what data is to be synchronized with site demo_sync_site.

CREATE SYNCHRONIZATION DEFINITION testpub
SITE ’demo_sync_site’
TYPE ’tcpip’
ADDRESS ’host=localhost;port=2439;’
OPTION sv=’version1’
(table People(person_id, fname, lname),table Pets);

In this statement,

♦ The name of this synchronization definition is testpub. This name is only
known within the remote database.

♦ The name demo_sync_site uniquely identifies this client to the
MobiLink synchronization server. This name should appear in the
ml_user MobiLink system table, located in the consolidated database.

♦ The synchronization is to occur over a TCP/IP connection. The
connection parameters appear in a string in the ADDRESS clause.

The TCP/IP connection parameters show that the MobiLink
synchronization server is listening on port 2439 of the current machine.
Only the listed columns of the People table are synchronized. The option
clause is included to indicate that the MobiLink synchronization server
should use version1 of the synchronization scripts when processing data
from this client. The default value of this parameter is default. Notice
that the list of columns is also enclosed in parentheses.

♦ The MobiLink synchronization server is to use the set of
synchronization scripts identified by the name version1 when
synchronizing this client. This script version name should appear in the
ml_script_version MobiLink system table, located in the consolidated
database.

♦ All columns and rows of the Pets table and the listed columns of the
People table are to be synchronized.

$ For the syntax of the MobiLink-synchronization-specific statements,
see "MobiLink SQL Statements" on page 563.

Differences from version 7

136

To synchronize a remote database with multiple MobiLink synchronization
servers, create multiple synchronization definitions within the remote
database. Each synchronization definition must have a unique site name
because, from the point of view of the MobiLink synchronization server,
each is a separate logical client.

Synchronizing the same data in one remote database with multiple MobiLink
synchronization servers is not presently supported.

Rewriting synchronization definitions for version 8

To use an Adaptive Server Anywhere 7 database as a MobiLink client, you
use a synchronization definition to identify which data to upload. In
version 8.0 and later, these are better rewritten as publications and
synchronization subscriptions.

Suppose you wanted to synchronize the Customer and Sales_Order tables of
the sample database. You could have created the following synchronization
definition.

CREATE SYNCHRONIZATION DEFINITION testpub
SITE ’demo_ml_user’
TYPE ’tcpip’
ADDRESS ’host=localhost;port=2439;’
OPTION sv=’version1’
(TABLE Customer, TABLE Sales_Order);

Instead, you should now do the following.

1 First, publish the Customer and Sales_Order tables.

CREATE PUBLICATION testpub
(TABLE Customer, TABLE Sales_Order);

2 Next, create a subscription to this publication for the MobiLink user. In
this case, the MobiLink user is demo_ml_user. It is unnecessary that a
database user of the same name to exist. MobiLink users and database
users are independent.

CREATE SYNCHRONIZATION SUBSCRIPTION TO testpub
FOR demo_ml_user
TYPE ’tcpip’
ADDRESS ’host=localhost;port=2439;’
OPTION sv=’version1’

The information is the same, but is broken into two smaller statements
instead of one large one.

Synchronizing with
multiple servers

Example

Chapter 5 Adaptive Server Anywhere Clients

137

The SITE clause in the synchronization definition specifies that this
particular MobiLink client will synchronizing using the MobiLink user id
demo_sync_site. Synchronization is to occur over a TCP/IP connection. The
synchronization server is to use the version1 version of the synchronization
scripts when interacting with this client.

In the second case, the synchronized tables are published, then a subscription
is created for the demo_sync_site MobiLink user. The TYPE, ADDRESS,
and OPTION clauses have the same syntax.

Initiating synchronization

138

Initiating synchronization
The client always initiates MobiLink synchronization. In the case of an
Adaptive Server Anywhere client, synchronization is initiated by running the
dbmlsync utility. This utility connects to and synchronizes an Adaptive
Server Anywhere remote database.

You can specify connection parameters on the dbmlsync command line using
the -c option. These parameters are for the remote database. If you do not
specify connection parameters, a connection dialog appears, asking you to
supply the missing connection parameters and startup options.

Connection parameters set in the synchronization subscriptions within the
remote database are used to locate the appropriate MobiLink synchronization
server.

When dbmlsync connects to a database, it must have permissions to apply all
the changes being made. The dbmlsync command line contains the password
for this connection. This could present a security issue.

To avoid security problems, grant a user (other than DBA) REMOTE DBA
authority, and use this user ID in the dbmlsync connection string. A user ID
with REMOTE DBA authority has DBA authority only when the connection
is made from the dbmlsync utility. Any other connection using the same
user ID is granted no special authority.

Suppose that you have a remote database named remote and that this
database is currently running on your local machine. In addition, assume that
the MobiLink synchronization server has been started and is ready to accept
requests. You could use the following command to synchronize as user
syncuser, who has been granted REMOTE DBA authority.

dbmlsync –c "dbn=remote;uid=syncuser" c:\oldlogs

Since the user’s password is not specified on the command line, a dialog
appears letting you enter this additional piece of information.

Note that no connection parameters for the MobiLink synchronization server
appear on the command line. Instead, these parameters are set in the
synchronization subscription, publication, or user, and stored in the remote
database.

Permissions for
dbmlsync

Example

Chapter 5 Adaptive Server Anywhere Clients

139

Multiple MobiLink synchronization users

Each remote database typically contains exactly one MobiLink
synchronization user. In this case, you do not need to specify a MobiLink
user name on the dbmlsync command line. However, if the remote database
contains more than one, you must specify which MobiLink synchronization
user to synchronize using the -u command line option.

dbmlsync –c "dbn=remote;uid=syncuser" -u mluser

Similarly, you can specify the user’s password using the -mp option, or
change the password by specifying the new password with the -mn option.
These are the user ID and password used to the MobiLink synchronization
server and may be different from the user ID and password used to connect
to the remote database.

Tuning synchronization

MobiLink provides a number of extended options to tune the synchronization
process. Extended options can be set for publications, users, and
subscriptions. In addition, extended option values can be overridden using
options on the dbmlsync command line.

$ For a complete list of extended options, see "CREATE
SYNCHRONIZATION USER statement [MobiLink]" on page 335 of the
book ASA SQL Reference Manual and "-e extended options" on page 414.

v To override an extended option on the dbmlsync command line:

♦ Supply the option values in the -e command line option for dbmlsync, in
the form option-name=value. For example:

dbmlsync -e "v=on;sc=low"

v To set an extended option for a subscription or user:

♦ Add the option to the CREATE SYNCHRONIZATION
SUBSCRIPTION statement or CREATE SYNCHRONIZATION USER
statement in the Adaptive Server Anywhere remote database. The values
for each option cannot contain the characters "=" or "," or ";".

The following statement creates a synchronization subscription that uses
extended options to set the cache size for preparing the upload stream to
3 Mb and the upload increment size to 3 kb.

Example

Initiating synchronization

140

CREATE SYNCHRONIZATION SUBSCRIPTION TO my_pub
FOR ml_user
ADDRESS ’host=test.internal;port=2439;’
OPTION memory=’3m’,increment=’3k’

Note that the option values can be enclosed in single quotes, but the option
names must rename unquoted.

Transaction log files

To prepare the upload stream, the dbmlsync utility requires access to all
transaction logs written since the last successful synchronization. However,
log files are typically truncated and renamed as part of regular database
maintenance. In such a case, old log files must be renamed and saved in a
separate directory until all changes they describe have been synchronized
successfully.

You can specify the directory that contains the renamed log files on the
dbmlsync command line. You may omit this parameter if the working log
file has not been truncated and renamed since you last synchronized, or if
you run dbmlsync from the directory that contains the renamed log files.

$ For more information, see "Backup and Data Recovery" on page 299 of
the book ASA Database Administration Guide.

Suppose that the old log files are stored in the directory c:\oldlogs. You could
use the following command to synchronize the remote database.

dbmlsync –c "dbn=remote;uid=syncuser" c:\oldlogs

The path to the old logs directory must be the final argument on the
command line.

Concurrency during synchronization

By default, the MobiLink client synchronization utility requires exclusive
write access to all tables in the named publications. No other application can
modify these tables at the same time. If synchronization is initiated when
there are other connections to the remote database, write locks held by these
connections can prevent synchronization from proceeding. In this case,
synchronization is delayed until the other connections release their locks.

Sometimes, as is often the case for embedded applications, it may be
possible to schedule synchronization only when no other operations are
occurring in the remote database. Even when the remote database is used by
a number of users or applications, it may be possible to find times of no
activity during which synchronization can safely occur.

Example

Chapter 5 Adaptive Server Anywhere Clients

141

Once synchronization commences, other users are denied write access to the
synchronized data. All processes requiring write access to the synchronized
data must wait for the synchronization process to complete. The duration of
this delay depends upon the amount of data to be exchanged, the speed of the
connection to the MobiLink synchronization server, and the load on the
server itself.

In some applications, it is essential that synchronization proceed as planned.
In such situations, you can use the dbmlsync -d option to force the remote
database to drop all other connections that are presently using resources
required for synchronization.

When you do so, synchronization will proceed almost immediately, but other
connected users or applications may be abruptly disconnected. Uncommitted
changes are rolled back, so these users or applications must reconnect later to
repeat any incomplete transactions.

You can permit other applications to obtain access to rows during
synchronization by setting the LockTables (short form lt) extended option to
OFF in the synchronization definition or on the dbmlsync command line.
Even with this setting, rows modified by the synchronization process are still
locked, as they would be by any other database connection.

The dbmlsync utility detects rows that are modified by other connections
between the upload phase and the download phase.

If a conflict is detected, the download phase is cancelled and the download
operations rolled back to avoid overwriting the new change. The dbmlsync
utility then retries the synchronization, including the upload step. This time,
because the row is present at the beginning of the synchronization process, it
is included in the upload stream and therefore not lost.

By default, dbmlsync retries the synchronization after a conflict until no
conflict occurs. You can customize this behavior by setting the extended
option ConflictRetries (short form cr). The default value for
ConflictRetries is –1, which indicates that dbmlsync should continue
retrying until successful. A value of any non-negative integer N indicates that
dbmlsync should retry up to N times if not successful.

Initiating synchronization from an application

You may wish to include the features of dbmlsync in your application, rather
than provide a separate executable to your customers. If you are developing
in C, you can do so.

Forcing other
connections to
close

Permitting
concurrency during
synchronization

Initiating synchronization

142

Include the dbtools.h header file located in the h subdirectory of your
SQL Anywhere directory. This file contains a description of the a_sync_db
structure and the DBSynchronizeLog function, which you use to add this
functionality to your application.

$ For more information, see "DBSynchronizeLog function" on page 299
of the book ASA Programming Guide, and "a_sync_db structure" on
page 320 of the book ASA Programming Guide.

Chapter 5 Adaptive Server Anywhere Clients

143

Using ActiveSync synchronization
ActiveSync is synchronization software for Microsoft Windows CE
handheld devices. Adaptive Server Anywhere MobiLink clients can use
ActiveSync version 3.1 or 3.5.

ActiveSync governs synchronization between a Windows CE device and a
desktop computer. A MobiLink provider for ActiveSync governs
synchronization to the MobiLink synchronization server, as shown in the
following diagram.

ActiveSync
software

ActiveSync
software

MobiLink
provider for
ActiveSync MobiLink

synchronization
server

UltraLite or
ASA MobiLink

client

Windows CE
device

Desktop
computer

Server
computer

Setting up ActiveSync synchronization for Adaptive Server Anywhere
clients involves the following steps:

♦ Configure the Adaptive Server Anywhere remote database for
ActiveSync synchronization.

$ See "Configuring Adaptive Server Anywhere remote databases for
ActiveSync" on page 144.

♦ Install the MobiLink provider for ActiveSync.

$ See "Installing the MobiLink provider for ActiveSync" on
page 145.

♦ Register the Adaptive Server Anywhere client for use with ActiveSync.

$ See "Registering Adaptive Server Anywhere clients for
ActiveSync" on page 146.

Using ActiveSync synchronization

144

If you use ActiveSync synchronization, synchronization must be initiated
from the ActiveSync software. The MobiLink provider for ActiveSync can
start dbmlsync or it can wake a dbmlsync that is sleeping as scheduled by a
schedule string.

You can also put dbmlsync into a sleep mode using a delay hook in the
remote database, but the MobiLink provider for ActiveSync cannot invoke
synchronization from this state.

$ For information about scheduling synchronization, see "Scheduling
synchronization" on page 162.

Configuring Adaptive Server Anywhere remote databases for
ActiveSync

v To configure your Adaptive Server Anywhere remote database for
ActiveSync:

1 Select ActiveSync as the synchronization type.

The synchronization type can be set for a synchronization publication,
for a synchronization user or for a synchronization subscription. It is set
in a similar manner for each. Here is part of a typical CREATE
SYNCHRONIZATION USER statement:

CREATE SYNCHRONIZATION USER SSinger
TYPE ActiveSync
...

2 Supply an address clause to specify communication between the
MobiLink provider for ActiveSync and the MobiLink synchronization
server.

For HTTP or TCP/IP synchronization the ADDRESS clause of the
CREATE SYNCHRONIZATION USER or CREATE
SYNCHRONIZATION SUBSCRIPTION statement specifies
communication between the MobiLink client and server. For
ActiveSync, the communication takes place in two stages: from the
dbmlsync utility on the device to the MobiLink provider for ActiveSync
on the desktop machine, and from desktop machine to the MobiLink
synchronization server. The ADDRESS clause specifies the
communication between MobiLink provider for ActiveSync and the
MobiLink synchronization server.

The following statement specifies TCP/IP communication to a
MobiLink synchronization server on a machine named kangaroo:

Chapter 5 Adaptive Server Anywhere Clients

145

CREATE SYNCHRONIZATION USER SSinger
TYPE ActiveSync
ADDRESS ’stream=tcpip;host=kangaroo;port=2439’

$ For more information, see "CREATE SYNCHRONIZATION
USER statement [MobiLink]" on page 335 of the book ASA SQL
Reference Manual.

Installing the MobiLink provider for ActiveSync

Before you register your Adaptive Server Anywhere MobiLink client for use
with ActiveSync, you must install the MobiLink provider for ActiveSync
using the installation utility (dbasinst.exe).

The Adaptive Server Anywhere for Windows CE setup program installs the
MobiLink provider for ActiveSync. If you install Adaptive Server Anywhere
for Windows CE you do not need to carry out the steps in this section.

When you have installed the MobiLink provider for ActiveSync you must
register each application separately. For instructions, see "Registering
Adaptive Server Anywhere clients for ActiveSync" on page 146.

v To install the MobiLink provider for ActiveSync:

1 Ensure that you have the ActiveSync software on your machine, and that
the Windows CE device is connected.

2 Enter the following command to install the MobiLink provider:

dbasinst -k desk-path -v dev-path

where desk-path is the location of the desktop component of the
provider (dbasdesk.dll) and dev-path is the location of the device
component (dbasdev.dll).

If you have SQL Anywhere installed on your machine, dbasdesk.dll is in
the win32 subdirectory of your SQL Anywhere directory and dbasdev.dll
is in a platform-specific directory in the CE subdirectory. These
directories are default search locations, and you can omit both -k and -v
command line options.

$ For more information, see "ActiveSync provider installation
utility" on page 610.

3 Restart your machine.

ActiveSync does not recognize new providers until the machine is
restarted.

4 Enable the MobiLink provider.

Using ActiveSync synchronization

146

♦ From the ActiveSync window, click Options.

♦ Check the MobiLink item in the list and click OK to activate the
provider.

♦ To see a list of registered applications, click Options again, choose
the MobiLink provider, and click Settings.

$ For more information on registering applications, see "Registering
Adaptive Server Anywhere clients for ActiveSync" on page 146.

Registering Adaptive Server Anywhere clients for ActiveSync

You can register you application for use with ActiveSync either by using the
ActiveSync provider install utility or using the ActiveSync software itself.
This section describes how to use the ActiveSync software.

$ For information on the alternative approach, see "ActiveSync provider
installation utility" on page 610.

v To register the Adaptive Server Anywhere client for use with
ActiveSync:

1 Ensure that the MobiLink provider for ActiveSync is installed.

$ For information, see "Installing the MobiLink provider for
ActiveSync" on page 145.

2 Start the ActiveSync software on your desktop machine.

3 From the ActiveSync window, choose Options.

4 From the list of information types, choose MobiLink and click Settings.

5 In the MobiLink Synchronization dialog, click New. The Properties
dialog appears.

6 Enter the following information for your application:

♦ Application name A name identifying the application to be
displayed in the ActiveSync user interface.

♦ Class name The class name for the dbmlsync client, as set using
its -wc option.

$ For more information, see "MobiLink synchronization client"
on page 410.

♦ Path The location of the dbmlsync application on the device.

♦ Arguments Any command line arguments to be used when
ActiveSync starts dbmlsync.

Chapter 5 Adaptive Server Anywhere Clients

147

7 Click OK to register the application.

Deploying remote databases

148

Deploying remote databases
The basic method for creating a MobiLink remote database is to create the
database and add the appropriate publications and subscriptions. However,
alternative methods exist that can prove convenient when your design calls
for a number of remote databases. These methods are as follows:

♦ Customize a prototype remote database.

♦ Extract remote databases from a reference database.

Customizing a prototype remote database

Customizing a prototype remote database is one method of deploying
MobiLink remote databases. For an overview of deployment methods, see
"Deploying remote databases" on page 148.

This method is illustrated in the Contact sample, which can be found in
Samples\MobiLink\Contact in your SQL Anywhere directory.

v To deploy MobiLink remote databases by customizing a prototype:

1 Create a prototype remote database.

The prototype database should have all the tables and publications
needed, but not the information that is specific to each database. This
individual information typically includes the following:

♦ The MobiLink user name.

♦ Synchronization subscriptions.

♦ The GLOBAL_DATABASE_ID option that provides the starting
point for global autoincrement key values.

2 For each remote database, carry out the following operations:

♦ Create a directory to hold the remote database.

♦ Copy the prototype remote database into the directory.

If the transaction log is held in the same directory as the remote
database, the log filename does not need to be changed.

♦ Run a SQL script that adds the individual information to the
database.

Chapter 5 Adaptive Server Anywhere Clients

149

The SQL script can be a parameterized script. For information on
parameterized scripts, see "PARAMETERS statement
[Interactive SQL]" on page 493 of the book ASA SQL Reference
Manual, and "Running command files" on page 99 of the book ASA
Getting Started.

The following SQL script is taken from the Contact sample. It can be found
in Samples\MobiLnk\Contact\customize.sql.

PARAMETERS ml_userid, db_id;
go
SET OPTION PUBLIC.GLOBAL_DATABASE_ID = {db_id}
go

CREATE SYNCHRONIZATION USER {ml_userid}
 TYPE ’TCPIP’
 ADDRESS ’host=localhost;port=2439’
 OPTION MEM=’’
go
CREATE SYNCHRONIZATION SUBSCRIPTION TO "DBA"."Product"
 FOR {ml_userid}
go
CREATE SYNCHRONIZATION SUBSCRIPTION TO "DBA"."Contact"
 FOR {ml_userid}
go
commit work
go

The following command line executes the script for a remote database with
data source dsn_remote_1.

dbisql -c "dsn=dsn_remote_1" read customize.sql [SSinger] [2]

Extracting remote databases

Extracting remote databases is one method of deploying MobiLink remote
databases.

In this method, you first create a single Adaptive Server Anywhere database,
called a reference database, which serves as a template for all the remote
databases. To this database you add the publications and subscriptions
needed by all the clients.

You are then ready to create the remote databases using information in the
reference database as a template. This process is known as extracting the
remote databases. The remote databases are extracted one at a time using the
mlxtract command line utility.

Example

Deploying remote databases

150

The extracted remote databases need not all have the same structure. When
extracting a remote database, you must name a particular MobiLink user.
The remote database contains only the publications to which that user
subscribed.

The reference database

A reference database is an Adaptive Server Anywhere database that serves as
the template of the Adaptive Server Anywhere remote databases that you
plan to create.

Each remote database must contain a subset of the tables, columns, and
indexes found in the reference database.

The schema of the reference database may, but need not, be similar to the
schema of the consolidated database.

In addition to the database schema, you must create two types of database
objects within the reference database.

♦ publications A publication identifies data that is to be published in
one more remote databases.

♦ synchronization subscriptions A synchronization subscription
identifies which user or users will publish a particular set of data in their
remote databases. A single user can subscribe to multiple publications.

A reference database should contain at least one synchronization subscription
for each MobiLink remote database.

The reference versus the consolidated database

Do not confuse the reference database with the consolidated database. The
consolidated database serves as the master repository of data in your
replication system. The reference database is a template from which you can
extract remote databases.

The following characteristics differentiate the reference database from the
consolidated database.

♦ database product The reference database must be built with Adaptive
Server Anywhere. In contrast, MobiLink supports a number of database
products in the role of consolidated database, including Sybase Adaptive
Server Anywhere, Sybase Adaptive Server Enterprise, Oracle, and
IBM DB2.

Chapter 5 Adaptive Server Anywhere Clients

151

♦ presence of data The consolidated database is the master repository
of information in the synchronization system. In contrast, the reference
database need not contain data. Optionally, you can populate the
reference database with data that you want the remote databases to
contain initially.

♦ presence of publications and synchronization subscriptions
Publications and synchronization subscriptions are required in a
reference database. They are permitted in a consolidated database, but
have no effect.

♦ schema The schema of the reference data is a template for the remote
databases. In contrast, MobiLink technology allows the consolidated
database to have a different structure. For example, the data stored in a
particular table and column at one client can be stored in a different
table and column at another client, and in yet another location at the
consolidated database.

When the following conditions are satisfied, a consolidated database can
serve as a reference database. Using one database for both purposes is
convenient, as you need maintain only one database instead of two.

♦ The consolidated database must be created with Adaptive Server
Anywhere.

♦ The schema of the consolidated database must be a superset of the union
of the schemas at the remote databases. In other words, the tables and
columns in each remote databases must exist in the consolidated
database.

Constructing a reference database

A reference database is a template for the remote databases. If a table or
column must appear in one or more remote database, it must appear in the
reference database.

A reference database can contain tables or columns not needed by any
clients. Unnecessary tables and columns are ignored during the extraction
process.

v To construct a new reference database

1 Create a new Adaptive Server Anywhere database.

2 Create all the tables that appear in any of the remote databases.

3 Create the publications needed for all the remote databases.

4 Subscribe all MobiLink synchronization users to the publications, as
required.

Can a consolidated
database function
as a reference
database?

Deploying remote databases

152

When you finish, you will have made a database that is the union of the
tables, columns, publications, and subscriptions needed at all the client sites.

The extraction method is particularly convenient when you already have an
Adaptive Server Anywhere database that contains the necessary tables and
columns. In this case, you can use this database as the reference database,
rather than creating a special-purpose reference database. In particular, the
consolidated database may meet these requirements, depending on the design
of your system.

To use this shortcut, the existing database must meet all of the following
requirements.

♦ The database was made with Adaptive Server Anywhere.

♦ The database contains all the tables and columns required in the clients.

♦ The tables and columns have the same names as required at the clients.

If any of these conditions is not met, construct a new reference database.

v To use an existing database as a reference database

1 Create all the publications needed for the remote databases.

2 Subscribe all the MobiLink synchronization users to the publications, as
required.

When you finish, you will have added the union of the publications and
subscriptions needed at all the client sites.

Extracting remote databases

Once the reference database is complete, you can extract the remote
databases. The extraction process is based on MobiLink synchronization
users. It assumes that one remote database should be created for each
MobiLink synchronization user.

Each time you extract a remote database you must specify a particular
MobiLink synchronization user. By default, all publications to which the
user has subscribed are extracted. Tables and columns are created in the
remote database only if they appear in a publication to which the user has
subscribed. The client does not inherit other tables or columns that exist in
the reference database.

v To extract databases (one step)

1 Start the reference database.

Using an existing
database

Chapter 5 Adaptive Server Anywhere Clients

153

2 Run the mlxtract command line utility. For example, to extract the
remote database for a MobiLink synchronization called mluser1 from a
database named refdb, you can type the following statement at the
system command prompt.

mlxtract -an -c "uid=DBA;pwd=SQL;dbn=refdb" mluser1

3 Repeat the previous step for each additional user’s remote database.

The above method is convenient because you arrive at the finished remote
database after issuing only one statement per remote database. However, it is
sometimes more convenient to break the extraction process into multiple
steps. This method is more flexible as it allows you to manipulate the files
between steps, or take shortcuts such as making copies of the new database
rather than re-creating one from scratch each time.

In other words, performing the extraction process is useful when you need
more control over the process to efficiently create a custom solution.

v To extract a remote database (multi-step)

1 Run the mlxtract command line utility, specifying a MobiLink
synchronization user ID on the command line. The utility writes a
reload.sql command file for the named client.

2 Create a new Adaptive Server Anywhere database.

3 Start the new database.

4 Connect to the new database from Interactive SQL:

5 Run the reload command file by executing the following statement in
Interactive SQL:

read path\reload.sql

Optionally, you can use the -an option for mlxtract to combine these steps
into one operation.

Tip
The database extraction utility is intended to assist in preparing remote
databases, but is not a black box solution in all circumstances. To provide
custom solutions, you can edit the reload.sql command file. In particular,
if you are extracting a very large number of clients, you may find it more
efficient to run the mlxtract utility only once, then customize the
reload.sql command file for each client.

Multi-step
extraction

Deploying remote databases

154

The format of Adaptive Server Anywhere database files is independent of
both operating system and file system. You can create the database under one
operating system, then copy the database and log file to another machine. For
example, you could create a database on a Windows machine, then copy it to
a UNIX machine and use it with an Adaptive Server Anywhere server
running there.

Initializing new remote databases with data

Newly extracted remote databases generally contain no data. It is customary
to fill them with a starting set of data the first time synchronization occurs.
During the first synchronization, the download scripts for each table select
the appropriate rows from the consolidated database and send them to the
client.

Alternatively, you can initialize an Adaptive Server Anywhere remote
database with data during the extraction process. This method may be
convenient if, for example, the client applications may be first synchronized
over a slow network connection.

v To initialize a remote database with data during extraction:

1 Fill the tables in the reference database with the correct data.

2 Supply the -id option each time you run the remote database extraction
utility, mlxtract.

$ For more information on available extraction options, see "MobiLink
client database extraction utility" on page 614.

Troubleshooting deployment

If you install a new Adaptive Server Anywhere remote database over an
older version, the synchronization progress information stored in the
consolidated database is incorrect.

You can correct this problem by setting the progress column of the ml_user
table to 0 (zero) for this user. This is an exceptional case when direct
modification of the MobiLink system tables is required. In other cases, you
should not directly access the MobiLink system tables.

Chapter 5 Adaptive Server Anywhere Clients

155

Partitioning data between remote databases
It is common for remote databases to fall into separate categories, each with
their own requirements. Consider a sales application. All the sales personnel
in one region may require access to a particular set of data, but not require
access to information about regions other than their own. Employees in other
departments may require data of an entirely different nature. Managers may
require data that should not be accessible to their subordinates.

Publications are typically used to specify fundamentally different sets of
data. For example, you can create one template for the sales staff and another
template for those employees who do technical support.

You can further fine-tune the data any given remote database will receive by
using a conditional clause within the synchronization user definition. This
feature is useful when remote databases require similar types of information.
For example, it can be used to provide sales representatives with only the
information relevant to their region.

Assume that you have three different categories of personnel at your
company: manager, sales agent, and consultant. All employees in your
company that you wish to deploy fall within one of the above categories. The
personnel in each category require a different synchronization schema from
the personnel in other categories. For example, the managers require a
different set of tables from the sales agents and consultants. The sales agents
will require a different set of tables from the managers and consultants. The
consultants require a different set of tables from the other two groups.

Using publications, you can easily generate and re-generate databases for
deployment. If you decide to modify the remote databases, for example add a
new table, you only need to modify the reference database, then re-extract
the remote databases.

Since each group requires a different schema, you should create three
different synchronization templates in the reference database, one template
for each group. Next, create a synchronization site in the reference database
for each remote database. When creating each site, use the template that best
suites the user’s requirements. Finally, create the remote databases using the
mlxtract command line utility.

$ For more information on available extraction options, see "MobiLink
client database extraction utility" on page 614.

Example

Temporarily stopping synchronization of deletes

156

Temporarily stopping synchronization of deletes
Ordinarily, Adaptive Server Anywhere automatically logs any changes to
tables or columns that are part of a synchronization definition. These changes
are uploaded to the consolidated database during the next synchronization.

There can be circumstances, however, when you wish to delete rows from
synchronized data and not have those changes uploaded. This feature can be
used to make unusual corrections, for example, but should be used with
caution as it effectively disables part of the automatic synchronization
functionality. This technique is a practical alternative to deleting the
necessary rows using a download_delete_cursor script

When a STOP SYNCHRONIZATION DELETE statement is executed, none
of the delete operations subsequently executed on that connection are
synchronized. The effect continues until a START SYNCHRONIZATION
DELETE statement is executed or until a COMMIT or ROLLBACK
statement terminates the transaction, whichever comes first. The effects do
not nest; that is, subsequent executions of stop synchronization delete after
the first will have no additional effect.

v To temporarily disable upload of deletes made through a
connection:

1 Issue the following statement to stop automatic logging of deletes.

STOP SYNCHRONIZATION DELETE

2 Delete rows from the synchronized data, as required, using the DELETE
statement. Commit these changes.

3 Restart logging of deletes using the following statement.

START SYNCHRONIZATION DELETE

The deleted rows will not be sent up to the MobiLink synchronization server
and hence will not be deleted from the consolidated database.

Chapter 5 Adaptive Server Anywhere Clients

157

Customizing the client synchronization process
The Adaptive Server Anywhere synchronization client dbmlsync provides a
set of event hooks that you can use to customize the synchronization process.
Each event hook is identified by a stored procedure name. By writing a
stored procedure with the supplied name, you can program a set of events
that are executed as part of the synchronization process.

You can use the event hooks to delay synchronization until a specific
condition is met, such as the total number of changes made reaches a set
number, a particular change is made, or some data-independent condition.

In addition, you can use the event hooks to synchronize subsets of data that
cannot be included in a synchronization definition. For example, you can
synchronize data in a temporary table by writing one event hook procedure
to copy data from the temporary table to a permanent table prior to the
synchronization and another to copy the data back afterwards.

The event-hook stored procedures are executed on the same connection as
the synchronization itself.

$ For more information about specific event-hook procedures, see "Client
event-hook procedures" on page 592.

Caution
The integrity of the synchronization process relies on a sequence of
built-in transactions. Thus, you must not perform an implicit or explicit
commit or rollback within your event-hook procedures.

Synchronization event hook sequence

The following pseudo-code shows the available events and the point at which
they each is reached during the synchronization process. For example,
sp_hook_dbmlsync_abort is the first event hook to be invoked.

Each event makes particular parameter values available, which you can use
when you implement the procedure. In some cases, you can modify the value
to return a new value; others are read-only. These parameters are not stored
procedure arguments. No arguments are passed to any of the event-hook
stored procedures. Instead, arguments are exchanged by reading and
modifying rows in the #hook_dict table.

For example, the sp_hook_dbmlsync_begin procedure has a single
parameter, which is the user name that the application supplied in the
synchronization call. You can retrieve this value from the #hook_dict table.

Customizing the client synchronization process

158

Although the sequence has similarities to the event sequence at the MobiLink
synchronization server, there is little overlap in the kind of logic you would
want to add to the consolidated and remote databases. The two interfaces are
therefore separate and distinct.

The procedure sp_hook_dbmlsync_upload_end is called regardless of
whether the upload succeeds or fails.

sp_hook_dbmlsync_abort

loop until return codes direct otherwise (
sp_hook_dbmlsync_abort
sp_hook_dbmlsync_delay

)
sp_hook_dbmlsync_abort

// start synchronization
sp_hook_dbmlsync_begin

// upload events
sp_hook_dbmlsync_logscan_begin
sp_hook_dbmlsync_logscan_end
sp_hook_dbmlsync_upload_begin
sp_hook_dbmlsync_upload_end
// no check for the success of the upload

// download events
sp_hook_dbmlsync_download_begin
for each table

sp_hook_dbmlsync_table_begin
sp_hook_dbmlsync_table_end

next table
sp_hook_dbmlsync_download_end

// end synchronization
sp_hook_dbmlsync_end

In addition, the following event-hook procedures are available for error
handling.

sp_hook_dbmlsync_download_com_error

sp_hook_dbmlsync_download_SQL_error

sp_hook_dbmlsync_download_fatal_SQL_error

Once implemented, each procedure is automatically executed whenever an
error of the named type occurs.

The following code determines whether or not the upload succeeded:

Error handling

Example

Chapter 5 Adaptive Server Anywhere Clients

159

CREATE PROCEDURE sp_hook_dbmlsync_upload_end()
BEGIN

IF EXISTS (
SELECT 1
FROM #hook_dict
WHERE name = ’upload_status’
 AND value = ’committed’)

THEN
UPDATE sync_params
SET sync_required = ’N’;

END IF;
END;

The sp_hook_dbmlsync_upload_end event-hook provides two read-only
parameter values available, namely synchronization definition name and
upload status. The above code tests whether the latter parameter has the
value completed, as it should following a successful upload.

$ For a list of the parameter values supplied at each event, see "Client
event-hook procedures" on page 592.

Using event-hook procedures

This section describes some considerations for designing and using
event-hook procedures.

Event-hook procedure owner

The event-hook connection calls the stored procedures without qualifying
them by owner. The stored procedures must therefore be owned by one of
the following:

♦ The user name employed on the dbmlsync connection (typically a user
with REMOTE DBA authority).

♦ A group ID of which the dbmlsync user is a member.

Connections for event-hook procedures

Each event-hook procedure is executed on the same connection as the
synchronization itself. The following are exceptions:

♦ sp_hook_dbmlsync_download_com_error

♦ sp_hook_dbmlsync_download_fatal_sql_error

Customizing the client synchronization process

160

These procedures carry out operations before a synchronization fails. On
failure, synchronization actions are rolled back. By operating on a separate
connection, you can use these procedures to log information about the
failure, without the logging actions being rolled back along with the
synchronization actions.

Event arguments

Each event makes particular parameter values available, which you can use
when you implement the procedure. In some cases, you can modify the value
to return a new value; others are read-only.

These parameters are exchanged by reading and modifying rows in the
#hook_dict table, which is defined as follows.

DECLARE GLOBAL TEMPORARY TABLE #hook_dict (
name VARCHAR(128) NOT NULL UNIQUE,
value VARCHAR(255) NOT NULL

)

Each row in the table contains the value for one parameter. For example, one
row could contain the name synchronization definition name and the value of
the synchronization definition name parameter.

Before calling any of the stored procedures, dbmlsync checks the #hook_dict
table, and adds or updates the parameters for that event. Procedures can read
the values by selecting from this table.

Some parameters are of type out. In these cases, the procedure can modify
the values in the table. In these cases dbmlsync retrieves any new values
from the #hook_dict table after the procedure has terminated.

$ For a list of the parameter values supplied at each event, see "Client
event-hook procedures" on page 592.

The following examples illustrate how to retrieve and set values in the
#hook_dict table

♦ The following sample sp_hook_dbmlsync_delay procedure, illustrates
the use of the #hook_dict table to pass arguments. The procedure allows
synchronization only outside a scheduled down time of the MobiLink
system.

CREATE PROCEDURE sp_hook_dbmlsync_delay()
BEGIN

DECLARE down_time_start TIME;
DECLARE is_down_time varchar(128);

SET down_time_start = ’19:00’;

Examples

Chapter 5 Adaptive Server Anywhere Clients

161

IF ABS(DATEDIFF(minute,
down_time_start, CURRENT TIME) < 60)

THEN
set is_down_time=’60’;

ELSE
SET is_down_time = ’0’;

END IF;

UPDATE #hook_dict
SET value = is_down_time
WHERE name = ’delay duration’

END

♦ The following procedure is executed in the remote database at the
beginning of synchronization. It retrieves the current synchronization
definition name, one of the parameters available for the
sp_hook_dbmlsync_begin event, and displays it on the console.

CREATE PROCEDURE sp_hook_dbmlsync_begin()
BEGIN

DECLARE syncdef VARCHAR(128);

SELECT ’>>>syncdef = ’ || value INTO syncdef
FROM #hook_dict
WHERE name =’synchronization definition name’;

MESSAGE syncdef TYPE INFO TO CONSOLE;
END

♦ The following procedure not only reads parameter values, but also
modifies them, returning the new values to the MobiLink client
synchronization utility.

CREATE PROCEDURE sp_hook_dbmlsync_delay()
BEGIN

DECLARE is_down_time VARCHAR(128);

SELECT value INTO is_down_time
FROM #hook_dict
WHERE name = ’delay duration’;

MESSAGE ’is_down_time = ’ || is_down_time
TYPE INFO TO CONSOLE;

IF (is_down_time = ’4’) THEN
SET is_down_time=’0’;
MESSAGE ’setting to zero’ TYPE INFO TO CONSOLE;

ELSE
SET is_down_time=’4’;
MESSAGE ’setting to 4’ TYPE INFO TO CONSOLE;

END IF;

UPDATE #hook_dict
SET value = is_down_time
WHERE name = ’delay duration’;

Customizing the client synchronization process

162

UPDATE #hook_dict
SET value = ’14’
WHERE name = ’maximum accumulated delay’;

END

Ignoring errors in event-hook procedures

By default, synchronization stops when an error is encountered in an
event-hook procedure. You can instruct the dbmlsync utility to ignore errors
that occur in event-hook procedures by supplying the -eh option.

Scheduling synchronization

Instead of running dbmlsync in a batch fashion, where it synchronizes and
then shuts down, you can set up an Adaptive Server Anywhere client so that
dbmlsync runs continuously, synchronizing at predetermined times.

You specify the synchronization schedule as an extended option. It can be
specified either on the dbmlsync command line or it can be stored in the
database for the synchronization user, subscription, or publication.

v To add scheduling to the synchronization subscription:

♦ Set the schedule option in the synchronization subscription. For
example,

CREATE SYNCHRONIZATION SUBSCRIPTION TO mypub
FOR mluser
ADDRESS ’host=localhost’
OPTION schedule=’weekday@11:30am-12:30pm’,
dir=’c:\db\logs’

$ For more information about scheduling syntax, see "Schedule
option syntax" on page 347 of the book ASA SQL Reference Manual.

$ You can override scheduling instructions and synchronize
immediately using the dbmlsync -is option. The -is option instructs
dbmlsync to ignore scheduling information specified in synchronization
subscriptions. For more information, see "-is option" on page 424.

v To add scheduling from the dbmlsync command line:

♦ Set the schedule extended option. Extended options are set with -e or
-eu. For example,

dbmlsync -e sch=weekday@11:30am-12:30pm ...

Chapter 5 Adaptive Server Anywhere Clients

163

If scheduled synchronization is specified in either place, dbmlsync does not
shut down after synchronizing, but runs continuously. If scheduled
synchronization is specified in both the synchronization definition and the
command line, the command line receives priority.

$ For information about extended options, see "-e extended options" on
page 414. For more information about how to set scheduling, see "Schedule
option syntax" on page 347 of the book ASA SQL Reference Manual.

Customizing the client synchronization process

164

165

C H A P T E R 6

Writing Synchronization Scripts in Java

You control the actions of the MobiLink synchronization server by writing
synchronization scripts. You can implement these scripts in SQL, .NET or
Java. This chapter describes how to implement synchronization scripts in
Java.

$ For a description and comparison of SQL, Java, and .NET, see
"Options for writing synchronization logic" on page 38.

$ For information about writing scripts, see "Writing Synchronization
Scripts" on page 47.

$ For information about writing scripts in .NET, see "Writing
Synchronization Scripts in .NET" on page 187.

Topic Page

Introduction 166

Setting up Java synchronization logic 167

Running Java synchronization logic 169

Writing Java synchronization logic 170

Sample: Java synchronization logic 177

MobiLink Java API Reference 183

About this chapter

Contents

Introduction

166

Introduction
MobiLink synchronization scripts can be written in Java. This program
synchronization logic can function just as SQL logic functions: the
MobiLink synchronization server can make calls to Java methods on the
occurrence of MobiLink events just as it accesses SQL scripts on the
occurrence of MobiLink events. A SQL string may be returned to MobiLink.

This section tells you how to set up, develop, and run Java synchronization
logic. It includes a sample application and the MobiLink Java API.

Chapter 6 Writing Synchronization Scripts in Java

167

Setting up Java synchronization logic
When you install SQL Anywhere Studio, the installer automatically sets the
location of the MobiLink Java API classes. When you start the MobiLink
synchronization server, it automatically includes these classes in your
classpath. MobiLink uses the ASANYSH* environment variables to
determine the shared component path.

$ For more information, see "ASANYSH8 environment variable" on
page 209 of the book ASA Database Administration Guide.

v To implement synchronization scripts in Java:

1 Create your own class or classes. Write a method for each required
synchronization script. These methods must be public.

$ For more information about methods, see "Methods" on page 172.

Each class with non-static methods should have a constructor. The
MobiLink synchronization server automatically instantiates each class
the first time a method in that class is called. The class constructor may
have one of two signatures, as described below.

$ For more information about constructors, see "Constructors" on
page 171.

2 In your consolidated database, specify the name of the package, class,
and method to call for each script. One class is permitted per script
version.

This information is stored in the MobiLink system tables. The
script_language column of the ml_script table must contain the word
java. The string in the script column, which contains a statement for
scripts implemented in SQL, must instead contain the qualified name of
a public Java method.

The easiest way to add this information to the MobiLink system tables is
to use the ml_add_java_connection_script stored procedure or the
ml_add_java_table_script stored procedure. You can also add this
information using Sybase Central.

$ For more information, see "ml_add_java_connection_script" on
page 589, and "ml_add_java_table_script" on page 590.

For example, the following statement, when run in an Adaptive Server
Anywhere database, specifies that myPackage.myClass.myMethod
should be run whenever the authenticate_user connection-level event
occurs.

Setting up Java synchronization logic

168

call ml_add_java_connection_script(’version1’,
’authenicate_user’, ’myPackage.myClass.myMethod’)

The example code below, for use with the Sample application, calls Java
procedures to add connection and table script data to the MobiLink
system tables.

call ml_add_java_connection_script(’ver1’,
’authenticate_user’,
’CustEmpScripts.authenticateUser’)

call ml_add_java_connection_script(’ver1’,
’end_connection’,
’CustEmpScripts.endConnection’)

call ml_add_java_table_script(’ver1’, ’emp’,
’upload_cursor’,
’CustEmpScripts.empUploadCursor’)

call ml_add_java_table_script(’ver1’, ’emp’,
’download_cursor’,
’CustEmpScripts.empDownloadCursor’)

call ml_add_java_table_script(’ver1’, ’cust’,
’upload_cursor’,
’CustEmpScripts.custUploadCursor’)

call ml_add_java_table_script(’ver1’, ’cust’,
’download_cursor’,
’CustEmpScripts.custDownloadCursor’)

3 A vital part of setting up for using Java synchronization logic is to
establish a classpath to tell the virtual machine where to look for Java
classes. To set the classpath for user-defined classes, use a statement
such as the following:

SET
classpath=%classpath%;c:\local\Java\myclasses.jar

Chapter 6 Writing Synchronization Scripts in Java

169

Running Java synchronization logic
If your system classpath includes your Java synchronization logic classes,
you do not need to make changes to your MobiLink synchronization server
command line.

You can use the -sl java option to force the Java virtual machine to load at
server startup. Otherwise, the Java virtual machine is started when the first
Java method is executed.

dbmlsrv8 -c "dsn=MyDataSource" -sl java…

You also can set the classpath and pass flags to the Java virtual machine on
the MobiLink synchronization server command line. The MobiLink
synchronization server automatically appends the location of the MobiLink
Java API classes to your classpath.

dbmlsrv8 -c "dsn=MyDataSource" -sl java (-cp c:\local\Java\myclass.jar)

$ For more information about the available Java options, see "-sl java
option" on page 391.

Writing Java synchronization logic

170

Writing Java synchronization logic
Writing Java synchronization logic is no different in complexity from writing
any other Java code. What is required from you is knowledge of MobiLink
events, some knowledge of Java, and knowledge of the MobiLink Java API.
The following sections help you write useful synchronization logic.

In this release, the row data for the upload and download streams are not
passed to the Java synchronization logic. Java synchronization logic can be
used to maintain state information, and implement logic around the upload
and download events. For example, a begin_synchronization script written in
Java could store the MobiLink user ID in a variable. Scripts called later in
the synchronization process can access this variable.

Using Java reduces dependence on the consolidated database. Behavior is
affected less by upgrading the consolidated database to a new version or
switching to a different database-management system.

$ For a complete description of the API, see "MobiLink Java API
Reference" on page 183.

Class instances

The MobiLink synchronization server instantiates your classes at the
connection level. When an event is reached for which you have written a
non-static Java method, the MobiLink synchronization server automatically
constructs the class, if it has not already done so on the present connection.
To do so, it uses the class constructor.

For each database connection, once a class has been instantiated, the class
persists until that connection is closed. Thus, the same instance may well be
used for multiple consecutive synchronization sessions. Information present
in public or private variables will thus persist across synchronizations that
occur on the same connection unless explicitly cleared.

You can also use static classes or variables. In this case, the values are
available across all connections.

The MobiLink synchronization server automatically deletes your class
instances only when the connection to the consolidated database is closed.

All methods in one script version called on the same connection must belong
to the same class.

Chapter 6 Writing Synchronization Scripts in Java

171

Transactions

The normal rules regarding transactions apply to Java methods. The start and
duration of database transactions is critical to the synchronization process.
Transactions must be started and ended only by the MobiLink
synchronization server. Explicitly committing or rolling back transactions on
the synchronization connection within a Java method violates the integrity of
the synchronization process and can cause errors.

These rules apply only to the database connections created by the MobiLink
synchronization server and, in particular, to SQL statements returned by
methods. If your classes create other database connections, you are free to
manage them as you please.

SQL-Java data types

The following table shows SQL data types and the corresponding Java data
types.

SQL data type Corresponding Java data type

VARCHAR java.lang.String

CHAR java.lang.String

INTEGER Int or Integer

BINARY byte[]

TIMESTAMP java.sql.Timestamp

INOUT INTEGER ianywhere.ml.script.InOutInteger

INOUT VARCHAR ianywhere.ml.script.InOutString

INOUT CHAR ianywhere.ml.script.InOutString

INOUT BYTEARRAY ianywhere.ml.script.InOutByteArray

The MobiLink synchronization server automatically adds this package to
your classpath if it is not already present.

Constructors

The constructor of your class may have one of two possible signatures.

public MyScriptClass (
ianywhere.ml.script.DBConnectionContext sc)

or

Writing Java synchronization logic

172

public MyScriptClass (void)

The synchronization context passed to you is for the connection through
which the MobiLink synchronization server is synchronizing the current
user.

The getConnection method of the DBConnectionContext returns the
same database connection that MobiLink is using to synchronize the present
user. You can execute statements on this connection, but you must not
commit or roll back the transaction. The MobiLink synchronization server
manages the transactions.

The MobiLink synchronization server prefers to use constructors with the
first signature. It only uses the void constructor if a constructor with the first
signature is not present.

Methods

In general, you implement one method for each synchronization event. These
methods must be public. If they are private, the MobiLink synchronization
server cannot use them and will fail to recognize that they exist.

The names of the methods are not important, as long as the names match the
names specified in the ml_script table in the consolidated database. In the
examples included in the documentation, however, the method names are the
same as those of the MobiLink events as this naming convention makes the
Java code easier to read.

The signature of your method should match the signature of the script for
that event, except that you can truncate the parameter list if you do not need
the values of parameters at the end of the list. Indeed, you should accept only
the parameters you need, because overhead is associated with passing the
parameters.

You cannot, however, overload the methods. In other words, you must
provide only one method per class with the name specified in the ml_script
table.

Methods called for a MobiLink upload or download must return a valid
SQL-language statement. The return type of these methods must be
java.lang.String. No other return types are allowed.

The return type of all other scripts must either be java.lang.String or void. No
other types are allowed. If the return type is a string and not null, the
MobiLink synchronization server assumes that the string contains a valid
SQL statement and executes this statement in the consolidated database as it
would an ordinary SQL-language synchronization script. If a method
ordinarily returns a string but does not wish to execute a SQL statement
against the database upon its return, it can return null.

Return values

Chapter 6 Writing Synchronization Scripts in Java

173

Debugging Java classes

MobiLink provides various information and facilities that you may find
helpful when debugging your Java code. This section describes where you
can find this information and exploit these capabilities.

The MobiLink synchronization server writes various related information to
its output log file. The synchronization server log file contains the following
information:

♦ The Java Runtime Environment. You can use the -jrepath option to
request a particular JRE when you start the MobiLink synchronization
server. The default is the path installed with Adaptive Server Anywhere
8.

♦ The path of the standard Java classes loaded. If you did not specify these
explicitly, the MobiLink synchronization server automatically adds them
to your classpath before invoking the Java virtual machine.

♦ The fully specified names of the specific methods invoked. You can use
this information to verify that the MobiLink synchronization server is
invoking the correct methods.

♦ Any output written in a Java method to java.lang.System.out or
java.lang.System.err is redirected to the MobiLink synchronization
server log file.

You can debug your Java classes using a standard Java debugger. Specify the
necessary parameters using the -sl java option on the dbmlsrv8 command
line.

$ For more information, see "-sl java option" on page 391.

Specifying a debugger causes the Java virtual machine to pause and wait for
a connection from a Java debugger.

Alternatively, you may choose to add statements to your Java methods that
print information to the MobiLink output log, using Java.Lang.System.Err or
Java.Lang.System.Out. Doing so can help you track the progress and
behavior of your classes.

Performance tip
Printing information in this manner is a useful monitoring tool, but is not
recommended in a production scenario.

The same technique can be exploited to log arbitrary synchronization
information or collect statistical information on how your scripts are used.

Information in the
MobiLink
synchronization
server’s log file

Using a Java
debugger

Printing information
from Java

Writing Java synchronization logic

174

You may wish to write your own driver to exercise your Java classes. This
approach can be helpful because it isolates the actions of your Java methods
from the rest of the MobiLink system.

User-defined start classes

You can define start classes that are loaded automatically when the server is
started. The purpose of this feature is to allow you to write Java code that
executes at the time the MobiLink server starts the JVM—before the first
synchronization. This means you can create connections or cache data before
a user synchronization request.

You do this with the DMLStartClass option of the dbmlsrv8 -sl java option.
For example, the following is part of a dbmlsrv8 command line. It causes
mycl1 and mycl2 to be loaded as start classes.

-sl java(-DMLStartClass=com.test.mycl1,com.test.mycl2)

Classes are loaded in the order in which they are listed. If the same class is
listed more than once, more than one instance is created.

All start classes must be public and must have a public constructor that either
accepts no arguments or accepts one argument of type
ianywhere.ml.script.ServerContext.

The names of loaded start classes are output to the MobiLink log with the
message "Loaded JAVA start class: classname".

$ For more information about Java virtual machine options, see "-sl java
option" on page 391.

$ To see the start classes that are constructed at server start time, see
"getStartClassInstances" on page 184.

Following is a template start class. It starts a daemon thread that processes
events and creates a database connection. (Not all start classes will need to
create a thread but if a thread is spawned it should be a daemon thread.)

import ianywhere.ml.script.*;
import java.sql.*;

public class StartTemplate extends
 Thread implements ShutdownListener {
//===
 ServerContext _sc;
 Connection _conn;
 boolean _exit_loop;

 public StartTemplate(ServerContext sc)

Writing your own
test driver

Example

Chapter 6 Writing Synchronization Scripts in Java

175

 //===
 throws SQLException
 {
 // perform setup first so that an exception will
 // cause Mobilink startup to fail
 _sc = sc;
 // create a connection for use later
 _conn = _sc.makeConnection();
 _exit_loop = false;
 setDaemon(true);
 start();
 }
 public void run()
 //===============
 {
 _sc.addShutdownListener(this);
 // we can’t throw any exceptions through run()
 try {
 handlerLoop();
 _conn.close();
 _conn = null;
 } catch(Exception e) {
 // print some error output to the Mobilink log
 e.printStackTrace();
 // we will die so we don’t need to be notified
 // of shutdown
 _sc.removeShutdownListener(this);
 // ask server to shutdown so that this fatal
 // error will be fixed
 _sc.shutdown();
 }
 // shortly after return this thread will no longer
 // exist
 return;
 }
 public void shutdownPerformed(ServerContext sc)
 //===
 // stop our event handler loop
 {
 try {
 // wait max 10 seconds for thread to die
 join(10*1000);
 } catch(Exception e) {
 // print some error output to the Mobilink log
 e.printStackTrace();
 }
 }
 private void handlerLoop()
 //================throws InterruptedException
 {
 while(!_exit_loop) {
 // Handle events in this loop. Sleep not

Writing Java synchronization logic

176

 // needed, we should block on event queue.
 sleep(1*1000);
 }
 }
}

Chapter 6 Writing Synchronization Scripts in Java

177

Sample: Java synchronization logic
Java synchronization logic works with MobiLink and common Java classes
to provide you with flexibility in deploying applications using MobiLink
synchronization server. The following section introduces you to this
extended range of functionality using a simple example.

Introduction

This section describes a working example of Java synchronization logic.
Before you try to use this class or write your own class, use the following
checklist to ensure you have all the pieces in place before compiling the
class.

♦ Plan your desired functionality using, for example, pseudocode.

♦ Create a map of database tables and columns.

♦ Set up the consolidated database by ensuring you have specified in the
MobiLink system tables the language type and location of the Java
synchronization methods.

$ For more information see "Setting up Java synchronization logic"
on page 167

♦ Create a list of associated Java classes that are called during the running
of your Java class.

♦ Have a location for your Java classes that is in the classpath for
MobiLink synchronization server.

The Java synchronization logic for this example points to the associated Java
files and classes that contain functionality needed for the example to work. It
will show you how to create a class CustEmpScripts. It shows you how to
set up a synchronization context for the connection. Finally, the example
provides Java methods to

♦ Authenticate a MobiLink user

♦ Perform download and upload operations using cursors for each
database table.

The tables to be synchronized are emp and cust. The emp table has three
columns called emp_id, emp_name and manager. The cust table has three
columns called cust_id, cust_name and emp_id. All columns in each table
are synchronized. The mapping from consolidated to remote database is such
that the table names and column names are identical in both databases. One
additional table, an audit table, is added to the consolidated database.

Plan

Schema

Sample: Java synchronization logic

178

The files used in the example are included in the
Samples\MobiLink\JavaAuthentication directory.

Create your Java synchronization script

The following sets up the Java synchronization logic. The import statements
tell the Java virtual machine the location of needed files. The public class
statement declares the class.

// use a package when you create your own script
import ianywhere.ml.script.InOutInteger;
import ianywhere.ml.script.DBConnectionContext;
import ianywhere.ml.script.ServerContext;
import java.sql.*;

public class CustEmpScripts {
/* Context for this synchronization connection.
*/
 DBConnectionContext _conn_context;
/* Same connection mobilink uses for sync
we can’t commit or close this.
*/
 Connection _sync_connection;
 Connection _audit_connection;
/* Get a user id given the user name. On audit
connection.
*/
 PreparedStatement _get_user_id_pstmt;
/* Add record of user logins added. On audit connection.
*/
 PreparedStatement _insert_login_pstmt;
/* Prepared statement to add a record to the audit
table. On audit connection.
*/
 PreparedStatement _insert_audit_pstmt;

The CustEmpScripts constructor sets up all the prepared statements for the
authenticateUser method. It sets up member data.

public CustEmpScripts(DBConnectionContext cc)
 throws SQLException
{
try
 {
 _conn_context = cc;
 _sync_connection = _conn_context.getConnection();

Java class files

Setup

Chapter 6 Writing Synchronization Scripts in Java

179

 ServerContext serv_context =
 _conn_context.getServerContext();
 _audit_connection = serv_context.makeConnection();

 // get the prep statements ready
 _get_user_id_pstmt =
 _audit_connection.prepareStatement(
 "select user_id from ml_user where name = ?"
);
 _insert_login_pstmt =
 _audit_connection.prepareStatement(
 "insert into login_added(ml_user, add_time)
 " + " values(?, { fn CONVERT({ fn NOW() },
 SQL_VARCHAR) })"
);
 _insert_audit_pstmt =
 _audit_connection.prepareStatement(
 "insert into login_audit(ml_user_id,
 audit_time, audit_action) " +
 " values(?, { fn CONVERT({ fn NOW() },
 SQL_VARCHAR) }, ?) "
);
 } catch (SQLException e) {
 freeJDBCResources();
 throw e;
 } catch (Error e) {
 freeJDBCResources();
 throw e;
 }
}

The finalize method cleans up JDBC resources if end_connection is not
called.

protected void finalize()
 throws SQLException, Throwable
{
 super.finalize();
 freeJDBCResources();
}

The freeJDBCResources method frees allocated memory and we close the
audit connection. It is a housekeeping procedure.

Sample: Java synchronization logic

180

private void freeJDBCResources()
 throws SQLException
 {

if(_get_user_id_pstmt != null) {
 _get_user_id_pstmt.close();
}
if(_insert_login_pstmt != null) {
 _insert_login_pstmt.close();
}
if(_insert_audit_pstmt != null) {
 _insert_audit_pstmt.close();
}
if(_audit_connection != null) {
 _audit_connection.close();
}
_conn_context = null;
_sync_connection = null;
_audit_connection = null;
_get_user_id_pstmt = null;
_insert_login_pstmt = null;
_insert_audit_pstmt = null;

 }

The endConnection method cleans up resources once the resources are not
needed. This is also a housekeeping procedure.

public void endConnection()
 throws SQLException
{
 freeJDBCResources();
 }

The authenticateUser method below approves all user logins and logs user
information to database tables. If the user is not in the ml_user table they are
logged to login_added. If the user id is found in ml_user then they are logged
to login_audit. In a real system we would not ignore the user_password but
in order to keep this sample simple we approve all users. The procedure
throws SQLException if any of the database operations we perform fail with
an exception

public void authenticateUser(InOutInteger auth_status,
 String user_name)
 throws SQLException
{
 boolean new_user;
 int user_id;

// get ml_user id

Chapter 6 Writing Synchronization Scripts in Java

181

 _get_user_id_pstmt.setString(1, user_name);
 ResultSet user_id_rs =
 _get_user_id_pstmt.executeQuery();
 new_user = !user_id_rs.next();
 if(!new_user) {
 user_id = user_id_rs.getInt(1);
 } else {
 user_id = 0;
 }
 user_id_rs.close();
 user_id_rs = null;
 // in this tutorial always allow the login
 auth_status.setValue(1000);
 if(new_user) {
 _insert_login_pstmt.setString(1, user_name);
 _insert_login_pstmt.executeUpdate();
 java.lang.System.out.println("user: " +
 user_name + " added. ");
 } else {
 _insert_audit_pstmt.setInt(1, user_id);
 _insert_audit_pstmt.setString(2, "LOGIN
 ALLOWED");
 _insert_audit_pstmt.executeUpdate();
 }
 _audit_connection.commit();
 return;
}

The following methods use SQL code to act as cursors on the database
tables. Since these are cursor scripts, they must return a SQL string.

public static String empUploadInsertStmt()
{
 return("INSERT INTO emp(
 emp_id, emp_name) VALUES(?, ?) ");
}

public static String empUploadDeleteStmt()
{
 return("DELETE FROM emp WHERE emp_id = ?");
}

public static String empUploadUpdateStmt()
{
 return("UPDATE emp SET emp_name = ?
 WHERE emp_id = ? ");
}

public static String empDownloadCursor()
{
 return("SELECT emp_id, emp_name FROM emp");
}

Sample: Java synchronization logic

182

public static String custUploadInsertStmt()
{
 return("INSERT INTO cust(
 cust_id, emp_id, cust_name)
 VALUES (?, ?, ?) ");
}

public static String custUploadDeleteStmt()
{
 return("DELETE FROM cust WHERE cust_id = ? ");
}

public static String custUploadUpdateStmt()
{
 return("UPDATE cust
 SET emp_id = ?, cust_name = ?
 WHERE cust_id = ? ");
}

public static String custDownloadCursor()
{
 return("SELECT cust_id, emp_id, cust_name
 FROM cust");
 }
}

Chapter 6 Writing Synchronization Scripts in Java

183

MobiLink Java API Reference
This section explains the MobiLink Java interfaces and classes, and their
associated methods and constructors.

InOutInteger interface

Passed into methods to enable the functionality of an in/out parameter passed
to a SQL script.

public int getValue()

Returns the value of this integer parameter.

public void setValue(int new_value)

Sets the value of this integer parameter. There is one parameter, new_value,
which is the value this integer should take.

InOutString interface

Passed into methods to enable the functionality of an in/out parameter passed
to a SQL script.

public java.lang.String getValue()

Returns the value of this string parameter.

public void setValue(int new_value)

Sets the value of this integer parameter. There is one parameter, new_value,
which is the value this string should take.

InOutByteArray interface

Passed into methods to enable the functionality of an in/out parameter passed
to a SQL script.

public byte[] getValue()

Returns the value of this byte array parameter.

public void setValue(byte[] new_value)

Sets the value of this byte array parameter. There is one parameter,
new_value, which is the value this byte array should take.

getValue method

setValue method

getValue method

setValue method

getValue method

setValue method

MobiLink Java API Reference

184

ServerContext interface

An instantiation of all the context that is present for the duration of the
MobiLink server. This context can be held as static data and used in a
background thread. It is valid for the duration of the Java virtual machine
invoked by MobiLink.

public void addShutdownListener (ShutdownListener sl)

Adds the specified ShutdownListener that is to receive notification before the
server context is destroyed. On shutdown, the method
ShutdownListener.shutdownPerformed (ianywhere.ml.script.ServerContext)
is called. There is one parameter, sl, which specifies that the
ShutdownListener is to be notified on shutdown.

public void removeShutdownListener (ShutdownListener sl)

Removes the specified ShutdownListener from the list of listeners that are to
receive notification before the server context is destroyed. There is one
parameter, sl, which specifies the listener that will no longer be notified on
shutdown.

public void shutdown()

Forces the server to shut down.

public java.lang.Object[] getStartClassInstances()

Gets an array of the start classes that were constructed at server start time.
The array length is zero if there are no start classes.

$ For more information about user-defined start classes, see "User-
defined start classes" on page 174.

Following is an example of getStartClassInstances():

Object objs[] = sc.getStartClassInstances();
int i;
for(i=0; i<objs.length; i+=1) {
 if(objs[i] instanceof MyClass) {
 //use class
 }
}

public java.sql.Connection makeConnection()
throws java.sql.SQLException

Opens and returns a new server connection. To access the server context, use
DBConnectionContext.getServerContext on the synchronization context for
the current connection. If an error occurs opening a new connection, the
method throws java.sql.SQLException.

addShutdownListe
ner

removeShutdownLi
stener

shutdown

getStartClassInsta
nces

makeConnection
method

Chapter 6 Writing Synchronization Scripts in Java

185

ServerException class

Thrown to indicate that there is an error condition that makes any further
synchronization on the server impossible. Throwing this exception causes the
MobiLink server to shut down.

public ServerException()

Constructs a ServerException with no detail message.

public ServerException(java.lang.String s)

Constructs a ServerException with a specified detail message. There is one
parameter, s, which specifies the detailed message.

ShutdownListener interface

The listener interface for catching server shutdowns. Use this interface to
ensure that all resources, threads, connections, and so on are cleaned up
before the server exits.

public void shutdownPerformed(ServerContext sc)

Invoked before the ServerContext is destroyed due to server shutdown. There
is one parameter, sc, which is the context for the server that is being shut
down.

DBConnectionContext interface

An encapsulation of context that lives for the duration of one database
connection. A DBConnectionContext is not valid outside of the thread that
calls into the user written Java code. If context is required for a background
thread or beyond the lifetime of a connection use a ServerContext.

public java.sql.Connection getConnection()
throws java.sql.SQLException

Returns the existing connection java.sql.Connection as a JDBC connection.
The connection is the same connection that MobiLink uses to execute SQL
scripts.

This connection must not be committed, closed or altered in any way that
would affect the MobiLink server use of this connection. The connection
returned is only valid for the lifetime of the underlying MobiLink
connection. Do not use the connection after the end_connection event has
been called for that connection.

ServerException
constructors

shutdownPerforme
d method

getConnection
method

MobiLink Java API Reference

186

If an error occurs binding the existing connection as a JDBC connection then
it throws java.sql.SQLException

If a server connection with full access is required, use
ServerContext.makeConnection().

public ServerContext getServerContext()

Returns the ServerContext for this MobiLink server.

SynchronizationException class

Thrown to indicate that there is an error condition that makes the completion
of the current synchronization impossible. Throwing this exception will force
the MobiLink server to rollback.

public SynchronizationException()

Constructs a SynchronizationException with no detail message.

public SynchronizationException(java.lang.String s)

Constructs a SynchronizationException with the specified detail message.
There is one parameter, s, which specifies a detail message.

getServerContext
method

SynchronizationEx
ception
constructors

187

C H A P T E R 7

Writing Synchronization Scripts in .NET

You control the actions of the MobiLink synchronization server by writing
synchronization scripts. You can implement these scripts in SQL, Java, or
.NET. This chapter describes how to implement synchronization scripts in
.NET.

$ For information about writing scripts, see "Writing Synchronization
Scripts" on page 47.

$ For a description and comparison of SQL, Java, and .NET, see
"Options for writing synchronization logic" on page 38.

$ For information about writing scripts in Java, see "Writing
Synchronization Scripts in Java" on page 165.

Topic Page

Introduction 188

Setting up .NET synchronization logic 189

Running .NET synchronization logic 191

Writing .NET synchronization logic 194

.NET synchronization example 200

MobiLink .NET API Reference 203

About this chapter

Contents

Introduction

188

Introduction
Microsoft .NET is a platform for building, deploying, and running Web
services and applications.

MobiLink supports Visual Studio .NET programming languages for writing
synchronization scripts. To write MobiLink scripts in .NET, you can use any
language that lets you create valid .NET assemblies. In particular, the
following languages are tested and documented:

♦ C#

♦ Visual Basic .NET

♦ C++

.NET synchronization logic can function just as Java logic functions: the
MobiLink synchronization server can make calls to .NET methods on the
occurrence of MobiLink events just as it accesses Java scripts on the
occurrence of MobiLink events. A SQL string may be returned to MobiLink.

This section tells you how to set up, develop, and run .NET synchronization
logic for C#, Visual Basic .NET, and C++. It includes a sample application
and the MobiLink .NET API Reference.

Chapter 7 Writing Synchronization Scripts in .NET

189

Setting up .NET synchronization logic
The most important part of implementing synchronization scripts in .NET is
telling MobiLink where to find the packages, classes, and methods that are
contained in your assemblies. This is described, below.

v To implement synchronization scripts in .NET:

1 Create your own class or classes. Write a method for each required
synchronization event. These methods must be public.

$ For more information about methods, see "Methods" on page 196.

Each class with non-static methods should have a constructor. The
MobiLink synchronization server automatically instantiates each class
the first time a method in that class is called for a connection. The class
constructor may have one of two signatures, as described below.

$ For more information about constructors, see "Constructors" on
page 195.

2 In the MobiLink system tables in your consolidated database, specify the
name of the package, class, and method to call for each script.
Optionally, specify the domain. One class is permitted per script version.

The script_language column of the ml_script system table must contain
the word dnet. The string in the script column, which contains a
statement for scripts implemented in SQL, must instead contain the
qualified name of a public .NET method.

The easiest way to add this information to the MobiLink system tables is
to use the ml_add_dnet_connection_script stored procedure or the
ml_add_dnet_table_script stored procedure. You can also add this
information using Sybase Central.

$ For more information, see "ml_add_dnet_connection_script" on
page 588 and "ml_add_dnet_table_script" on page 589.

For example, the following statement, when run in an Adaptive Server
Anywhere database, specifies that myPackage.myClass.myMethod
should be run whenever the authenticate_user connection-level event
occurs.

call ml_add_dnet_connection_script(’version1’,
’authenicate_user’, ’myPackage.myClass.myMethod’)

3 Create one or more assemblies. You tell MobiLink where to locate these
assemblies using options on the dbmlsrv8 command line. There are two
options to choose from:

Setting up .NET synchronization logic

190

♦ Use -sl dnet (-MLAutoLoadPath) This sets the path to the
application base directory and loads all the assemblies within it.
You should use this option in most cases.

♦ Use -sl dnet (-MLDomConfigFile) This option requires a
configuration file that contains domain and assembly settings. You
should use this option when you have shared assemblies, when you
don’t want to load all the assemblies, or when for some other reason
you need to use a configuration file.

$ For more information about loading assemblies, see "Loading
assemblies" on page 191. For more information about the dbmlsrv8
option -sl dnet, see "-sl dnet option" on page 390.

Chapter 7 Writing Synchronization Scripts in .NET

191

Running .NET synchronization logic
This section describes how to run .NET synchronization logic.

Loading assemblies

A .NET assembly is a package of types, metadata, and executable code. In
.NET applications, all code must be in an assembly. Assembly files have the
extension .dll or .exe.

There are two types of assembly:

♦ Private assemblies A private assembly is a file in the file system.

♦ Shared assemblies A shared assembly is an assembly that is installed
in the global assembly cache.

Before MobiLink can load a class and call a method of that class, it must
locate the assembly that contains the class. MobiLink only needs to locate
the assembly that it calls directly. The assembly can then call any other
assemblies it needs.

For example, MobiLink calls MyAssembly, and MyAssembly calls
UtilityAssembly and NetworkingUtilsAssembly. In this situation, MobiLink
only needs to be configured to find MyAssembly.

MobiLink provides two ways to load assemblies:

♦ Use -sl dnet (-MLAutoLoadPath) This option only works with
private assemblies. It sets the path to the application base directory and
loads all the assemblies within it. This option is simpler to use and it is
expected that it will be sufficient in most cases.

When you use this option, you cannot specify a domain in the event
script.

When you specify a path and directory with -MLAutoLoadPath,
MobiLink does the following:

♦ sets this path as the application base path

♦ loads all classes in all files ending with .dll or .exe in the directory
that you specified

♦ creates one application domain and loads into that domain all user
classes that do not have a domain specified

Assemblies in the global assembly cache cannot be called directly with
this option. To call these shared assemblies, use -MLDomConfigFile.

Running .NET synchronization logic

192

♦ Use -sl dnet (-MLDomConfigFile) This option works with both
private and shared assemblies. It requires a configuration file that
contains domain and assembly settings. You should use this option when
you have shared assemblies, when you don’t want to load all the
assemblies in the application base path, or when for some other reason
you need to use a configuration file.

With this option, MobiLink reads the settings in the specified domain
configuration file. A domain configuration file contains configuration
settings for one or more .NET domains. If there is more than one domain
represented in the file, the first one that is specified is used as the default
domain. (The default domain is used when scripts do not have a domain
specified.)

Only assemblies that are specified in the domain configuration file can
be called directly from event scripts.

When loading assemblies, MobiLink tries to load the assembly first as
private, and then attempts to load the assembly from the global assembly
cache. Private assemblies must be located in the application base
directory. Shared assemblies are loaded from the global assembly cache.

A sample domain configuration file is installed with MobiLink. You can
write your own file from scratch, or edit the sample to suit your needs. The
sample file is located in the SQL Anywhere Studio path, in

MobiLink\setup\dnet\mlDomConfig.xml

Following is the content of the sample domain configuration file
mlDomConfig.xml:

<?xml version="1.0" encoding="utf-8"?>
<config xmlns="iAnywhere.MobiLink.mlDomConfig"
xsi:schemaLocation=’iAnywhere.MobiLink.mlDomConfig
mlDomConfig.xsd’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’ >

<domain>
<name>SampleDomain1</name>
<appBase>C:\scriptsDir</appBase>
<configFile></configFile>
<assembly name="Assembly1" />
<assembly name="Assembly2" />

</domain>
<domain>

<name>SampleDomain2</name>
<appBase>\Dom2assembly</appBase>

<configFile>\Dom2assembly\AssemblyRedirects.config</c
onfigFile>

<assembly name="Assembly3" />
<assembly name="Assembly4" />

Sample domain
configuration file

Chapter 7 Writing Synchronization Scripts in .NET

193

</domain>
</config>

Following is an explanation of the contents of mlDomConfig.xml:

♦ name is the domain name, used when specifying the domain in an
event script. An event script with the format
"DomainName:Package.Class.Method" would require a domain
called DomainName be in the domain configuration file.

You must specify at least one domain name.

♦ appBase is the directory that the domain should use as its application
base directory. All private assemblies are loaded by the .NET CLR
based on this directory. You must specify appBase.

♦ configFile is the .NET application configuration file that should be
used for the domain. This can be left blank. It is usually used to modify
the default assembly binding and loading behavior. Refer to your .NET
documentation for more information about application configuration
files.

♦ assembly is the name of an assembly that MobiLink should load and
search when resolving type references in event scripts. You must specify
at least one assembly. If an assembly is used in more than one domain, it
must be specified as an assembly in each domain. If the assembly is
private, it must be in the application base directory for the domain.

$ For more information about the dbmlsrv8 option -sl dnet, see "-sl dnet
option" on page 390.

Printing information from .NET

You may choose to add statements to your .NET methods that print
information to a file of your choice. Doing so can help you track the progress
and behavior of your classes.

Performance tip
Printing information in this manner is a useful monitoring tool, but is not
recommended in a production scenario.

The same technique can be exploited to log arbitrary synchronization
information or collect statistical information on how your scripts are used.

Writing .NET synchronization logic

194

Writing .NET synchronization logic
Writing .NET synchronization logic is no different in complexity from
writing any other .NET code. What is required from you is knowledge of
MobiLink events, some knowledge of .NET, and knowledge of the
MobiLink .NET API. The following sections help you write useful
synchronization logic.

In this release, the row data for the upload and download streams are not
passed to the .NET synchronization logic. .NET synchronization logic can be
used to maintain state information, and implement logic around the upload
and download events. For example, a begin_synchronization script written in
.NET could store the MobiLink user ID in a variable. Scripts called later in
the synchronization process can access this variable. Also, you can access the
rows after they are in the consolidated database.

Using .NET reduces dependence on the consolidated database. Behavior is
affected less by upgrading the consolidated database to a new version or
switching to a different database-management system.

$ For a complete description of the API, see "MobiLink .NET API
Reference" on page 203.

Class instances

The MobiLink synchronization server instantiates your classes at the
connection level. When an event is reached for which you have written a
non-static .NET method, the MobiLink synchronization server automatically
constructs the class, if it has not already done so on the present database
connection. To do so, it uses the class constructor.

For each database connection, once a class has been instantiated, the class
persists until that connection is closed. Thus, the same instance may well be
used for multiple consecutive synchronization sessions. Information present
in public or private variables will thus persist across synchronizations that
occur on the same connection unless explicitly cleared.

You can also use static classes or variables. In this case, the values are
available across all connections.

The MobiLink synchronization server automatically deletes your class
instances only when the connection to the consolidated database is closed.

All methods in one script version called on the same connection must belong
to the same class.

Chapter 7 Writing Synchronization Scripts in .NET

195

Transactions

The normal rules regarding transactions apply to .NET methods. The start
and duration of database transactions is critical to the synchronization
process. Transactions must be started and ended only by the MobiLink
synchronization server. Explicitly committing or rolling back transactions on
the synchronization connection within a .NET method violates the integrity
of the synchronization process and can cause errors.

These rules apply only to the database connections created by the MobiLink
synchronization server and, in particular, to SQL statements returned by
methods. If your classes create other database connections, you are free to
manage them as you please.

SQL-.NET data types

The following table shows SQL data types and the corresponding .NET data
types for MobiLink script parameters.

SQL data type Corresponding .NET data type

VARCHAR string

CHAR string

INTEGER int

BINARY byte []

TIMESTAMP DateTime

INOUT INTEGER ref int

INOUT VARCHAR ref string

INOUT CHAR ref string

INOUT BYTEARRAY ref byte []

Constructors

The constructor of your class may have one of two possible signatures.

public ExampleClass(
iAnywhere.MobiLink.Script.DBConnectionContext cc)

or

public ExampleClass()

Writing .NET synchronization logic

196

The synchronization context passed to you is for the connection through
which the MobiLink synchronization server is synchronizing the current
user.

The getConnection method of the DBConnectionContext returns the
same database connection that MobiLink is using to synchronize the present
user. You can execute statements on this connection, but you must not
commit or roll back the transaction. The MobiLink synchronization server
manages the transactions.

The MobiLink synchronization server prefers to use constructors with the
first signature. It only uses the void constructor if a constructor with the first
signature is not present.

Methods

In general, you implement one method for each synchronization event. These
methods must be public. If they are private, the MobiLink synchronization
server cannot use them and will fail to recognize that they exist.

The names of the methods are not important, as long as the names match the
names specified in the ml_script table in the consolidated database. In the
examples included in the documentation, however, the method names are the
same as those of the MobiLink events as this naming convention makes the
.NET code easier to read.

The signature of your method should match the signature of the script for
that event, except that you can truncate the parameter list if you do not need
the values of parameters at the end of the list. Indeed, you should accept only
the parameters you need, because overhead is associated with passing the
parameters.

You cannot, however, overload the methods. In other words, you must
provide only one method per class with the name specified in the ml_script
table.

Methods called for a MobiLink upload or download must return a valid SQL
language statement. The return type of these methods must be String. No
other return types are allowed.

The return type of all other scripts must either be string or void. No other
types are allowed. If the return type is a string and not null, the MobiLink
synchronization server assumes that the string contains a valid SQL
statement and executes this statement in the consolidated database as it
would an ordinary SQL-language synchronization script. If a method
ordinarily returns a string but does not wish to execute a SQL statement
against the database upon its return, it can return null.

Return values

Chapter 7 Writing Synchronization Scripts in .NET

197

User-defined start classes

You can define start classes that are loaded automatically when the server is
started. The purpose of this feature is to allow you to write .NET code that
executes at the time the MobiLink server starts the JVM—before the first
synchronization. This means you can create connections or cache data before
a user synchronization request.

You do this with the MLStartClasses option of the dbmlsrv8 -sl dnet option.
For example, the following is part of a dbmlsrv8 command line. It causes
mycl1 and mycl2 to be loaded as start classes.

-sl dnet(-MLStartClasses=com.test.mycl1,com.test.mycl2)

Classes are loaded in the order in which they are listed. If the same class is
listed more than once, more than one instance is created.

All start classes must be public and must have a public constructor that either
accepts no arguments or accepts one argument of type
MobiLink.Script.ServerContext.

The names of loaded start classes are output to the MobiLink log with the
message "Loaded .NET start class: classname".

$ For more information about .NET CLR, see "-sl dnet option" on
page 390.

$ To see the start classes that are constructed at server start time, see
"GetStartClassInstances method" on page 203.

Following is a template start class. It starts a daemon thread that processes
events and creates a database connection. (Not all start classes will need to
create a thread but if a thread is spawned it should be a daemon thread.)

using System;
using System.IO;
using System.Threading;
using iAnywhere.MobiLink.Script;

namespace TestScripts
{
 public class MyStartClass {

ServerContext _sc;
bool _exit_loop;
Thread _thread;
OdbcConnection _conn;

public MyStartClass(ServerContext sc)
{
 // perform setup first so that an exception will
 // cause MobiLink startup to fail
 _sc = sc;

Example

Writing .NET synchronization logic

198

 // create connection for use later
 _conn = _sc.makeConnection();
 _exit_loop = false;
 _thread = new Thread(new

ThreadStart(run)) ;
 _thread.IsBackground = true;

 _thread.Start();
}
public void run()
//===============
{
 ShutdownCallback callback = new ShutdownCallback(

shutdownPerformed);

 _sc.ShutdownListener += callback;
 // we can’t throw any exceptions through run()
 try {

handlerLoop();
_conn.close();
_conn = null;

 } catch(Exception e) {
// print some error output to the MobiLink log
Console.Error.Write(e.ToString());
// we will die so we don’t need to be notified of

shutdown
_sc.ShutdownListener -= callback;
// ask server to shutdown so that this fatal

error will be fixed
_sc.Shutdown();

 }
 // shortly after return this thread will no

longer exist
 return;
}
public void shutdownPerformed(ServerContext sc)
//===
// stop our event handler loop
{
 try {

_exit_loop = true;
// wait max 10 seconds for thread to die
_thread.Join(10*1000);

 } catch(Exception e) {
// print some error output to the MobiLink log
Console.Error.Write(e.ToString());

 }
}
private void handlerLoop()
//========================
{

Chapter 7 Writing Synchronization Scripts in .NET

199

 while(!_exit_loop) {
// handle events in this loop
Thread.Sleep(1*1000);

 }
}

 }
}

.NET synchronization example

200

.NET synchronization example
This example modifies an existing application to describe how to use .NET
synchronization logic to handle the authenticate_user event. It creates a C#
script for authenticate_user called AuthUser.cs. This script looks up the
user’s password in a table called user_pwd_table and authenticates the user
based on that password.

First, add the table user_pwd_table to the database. Execute the following in
Interactive SQL:

CREATE TABLE user_pwd_table (
 user_name varchar(128) PRIMARY KEY NOT NULL,
 pwd varchar(128)
)

Next, add a user and password to the table:

INSERT INTO user_pwd_table VALUES(’user1’, ’myPwd’)

Create a directory for your .NET assembly. For example:

mkdir c:\mlexample

Create a file called AuthUser.cs with the following contents:

using System;
using iAnywhere.MobiLink.Script;

namespace MLExample
{
 /// <summary>
 /// A simple example class the authenticates a user.</summary>
 /// <remarks>
 /// This simple example class will compare the password given for
 /// a user with the password in a table and accept or reject the
 /// authentication. We don’t handle changing user password.
 /// To handle changing the password we could just update the user
 /// password table.</remarks>

 public class AuthClass
 {
 private DBConnection _conn;

 /// <summary>
 /// Create the instance of AuthClass for the given MobiLink
 /// connection.</summary>
 /// <remarks>
 /// This instance will live for the duration of
 /// the MobiLink connection. This means that this instance
 /// will authenticate many users just as a connection will
 /// handle many synchronizations.</remarks>
 /// <param name="cc">The connection that owns this
 /// instance.</param>

Chapter 7 Writing Synchronization Scripts in .NET

201

 public AuthClass(DBConnectionContext cc)
 {
 _conn = cc.GetConnection();
}

 /// <summary>
 /// Handler for ’authenticate_user’ MobiLink event.</summary>
 /// <remarks>
 /// Handle the ’authenticate_user’ event in the simplest way
 /// possible. Don’t handle password changes for any advanced
 /// authStatus Codes.</remarks>
 /// <param name="authStatus">The status for this
 /// authenticate attempt.</param>
 /// <param name="user">Name of the user to authenticate.</param>
 /// <param name="pwd">Password the user is authenticating
 /// with.</param>
 /// <param name="newPwd">The new password for the
 /// authenticating user.</param>

 public void DoAuthenticate(ref int authStatus,
 string user,
 string pwd,
 string newPwd)
 {
 DBCommandpwd_command = _conn.CreateCommand();
 pwd_command.CommandText = "select pwd from user_pwd_table "
 +"where user_name = ? ";
 pwd_command.Prepare();

 // add a param for the user name that we can set later.
 DBParameter user_param = new DBParameter();
 user_param.DbType = SQLType.SQL_CHAR;
 // we need to set the size for SQL_VARCHAR
 user_param.Size = (uint)user.Length;
 user_param.Value= user;
 pwd_command.Parameters.Add(user_param);

 // fetch the password for this user.
 DBRowReader rr = pwd_command.ExecuteReader();
 object[] pwd_row = rr.NextRow();
 if(pwd_row == null) {
 // user is unknown
authStatus = 4000;
 } else {
if(((string)pwd_row[0]) == pwd) {
 // password matched
 authStatus = 1000;
} else {
 // password did not match
 authStatus = 4000;
}
 }
 pwd_command.Close();
 rr.Close();
 return;
}
 }
}

.NET synchronization example

202

Compile the file AuthUser.cs. You can do this on the command line or in
Visual Studio .NET.

For example, the following command line will compile AuthUser.cs and
generate an Assembly named example.dll in c:\mlexample. Substitute your
install directory for asany8.

csc /out:c:\mlexample\example.dll /target:library
/reference:\asany8\win32\iAnywhere.MobiLink.Script.dll
AuthUser.cs

Register .NET code for the authenticate_user event. The method we need to
execute is in the namespace MLExample and class AuthClass. Execute the
following SQL:

call ml_add_dnet_connection_script(’ex_version’,
’authenticate_user’,
’MLExample.AuthClass.DoAuthenticate’)

Next, run the MobiLink synchronization server with the following option.
This option causes MobiLink to load all assemblies in c:\myexample:

-sl dnet (-MLAutoLoadPath=c:\mlexample)

Now, when a user synchronizes with the version ex_version, they are
authenticated with the password from the table user_pwd_table.

Chapter 7 Writing Synchronization Scripts in .NET

203

MobiLink .NET API Reference
This section explains the MobiLink .NET interfaces and classes, and their
associated methods, properties, and constructors. This section focuses on C#,
but there are equivalents in Embedded Visual Basic and C++.

ServerContext interface

public interface ServerContext
 Member of iAnywhere.MobiLink.Script

An instantiation of all the context that is present for the duration of the
MobiLink server. This context can be held as static data and used in a
background thread. It is valid for the duration of the .NET CLR invoked by
MobiLink.

public object[] GetStartClassInstances()
 Member of iAnywhere.MobiLink.Script.ServerContext

Gets an array of the start classes that were constructed at server start time.
The array length is zero if there are no start classes.

$ For more information about user-defined start classes, see "User-
defined start classes" on page 197.

Following is an example of getStartClassInstances():

void FindStartClass(ServerContext sc, string name)
 {
 object[] startClasses = sc.GetStartClassInstances();

 foreach(object obj in startClasses) {
 if(obj is MyClass) {
 // Execute some code.....
 }
 }
 }

public iAnywhere.MobiLink.Script.DBConnection makeConnection()
 Member of iAnywhere.MobiLink.Script.ServerContext

Opens and returns a new server connection. To access the server context, use
DBConnectionContext.getServerContext on the synchronization context for
the current connection.

public void Shutdown()
 Member of iAnywhere.MobiLink.Script.ServerContext

Forces the server to shut down.

GetStartClassInsta
nces method

MakeConnection
method

ShutDown method

MobiLink .NET API Reference

204

public event iAnywhere.MobiLink.Script.ShutdownCallback
ShtudownListener(iAnwyhere.MobiLink.Script.ServerContext sc)
 Member of iAnywhere.MobiLink.Script.ServerContext

This event is triggered on shutdown. The following code is an example of
how to use this event:

ShutdownCallback callback = new ShutdownCallback(shutdownHandler);
_sc.ShutdownListener += callback;

public void shutdownHandler(ServerContext sc)
//===
{
_test_out_file.WriteLine("shutdownPerformed");
}

ServerException class

public class ServerException :
iAnywhere.MobiLink.Script.ScriptExecutionException
 Member of iAnywhere.MobiLink.Script

Used to signal MobiLink that an error has occurred with the server and it
should shut down immediately.

public ServerException()
Member of iAnywhere.MobiLink.Script.ServerException

Constructs a ServerException with no detail message.

public ServerException(string message)
 Member of iAnywhere.MobiLink.Script.ServerException

Creates a new ServerException with the given message. The parameter
message is the message for this ServerException.

public ServerException(string message, SystemException ie)
 Member of iAnywhere.MobiLink.Script.ServerException

Creates a new ServerException with the given message and containing the
given inner exception that caused this one. There are two parameters:
message, which is the message for this ServerException, and ie, which is the
exception that caused this ServerException.

ShutdownCallback delegate

public sealed delegate ShtudownCallback : System.MulticastDelegate
 Member of iAnywhere.MobiLink.Script

ShutdownListener
method

ServerException
constructors

Chapter 7 Writing Synchronization Scripts in .NET

205

Called when the MobiLink synchronization server is shutting down.
Implementations of this delegate can be registered with the
ServerContext.ShutdownListener event to be called when the MobiLink
server shuts down.

DBConnectionContext interface

public interface DBConnectionContext
 Member of iAnywhere.MobiLink.Script

Interface for obtaining information about the current database connection.
This is passed to the constructor of classes containing scripts.

public .iAnywhere.MobiLink.Script.DBConnection GetConnection()
 Member of iAnywhere.MobiLink.Script.DBConnectionContext

Returns the existing connection. The connection is the same connection that
MobiLink uses to execute SQL scripts.

This connection must not be committed, closed or altered in any way that
would affect the MobiLink server use of the connection. The connection
returned is only valid for the lifetime of the underlying MobiLink
connection. Do not use the connection after the end_connection event has
been called for the connection.

If a server connection with full access is required, use
ServerContext.makeConnection().

public iAnywhere.MobiLink.Script.ServerContext.GetServerContext()
 Member of iAnywhere.MobiLink.Script.DBConnectionContext

Returns the ServerContext for this MobiLink server.

SynchronizationException class

public class SynchronizationException:
iAnywhere.MobiLink.Script.ScriptExecutionException
 Member of iAnywhere.MobiLink.Script

Used to signal that a synchronization exception has occurred and that the
current synchronization should be rolled back and restarted.

public SynchronizationException()
 Member of iAnywhere.MobiLink.Script.SynchronizationException

Constructs a SynchronizationException with no details.

public SynchronizationException(string message)
 Member of iAnywhere.MobiLink.Script.SynchronizationException

GetConnection
method

GetServerContext
method

SynchronizationEx
ception
constructors

MobiLink .NET API Reference

206

Creates a new SynchronizationException with the given message. The
parameter message is the message for this ServerException.

public SynchronizationException(string message, SystemException ie)
 Member of iAnywhere.MobiLink.Script.SynchronizationException

Creates a new SynchronizationException with the given message and
containing the given inner exception that caused this one. There are two
parameters: message, which is the message for this ServerException, and ie,
which is the exception that caused this ServerException.

DBCommand interface

public interface DBCommand
 Member of iAnywhere.MobiLink.Script

Represents a SQL statement or database command. DBCommand can
represent an update or query.

For example, the following C# code uses the DBCommand interface to
execute two queries:

DBCommand stmt = conn.CreateCommand();

stmt.CommandText = "select t1a1, t1a2 from table1 ";

DBRowReader rs = stmt.ExecuteReader();
printResultSet(rs);
rs.Close();

stmt.CommandText = "select t2a1 from table2 ";

rs = stmt.ExecuteReader();
printResultSet(rs);
rs.Close();
stmt.Close();

The following C# example uses DBCommand to execute an update with
parameters:

DBCommand cstmt = conn.CreateCommand();

cstmt.CommandText = "call myProc(?,?,?)";

cstmt.Prepare();

DBParameter param = new DBParameter();
param.DbType = SQLType.SQL_CHAR;
param.Value = "10000";

Chapter 7 Writing Synchronization Scripts in .NET

207

cstmt.Parameters.Add(param);

param = new DBParameter();
param.DbType = SQLType.SQL_INTEGER;
param.Value = 20000;
cstmt.Parameters.Add(param);

param = new DBParameter();
param.DbType = SQLType.SQL_DECIMAL;
param.Precision = 5;
param.Value = new Decimal(30000);
cstmt.Parameters.Add(param);

// Execute update
DBRowReader rset = cstmt.ExecuteNonQuery();
cstmt.Close();

public void Prepare()

Prepare the SQL statement stored in CommandText for execution.

public int ExecuteNonQuery()

Execute a non-query statement. Returns the number of rows in the database
affected by the SQL statement.

public DBRowReader ExecuteReader()

Execute a query statement returning the result set. Returns a DBRowReader
for retrieving results returned by the SQL statement.

public void Close()

Close the current SQL statement or command.

public string CommandText

The value is the SQL statement to be executed.

public DBParameterCollection Parameters

Gets the iAnywhere.MobiLink.Script.DBParameterCollection for this
DBCommand.

Prepare method

ExecuteNonQuery(
) method

ExecuteReader()
method

Close() method

CommandText
property

DBParameterColle
ction Parameters
property

MobiLink .NET API Reference

208

SQLType enumeration

public enum SQLType
 Member of iAnywhere.MobiLink.Script

Enumeration of all possible ODBC data types.

public SQL_TYPE_NULL

Null data type.

public SQL_UNKNOWN_TYPE

Unknown data type.

public SQL_CHAR

UTF-8 character array of a set size. Has .NET type String.

public SQL_NUMERIC

Numeric value of set size and precision. Has .NET type Decimal.

public SQL_DECIMAL

Decimal number of set size and precision. Has .NET type Decimal.

public SQL_INTEGER

32-bit integer. Has .NET type Int32.

public SQL_SMALLINT

16-bit integer. Has .NET type Int16.

public SQL_FLOAT

Floating point number with ODBC driver defined precision. Has .NET type
Double.

public SQL_REAL

Single precision floating point number. Has .NET type Single.

SQL_TYPE_NULL
field

SQL_UNKNOWN_
TYPE field

SQL_CHAR field

SQL_NUMERIC
field

SQL_DECIMAL
field

SQL_INTEGER
field

SQL_SMALLINT
field

SQL_FLOAT field

SQL_REAL field

Chapter 7 Writing Synchronization Scripts in .NET

209

public SQL_DOUBLE

Double precision floating point number. Has .NET type Double.

public SQL_DATE

A date. Has .NET type DateTime.

public SQL_DATETIME

A date and time. Has .NET type DateTime.

public SQL_TIME

A time. Has .NET type DateTime.

public SQL_INTERVAL

An interval of time. Has .NET type TimeSpan.

public SQL_TIMESTAMP

A time stamp. Has .NET type DateTime.

public SQL_VARCHAR

A null terminated UTF-8 string with a user set maximum length. Has .NET
type String.

public SQL_TYPE_DATE

A date. Has .NET type DateTime.

public SQL_TYPE_TIME

A time. Has .NET type DateTime.

public SQL_TYPE_TIMESTAMP

A timestamp. Has .NET type DateTime.

public SQL_DEFAULT

SQL_DOUBLE
field

SQL_DATE field

SQL_DATETIME
field

SQL_TIME field

SQL_INTERVAL
field

SQL_TIMESTAMP
field

SQL_VARCHAR
field

SQL_TYPE_DATE
field

SQL_TYPE_TIME
field

SQL_TYPE_TIME
STAMP field

SQL_DEFAULT
field

MobiLink .NET API Reference

210

A default type. Has no type.

public SQL_ARD_TYPE

An ARD object. Has no type.

public SQL_BIT

A single bit. Has .NET type Boolean.

public SQL_TINYINT

An 8-bit integer. Has .NET type SByte.

public SQL_BIGINT

A 64-bit integer. Has .NET type Int64.

public SQL_LONGVARBINARY

Variable length binary data with a driver dependent maximum length. Has
.NET type byte[].

public SQL_VARBINARY

Variable length binary data with a user specified maximum length. Has .NET
type byte[].

public SQL_BINARY

Fixed length binary data. Has .NET type byte[].

public SQL_LONGVARCHAR

A null-terminated UTF-8 string with a driver-dependent maximum length.
Has .NET type String.

public SQL_GUID

A Global Unique ID (also called a UUID). Has .NET type Guid.

public SQL_WCHAR

SQL_ARD_TYPE
field

SQL_BIT field

SQL_TINYINT field

SQL_BIGINT field

SQL_LONGVARBI
NARY field

SQL_VARBINARY
field

SQL_BINARY field

SQL_LONGVARC
HAR field

SQL_GUID field

SQL_WCHAR field

Chapter 7 Writing Synchronization Scripts in .NET

211

Unicode character array of fixed size. Has .NET type String.

public SQL_WVARCHAR

Null-terminated Unicode string of user-defined maximum length. Has .NET
type String.

public SQL_WLONGVARCHAR

Null-terminated Unicode string of driver-dependent maximum length. Has
.NET type String.

DBConnection interface

public interface DBConnection
 Member of iAnywhere.MobiLink.Script

Represents a MobiLink ODBC connection.

This interface allows user-written synchronization logic to access an ODBC
connection created by MobiLink.

public void Commit()

Commit the current transaction.

public void Rollback()

Roll back the current transaction.

public void Close()

Close the current connection.

public DBCommand CreateCommand()

Create a SQL statement or command on this connection. Returns the newly
generated DBCommand.

DBParameter class

public class DBParameter
Member of iAnywhere.MobiLink.Script

SQL_WVARCHAR
field

SQL_WLONGVAR
CHAR field

Commit() method

Rollback() method

Close() method

CreateCommand()
method

MobiLink .NET API Reference

212

Represents a bound ODBC parameter.

DBParameter is required to execute commands with parameters. All
parameters must be in place before the command is executed.

For example, the following C# code uses DBCommand to execute an update
with parameters:

DBCommand cstmt = conn.CreateCommand();

 cstmt.CommandText = "call myProc(?,?,?)";

 cstmt.Prepare();

 DBParameter param = new DBParameter();
 param.DbType = SQLType.SQL_CHAR;
 param.Value = "10000";
 cstmt.Parameters.Add(param);

 param = new DBParameter();
 param.DbType = SQLType.SQL_INTEGER;
 param.Value = 20000;
 cstmt.Parameters.Add(param);

 param = new DBParameter();
 param.DbType = SQLType.SQL_DECIMAL;
 param.Precision = 5;
 param.Value = new Decimal(30000);
 cstmt.Parameters.Add(param);

 // Execute update
 DBRowReader rset = cstmt.ExecuteNonQuery();
 cstmt.Close();

public SQLTYPE dbType

The value is the SQLType of this parameter.

Default: SQLType.SQL_TYPE_NULL.

public System.Data.ParameterDirection Direction

The value is the Input/Output direction of this parameter.

Default: ParameterDirection.Input.

public bool IsNullable

The value Indicates whether this parameter can be NULL.

Default: false.

public string ParameterName

dbType property

Direction property

IsNullable property

ParameterName
property

Chapter 7 Writing Synchronization Scripts in .NET

213

The value is the name of this parameter.

Default: null.

public uint Precision

The value is the decimal precision of this parameter. Only used for
SQLType.SQL_NUMERIC and SQLType.SQL_DECIMAL parameters.

Default: 0.

public short Scale

The value is the resolvable digits of this parameter. Only used for
SQLType.SQL_NUMERIC and SQLType.SQL_DECIMAL parameters.

Default: 0.

public uint Size

The value is the size in bytes of this parameter.

Default: Inferred from DbType.

public object Value

The value is the value of this parameter.

Default: null.

DBParameterCollection class

public class DBParameterCollection
 inherits from IDataParameterCollection, IList, ICollection,
IEnumerable
 Member of iAnywhere.MobiLink.Script

Collection of DBParameters. When DBCommand creates a
DBParamterCollection it is empty and must be filled with appropriate
parameters before the DBCommand executes.

public DBParameterCollection()

Creates an empty list of DBParameters.

public bool Contains(string parameterName)

Returns true if the collection contains a parameter with the specified name.
Takes one parameter, parameterName, which is the name of the parameter.

Precision property

Scale property

Size property

Value property

DBParameterColle
ction() method

Contains(string
parameterName)
method

MobiLink .NET API Reference

214

public int IndexOf(string parameterName)

Returns index of the parameter, or -1 if there is no parameter with the given
name. Takes one parameter, parameterName, which is the name of the
parameter.

public void RemoveAt(string parameterName)

Removes the parameter with the given name from the collection. Takes one
parameter, parameterName, which is the name of the parameter.

public int Add(object value) method

Adds the given parameter to the collection. Takes one parameter, value,
which is the iAnywhere.MobiLink.Script.DBParameter to add to the
collection. Returns the index of the added parameter in the collection.

public void Clear()

Removes all parameters from the collection.

public bool Contains(object value) method

Returns true if this collection contains the given
iAnywhere.MobiLink.Script.DBParameter. Takes one parameter, value,
which is the iAnywhere.MobiLink.Script.DBParameter.

public int IndexOf(object value)

Returns the index of the given iAnywhere.MobiLink.Script.DBParameter in
the collection. Takes one parameter, value, which is the
iAnywhere.MobiLink.Script.DBParameter.

public void Insert(int index, object value)

Inserts the given iAnywhere.MobiLink.Script.DBParameter into the
collection at the specified index. Takes two parameters: value, which is the
iAnywhere.MobiLink.Script.DBParameter; and index, which is the index to
insert at.

public void Remove(object value)

Removes the given iAnywhere.MobiLink.Script.DBParameter from the
collection. Takes one parameter, value, which is the
iAnywhere.MobiLink.Script.DBParameter.

IndexOf(string
parameterName)
method

RemoveAt(string
parameterName)
method

Add(object value)
method

Clear() method

Contains(object
value) method

IndexOf(object
value) method

Insert(int index,
object value)
method

Remove(object
value) method

Chapter 7 Writing Synchronization Scripts in .NET

215

public int RemoveAt(int index)

Removes the iAnywhere.MobiLink.Script.DBParameter at the given index in
the collection. Takes one parameter, index, which is the index of the
iAnywhere.MobiLink.Script.DBParameter.

public void CopyTo(Array array, int index)

Copies the contents of the collection into the given array starting at the
specified index. Takes two parameters: array, which is the array to copy the
contents of the collection into; and index, which is the index in the array to
begin copying the contents of the collection into.

public IEnumerator GetEnumerator()

Returns an enumerator for the collection.

public bool IsFixedSize

Returns false.

public bool IsReadOnly

Returns false.

public int Count

The number of parameters in the collection.

public bool IsSynchronized

Returns false.

public object SyncRoot

Object that can be used to synchronize the collection.

public object this[string parameterName]

Gets or sets the iAnywhere.MobiLink.Script.DBParameter with the given
name in the collection. Takes one parameter, parameterName, which is the
name of the iAnywhere.MobiLink.Script.DBParameter to get or set.

public object this[int index]

RemoveAt(int
index) method

CopyTo(Array
array, int index)
method

GetEnumerator()
method

IsFixedSize
property

IsReadOnly
property

Count property

IsSynchronized
property

SyncRoot property

this[string
parameterName]
property

this[int index]
property

MobiLink .NET API Reference

216

Gets or sets the iAnywhere.MobiLink.Script.DBParameter at the given index
in the collection. Takes one parameter, index, which is the index of the
iAnywhere.MobiLink.Script.DBParameter to get or set.

DBRowReader interface

public interface DBRowReader
Member of iAnywhere.MobiLink.Script

Represents a set of rows being read from a database. Executing the method
DBCommand.executeReader() creates a DBRowReader.

The following example is a C# code fragment. It calls a function with the
rows in the result set represented by the given DBRowReader.

DBCommand stmt = conn.CreateCommand();

stmt.CommandText = "select intCol, strCol from table1 ";

DBRowReader rs = stmt.ExecuteReader();
object[] values = rset.NextRow();

while(values != null) {
handleRow((int)values[0], (String)values[1]);
 values = rset.NextRow();
}
rset.Close();
stmt.Close();

public object[] NextRow()

Retrieves and returns the next row of values in the result set. If there are no
more rows in the result set, it returns NULL.

$ See "SQL-.NET data types" on page 195.

public void Close()

Cleans up resources used by this MLDBRowReader. After Close() is called,
this MLDBRowReader cannot be used again.

public string[] ColumnNames

Gets the names of all columns in the result set. The value is an array of
strings corresponding to the column names in the result set.

public SQLType[] ColumnTypes

NextRow() method

Close() method

ColumnNames
property

ColumnTypes
property

Chapter 7 Writing Synchronization Scripts in .NET

217

Gets the types of all columns in the result set. The value is an array of
SQLTypes corresponding to the column types in the result set.

MobiLink .NET API Reference

218

219

C H A P T E R 8

MobiLink Performance

This chapter provides information that can help you improve the
performance of your MobiLink synchronization.

$ For more information about MobiLink performance, see the MobiLink
Performance whitepaper at http://my.sybase.com/detail?id=1009664.

Topic Page

Performance tips 220

Key factors influencing MobiLink performance 224

Monitoring MobiLink performance 229

About this chapter

Contents

Performance tips

220

Performance tips
Following are some suggestions to help you get the best performance out of
MobiLink.

♦ Test Before deploying, perform volume testing using the same
hardware and network that you plan to use for production. Use this time
to experiment with the following performance tips.

♦ Avoid contention Avoid contention in your synchronization scripts.
Another way of putting this is that you should maximize concurrency.

For example, suppose a begin_download script increments a column in a
table to count the total number of downloads. If multiple users may
synchronize at the same time, this script would effectively serialize their
downloads. The same counter would be better in the
begin_synchronization or end_synchronization script because they are
called just before a commit.

$ For more information about contention, see "Contention" on
page 225.

$ For information on the transaction structure of synchronization, see
"Transactions in the synchronization process" on page 32.

♦ Use an optimal number of worker threads Use the MobiLink –w
option to set the number of MobiLink worker threads to the smallest
number that gives you optimum throughput. You will need to
experiment to find the best number for your situation.

A larger number of worker threads can improve throughput by allowing
more synchronizations to occur at the same time.

Keeping the number of worker threads small reduces the chance of
contention in the consolidated database, the number of connections to
the consolidated database, and the memory required for optimal caching.

For example, in tests of fast clients it was discovered that approximately
five worker threads gave optimum throughput. For slower clients, more
worker threads are needed to maximize download throughput, and the
best upload throughput is obtained by limiting the number that can
simultaneously upload, via the -wu option. In tests with extremely slow
clients, the best throughput for both uploads and downloads was
hundreds of worker threads with only five allowed to upload
simultaneously. Note that these numbers are from a specific set of tests.
Every deployment has different characteristics, and you must test to
determine the optimal values for -w and -wu.

Chapter 8 MobiLink Performance

221

$ For more information about worker threads, see "Number of
worker threads" on page 226.

$ For more information, see "-w option" on page 394 and "-wu
option" on page 395.

♦ Use statement-based uploads Use statement-based uploads instead
of cursor-based uploads. The statement-based upload scripts are
upload_update, upload_insert, upload_delete, and upload_fetch.
Performance testing shows that statement-based uploads can be
significantly faster than cursor-based uploads, and no cases have been
found where they are slower.

Using statement-based upload scripts allows MobiLink to apply inserts,
updates and deletes in batch mode. The -s option controls how many
rows are batched at a time. The default is ten. You may want to
experiment with different values to improve performance.

$ For more information on statement-based uploads, see "Writing
scripts to upload rows" on page 66.

♦ Enable the client-side download buffer for ASA clients For
Adaptive Server Anywhere clients, a download buffer allows a
MobiLink worker thread to transmit the download without waiting for
the client to apply the download. The download buffer is enabled by
default. However, the download buffer cannot be used if download
acknowledgement is enabled (see next bullet).

$ For more information about setting the download buffer size, see
the dbmlsync extended option DownloadBufferSize in "-e extended
options" on page 414.

♦ Disable download acknowledgement for ASA clients Eliminating
the optional download acknowledgement can free up MobiLink worker
threads that are waiting for confirmation of successful download from
the client, which also frees up the connection that the worker thread is
using. It also makes it possible for MobiLink synchronization server to
buffer the downloads.

$ For more information about download acknowledgements, see the
extended option SendDownloadACK in "-e extended options" on
page 414 and "send_download_ack synchronization parameter" on
page 389 of the book UltraLite User’s Guide.

♦ Set the upload cache size To avoid the situation where the upload
cache overflows to disk, set the upload cache size to be larger than the
size of your largest upload stream times the number of worker threads.
You set the upload cache size with the dbmlsrv8 –u option.

$ For more information, see "-u option" on page 393.

Performance tips

222

♦ Set the download cache size To avoid the situation where the
download buffer overflows to disk, set the download cache size to be
larger than the size of your largest download times the number of worker
threads. You set the download cache size with the dbmlsrv8 -d option.

$ For more information about setting the memory allocated to the
download buffer, see "-d option" on page 386.

♦ Set the BLOB cache size If your rows have data of type LONG
VARCHAR or LONG BINARY, you can avoid having the BLOB cache
access disk if you set the BLOB cache size to be larger than twice the
largest BLOB data in a row times the number of worker threads. You set
the BLOB cache size with the dbmlsrv8 -bc option.

$ For more information, see "-bc option" on page 384.

♦ Set maximum number of database connections Set the maximum
number of MobiLink database connections to be your typical number of
synchronization script versions times the number of MobiLink worker
threads. This reduces the need for MobiLink to close and create database
connections. You set the maximum number of connections with the
dbmlsrv8 -cn option.

$ For more information, see "MobiLink database connections" on
page 227 and "-cn option" on page 385.

♦ Have sufficient physical memory Ensure that the computer running
MobiLink has enough physical memory to accommodate the upload,
download and BLOB caches in addition to its other memory
requirements.

♦ Use sufficient processing power Dedicate enough processing power
to MobiLink so that the MobiLink server processing is not a bottleneck.
In tests with an Adaptive Server Anywhere consolidated database,
MobiLink required a third to a half of the processing required by
Adaptive Server Anywhere when both were stressed.

♦ Use minimum logging verbosity Use the minimum logging verbosity
that is compatible with your business needs. By default, verbose logging
is off, and MobiLink does not write its log to disk. You can control
logging verbosity with the -v option, and enable logging to a file with
the -o or -ot options.

As an alternative to verbose log files, you can monitor your
synchronizations with the MobiLink Monitor. The Monitor does not
even need to be on the same computer as the MobiLink synchronization
server. For more information, see "MobiLink Monitor" on page 231.

Chapter 8 MobiLink Performance

223

♦ Java vs. SQL synchronization logic No significant throughput
difference has been found between using Java or SQL synchronization
logic, although Java synchronization logic has some extra overhead per
synchronization and requires more memory. Note that using Java
synchronization logic moves execution of your synchronization logic
from the computer running the consolidated database to the computer
running the MobiLink server. This may be desirable if your consolidated
database is heavily loaded.

♦ Priority synchronization If you have some tables that you need to
synchronize more frequently than others, create a separate publication
and subscription for them. You can synchronize this priority publication
more frequently than other publications, and synchronize other
publications at off-peak times.

♦ Download only the rows you need Take care to download only the
rows that are required. It is easier to write synchronization scripts that
download all rows upon each synchronization, but downloading
unneeded rows affects synchronization performance.

♦ Optimize script execution The performance of your scripts in the
consolidated database is an important factor. It may help to create
indexes on your tables so that the upload and download cursor scripts
can efficiently select the required rows. However, too many indexes may
slow uploads.

♦ For large uploads, estimate the number of rows You can
significantly improve the speed of uploading a large number of rows by
providing dbmlsync with an estimate of the number of rows that will be
uploaded. You do this with the dbmlsync -urc option.

$ For more information, see "-urc option" on page 430.

Key factors influencing MobiLink performance

224

Key factors influencing MobiLink performance
The overall performance of any system, including throughput for MobiLink
synchronization, is usually limited by a bottleneck at one point in the system.
For MobiLink synchronization, the following might be the bottlenecks
limiting synchronization throughput:

♦ The performance of the consolidated database Of particular
importance for MobiLink is the speed at which it can execute the
MobiLink scripts. Multiple worker threads might execute scripts
simultaneously, so for best throughput you need to avoid database
contention in your synchronization scripts.

♦ The bandwidth for MobiLink to consolidated communication This
is unlikely to be a bottleneck if both MobiLink and the consolidated
database are running on the same computer, or if they are on separate
computers connected by a high-speed network.

♦ The speed of the computer running MobiLink If the processing
power of the computer running MobiLink is slow, or if it does not have
sufficient memory for the MobiLink worker threads and buffers, then
MobiLink execution speed could be a synchronization bottleneck. The
MobiLink server’s performance depends little on disk speed as long as
the buffers and worker threads fit in physical memory.

♦ The number of MobiLink worker threads A smaller number of
threads will involve fewer database connections, less chance of
contention in the consolidated database and less operating system
overhead. However, too small a number may leave clients waiting for a
free worker thread, or have fewer connections to the consolidated
database than it can overlap efficiently.

♦ The bandwidth for client-to-MobiLink communications For slow
connections, such as those over dial-up or wide-area wireless networks,
the network may cause clients and MobiLink worker threads to wait for
data to be transferred.

♦ The client processing speed Slow client processing speed is more
likely to be a bottleneck in downloads than uploads, since downloads
involve more client processing as rows and indexes are written.

Chapter 8 MobiLink Performance

225

Tuning MobiLink for performance

The key to achieving optimal MobiLink synchronization throughput is to
have multiple synchronizations occurring simultaneously and executing
efficiently. To enable multiple simultaneous synchronizations, MobiLink
assigns a worker thread to each synchronization. A worker thread receives
the changes uploaded from the client and applies them to the consolidated
database. It then fetches the changes from the consolidated database, and
downloads them to the client. Each worker thread uses a single connection to
the consolidated database for applying and fetching changes, using your
synchronization scripts.

The most important factor is to avoid database contention in your
synchronization scripts. Just as with any other multi-client use of a database,
you want to minimize database contention when clients are simultaneously
accessing a database. Database rows that must be modified by each
synchronization can increase contention. For example, if your scripts
increment a counter, then updating that counter can be a bottleneck.

The figure below shows the following:

♦ a pool of connections to the consolidated database, shown as C1 to Cn

♦ a number of synchronization requests, shown as S1 to Sn

♦ MobiLink worker threads, shown as W1 to Wn

Contention

Key factors influencing MobiLink performance

226

MobiLink

Consolidated
Server

C3 ...C2 CnC1

S3 ...S2 ...S1

C3 ...C2C1

...

S3 ...S2 ...S1

Remote(s)

Cn

...

W
n

W
1

W
2

W
3

Sn
... Sn

If there are more synchronization requests than worker threads, the excess
requests are queued until a worker thread becomes available after completing
a synchronization. You can control the number of worker threads and
connections, but MobiLink will always ensure that there is at least one
connection per worker thread. If there are more connections than worker
threads, the excess connections will be idle. Excess connections may be
useful with multiple script versions, as discussed below.

Other than contention in your synchronization scripts, the most important
factor for synchronization throughput is the number of worker threads. The
number of worker threads controls how many synchronizations can proceed
simultaneously.

Testing is vital to determine the optimum number of worker threads.

Increasing the number of worker threads allows more overlapping
synchronizations, and increased throughput, but it will also increase resource
and database contention between the overlapping synchronizations, and
increase the time for individual synchronizations. As the number of worker
threads is increased, the benefit of more simultaneous synchronizations
becomes outweighed by the cost of longer individual synchronizations, and
adding more worker threads decreases throughput. Experimentation is
required to determine the optimal number of worker threads for your
situation, but the following may help to guide you.

Number of worker
threads

Chapter 8 MobiLink Performance

227

For uploads, performance testing shows that the best throughput happens
with a relatively small number of worker threads: in most cases, three to ten
worker threads. Variation depends on factors like the type of consolidated
database, data volume, database schema, the complexity of the
synchronization scripts, and the hardware used. The bottleneck is usually due
to contention between worker threads executing the SQL of your upload
scripts at the same time in the consolidated database.

For downloads, the optimum number of worker threads depends on the client
to MobiLink bandwidth and the processing speed of clients. For slower
clients, more worker threads are needed to get optimal download
performance. This is because downloads involve more client processing and
less consolidated database processing than uploads.

For Adaptive Server Anywhere clients, eliminating the download
acknowledgement (and not disabling the optional download buffering) can
reduce the optimal number of worker threads for download, because worker
threads do not have to wait for clients to apply downloads. There is little
effect for UltraLite clients since UltraLite clients apply the download as it is
received, without buffering.

$ For more information on disabling the download acknowledgement, see
the dbmlsync extended option SendDownloadAck in the "-e extended
options" on page 414.

To get both the best download throughput and the best upload throughput,
MobiLink provides two options. You can specify a total number of worker
threads to optimize downloads. You can also limit the number that can
simultaneously apply uploads to optimize upload throughput.

The -w option controls the total number of worker threads. The default is
five.

The -wu option limits the number of worker threads that can simultaneously
apply uploads to the consolidated database. By default, all worker threads
can apply uploads simultaneously, but that can cause severe contention in the
consolidated database. The -wu option lets you reduce that contention while
still having a larger number of worker threads to optimize downloads and
receive uploads. The -wu option only has an effect if the number is less than
the total number of worker threads.

$ For more information, see "-w option" on page 394 and "-wu option"
on page 395.

MobiLink creates a database connection for each worker thread. You can use
the -cn option to specify that MobiLink create a larger pool of database
connections, but any excess connections will be idle unless MobiLink needs
to close a connection or use a different script version.

MobiLink database
connections

Key factors influencing MobiLink performance

228

There are two cases where MobiLink will close a database connection and
open a new one. The first case is if an error occurs. The second case is if the
client requests a synchronization script version, and none of the available
connections have already used that synchronization version.

Note
Each database connection is associated with a script version. To change
the version, the connection must be closed and reopened.

If you have more than one synchronization version, you may want to set the
maximum number of pooled connections to be larger than the number of
worker threads, which is the default number. Then MobiLink will not need to
close and open a new database connection each time a different
synchronization version is requested.

If you routinely use more than one script version, you can reduce the need
for MobiLink to close and open connections by increasing the number of
connections. You can eliminate the need completely if the number of
connections is the number of worker threads times the number of versions.

An example of tuning MobiLink for two script versions is given in the
command line below:

dbmlsrv8 -c "dsn=ASA 8.0 Sample" -w 5 -cn 10

Since the maximum usable number of database connections is the number of
script versions times the number of worker threads, you can set -cn to 10 to
ensure that database connections are not closed and opened to accommodate
synchronization versions.

An example of tuning MobiLink for three script versions is:

dbmlsrv8 -c "dsn=ASA 8.0 Sample" -w 7 -cn 21

$ For more information on setting the number of connections for any
number of script versions, see "-cn option" on page 385.

Chapter 8 MobiLink Performance

229

Monitoring MobiLink performance
There are a variety of tools available to help you monitor the performance of
your synchronizations.

The MobiLink Monitor is a graphical tool for monitoring synchronizations. It
allows you to see the time taken by every aspect of the synchronization,
sorted by MobiLink user or by worker thread.

$ For more information, see "MobiLink Monitor" on page 231.

In addition, there are a number of MobiLink scripts that are available for
monitoring synchronizations. These scripts allow you to use performance
statistics in your business logic. You may, for example, want to store the
performance information for future analysis, or alert a DBA if a
synchronization takes too long. For more information, see

♦ "download_statistics connection event" on page 479

♦ "download_statistics table event" on page 482

♦ "synchronization_statistics connection event" on page 535

♦ "synchronization_statistics table event" on page 537

♦ "time_statistics connection event" on page 539

♦ "time_statistics table event" on page 541

♦ "upload_statistics connection event" on page 554

♦ "upload_statistics table event" on page 557

Monitoring MobiLink performance

230

231

C H A P T E R 9

MobiLink Monitor

The MobiLink Monitor is a tool for monitoring the performance of
MobiLink synchronizations.

Topic Page

Introduction 232

Starting the MobiLink Monitor 233

Using the MobiLink Monitor 235

Saving Monitor data 243

Customizing your statistics 244

Statistical Properties 247

About this chapter

Contents

Introduction

232

Introduction
The MobiLink Monitor is a MobiLink administration tool that provides you
with detailed information about the performance of your synchronizations.

When you start the Monitor and connect it to a MobiLink synchronization
server, the Monitor begins to collect statistical information about all
synchronizations that occur in that server session. The Monitor continues to
collect data until you disconnect it or shut down the MobiLink server.

You can view the data in tabular or graphical form in the Monitor interface.
You can also save the data in binary format for viewing with the Monitor
later, or in .csv format to open in another tool, such as Microsoft Excel.

Chapter 9 MobiLink Monitor

233

Starting the MobiLink Monitor
If synchronization is already occurring when the MobiLink Monitor is
started, the Monitor must wait until a worker thread is free before it can start.
Therefore, you may want to start the Monitor before starting
synchronization. Once the Monitor is running it does not use a MobiLink
worker thread.

You can have one instance of the Monitor running for each MobiLink
synchronization server.

v To start monitoring data:

1 From the Start menu, choose Programs➤Sybase SQL Anywhere
8➤MobiLink➤MobiLink Monitor.

2 Start your consolidated database and MobiLink synchronization server,
if they are not already running.

3 In the MobiLink Monitor, choose Monitor➤Connect to MobiLink
Server.

The Connect to MobiLink Server dialog appears.

A Monitor connection is like a synchronization connection to the
MobiLink synchronization server. For example, if you started the
MobiLink server with -zu+ then it doesn’t matter what user ID you use
here. The Connect to MobiLink Server dialog should be completed as
follows:

♦ Host is the computer where the MobiLink synchronization server
is running. By default, it is the computer where the Monitor is
running.

♦ Network Protocol should be set to the same protocol and port as
the MobiLink synchronization server is using for synchronization
requests.

♦ Additional Network Parameters allows you to set optional
parameters. The allowed values are the same as when you connect
using dbmlsync, except that you do not need to supply a script
version. For all MobiLink Monitor sessions, the script version is set
to for_ML_Monitor_only.

$ For more information about connecting to the MobiLink
synchronization server, see "-c option" on page 384.

4 Start synchronizing.

The data appears in the Monitor as it is collected.

Starting the MobiLink Monitor

234

v To stop the MobiLink Monitor:

1 In the Monitor, choose Monitor➤Disconnect from MobiLink Server.
This stops the collection of data.

You can also stop collecting data by shutting down the MobiLink
synchronization server.

2 When you are ready to close the Monitor, just click the X in the upper
right corner of the screen, or choose File➤Close.

Before closing the Monitor, you can save the data for this session. For
more information, see "Saving Monitor data" on page 243.

Chapter 9 MobiLink Monitor

235

Using the MobiLink Monitor
Following is an example of the MobiLink Monitor when synchronization
data has been logged:

The Monitor has three panes:

♦ Details Table is the top pane. It is a spreadsheet that shows the total
time taken by each synchronization, with a breakdown showing the
amount of time taken by each part of the synchronization.

♦ Chart is the middle pane. It provides a graphical representation of the
data. The scrollbar at the bottom of this pane represents time. You can
zoom in on the data in the Chart by drawing a box around data in the
Overview pane; or by choosing View➤Go To.

Using the MobiLink Monitor

236

In the screenshot above, the cursor is hovering over the time axis, and so
a box is apparent that shows the complete date-time for the position of
the cursor.

♦ Overview is the bottom pane. It shows an overview of all the data. To
choose data to see in the Chart, click in the Overview and draw a box.
The chart will show everything that is located in the box.

In addition, there is an Options dialog and properties dialogs that you can use
to customize the data. All of these panes and dialogs are described in detail,
below.

Details Table pane

The Details Table provides information about how long each part of the
synchronization took. All times are measured by the MobiLink
synchronization server. Some times may be non-zero even when you do not
have the corresponding script defined.

The Details Table has the following columns:

♦ Worker Identifies the MobiLink worker thread that carried out the
synchronization. The worker is identified as n.m, where n is the stream
and m is the thread number.

♦ User Identifies the synchronization user.

♦ Version The version of the synchronization script.

$ For information about script versions, see "Script versions" on
page 61.

♦ Start Time The date and time when the MobiLink synchronization
server started the synchronization. (This is not the same as when the
synchronization was requested by the client.)

♦ Duration The total duration of the synchronization, in seconds.

♦ Verify The time in seconds for MobiLink to validate the
synchronization request, validate the user name, and validate the
password (if your synchronization setup requires authentication).

♦ Preload The time in seconds for MobiLink to receive the uploaded
data from the client.

♦ Begin The time in seconds to run your begin_synchronization script, if
one was run.

♦ Upload The time in seconds to apply the upload to the consolidated
database. This is the time between the begin_upload script and the
end_upload script.

Chapter 9 MobiLink Monitor

237

♦ P.F.D. The time in seconds to run your prepare_for_download script, if
one was run.

♦ Download The time in seconds to download the data. This is the time
between the begin_download script and the end_download script. If
download acknowledgement is enabled, this includes the time to apply
the download on the remote database and return acknowledgement.

♦ End The time in seconds to run the end_synchronization script, if one
was run.

To sort the table by a specific column, click on the column heading.

You can close the Details Table pane by clearing View➤Details Table.

Chart pane

The Chart pane presents the same information as the Details Table, but in
graphical format. The bars in the Chart represent the length of time taken by
each synchronization, with subsections of the bars representing the phases of
the synchronization.

Click a synchronization to select that synchronization in the Details Table.

Double-click a synchronization to open the Synchronization Session
Properties for the synchronization. For more information, see
"Synchronization Properties" on page 242.

You can group the data by worker thread or by user. Choose View➤By User
or View➤By Worker Thread.

There are three ways to select the data that is visible:

♦ Scrollbar Click the scrollbar at the bottom of the Chart pane and slide
it.

♦ Go To dialog Open this dialog by choosing View➤Go To. The Go To
dialog appears:

Viewing data

Grouping data by
thread or user

Zooming in on data

Using the MobiLink Monitor

238

Start Date & Time lets you specify the start time for the data that
appears in the Chart pane. If you change this setting, you must specify at
least the year, month, and date of the date-time.

Chart Range lets you specify the duration of time that is displayed. The
chart range can be specified in milliseconds, seconds, minutes, hours, or
days. The chart range determines the granularity of the data: a smaller
length of time means that more detail is visible.

♦ Overview Pane The box in the Overview pane allows you to quickly
select a portion of data to view. You can easily resize or move the box to
see different data, or see data at different granularity. If you make the
box smaller you shorten the interval of the visible data, which makes
more detail visible. Click to move the current box without changing the
zoom. Drag the box to resize it, changing the zoom.

At the bottom of the Chart pane there is an axis showing time periods. The
format of the time is readjusted automatically depending on the span of time
that is displayed. You can always see the complete date-time by hovering
your cursor over the axis.

Time axis

Chapter 9 MobiLink Monitor

239

You can view or set the colors in the Chart pane by opening the Options
dialog (available from the Tools menu). The default color scheme for the
Chart pane is as follows:

The default scheme uses green for uploads, red for downloads, and blue for
begin and end phases, with a darker shade for earlier parts of a phase.

$ For information about setting colors, see "Options" on page 240.

Overview pane

The Overview pane shows you an overview of the entire synchronization
session. The area that is currently displayed in the Chart pane is represented
as a box in the Overview. Click in the Overview pane to move the box (and
thus move the start time of the data shown in the Chart) or drag the box to
change the box’s location and size (and thus change the start time and the
range of data)

You can separate the Overview pane from the rest of the Monitor window. In
the Options dialog, open the Overview tab and clear the Keep Overview
Window Attached to Main Window checkbox.

Default color
scheme

Using the MobiLink Monitor

240

$ For more information, see "Options" on page 240.

You can close the Overview pane by clearing View➤Overview Pane.

Options

Options allow you to specify a number of settings, including colors and
patterns for the graphical display in the Chart pane (the middle pane of the
MobiLink Monitor) and the Overview pane (the bottom pane).

To open the Options dialog, open the Monitor and choose Tools➤Options:

To restore default settings, delete the file .mlMonitorSettings. This file is
stored in your user profiles directory.

Session Properties

The Session Properties dialog provides basic information about the
monitoring session.

Restoring defaults

Chapter 9 MobiLink Monitor

241

To open the Session Properties dialog, open the Monitor and choose
File➤Properties. In the following example of a Session Properties dialog,
data for a series of synchronizations has been saved in a file called cli5-
20.mlm:

Using the MobiLink Monitor

242

Synchronization Properties

Double-click a synchronization in either the Details Table or the Chart to see
properties for that synchronization:

You can choose to see statistics for all tables (which is the sum for all tables
in the synchronization), or for individual tables. The dropdown list provides
a list of the tables that were involved in the synchronization.

$ For an explanation of the statistics in Synchronization Properties, see
"Statistical Properties" on page 247.

Chapter 9 MobiLink Monitor

243

Saving Monitor data
You can save the data from a Monitor session as a binary file (.mlm) or as a
text file with comma-separated values (.csv). To save the data, choose
File➤Save As.

♦ Save the data as a binary (.mlm) file if you want to view the saved data
in the MobiLink Monitor. To reopen, choose File➤Open.

♦ Save the data as a comma separated file (.csv) if you want to view it in
another tool, such as Microsoft Excel. This will save all the information
in the session and synchronization property sheets, except per table
information and the session begin and end time. You can also open a
.csv file in the Monitor.

In the .csv file format, time durations are stored in milliseconds.

You can specify that you want data to be saved automatically to a file. To do
this, choose Tools➤Options, and enter an output file name on the General
tab. The output file is overwritten by new data.

Customizing your statistics

244

Customizing your statistics
The Watch Manager allows you to visibly distinguish synchronizations that
meet criteria that you specify. For example, you might want to highlight big
synchronizations, long synchronizations, small synchronizations that take a
long time, or synchronizations that receive warnings.

To open the Watch Manager, open the Monitor and then click Tools➤Watch
Manager. The Watch Manager appears:

The left pane contains a list of available watches. The right pane contains a
list of active watches. To add or remove a watch from the active list, select a
watch in the left pane and click the appropriate button.

There are three predefined watches (Active, Completed, and Failed). You
can edit predefined watches to change the way they are displayed, and you
can deactivate them by removing them from the right pane.

No synchronizations are displayed in the Chart unless they meet the
conditions of a watch. If you disable all watches (by removing them from the
Current Watches list), then no synchronizations are shown in the Chart or
Overview.

The order of watches in the right pane is important. Watches that are closer
to the top of the list are processed first. Use the Move Up and Move Down
buttons to organize the order of watches in the right pane.

You can use the predefined watches, and create other watches. To edit a
watch condition, remove it and then add the new watch condition.

v To create a new watch:

1 In the Watch Manager, click New.

Chapter 9 MobiLink Monitor

245

The New Watch dialog appears:

2 Give the watch a name in the Name box.

3 Select a property, comparison operator, and value.

$ For a complete list of properties, see "Statistical Properties" on
page 247.

4 Click Add. (You must click Add to save the settings.)

5 If desired, select another property, operator, and value, and click Add.

6 Select a pattern for the watch in the Chart pane. (The Chart pane is the
middle pane in MobiLink Monitor.)

7 Select a color for the watch in the Overview pane. (The Overview pane
is the bottom pane in the MobiLink Monitor.)

Customizing your statistics

246

The following screen shot shows a user-defined watch called GT10secw.
This watch specifies that the Monitor should track synchronizations with a
duration greater than 10 seconds that receive synchronization warnings
(defined as the number of warnings being greater than zero), and that it
should display them in the Overview pane as solid orange.

Example

Chapter 9 MobiLink Monitor

247

Statistical Properties
Following is a list of the properties that are available in the MobiLink
Monitor. These can be specified in the New Watch dialog. They can also be
viewed in the Synchronization Properties dialog. In Synchronization
Properties, the property names do not contain underscores.

Property Notes

active True if the synchronization is in
progress.

begin_sync Time for the begin_synchronization
event.

completed True if the synchronization
completed successfully.

conflicted_deletes Number of uploaded deletes for
which conflicts were detected.

conflicted_inserts Number of uploaded inserts for which
conflicts were detected.

conflicted_updates Number of uploaded updates for
which conflicts were detected.

connection_retries Number of times the MobiLink
synchronization server retried the
connection to the consolidated
database.

download Time for the download.

download_bytes Bytes downloaded to the
synchronization client.

download_deleted_rows Number of row deletions fetched
from the consolidated database by the
MobiLink synchronization server
(using download_delete_cursor
scripts).

download_errors Number of errors that occurred
during the download.

download_fetched_rows Number of rows fetched from the
consolidated database by the
MobiLink synchronization server
(using download_ cursor scripts).

Statistical Properties

248

Property Notes

download_filtered_rows Number of fetched rows that were not
downloaded to the MobiLink client
because they matched rows that the
client uploaded.

download_warnings Number of warnings that occurred
during the download.

duration Total time for the synchronization, as
measured by the MobiLink
synchronization server. This does not
include time when the
synchronization request is queued
waiting for an available worker
thread.

end_sync Time for the end_synchronization.

ignored_deletes Number of uploaded deletes that were
ignored.

ignored_inserts Number of uploaded inserts that were
ignored.

ignored_updates Number of uploaded updates that
were ignored.

preload_upload Time for the transfer of the upload
data from the client to the MobiLink
synchronization server.

prepare_for_download Time for the prepare_for_download
event.

start_time Date-time (in ISO-8601 extended
format) for the start of the
synchronization. All fields of the
format must be specified: YYYY-MM-
DD hh:mm:ss.sss or YYYY-MM-DD
hh:mm:ss,sss, depending on your
locale setting.

sync_deadlocks Total number of deadlocks in the
consolidated database that were
detected for the synchronization.

sync_errors Total number of errors that occurred
for the synchronization.

sync_tables Number of client tables that were
involved in the synchronization.

sync_warnings Total number of warnings that
occurred for the synchronization.

Chapter 9 MobiLink Monitor

249

Property Notes

upload Time for data to be uploaded to the
consolidated database.

upload_bytes Number of bytes uploaded from the
synchronization client.

upload_deadlocks Number of deadlocks in the
consolidated database that were
detected during the upload.

upload_deleted_rows Number of row deletions that were
uploaded from the synchronization
client.

upload_errors Number of errors that occurred
during the upload.

upload_inserted_rows Number of row insertions that were
uploaded from the synchronization
client.

upload_updated_rows Number of row updates that were
uploaded from the synchronization
client.

upload_warnings Number of warnings that occurred
during the download.

user Name of the MobiLink client.

verify_upload Time for verifying the
synchronization protocol and
authenticating the synchronization
client.

version Name of the synchronization version.

worker Identifier for the MobiLink worker
thread used for the synchronization in
the form n.m, where n is the stream
and m is the thread number.

Statistical Properties

250

251

C H A P T E R 1 0

Authenticating MobiLink Users

This chapter describes how to manage MobiLink users, including the
mechanisms provided to manage and authenticate their passwords.

Topic Page

About MobiLink users 252

Choosing a user authentication mechanism 254

User authentication architecture 255

Providing initial passwords for users 257

Synchronizations from new users 258

Prompting end users to enter passwords 259

Changing passwords 260

Custom user authentication mechanisms 261

About this chapter

Contents

About MobiLink users

252

About MobiLink users
MobiLink user names and passwords are separate from the user names and
passwords needed to gain access to either the remote or the consolidated
database. MobiLink user names and passwords are used only within the
MobiLink system. They are used to identify, and optionally authenticate,
clients attempting to connect to the MobiLink synchronization server.

You can also use user names to control the behavior of the synchronization
server. You do so using the user name in synchronization scripts. For
example, you can send users different rows, based on their user name.

You can use any of the following methods to register user names in the
consolidated database:

• Use the dbmluser utility.

$ For more information, see "MobiLink user authentication utility"
on page 618.

• Use Sybase Central.

• Specify the -zu+ command line option with dbmlsrv8. In this case,
any existing MobiLink users that have not been added to the
consolidated database are added when they first synchronize.

$ For more information, see "-zu option" on page 405.

The MobiLink user must already exist in a remote database. To add users at
the remote, you have the following options:

• For Adaptive Server Anywhere remotes, use the CREATE
SYNCHRONIZATION USER statement.

$ For more information, see "CREATE SYNCHRONIZATION
USER statement [MobiLink]" on page 335 of the book ASA SQL
Reference Manual.

• For UltraLite remotes, you can either use the user_name field of the
ul_synch_info structure; or in Java, use the SetUserName() method
of the ULSynchInfo class before synchronizing.

$ For more information, see "user_name synchronization parameter"
on page 397 of the book UltraLite User’s Guide, and "password
synchronization parameter" on page 384 of the book UltraLite User’s
Guide.

The MobiLink user name is stored in the ml_user MobiLink system table in
the consolidated database. To ensure correct behavior of the MobiLink
system, each client must be assigned a unique MobiLink user name.

Chapter 10 Authenticating MobiLink Users

253

Although UltraLite and MobiLink user authentication schemes are separate,
you may wish to share the values of UltraLite user IDs with MobiLink user
names for simplicity. This will only work when the UltraLite application is
used by a single user.

$ For more information about UltraLite user authentication, see "Adding
user authentication to your application" on page 85 of the book UltraLite
User’s Guide.

UltraLite user
authentication

Choosing a user authentication mechanism

254

Choosing a user authentication mechanism
User authentication is one part of a security system for protecting your data.

MobiLink provides you with a choice of user authentication mechanisms.
You do not have to use a single installation-wide mechanism; MobiLink lets
you use different authentication mechanisms for different users within the
installation for flexibility.

♦ No MobiLink user authentication If your data is such that you do not
need password protection, you can choose not to use any user
authentication in your installation.

♦ Built-in MobiLink user authentication MobiLink uses the user names
and passwords stored in the ml_user MobiLink system table to perform
authentication.

The built-in mechanism is described in the following sections.

♦ Custom authentication You can use the MobiLink script
authenticate_user to replace the built-in MobiLink user authentication
system with one of your own. For example, depending on your
consolidated database-management system, you may be able to use the
database user authentication instead of the MobiLink system.

$ For more information on custom user authentication mechanisms,
see "Custom user authentication mechanisms" on page 261.

$ For information on other security-related features of MobiLink and its
related products, see the following locations:

♦ "Transport-Layer Security" on page 283

♦ "Encrypting an UltraLite database" on page 46 of the book UltraLite
User’s Guide

♦ "Keeping Your Data Secure" on page 387 of the book ASA Database
Administration Guide.

Chapter 10 Authenticating MobiLink Users

255

User authentication architecture
The MobiLink user authentication system relies on user names and
passwords. You can choose either to let the MobiLink synchronization server
validate the user name and password using a built-in mechanism, or you can
implement your own custom user authentication mechanism.

In the built-in authentication system, both the user name and the password
are stored in the ml_user MobiLink system table in the consolidated
database. The password is stored in hashed form so that applications other
than the MobiLink synchronization server cannot read the ml_user table and
reconstruct the original form of the password. You add user names and
passwords to the consolidated database using Sybase Central or the dbmluser
utility.

$ For more information, see "MobiLink user authentication utility" on
page 618.

When a MobiLink client connects to a MobiLink synchronization server, it
provides the following values.

♦ user name The MobiLink user name. Mandatory. This value typically
matches exactly a user name in the ml_user MobiLink system table.

♦ password The MobiLink password. Optional only if the user is
unknown or if the corresponding password in the ml_user MobiLink
system table is NULL.

♦ new password A new MobiLink password. Optional. MobiLink users
can change their password by setting this value.

The MobiLink synchronization server, upon receiving a connection request
from a MobiLink client, proceeds as follows.

If the MobiLink synchronization server finds the supplied user name in the
ml_user MobiLink system table, compares the supplied password with the
stored value. If the passwords match or the stored password is NULL,
synchronization proceeds. Otherwise, the synchronization server denies the
request and returns an error code to the client.

New users and passwords
If a MobiLink client supplies a user name that is not present in the
ml_user table, the behavior is determined by a MobiLink synchronization
server command line option.

$ For more information, see "Synchronizations from new users" on
page 258.

User authentication architecture

256

Optionally, you can substitute your own user authentication mechanism. You
do so by providing an authenticate_user script. If this script exists, it is
executed instead of the password comparison. The script must return error
codes to indicate the success or failure of the authentication.

The following sections describe how to implement the different pieces of the
authentication system, and describe some specific issues you may encounter.

Custom
authentication

Chapter 10 Authenticating MobiLink Users

257

Providing initial passwords for users
The password for each user is stored along with the user name in the ml_user
table. You can provide initial passwords from Sybase Central, or using the
dbmluser command line utility.

Sybase Central is a convenient way of adding individual users and
passwords. The dbmluser utility is useful for batch additions.

If you create a user with no password, then MobiLink performs no user
authentication for that user: they can connect and synchronize without
supplying a password.

v To provide an initial MobiLink password for a user (Sybase Central):

1 Connect to the consolidated database from Sybase Central using the
MobiLink plug-in.

2 Open the User folder.

3 Double-click Add User. The Add User wizard appears.

4 Supply a user name and an optional password.

5 Click Finish to complete the task.

v To provide initial MobiLink passwords (command line):

1 Create a file with a single user name and password on each line,
separated by white space.

2 Open a command prompt, and execute the dbmluser command line
utility. For example:

dbmluser -c "dsn=my_dsn" -f password-file

In this command line, the -c command line option specifies an ODBC
connection to the consolidated database. The -f option specifies the file
containing the user names and passwords.

$ For information on dblmuser, see "MobiLink user authentication
utility" on page 618.

Synchronizations from new users

258

Synchronizations from new users
Ordinarily, each MobiLink client must provide a valid MobiLink user name
and password to connect to a MobiLink synchronization server.

Setting the -zu+ option when you start the MobiLink synchronization server
allows the MobiLink synchronization server to automatically add new user
names to the ml_user table according to the following rules.

In effect, this option permits new users to create their own MobiLink
accounts, easing administration of new users. This arrangement can be
convenient when the server and clients all operate within a firewall.

If a MobiLink client synchronizes with a user name that is not in the current
ml_user table, MobiLink, by default, takes the following actions:

♦ New user, no password If the user supplied no password, then by
default the user name is added to the ml_user table with a NULL
password. This behavior provides compatibility with earlier releases of
MobiLink that did not allow user authentication.

$ For more information, see "-zu option" on page 405.

♦ New user, password If the user supplies a password, then the user
name and password are both added to the ml_user table and the new user
name becomes a recognized name in your MobiLink system.

♦ New user, new password A new user may provide information in the
new password field, instead of or as well as in the password field. In
either case, the new password setting overrides the password setting, and
the new user is added to the MobiLink system using the new password.

You can change the default behavior by starting the MobiLink
synchronization server using the -zu option. In this case, the MobiLink
synchronization server rejects any attempt to synchronize from a user name
that is not present in the ml_user table.

This setting provides two benefits. First, it reduces the risk of unauthorized
access to the MobiLink synchronization server. Second, it prevents
authorized users from accidentally connecting using an incorrect or
misspelled user name. Such accidents should be avoided because they can
cause the MobiLink system to behave in unpredictable ways.

Preventing
synchronization by
unknown users

Chapter 10 Authenticating MobiLink Users

259

Prompting end users to enter passwords
Each end user must supply a MobiLink user name and password each time
they synchronize from a MobiLink client, unless you choose to disable user
authentication on your MobiLink synchronization server.

v To prompt your end users to enter their MobiLink passwords:

♦ The mechanism for supplying the user name and password is different
for UltraLite and Adaptive Server Anywhere clients.

♦ UltraLite When synchronizing, the UltraLite client must supply a
valid value in the password field of the synchronization structure
(C/C++) or object (Java). For built-in MobiLink synchronization, a
valid password is one that matches the value in the ml_user
MobiLink system table.

Your application should prompt the end user to enter their
MobiLink user name and password before synchronizing.

$ For more information, see "Synchronization parameters" on
page 380 of the book UltraLite User’s Guide.

♦ Adaptive Server Anywhere You can supply a valid password on
the dbmlsync command line. However, if you do not do so, you are
prompted for one in the dbmlsync connection dialog. The latter
method is more secure because command lines are visible to other
processes running on the same computer.

If authentication fails, you are prompted to re-enter the user name
and password.

$ For more information, see "MobiLink synchronization client"
on page 410.

Changing passwords

260

Changing passwords
MobiLink provides a mechanism for end users to change their password. The
interface differs between UltraLite and Adaptive Server Anywhere clients.

v To prompt your end users to enter MobiLink passwords:

♦ The mechanism for supplying the user name and password is different
for UltraLite and Adaptive Server Anywhere clients.

♦ UltraLite When synchronizing, the application must supply the
existing password in the password field of the synchronization
structure and the new password in the new_password field.

$ For more information, see "Synchronization parameters" on
page 380 of the book UltraLite User’s Guide.

♦ Adaptive Server Anywhere Supply a valid existing password
together with the new password on the dbmlsync command line, or
in the dbmlsync connection dialog if you do not supply command
line parameters.

$ For more information, see "MobiLink synchronization client"
on page 410.

The new password is not verified until the next synchronization attempt. For
the dbmlsync utility, or if you prompt at synchronization time in an UltraLite
application, this attempt is almost immediate.

$ An initial password can be set in the consolidated server or on the first
synchronization attempt. For more information, see "Providing initial
passwords for users" on page 257 and "Synchronizations from new users" on
page 258.

Once a password is assigned, you cannot reset the password to NULL from
the client side.

Chapter 10 Authenticating MobiLink Users

261

Custom user authentication mechanisms
You can choose to use a user authentication mechanism other than the built-
in MobiLink mechanism.

To implement your own user authentication mechanism, you must write an
authenticate_user script. The script then overrides the default MobiLink user
authentication mechanism. It does not supplement the default MobiLink
mechanism.

Reasons for using a custom user authentication mechanism include
integration with existing DBMS user authentication schemes, or supplying
custom features, such as minimum password length or password expiry, not
present in the built-in MobiLink mechanism.

The authenticate_user script is executed immediately before, and in the same
transaction as, the begin_synchronization script. The transaction is ended
immediately after the begin_synchronization script.

$ For more information, see "authenticate_user connection event" on
page 446.

User authentication is a natural use of Java synchronization logic, as Java
classes allow you to reach out to other sources of user names and passwords
used in your computing environment, such as applications servers. A simple
sample is included in the directory Samples\MobiLink\JavaAuthentication.

The sample code in
Samples\MobiLink\JavaAuthentication\CustEmpScripts.java implements a
simple user authentication system. On the first synchronization, a MobiLink
user name is added to the login_added table. On subsequent
synchronizations, a row is added to the login_audit table. In this sample, there
is no test before adding a user ID to the login_added table.

A typical authenticate_user SQL script would be a call to a stored procedure
that uses the parameters. The order of the parameters in the call must match
the order above. For example, in an Adaptive Server Anywhere consolidated
database, the format would be as follows:

call my_authentication(?, ?, ?, ?)

where the first argument is the error code, and so on. The error code is an
integer type, and the other parameters are VARCHAR(128).

A Transact-SQL format would be as follows:

execute ? = my_authentication(?, ?, ?)

where the error code is the parameter on the left hand side.

Java user
authentication

SQL user
authentication

Custom user authentication mechanisms

262

263

C H A P T E R 1 1

Synchronizing Through a Web Server

This chapter describes how to route MobiLink synchronization through a
Web server. The method is particularly useful for synchronizing across a
firewall.

Topic Page

Introduction 264

Configuring MobiLink clients and servers for the Redirector 266

Configuring the Redirector (all versions) 268

Configuring NSAPI Redirector for Netscape Web servers 270

Configuring ISAPI Redirector for Microsoft Web servers 272

Configuring the servlet Redirector 273

About this chapter

Contents

Introduction

264

Introduction
This chapter describes how to set up MobiLink synchronization across a
firewall, with the MobiLink synchronization server running inside the
firewall, and the MobiLink clients outside the firewall. Synchronization is
routed through a Web server.

The main reason for routing requests through a Web server is to use existing
Web server and firewall configurations for HTTP or HTTPS
synchronization.

Web servers can be configured to pass requests with specific URLs or ranges
of URLs to extension programs commonly written in the form of perl CGI
scripts, DLLs, or other extension mechanisms. These extension programs
may access external data sources and provide responses for the Web server
to deliver to its clients.

MobiLink includes a Web server extension called the Redirector which
routes requests and responses between a client and the MobiLink
synchronization server. A plug-in such as this is also commonly called a
reverse proxy.

Using the Redirector, you can configure your Web server to route specific
URL requests to one or more computers running MobiLink synchronization
server. The Redirector also implements load-balancing and failover: each
MobiLink synchronization server is tested at set intervals and requests are no
longer sent to a server that is not responding. It also detects when an
MobiLink synchronization server is running again and resumes sending
requests at that time.

Plug-ins are provided for the following Web servers:

♦ Netscape iPlanet Web servers

♦ Microsoft Web servers

♦ Web servers that support the Java Servlet API 2.2

The following sections describe how to configure your Web server to
manage synchronization requests. First, there are generic instructions, and
then there are specific instructions for each type of Web server.

v To set up synchronization through a Web server:

1 Configure the MobiLink clients and MobiLink synchronization server.

$ See "Configuring MobiLink clients and servers for the Redirector"
on page 266.

Overview

Chapter 11 Synchronizing Through a Web Server

265

2 Ensure that the Redirector configuration file is on the same computer as
the Web server.

$ See "Copy redirector.config to the Web server" on page 268.

3 Modify the Redirector configuration file.

$ See "Set up the Redirector configuration file" on page 268.

4 Perform Web server-specific configuration.

$ See "Configuring ISAPI Redirector for Microsoft Web servers" on
page 272, or "Configuring NSAPI Redirector for Netscape Web servers"
on page 270, or "Configuring the servlet Redirector" on page 273.

Configuring MobiLink clients and servers for the Redirector

266

Configuring MobiLink clients and servers for the
Redirector

This section describes how to configure MobiLink clients and the MobiLink
synchronization server for synchronization through a Web server.

Configuring MobiLink clients

Set the following HTTP synchronization stream parameters on the MobiLink
client:

♦ host the name or IP of the Web server.

♦ port the Web server port accepting HTTP requests.

♦ url_suffix This setting depends on the type of Web server you are
using:

♦ For ISAPI Web servers, set this to the following:

exe_dir/iaredirect.dll/ml/

where exe_dir is the location of iaredirect.dll.

♦ For NSAPI Web servers, set this to the following:

mlredirect/ml/

where mlredirect is a name mapped in your obj.conf file.

$ For more information, see the following:

♦ "HTTP stream parameters" on page 403 of the book UltraLite User’s
Guide.

♦ "CREATE SYNCHRONIZATION USER statement [MobiLink]" on
page 335 of the book ASA SQL Reference Manual

Configuring the MobiLink synchronization server

The MobiLink server must be started with the HTTP protocol. The following
synchronization stream parameters apply to requests directed through Web
servers:

Chapter 11 Synchronizing Through a Web Server

267

♦ port for the HTTP protocol, MobiLink defaults to port 80. If the
MobiLink synchronization server is running on the same machine as the
Web server, this port is normally in use by the Web server. If this is the
case you must specify a different port. For example, you could use port
2439, which is the Internet Assigned Numbers Authority (IANA)-
registered port number for the MobiLink synchronization server.

♦ unknown_timeout This is the number of seconds to wait to receive
the HTTP headers on a new (unknown) connection before it is closed.
This setting is optional, and has a default value of 30 seconds.

♦ contd_timeout This is the number of seconds to wait to receive the
next part of a partially completed synchronization before the
synchronization is abandoned. This setting is optional and has a default
value of 30 seconds.

You may wish to increase the timeout parameters if your applications
involve large synchronizations over slow networks.

$ For more information, see "-x option" on page 396.

Configuring the Redirector (all versions)

268

Configuring the Redirector (all versions)
This section describes generic Web server configuration steps to set up the
Redirector:

Copy redirector.config to the Web server

The file redirector.config is provided with the MobiLink synchronization
server installation, in the MobiLink\redirector subdirectory of your
SQL Anywhere directory.

If MobiLink synchronization server is not installed on the same computer as
the Web server, copy redirector.config to the computer that holds the Web
server.

For Microsoft Web servers, copy redirector.config to the directory
Inetpub/scripts. For other Web servers, you can copy redirector.config to any
directory.

Set up the Redirector configuration file

To configure communications between the Web server and MobiLink
synchronization server, you must edit the file redirector.config on the
computer that holds the Web server.

You can set the following directives in this file:

♦ ML used to list the computers running MobiLink synchronization
server, in the form ML=host:port. ML is case sensitive.

♦ SLEEP used to set the interval in seconds at which the Redirector
checks that the servers are functioning. The default is 1800 (30 minutes).
For example, SLEEP=3600. SLEEP is case sensitive.

♦ REDIRECTOR_HOST used to specify the machine name of the Web
server running the Redirector. For example, myCompany.com.

♦ REDIRECTOR_PORT used to specify the port of the Web server
running the Redirector. For example, 80.

♦ ML_CLIENT_TIMEOUT used to ensure that each step of a single
synchronization is directed to the same MobiLink synchronization
server. The default value is 600 seconds (ten minutes).

Chapter 11 Synchronizing Through a Web Server

269

Information is maintained by the MobiLink synchronization server for
the duration of a synchronization, so each step of a synchronization
should be handled by the same server. The Redirector maintains an
association between client and server for the duration of
ML_CLIENT_TIMEOUT. The value of this parameter should be greater
than the longest step in any user’s synchronization.

The following rules apply to redirector.config:

♦ The maximum line length is 300 characters.

♦ Comments start with the hash character (#).

♦ You cannot include spaces or tabs in the directive definitions.

You must also follow configuration procedures for the Web server that you
are planning to use. Those procedures follow.

Following is a sample redirector.config file. This file:

♦ specifies that the Redirector should check every 1800 seconds that the
servers are functioning.

♦ defines three computers running MobiLink synchronization server that
are able to process requests.

♦ specifies the host name and port of the web server where the Redirector
resides.

SLEEP=1800
ML=myServ-pc:80
ML=209.123.123.1:8080
ML=myCompany.com:8081
REDIRECTOR_HOST=test2.ianywhere.com
REDIRECTOR_PORT=8081

Note

Example

Configuring NSAPI Redirector for Netscape Web servers

270

Configuring NSAPI Redirector for Netscape Web
servers

This section describes setup steps specific to Netscape iPlanet Web servers.

v To configure NSAPI Redirector for iPlanet:

1 Complete the steps in "Configuring the Redirector (all versions)" on
page 268.

2 If necessary, copy the file iaredirect.dll to the computer that holds the
Web server. This file is installed with MobiLink synchronization server,
in the MobiLink\redirector\nsapi subdirectory of your SQL Anywhere
directory.

3 Update the iPlanet Web server configuration file obj.conf as follows.

Sample file provided
A complete sample copy of obj.conf, preconfigured for MobiLink
synchronization server, is provided in MobiLink\redirector\nsapi, and
is called obj.conf.example. You can use this sample file to confirm
where the following sections fit in to the file.

Update the following sections of obj.conf.

♦ Specify where iaredirect.dll and redirector.config are located.

At the end of the Init section, add the following text, where
<location> is the actual location of the files. (iaredirect.dll and
redirector.config can be in different locations, although both must be
on the same computer as the Web server.)

Init fn="load-modules"
shlib="<location>/iaredirect.dll"
funcs="redirector,initialize_redirector"
Init fn="initialize_redirector"
configFile="<location>/redirector.config"

♦ Specify the URL paths for MobiLink requests.

At the beginning of the "default object" section, add the following
text. This section should appear exactly as provided below, except
that you can change mlredirect to whatever you wish. All requests
of the form http://host:port/mlredirect/ml/* will be sent to one of the
MobiLink synchronization servers running with the Redirector.

<Object name=default>
NameTrans fn="assign-name" from="/mlredirect/ml/*"
name="redirectToML"

Chapter 11 Synchronizing Through a Web Server

271

♦ Specify the objects that are called by the Redirector.

After the "default object" section, add two new objects, as follows:

<Object name="redirectToML">
Service fn="redirector" serverType="ml"
</Object>

4 Set the buffer size for the MobiLink upload streams.

These streams are sent using chunked HTTP. The default buffer size of
8 Kb is too small for some uploads.

Add a directive to your Web server’s magnus.conf file to set the buffer
size (in bytes) for the upload and download stream. For example:

ChunkedRequestBufferSize=2000000

This directive increases the buffer to 2 Mb. The value must be sufficient
to accommodate the size of the uploaded data.

Following are examples of the sections of obj.conf that configure the
Netscape iPlanet Web Server to route requests to MobiLink synchronization
server.

Init fn="load-modules" shlib="D:/iaredirect.dll"
funcs="redirector,initialize_redirector"
Init fn=" initialize_redirector " configFile="D:/redirector.config"
For iPlanet 6.0 service pack 1 the preceding Init lines should be
placed in the magnus.conf file, rather than the obj.conf file.

…

<Object name=default>
NameTrans fn="assign-name" from="/mlredirect/ml/*" name="redirectToML"

…

<Object name="redirectToML">
Service fn="redirector" serverType="ml"
</Object>

Example

Configuring ISAPI Redirector for Microsoft Web servers

272

Configuring ISAPI Redirector for Microsoft Web
servers

This section contains instructions for configuring the Redirector for
Microsoft Web servers to work with MobiLink.

v To configure ISAPI Redirector for Microsoft Web servers:

1 Complete the steps in "Configuring the Redirector (all versions)" on
page 268.

2 Copy the file iaredirect.dll, which is included with the MobiLink
synchronization server installation, to Inetpub/scripts on the computer
that holds the Web server.

The file iaredirect.dll is installed with MobiLink synchronization server,
in MobiLink\redirector\isapi. under your SQL Anywhere directory

The directory Inetpub/scripts is in the Microsoft Web server installation
directory.

3 Copy the file redirector.config to Inetpub/scripts on the computer that
holds the Web server.

The directory Inetpub/scripts is created during the Web server installation
with execute permissions. You can put redirector.config and iaredirect.dll in a
different directory only if you use the IIS utility Internet Services Manager to
give execute permissions to the directory.

Note

Chapter 11 Synchronizing Through a Web Server

273

Configuring the servlet Redirector
The servlet version of the Redirector can be installed on a variety of Web
servers that support Java Servlet API 2.2. For this release, it is supported for
Apache Tomcat.

v To configure the servlet Redirector for Tomcat:

1 If necessary, change the Tomcat HTTP port.

Tomcat binds to port 8080 by default. If another Web server is using
8080 or there is some other conflict, you need to change the port
number. To do this, open the file: %CATALINA_HOME%/conf/server.xml
and search for 8080 (you will find it in a <Connector> tag). Change it to
a port that isn’t in use.

2 Install the servlet Redirector as a Web application:

♦ Copy the file iaredirect.war to %CATALINA_HOME%/webapps.

♦ Shut down and restart Tomcat. It will expand the war file and create
the directory iaredirect for the Redirector Web application.

♦ Open the file %CATALINA_HOME%/webapps/iaredirect/WEB-
INF/web.xml, and search for redirector.config (you’ll find it under
the <init-param> tag). Enter the correct path for the redirector.config
file. For example, change redirector.config to d:/redirector.config.
You must use a forward slash.

♦ Shut down and restart Tomcat. This allows the changes to take
effect.

♦ Delete the file iaredirect.war. (It has been deployed and is no longer
needed.)

The redirector will now be invoked with the following HTTP settings.
Note that the url_suffix must exactly match the one below.

host=<tomcat host name>;port=<tomcat port
number>;url_suffix=iaredirect/servlet/redirect/ml/;

Configuring the servlet Redirector

274

275

C H A P T E R 1 2

Running MobiLink Outside the Current
Session

This chapter describes how to run the MobiLink synchronization server as a
daemon or service.

Topic Page

Running the UNIX MobiLink server as a daemon 276

Running the Windows MobiLink server as a service 277

Troubleshooting MobiLink server startup 282

You can set up MobiLink synchronization server to be available all the time.
To make this easier, you can run the MobiLink synchronization server for
Windows and for UNIX in such a way that, when you log off the computer it
remains running. The way you do this depends on your operating system.

♦ UNIX daemon You can run the MobiLink synchronization server as a
daemon using the -ud command line option, enabling the MobiLink
server to run in the background, and to continue running after you log
off.

♦ Windows service You can run the Windows MobiLink server as a
service.

About this chapter

Contents

Running the UNIX MobiLink server as a daemon

276

Running the UNIX MobiLink server as a daemon
To run the UNIX MobiLink server in the background, and to enable it to run
independently of the current session, you run it as a daemon.

v To run the UNIX MobiLink server as a daemon:

♦ Use the -ud command line option when starting the MobiLink server.
For example:

dbmlsrv8 -c "dsn=ASA 8.0 Sample;uid=DBA;pwd=SQL" -ud

$ For more information, see "-ud option" on page 393.

Chapter 12 Running MobiLink Outside the Current Session

277

Running the Windows MobiLink server as a
service

To run the Windows MobiLink server in the background, and to enable it to
run independently of the current session, you run it as a service.

You can carry out the following service management tasks from the
command line, or in the Services folder in Sybase Central:

♦ Add, edit, and remove services.

♦ Start, stop, and pause services.

♦ Modify the parameters governing a service.

♦ Add databases to a service, so you can run several databases at one time.

Adding, modifying, and removing services

The service icons in Sybase Central display the current state of each service
using a traffic light icon that displays running, paused, or stopped.

v To add a new service (Sybase Central):

1 In Sybase Central, open the Services folder.

2 Double-click Add Service.

3 Follow the instructions in the wizard.

You can also use the dbsvc utility to create the service. For more
information, see "Managing services using the dbsvc command-line utility"
on page 499 of the book ASA Database Administration Guide.

v To remove a service (Sybase Central):

1 In Sybase Central, open the Services folder.

2 In the right pane, right-click the icon of the service you want to remove
and choose Delete from the popup menu.

v To change the parameters for a service:

1 In Sybase Central, open the Services folder.

2 In the right pane, right-click the service you want to change and choose
Properties from the popup menu.

Running the Windows MobiLink server as a service

278

3 Alter the parameters as needed on the tabs of the Service property sheet.

4 Click OK when finished.

Changes to a service configuration take effect the next time the service is
started.

The following options govern startup behavior for Adaptive Server
Anywhere services. You can set them on the General tab of the service
property sheet.

♦ Automatic If you choose Automatic, the service starts whenever the
Windows operating system starts. This setting is appropriate for
database servers and other applications running all the time.

♦ Manual If you choose Manual, the service starts only when a user with
Administrator permissions starts it. For information about Administrator
permissions, see your Windows documentation.

♦ Disabled If you choose Disabled, the service will not start.

The startup option is applied the next time Windows is started.

The Configuration tab of the service property sheet provides a text box for
typing command line options for a service. Do not type the name of the
program executable in this box.

For example, to start a MobiLink synchronization service with verbose
logging and three worker threads, type the following in the Parameters box:

-c "dsn=ASA 8.0 Sample;uid=DBA;pwd=SQL"
-vc
-w 3

$ The command line options for a service are the same as those for the
executable. For a full description of the command line options for MobiLink,
see "MobiLink synchronization server" on page 380.

You can choose which account the service runs under. Most services run
under the special LocalSystem account, which is the default option for
services. You can set the service to log on under another account by opening
the Account tab on the Service property sheet, and typing the account
information.

If you choose to run the service under an account other than LocalSystem,
that account must have the "log on as a service" privilege. This can be
granted from the Windows User Manager application, under Advanced
Privileges.

Whether or not an icon for the service appears on the taskbar or desktop
depends on the account you select, and whether Allow Service to Interact
with Desktop is checked, as follows:

Setting the startup
option

Specifying
command line
options

Setting account
options

Chapter 12 Running MobiLink Outside the Current Session

279

♦ If a service runs under LocalSystem, and Allow Service to Interact with
Desktop is checked in the service property sheet, an icon appears on the
desktop of every user logged in to Windows NT/2000/XP on the
computer running the service. Consequently, any user can open the
application window and stop the program running as a service.

♦ If a service runs under LocalSystem, and Allow Service to Interact with
Desktop is unchecked in the service property sheet, no icon appears on
the desktop for any user. Only users with permissions to change the state
of services can stop the service.

♦ If a service runs under another account, no icon appears on the desktop.
Only users with permissions to change the state of services can stop the
service.

To change the program executable file associated with a service in Sybase
Central, click the Configuration tab on the Service property sheet and type
the new path and file name in the File Name box.

If you move an executable file to a new directory, you must modify this
entry.

v To start, stop, or pause a service:

1 In Sybase Central, open the Services folder.

2 Right-click the service and choose Start, Stop, or Pause from the popup
menu.

To resume a paused service, right-click the service and select Continue
from the popup menu.

If you start a service, it keeps running until you stop it. Closing Sybase
Central or logging off does not stop the service.

Stopping a service closes all connections to the database and stops the
database server. For other applications, the program closes down.

Pausing a service prevents any further action being taken by the application.
It does not shut the application down or (in the case of server services) close
any client connections to the database. Most users do not need to pause their
services.

Running more than one service at a time

Although you can use the Windows Service Manager in the Control Panel
for some tasks, you cannot install or configure an Adaptive Server Anywhere
service from the Windows Service Manager. You can use Sybase Central to
carry out all the service management for Adaptive Server Anywhere.

Changing the
executable file

Starting, stopping,
and pausing
services

Running the Windows MobiLink server as a service

280

When you open the Windows Service Manager from the Windows Control
Panel, a list of services appears. The names of the Adaptive Server
Anywhere services are formed from the Service Name you provided when
installing the service, prefixed by Adaptive Server Anywhere. All the
installed services appear together in the list.

This section describes topics specific to running more than one service at a
time.

In some circumstances you may wish to run more than one executable as a
service, and these executables may depend on each other. For example, you
must run the MobiLink synchronization server and the database server in
order to synchronize.

In cases such as these, the services must start in the proper order. If a
MobiLink synchronization service starts up before the database server has
started, it fails because it cannot find the database server. The sequence must
be such that the database server is running when you start the MobiLink
server.

You can prevent these problems using service groups, which you manage
from Sybase Central.

You can assign each service on your system to be a member of a service
group. By default, each service belongs to a group, as listed in the following
table.

Service Default group

Network server ASANYServer

MobiLink Synchronization Server ASANYMobiLink

Before you can configure your services to ensure they start in the correct
order, you must check that your service is a member of an appropriate group.
You can check which group a service belongs to, and change this group,
from Sybase Central.

v To check and change which group a service belongs to:

1 Open the Services folder.

2 Right-click the service and choose Properties from the popup menu.

3 Click the Dependencies tab. The top text box displays the name of the
group the service belongs to.

4 Click Change to display a list of available groups on your system.

5 Select one of the groups, or type a name for a new group.

6 Click OK to assign the service to that group.

Service
dependencies

Service groups

Chapter 12 Running MobiLink Outside the Current Session

281

With Sybase Central, you can specify dependencies for a service. For
example:

♦ You can ensure that at least one member of each of a list of service
groups has started before the current service.

♦ You can ensure that any service starts before the current service.

v To add a service or group to a list of dependencies:

1 Open the Services folder.

2 Right-click the service and choose Properties from the popup menu.

3 Click the Dependencies tab.

4 Click Add Services or Add Service Groups to add a service or group to
the list of dependencies.

5 Select one of the services or groups from the list.

6 Click OK to add the service or group to the list of dependencies.

Managing service
dependencies

Troubleshooting MobiLink server startup

282

Troubleshooting MobiLink server startup
This section describes some common problems when starting the MobiLink
server.

Ensure that network communication software is running

Appropriate network communication software must be installed and running
before you run the MobiLink server. If you are running reliable network
software with just one network installed, this should be straightforward. You
should confirm that other software requiring network communications is
working properly before running the MobiLink server.

If you are running under the TCP/IP protocol, you may want to confirm that
ping and telnet are working properly. The ping and telnet applications are
provided with many TCP/IP protocol stacks.

Debugging network communications startup problems

If you are having problems establishing a connection across a network, you
can use debugging options at both client and server to diagnose problems. On
the server, you use the -z command line option. The startup information
appears on the server window: you can use the -o option to log the results to
an output file.

283

C H A P T E R 1 3

Transport-Layer Security

This chapter describes transport-layer security (TLS). This security
mechnanism protects messages as they travel between a MobiLink client and
the MobiLink synchronization server or between a database client and the
database server.

Transport-layer security is a separately licensable component and must be
ordered before you can install it. To order this component, see the card in
your SQL Anywhere Studio package or see
http://www.sybase.com/detail?id=1015780.

Topic Page

About transport-layer security 284

Invoking transport-layer security 293

Certificate authorities 298

Certificate chains 299

Enterprise root certificates 300

Globally signed certificates 305

Obtaining server-authentication certificates 307

Verifying certificate fields 310

About this chapter

Contents

About transport-layer security

284

About transport-layer security
MobiLink transport-layer security uses encryption to protect the
confidentiality and integrity of the synchronization data stream as it passes
between a MobiLink client and the MobiLink synchronization server. This
feature is important whenever this communication must travel over a public
or wireless network. Under such circumstances, someone with a suitable
radio or network connection could otherwise intercept your data.

Furthermore, transport-layer security allows a client application to verify the
identity of a MobiLink synchronization server. Hence, client applications can
ensure that they synchronize only with MobiLink synchronization servers
they trust.

This security is implemented by means of digital certificates. You can
achieve a variety of security objectives using different types of certificates
and configuring them in different ways. This section introduces the concepts
that underlie public-key cryptography and explains how they apply to digital
certificates. Examples illustrate several typical arrangements, each offering
different benefits.

MobiLink transport-layer security is implemented using Certicom encryption
technology. This public-key cryptographic technology uses an RSA cipher
suite or an elliptic-curve cipher suite. When transport-layer security is
invoked, all messages sent between the client and server are encrypted using
a 128-bit cipher.

To invoke the server authentication features, you create and use digital
certificates. Different types of certificates and different arrangements of
these certificates allow you to provide various levels of security. You create
the certificates using tools included with SQL Anywhere Studio.

About public-key cryptography

Public key cryptography makes use of mathematical systems that work with
pairs of very large, associated numbers. These numbers, called keys, have
particular properties. Each key can be used to encrypt information. Once
encrypted, these messages can only be decrypted using the matching key.

One of the keys, called the public key, is published in a public forum. It can
be used to encrypt information to be sent to the owner of the public key. The
owner keeps the second key, called the private key, secret. A message
encrypted with the public key can be decrypted only using the matching
private key. Since the public key is published, anyone can create a message
that only the owner of the private key can read.

Invoking trasport-
layer security

Chapter 13 Transport-Layer Security

285

In addition, a message encrypted with the private key can be decrypted by
anyone who knows the public key. Such a message can be created only by
someone who knows the private key. If the private key is kept secret, the
owner can prove his or her identity by constructing such a message.

It is essential that the private key cannot be found easily through knowledge
of the public key. The ease with which the private key can be derived from
the public key is often associated with the strength of the cryptosystem and
the size (in bits) of the public key. Another aspect of the private key is that it
must be difficult to guess. The generation of high-quality private keys must
incorporate psuedo-random data of high quality. If the data is predictable, it
is easier for an adversary to guess the keys. To meet this criterion, the tools
provided with MobiLink gather pseudo-random data from the operating
system when generating new private and public key pairs.

Public-key cryptography has many advantages. Using the public key, anyone
can send a message that can be read only by the person who knows the
matching private key. Likewise, someone can prove that they know a private
key by using it to encrypt a message. To verify the identity of a key owner,
you can send an arbitrary message and ask them to encrypt. You can be sure
that person knows the private key if you can decrypt the resulting message
with their public key.

These features make public-key cryptography especially useful when
establishing a secure communication link and happen automatically when
you establish a synchronization connection using transport-layer security.

Once the secure link is established, the server and client automatically switch
to a symmetric-key system of equivalent strength. In a symmetric system, the
same key is used to encrypt and decrypt messages. This type of symmetric
cipher can be computed more efficiently, reducing the computation time
required to encrypt and decrypt messages.

The role of
public-key
cryptography

About transport-layer security

286

Transport-layer security works by filtering all incoming and all out-going
communication through the cipher of your choice. The translation occurs
between the MobiLink synchronization server and the communication
protocol of your choice. For example, adding security to a TCP/IP
connection affects the architecture as shown in the following diagram:

connections with
remote sites

No security Certicom TLS security

connections with
remote sites

TCP/IP

TCP/IP

MobiLink MobiLink

Certicom TLS

Transport-level security requires additional communication between a
MobiLink client and the MobiLink synchronization server before the upload
stream is sent. When a client initiates synchronization, it passes a message to
the server. The client encrypts this message using the server’s public key.
The server decrypts this message using its private key. Initially, the server
encrypts all messages to the client using the client’s public key.

While this public-key/private-key cipher is secure as long as the private keys
are kept secret, the encryption and decryption process is computationally
intensive. To make further communication more efficient, the client and
server agree upon and exchange another key and switch to a symmetric key
cipher. They use this key and cipher for the rest of their communication
because the symmetric cipher allows data to be encrypted and decrypted
more efficiently.

How transport-
layer security
works

Chapter 13 Transport-Layer Security

287

Client architecture

To synchronize with a MobiLink synchronization server by secure means,
the client must use the same cipher suite as the server. All messages received
from the server via a communication protocol, such as TCP/IP, are decrypted
before being passed to the remote MobiLink client. The following diagram
depicts how Certicom TLS cipher suite is added to a client using TCP/IP to
communicate with a MobiLink synchronization server:

MobiLink synchronization
server

TCP/IP

client applications

client
data
store

Certicom TLS

Digital certificates

A digital certificate is an electronic document that identifies a person or
entity and contains a copy of their public key. Each certificate includes a
public key so that anyone can communicate securely with the person or
entity by encrypting information with this public key. Digital certificates
conform to a standardized file format that contains the following
information:

♦ Identity information, such as the name and address of the certificate
owner.

About transport-layer security

288

♦ Public key.

♦ Expiry date.

♦ One or more digital signatures.

A digital signature provides a means to detect whether a certificate has been
altered. A digital signature is a cryptographic operation created by
calculating a value, called a message digest, from the identity information
and the public key.

A message digest is a bit-value designed to change if any part of the
certificate changes. The algorithm used to calculate the message digest is
known to all users of the certificates. The correct value is encrypted with the
private key contained in the certificate. Thus, anyone can detect alteration
using the algorithm to calculate the message digest, using the public key to
decrypt the message digest contained in the certificate, and comparing the
two values.

A certificate constructed in this manner is called a self-signed certificate
because the digital signature is constructed with the matching private key.
Such a certificate cannot be altered without knowledge of the private key.

Digital certificates play the role of identity cards. The signatures prevent
alteration because as long as the private keys used to create the signatures are
kept secret, the digital certificate cannot be altered.

The role of digital certificates

A MobiLink synchronization server must be able to identify itself to clients
with its own server certificate. The client must ensure that the certificate is
authentic. To do so, the client must already have a trusted copy of the public
certificate. Alternatively, the server’s certificate may be signed by another
certificate. In the latter case, the client must have a reliable copy of the
signing certificate.

The MobiLink synchronization server must have access to its public
certificate and to the private key for this certificate. This information is
contained in a server identity. A server certificate is constructed by
appending the private key to the matching public certificate.

Digital signatures

The importance of
digital certificates

Chapter 13 Transport-Layer Security

289

The following figure displays a sample server certificate. This certificate is a
server identity, suitable for use by a MobiLink synchronization server. This
particular certificate has been signed by another certificate. The file contains
both public certificates and the server’s password.

-----BEGIN CERTIFICATE-----

MIIBqDCCAWSgAwIBAgIFMTIzNDUwCwYHKoZIzj0EAQUAMGsxDDAKBgNVBAYTA1VT

QTELMAkGA1UECBMCQ0ExEzARBgNVBAcTCkVtZXJ5dmlsbGUxFDASBgNVBAoUC1N5

YmFzZSBJbmMuMQ8wDQYDVQQLFAZTeWJhc2UxEjAQBgNVBAMUCVN5YmFzZSBDQTAe

Fw05OTExMTcxODA1MzZaFw0wOTExMTcxODA1MzZaMGcxDDAKBgNVBAYTA1VTQTEL

MAkGA1UECBMCQ0ExEzARBgNVBAcTCkVtZXJ5dmlsbGUxFDASBgNVBAoUC1N5YmFz

ZSBJbmMuMQwwCgYDVQQLFANNRUMxETAPBgNVBAMUCE1vYmlsaW5rMCswEAYHKoZI

zj0CAQYFK4EEAAEDFwACAx0L37T06bGehBNlRVJcma/Y0h5xoyYwJDAOBgNVHQ8B

Af8EBAMCAf4wEgYDVR0TAQH/BAgwBgEB/wIBCjALBgcqhkjOPQQBBQADMQAwLgIV

Ad+4IluT7/1URk7SfZTTiYqnR/rAAhUCCQRGc62100Mtt69TxusuwBvI2OY=

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

MIIBrDCCAWigAwIBAgIFMTIzNDUwCwYHKoZIzj0EAQUAMGsxDDAKBgNVBAYTA1VT

QTELMAkGA1UECBMCQ0ExEzARBgNVBAcTCkVtZXJ5dmlsbGUxFDASBgNVBAoUC1N5

YmFzZSBJbmMuMQ8wDQYDVQQLFAZTeWJhc2UxEjAQBgNVBAMUCVN5YmFzZSBDQTAe

Fw05OTExMTcxODA0MjNaFw0wOTExMTcxODA0MjNaMGsxDDAKBgNVBAYTA1VTQTEL

MAkGA1UECBMCQ0ExEzARBgNVBAcTCkVtZXJ5dmlsbGUxFDASBgNVBAoUC1N5YmFz

ZSBJbmMuMQ8wDQYDVQQLFAZTeWJhc2UxEjAQBgNVBAMUCVN5YmFzZSBDQTArMBAG

ByqGSM49AgEGBSuBBAABAxcAAgFJVb7gQh0cy6XgxsRQUPaMCmIyk6MmMCQwDgYD

VR0PAQH/BAQDAgH+MBIGA1UdEwEB/wQIMAYBAf8CAQowCwYHKoZIzj0EAQUAAzEA

MC4CFQITRvY7k6c3jy37KyC4iDj6UNGWnQIVA/qAjA8SA2W7SyAfQ23oCY7n29Ss

-----END CERTIFICATE-----

-----BEGIN ENCRYPTED PRIVATE KEY-----

ME4wGgYJKoZIhvcNAQUDMA0ECL+NqY7WeMr/AgEFBDAZTKkSUdCw2sUC45GKQaTR

xc1epiZwr9g5jm6wK8cCqOBfgZxs/Ne8eC2sn2klqlM=

-----END ENCRYPTED PRIVATE KEY-----

root certificate

server’s certificate

server’s private key
(encrypted with password)

Since other users may have access to the computer running the MobiLink
synchronization server, the file containing the private key is protected by a
password. This password is intended to maintain the honesty of the people
given access to the computer. It does not provide an adequate barrier to an
outside attack as the password is only a few characters in length. To further
protect the private key, outsiders must be denied access to the MobiLink
synchronization server by a firewall, or by other traditional means.

Instead of being signed directly by the certificate authority, the server’s
certificate may be the first certificate in a certificate chain. In this case, the
client must trust the owners of all certificates and must have a trusted copy of
the final certificate in the chain, called the root certificate. Such a certificate
file would have a structure similar to that displayed above, but could contain
a longer list of certificates.

About transport-layer security

290

Using chains of certificates

A certificate may be signed by other certificates, or it may be self-signed,
which means it is signed only with its own private key. A sequence of public
certificates, each signed by the next, is called a certificate chain. At one end
of a typical chain is a certificate used for a particular MobiLink
synchronization server. At the other end is a certificate, signed by no other
certificates, called the root certificate.

You can arrange certificates in various ways, depending on your
requirements. The following sections describe how to construct and use
certificate chains to achieve particular security goals. The following topics
are covered:

♦ If you have only a single server, the simplest setup is to create a self-
signed certificate. The only disadvantage is that the private key for the
certificate must be held on the synchronization server, where it is harder
to protect.

♦ An enterprise root certificate is of particular benefit to organizations
using more than one MobiLink synchronization server. In this setup,
MobiLink clients need keep only a copy of this root certificate to
recognize any MobiLink synchronization server issuing a certificate
signed by this root certificate.

♦ Commercial certificate authorities can benefit organizations that require
the utmost in security. These organizations can help in two ways. First,
the root certificates they use are of the highest possible quality, making
these certificates somewhat less prone to attack. Secondly, commercial
certificate authorities can provide a trusted third party when two
companies wish to communicate securely but are not familiar with each
other.

♦ You can, and in some cases should, use the facilities provided to verify
certificate fields. This precaution is appropriate in many scenarios, but is
particularly so when using a globally signed certificate. In this case, you
are unlikely to want your clients to trust certificates that your certificate
authority has signed for other customers.

In all cases, you must ensure that the MobiLink command line and log file
are secure. This is best done using a firewall and by otherwise limiting
access to the computer running the MobiLink synchronization server.

MobiLink transport-layer security is a flexible mechanism that lets you
achieve the security important to your setup. The basic system allows you to
keep information private, while certificates ensure MobiLink clients that they
are talking to a trusted MobiLink synchronization server.

Chapter 13 Transport-Layer Security

291

Server authentication

One method of breaking a system is to masquerade as the server. The client
connects to what it thinks is the server, but the connection is unknowingly
made to another, hostile server. To guard against this form of attack, the
server can use a digital certificate. A digital certificate plays the role of an
identity card.

Each digital certificate contains a public encryption key and information
about the owner’s identity. The certificates are designed in such a way that
they can be altered only by someone who knows the matching private key.
As long as this private key is kept a secret, clients can safely assume the
identity information accurately identifies a server. To ensure that they are
talking to the correct server, clients ask the server to prove that it knows the
matching private key. The server can do so by decrypting a message that has
been encrypted with the public key shown in the certificate.

Security tips

If you have only a single server, the simplest setup is to create a self-signed
certificate. The only disadvantage is that the private key for the certificate
must be held on the synchronization server, where it is harder to protect.

An enterprise root certificate is of particular benefit to organizations using
more than one MobiLink synchronization server. In this setup, MobiLink
clients need keep only a copy of this root certificate to recognize any
MobiLink synchronization server issuing a certificate signed by this root
certificate.

Commercial certificate authorities can benefit organizations that require the
utmost in security. These organizations can help in two ways. First, the root
certificates they use are of the highest possible quality, making these
certificates somewhat less prone to attack. Secondly, commercial certificate
authorities can provide a trusted third party when two companies wish to
communicate securely but are not familiar with each other.

You can, and in some cases should, use the facilities provided to verify
certificate fields. This precaution is appropriate in many scenarios, but is
particularly so when using a globally signed certificate. In this case, you are
unlikely to want your clients to trust certificates that your certificate
authority has signed for other customers.

In all cases, you must ensure that the MobiLink command line and log file
are secure. This is best done using a firewall and by otherwise limiting
access to the computer running the MobiLink synchronization server.

About transport-layer security

292

MobiLink transport-layer security is a flexible mechanism that lets you
achieve the security important to your setup. The basic system allows you to
keep information private, but certificates ensure MobiLink clients that they
are talking to a trusted MobiLink synchronization server.

Chapter 13 Transport-Layer Security

293

Invoking transport-layer security
You can use transport-layer security when using the TCP/IP, HTTP,
or HTTPS communication protocols. For TCP/IP and HTTP, you can use
either RSA or elliptic-curve encryption. For HTTPS, you can use RSA
encryption.

To invoke transport-layer security, you must first set it up for the client,
storing the settings in the publication, subscription, or MobiLink user. You
then invoke server authentication on the dbmlsrv8 command line.

$ For information about how to invoke transport-layer security on
Adaptive Server Anywhere clients, see "CREATE SYNCHRONIZATION
USER statement [MobiLink]" on page 335 of the book ASA SQL Reference
Manual.

$ For information about how to invoke server authentication for UltraLite
clients, see "Adding synchronization to your application" on page 94 of the
book UltraLite User’s Guide.

$ For information about how to invoke server authentication for Adaptive
Server Anywhere, see "-x option" on page 396.

The Certicom security software built into MobiLink uses certificates for the
purpose of server identification. Two sample certificates are provided with
Adaptive Server Anywhere, for elliptic-curve and for RSA encryption. The
sample elliptic-curve certificate is called sample.crt and the password is
tJ1#m6+W. The sample RSA certificate is called rsaserver.crt and the
password is test.

Caution
The sample certificates should be used for testing purposes only. The
sample certificates provide no security in deployed situations because
they and their corresponding passwords are widely distributed with
Sybase software. To protect your system, you must create your own
certificate.

The MobiLink synchronization server screen displays informational
messages on startup. These messages are also sent to the log file if you start
the server with the –o option. You can use the –v+ option to provide more
detailed messages.

If Certicom security starts properly, the informational messages confirm this
fact. The absence of such messages indicates that Certicom security has not
started properly.

Confirming proper
startup

Invoking transport-layer security

294

Self-signed certificates

SQL Anywhere Studio includes tools for working with certificates. These are
included in the distribution if your license permits it. If so, you can choose to
install these security components.

A utility named gencert allows you to generate new certificates. Since
certificates are normally written in a machine-readable format, another
utility, named readcert, displays the contents of a certificate in
human-readable format.

You can make a number of types of certificates with the gencert utility. The
easiest type to make is a self-signed (root) certificate, as no other signing
certificate is required.

public information
and

public key

signature

Self-signed public
certificate

Use matching server
identity with one MobiLink

synchronization server

Give a trusted copy of the
public certificate to each

client

The main advantage of a setup with only one root certificate is simplicity;
you need create only one certificate. This setup is often sufficient for simple
setups involving only one MobiLink synchronization server. If you operate
multiple MobiLink synchronization servers, an enterprise level certificate,
discussed later, is often more convenient.

The biggest disadvantage is that a self-signed certificate is easier than other
types to forge. This type of attack can be accomplished by creating a
counterfeit certificate using a different key pair. Other types of certificates
are more secure because they bear more than one digital signature.

Chapter 13 Transport-Layer Security

295

Making a new self-signed certificate

To generate a root certificate, start the gencert utility from a command
prompt using the –r option. The utility prompts you to enter the identity
information, the certificate password and expiry date, and the names of the
new certificate files.

In the following procedure, you are prompted for names for the certificate,
private key, and server identity files. MobiLink accepts any name and
extension for these files. However, Windows only recognizes .crt and .cer
extensions as certificate files.

In the following procedure, an RSA certificate is generated. Alternatively,
you can generate an elliptic-curve certificate by choosing certificate type
ECC.

>gencert -r
Certificate Generation Tool
Choose certificate type ((R)SA or (E)CC): R
Enter key length (512-2048): 2048
Generating key pair...
Country: CA
State/Province: Ontario
Locality: Waterloo
Organization: Sybase, Inc.
Organizational Unit: MEC
Common Name: MobiLink
Serial Number: 2000.02.29.01
Certificate valid for how many years: 2
Enter password to protect private key: password
Enter file path to save certificate: self.crt
Enter file path to save private key: self.pri
Enter file path to save server identity: serv1.crt

The response to each question should be a string, except for the number of
years to the expiry date, which must be an integer.

The utility creates three files, which in this example are called self.crt,
self.pri, and serv1.crt.

♦ self.crt This file contains the new certificate, including the identity
information, public key, expiry date, and signature. You can give out
copies of this file to people whom you wish to contact you.

♦ self.pri This file contains the private key that matches the public key
encoded in the certificate. The private key is encoded using the
password you supplied, providing a modest barrier to others with access
to your computer. However, since password encryption is not very
secure, you must restrict access to this file to maintain secrecy.

Invoking transport-layer security

296

♦ serv1.crt This file contains the same information as the above two
files, combined into one file. It is intended for use with a MobiLink
synchronization server. The server sends the public information to
identify itself to clients. It requires the private key to decode messages
returned by the clients. You must restrict access to this file. It, too,
contains a copy of the private key, protected only by the password.

public information
and

public key

signature(s)

private key

public information
and

public key

signature(s)

private key

Public certificate

Private key file

Server identity

You can create a server identity certificate
by concatenating a public certificate and

the matching private file.

The server certificate contains the information in the public and private
certificate files. You can make a server certificate by concatenating a public
certificate and the file containing the private key.

Using a self-signed certificate

You can use the self-signed certificate for server authentication by following
these steps:

1 Supply a copy of the certificate to all clients. When the client first
contacts the MobiLink synchronization server, the server will send them
a copy of the public certificate, self.crt. The client can detect fake
certificates by comparing the one sent by the server with the copy the
client already has.

2 Tell each client that it is to trust only servers that can decrypt messages
encoded using the public key contained within the copy of the supplied
public certificate. For Adaptive Server Anywhere clients, you do so
using the trusted_certificates security parameter. For example, you can
tell an Adaptive Server Anywhere client to trust only the self.crt
certificate by including the following parameter in the address clause of
the synchronization subscription:

Chapter 13 Transport-Layer Security

297

CREATE SYNCHRONIZATION SUBSCRIPTION
FOR ’user001’
TO test
ADDRESS ’security=ecc_tls (
 trusted_certificates=self.crt)’

To tell an UltraLite client to trust only the desired certificate, name the
trusted certificate using the –r option when running the UltraLite
generator, as follows. Open a command prompt and run the following
command line:

ulgen -c "dsn=UltraLite 8.0 Sample;uid=DBA;pwd=SQL"
-r self.crt -j custapi

3 When you start the MobiLink synchronization server, specify the name
of the server certificate file, serv1.crt, and the corresponding password.
Open a command prompt and run the following command line:

dbmlsrv8 -c "dsn=UltraLite 8.0 Sample;uid=DBA;pwd=SQL"
–x tcpip (security=ecc_tls (certificate=serv1.crt;
certificate_password=password))

Note that the clients do not need and should not have either the private key or
the password that unlocks it. Clients need only the public certificate.

In contrast, the MobiLink synchronization server requires access to the
private key, as well as to the public parts of the certificate. Thus, the server
requires access to the server certificate file, which contains both public and
private information.

The MobiLink synchronization server must have access to the private key
and the password that protects it. For this reason, you must ensure that the
MobiLink command line and log file are secure. This is best done using a
firewall and by otherwise limiting access to the computer running the
MobiLink synchronization server.

Certificate authorities

298

Certificate authorities
One problem with self-signed certificates is that an adversary can create a
fake certificate using a different public- and private-key pair. Someone,
mistaking the fake certificate for the original, may unknowingly encrypt his
or her message using the substitute public key, rather than that owned by the
intended recipient. Only the adversary, who knows the substitute private key,
could read a message encrypted using the fake certificate.

To guard against such an attack, both the user and the owner of the certificate
must agree to trust a third party. This third party, called a signing authority
or certificate authority, adds a digital signature to the certificate using his or
her private key. Once signed, the document certificate can be altered only
with the aid of the third party. To sign a certificate, the certificate authority
need not know the private key of the certificate owner.

The certificate authority need not be an external person or organization.
If the certificates are to be used only within the company, it may be
appropriate for someone at the company to act as the certificate authority.

To create a trustworthy system, a certificate authority must confirm the
identity of a certificate owner before signing a certificate. In particular, the
certificate authority must check that the identity fields in the certificate
accurately describe the certificate owner and that the certificate owner owns
the matching private key.

Someone wishing to use this certificate to communicate with the certificate
owner must have confidence in the following:

♦ Before signing the certificate, the certificate authority made certain that
the identity information contained in the certificate correctly identified
the certificate owner.

♦ Each private key is known only to the certificate owner.

♦ The user has a reliable copy of the certificate authority’s public key.

To satisfy these conditions, not only must the user have confidence in the
integrity of the certificate authority, but the user must also have obtained the
same public key directly from the certificate authority.

To obtain valid copies of a public key, users of this system typically obtain
copies of a self-signed certificate owned by the certificate authority. To foil
impostors, the certificate must be obtained by reliable means.

In addition, each client must store the copy of the certificate authority’s
certificate securely. Should an adversary have access to the user’s computer,
he or she could replace the certificate authority’s certificate with a fake.

Chapter 13 Transport-Layer Security

299

Certificate chains
When deploying a replication system, a large number of certificates may be
required. The responsibility of signing many certificates may place too great
a burden on the certificate authority. To lessen their workload, a certificate
authority can delegate signing authority to others. To do so, the certificate
authority signs a certificate held by the delegate. The delegate then proceeds
to sign certificates using the private key that matches the one in this
certificate.

A certificate chain is a sequence of certificates such that each certificate is
signed by the next. The final certificate, called the root certificate, is owned
by a certificate authority. For example, a server certificate can be signed by a
delegate. The delegate’s certificate can be signed by a certificate authority.
The certificate authority’s public key is contained in a third certificate. Such a
situation comprises a chain of three certificates.

public information
and

public key 1

signature 1
signature 2

Public
certificate (1)

public information
and

public key 1

signature 2
signature 3

Public
certificate (2)

public information
and

public key 1

signature (n – 1)
signature (root)

Public
certificate (n – 1)

public information
and

public key 1

signature (root)

Public
certificate (root)

. . .

Use matching server
identity (1) with one

MobiLink synchronization
server

Give a trusted copy of the
public root certificate to

each client

In fact, a delegate can also have delegates. Thus, a chain of certificates can
be of any length. However, the final certificate is always a self-signed root
certificate, owned by a certificate authority.

To trust a chain, a user must trust each of the following:

♦ Before signing each certificate, the certificate authority and all delegates
made certain that the identity information contained in the certificate
correctly identified the certificate owner.

♦ Each private key is known only to the certificate owner.

♦ The user has a reliable copy of the certificate authority’s public key.

All conditions are extremely important. The chain of certificates is only as
strong as its weakest link.

Enterprise root certificates

300

Enterprise root certificates
A deployment of MobiLink that involves multiple servers can be improved
by assigning each server a unique certificate also signed by a common root
certificate. A certificate authority within the enterprise holds the root
certificate.

This arrangement has the following advantages:

♦ Each MobiLink synchronization server can be given a unique certificate,
so that if one site is compromised, the others are not affected.

♦ Security is enhanced because the private key for the enterprise root
certificate need not be stored on the MobiLink synchronization server.

♦ Clients do not need to keep a copy of each server’s public certificate,
only a copy of the public root certificate because you can configure them
to trust any certificate signed by the root certificate.

The security of the system can be improved somewhat by obtaining a
globally signed certificate, discussed later, from a commercial certificate
authority. In practice, however, this arrangement provides adequate security
for many applications.

You can program your clients to verify the values of some certificate fields,
as discussed later. In this way, you can ensure that your clients synchronize
with particular MobiLink synchronization servers within your organization.

Chapter 13 Transport-Layer Security

301

Use matching server
identity (1) with one

MobiLink synchronization
server

Give a trusted copy of the
public enterprise root

certificate to each client

public information
and

public key 1

signature 1
enterprise signature

Public
certificate (1)

public information
and

public key 2

signature 2
enterprise signature

Public
certificate (2)

public information
and

enterprise public key

enterprise signature

Public enterprise
root certificate

Use matching server
identity (2) with another

MobiLink synchronization
server

. . .

Create the enterprise
certificate first, then

use the private
enterprise key

to create and sign as
many certificates as

you want.

This setup provides more flexibility than self-signed server certificates. For
example, you can add a new server and give it a new certificate. If the new
certificate is signed with the same enterprise root certificate, existing clients
will automatically trust it. Were you, instead, to give each MobiLink
synchronization server a self-signed certificate, all clients would require a
copy of the new public certificate.

Creating the certificates

The first step in setting up an enterprise-level system is to generate the
common self-signed certificate. To generate this root certificate, start gencert
with the –r option.

Enterprise root certificates

302

>gencert -r
Certificate Generation Tool
Choose certificate type ((R)SA or (E)CC): E
Generating key pair...
Country: CA
State/Province: Ontario
Locality: Waterloo
Organization: Sybase, Inc.
Organizational Unit: MEC
Common Name: MobiLink
Serial Number: 2000.02.29.02
Certificate valid for how many years: 2
Enter password to protect private key: password2
Enter file path to save certificate: ent_root.crt
Enter file path to save private key: ent_root.pri
Enter file path to save server identity: ent_serv.crt

The utility creates three files, which in this example are called ent_root.crt,
ent_root.pri, and ent_serv.crt.

♦ ent_root.crt This file contains the new certificate. This certificate
should be published as all clients require a reliable copy.

♦ ent_root.pri This file contains the private key that matches the public
key encoded in the certificate.

♦ ent_serv.crt This file contains the same information as the above two
files, combined. It is intended for use with a MobiLink synchronization
server.

The first two of these three files can be used to sign additional, new
certificates. To generate a signed certificate, start gencert with the –s option.
Enter the name of the signing certificate file, the name of the signing private-
key file, and the password for the signing private key.

>gencert -s
Certificate Generation Tool
Choose certificate type ((R)SA or (E)CC): E
Generating key pair...
Country: CA
State/Province: Ontario
Locality: Waterloo
Organization: Sybase, Inc.
Organizational Unit: MEC
Common Name: MobiLink
Serial Number: 2000.02.29.03
Certificate valid for how many years: 1
Enter file path of signer’s certificate: ent_root.crt
Enter file path of signer’s private key: ent_root.pri
Enter password for signer’s private key: password2
Enter password to protect private key: password3
Enter file path to save server identity: serv1.crt

Chapter 13 Transport-Layer Security

303

This time, gencert creates only one file. This file contains the signed
certificate and the private key. It is intended for use with a MobiLink
synchronization server.

Repeat this last step as many times as necessary to create a signed certificate
for each MobiLink synchronization server.

>gencert -s
Certificate Generation Tool
Choose certificate type ((R)SA or (E)CC): E
Generating key pair...
Country: CA
State/Province: Ontario
Locality: Waterloo
Organization: Sybase, Inc.
Organizational Unit: MEC
Common Name: MobiLink
Serial Number: 2002.02.29.04
Certificate valid for how many years: 1
Enter file path of signer’s certificate: ent_root.crt
Enter file path of signer’s private key: ent_root.pri
Enter password for signer’s private key: password2
Enter password to protect private key: password4
Enter file path to save server identity: serv2.crt

You now have the following files:

♦ ent_root.crt The root certificate.

♦ ent_root.pri The root private key.

♦ ent_serv.crt The root combined certificate.

♦ serv1.crt The combined certificate for the first MobiLink
synchronization server.

♦ serv2.crt The combined certificate for the second MobiLink
synchronization server.

You do not need the combined root certificate because no MobiLink
synchronization server uses it directly. Instead, you created a separate
certificate for each MobiLink synchronization server.

Using the signed certificates

You can use the signed certificates for server-authentication by following
these steps:

Enterprise root certificates

304

1 Supply a copy of the public root certificate to all clients. When the client
first contacts the MobiLink synchronization server, the server sends the
client a copy of its own public certificate. This certificate bears the
signature of the root certificate. The client can detect fake certificates by
verifying that the root signature matches the public key in their copy of
the root certificate.

2 Tell each client that it is to trust only servers whose certificates bear the
signature of the root certificate. For Adaptive Server Anywhere clients,
use the trusted_certificates security parameter. For example, you can tell
an Adaptive Server Anywhere client to trust only the ent_cert.crt
certificate by including this parameter in the address clause of the
synchronization subscription, as in the following example.

CREATE SYNCHRONIZATION SUBSCRIPTION
FOR ’user001’ TO test
ADDRESS ’security=ecc_tls (
 trusted_certificates=ent_cert.crt)’

To tell an UltraLite client to trust only the desired certificate, name the
trusted certificate using the –r option when running the UltraLite
generator, as follows. Open a command prompt and run the following
command line:

ulgen -c "dsn=UltraLite 8.0 Sample;uid=DBA;pwd=SQL"
-r ent_cert.crt -j custapi

3 When you start each MobiLink synchronization server, specify the name
of that server’s certificate file and the corresponding password. Enter
each command on one line.

dbmlsrv8 -c "dsn=UltraLite 8.0 Sample;uid=DBA;pwd=SQL"
–x tcpip (port=3333;
 security=ecc_tls (certificate=serv1.crt;
 certificate_password=password3))

dbmlsrv8 -c "dsn=UltraLite 8.0 Sample;uid=DBA;pwd=SQL"
–x tcpip (port=4444;
 security=ecc_tls (certificate=serv2.crt;
 certificate_password=password4))

Chapter 13 Transport-Layer Security

305

Globally signed certificates
You can improve the security of a multi-server MobiLink setup by assigning
each server a unique certificate that is signed by a common root certificate.
You can improve it further using a certificate signed by a commercial
certificate authority. Such a certificate is called a global certificate or a
globally-signed certificate. A commercial certificate authority is an
organization that is in the business of creating high-quality certificates and
using these certificates to sign other certificates.

A global certificate has the following advantages:

♦ Security requires that both parties trust the root certificate. In the case of
inter-company communication, common trust in an outside, recognized
authority may increase confidence in the security of the system because
a certificate authority must guarantee the accuracy of the identification
information in any certificate that it signs.

♦ Security is enhanced when keys are created using pseudo-random data
of high quality. The data used with the gencert utility is of
cryptographic quality, but other, even better methods can be used in
controlled environments.

♦ The private key for the root certificate must remain private. An
enterprise may not have a suitable place to store this crucial information,
whereas a certificate authority can afford to design and maintain
dedicated facilities.

When using a globally signed certificate, each client must verify certificate
field values to avoid trusting certificates that the same certificate authority
has signed for other clients. This process is described in the next section.

Globally signed certificates

306

Use matching server
identity (1) with one

MobiLink synchronization
server

Give a trusted copy of the
certificate authority’s public

certificate to each client.
Require each client to verify

certificate fields.

public information
and

public key 1

signature 1
enterprise signature

Public
certificate (1)

public information
and

public key 1

signature 2
enterprise signature

Public
certificate (2)

public information
and

enterprise public key

enterprise signature
certificate authority’s

signature

Globally-signed
public enterprise

certificate

Use matching server
identity (2) with another

MobiLink synchronization
server

. . .

Create the
enterprise certificate

and have your
certificate authority

sign it. You can then
use the private

enterprise key to
create and sign as

many certificates as
you want.

public information
and

root public key

root signature

Cerificate
authority’s public

root certificate

. . .

certificates for other
MobiLink servers

enterprise certificates
for other organizations

Chapter 13 Transport-Layer Security

307

Obtaining server-authentication certificates
MobiLink transport-layer security is based on Certicom SSL/TLS Plus
libraries, which require elliptic-curve or RSA certificates. You can obtain a
global certificate from any certificate authority that can supply certificates in
the correct format. Two such companies are VeriSign and Entrust
Technologies.

$ For more information, see http://www.verisign.com/ or
http://www.entrust.com/certificate_services/index.htm.

There are several ways to obtain certificates. One way is to use the Certicom
reqtool utility, which is installed when you install the security component.
This tool creates a server certificate and a global certificate request. Copy the
contents of the public certificate onto your clipboard, and paste them into the
form on the Web site of the certificate-issuing authority. Only submit the
public component of the certificate request. You must not disclose your
private key.

For more information about this procedure, see the document reqtool.pdf,
located in the win32 subdirectory of your SQL Anywhere 8 installation. It is
installed when you install the security component.

The following example creates an elliptic-curve certificate:

> reqtool

-- Certicom Corp. Certificate Request Tool 3.0d1 --

Choose certificate request type:
 E - Personal email certificate request.
 S - Server certificate request.
 Q - Quit.
Please enter your request [Q] : S

Choose key type:
 R - RSA key pair.
 D - DSA key pair.
 E - ECC key pair.
 Q - Quit.
Please enter your request [Q] : E

Example

Obtaining server-authentication certificates

308

Using curve ec163a02. Generating key pair (please
wait)...
Country: CA
State: Ontario
Locality: Waterloo
Organization: Sybase, Inc.
Organizational Unit: MEC
Common Name: MobiLink
Enter password to protect private key : password5
Enter file path to save request : global.req
Enter file path to save private key : global.pri

The file global.req contains the public certificate and request information.
Paste the contents of this file into the form on the certificate-issuing Web
site.

The file global.pri contains the private key for the enterprise certificate. This
file is protected by the password you entered, but since the protection
provided by the password is weak, you must store this file in a secure
location.

Using a global certificate as a server certificate

You can use your global certificate directly as a MobiLink synchronization
server certificate. To do so, you must create a server identity certificate by
concatenating the public and private certificates. Open a command prompt
and run the following command line:

copy global.crt+global.pri global2.crt

You can now start a MobiLink synchronization server, specifying the new
certificate and the password for your private certificate. Open a command
prompt and run the following command line:

dbmlsrv8 -c "dsn=UltraLite 8.0 Sample;uid=DBA;pwd=SQL"
-x tcpip (security=ecc_tls(certificate=global2.crt;
certificate_password=password5))

You must also ensure that clients contacting your MobiLink synchronization
server trust the certificate. To do so, you must tell the clients to trust the root
certificate in the chain. In this case, the root certificate in the chain is a
certificate held by the certificate authority.

By default, MobiLink clients trust certificates signed by the Sybase root
certificate used to sign the sample certificate included with MobiLink.

For better security, however, you should ensure that clients consider only the
root certificate of your certificate authority to be valid.

Chapter 13 Transport-Layer Security

309

You can tell an Adaptive Server Anywhere MobiLink client to accept only a
particular root certificate by naming only this certificate in the Address
clause of the SQL CREATE SYNCHRONIZATION SUBSCRIPTION
statement. For example, to trust certificates from XXX:

CREATE SYNCHRONIZATION SUBSCRIPTION
FOR ’user001’ TO test
ADDRESS ’security=ecc_tls (

trusted_certificates=XXX.crt)’

To tell an UltraLite client to trust only the XXX root certificate, name the
trusted certificate using the –r option when running the UltraLite generator,
as follows. Open a command prompt and run the following command line:

> ulgen -c "dsn=UltraLite 8.0 Sample;uid=DBA;pwd=SQL"
-r XXX.crt -j custapi

Verifying certificate fields

310

Verifying certificate fields
Global certificates have one potentially serious flaw. Because the MobiLink
clients, as configured above, trust all certificates signed by the certificate
authority, they may also trust certificates that the same certificate authority
has issued to other companies. Without a means to discriminate, your clients
might mistake a competitor’s MobiLink synchronization server for your own
and accidentally send it sensitive information.

Similar precautions can be required in other scenarios. A company may use
an enterprise certificate, but it may still be important to verify with which
department a MobiLink client is connected.

This problem can be resolved by requiring your clients to test the value of
fields in the identity portion of the certificate. Three fields in the certificate
can be verified. You can verify any or all of the following three fields:

♦ Organization

♦ Organizational Unit

♦ Common Name

To verify the fields, you supply the acceptable value. For example, the
following SQL statement tells an Adaptive Server Anywhere client to check
all three fields and to accept only the named values:

CREATE SYNCHRONIZATION SUBSCRIPTION
FOR ’user01’
TO test
ADDRESS ’port=3333;security=ecc_tls(

trusted_certificates=certicom.crt;
certificate_company=Sybase, Inc.;
certificate_unit=iAnywhere;certificate_name=sample)’

You can verify the fields from an UltraLite client in a similar manner. The
precise syntax depends upon the interface used to build the application. The
following fragment of C code accomplishes the same task when developing
the UltraLite application using embedded SQL in C or C++:

ul_synch_info info;
. . .
info.security_parms =

UL_TEXT ("certificate_company=Sybase, Inc.")
UL_TEXT (";")
UL_TEXT ("certificate_unit=iAnywhere")
UL_TEXT (";")
UL_TEXT ("certificate_name=sample");

. . .
ULSynchronize(&info);

Chapter 13 Transport-Layer Security

311

This example verifies all three fields. You can instead choose to verify only
one or two fields.

Verifying fields in certificate chains

When the first certificate is part of a chain, all the specified field values are
checked in that certificate. If specified, the company name is also checked in
all the other certificates, except for the root certificate. This arrangement
allows for the case that the root certificate is held by a certificate authority.
In this case, the field values of the root certificate will be different, as it is
owned by the certificate authority, rather than your company or organization.

Using a globally-signed certificate as an enterprise certificate

Instead of using a global certificate as a server certificate, it is possible to
instead use it to sign other certificates, as you would an enterprise certificate.
This setup lets you combine the benefits of a global certificate and an
enterprise certificate. The most important advantage is that you need not
store the private key for your global certificate on the computer running the
MobiLink synchronization server.

To create such a setup, generate a unique certificate for each MobiLink
synchronization server. When you do so, sign them with your global
certificate.

The following example displays how two server certificates can be generated
and signed by the global certificate:

>gencert -s
Certificate Generation Tool
Choose certificate type ((R)SA or (E)CC): E
Generating key pair...
Country: CA
State/Province: Ontario
Locality: Waterloo
Organization: Sybase
Organizational Unit: MEC
Common Name: MobiLink
Serial Number: 2000.02.29.06
Certificate valid for how many years: 1
Enter file path of signer’s certificate: global.crt
Enter file path of signer’s private key: global.pri
Enter password for signer’s private key: password5
Enter password to protect private key: password6
Enter file path to save server identity: serv6.crt

Verifying certificate fields

312

>gencert -s
Certificate Generation Tool
Choose certificate type ((R)SA or (E)CC): E
Generating key pair...
Country: CA
State/Province: Ontario
Locality: Waterloo
Organization: Sybase
Organizational Unit: MEC
Common Name: MobiLink
Serial Number: 2000.02.29.07
Certificate valid for how many years: 1
Enter file path of signer’s certificate: global.crt
Enter file path of signer’s private key: global.pri
Enter password for signer’s private key: password5
Enter password to protect private key: password7
Enter file path to save server identity: serv7.crt

The above commands generate two server identity certificates, intended for
use with two MobiLink synchronization servers.

♦ serv6.crt The server identity certificate for MobiLink synchronization
server #1.

♦ serv7.crt The server identity certificate for MobiLink synchronization
server #2.

Both certificates are signed by global.crt, which in turn is signed by your
certificate authority’s root certificate.

You can start these two MobiLink synchronization servers with the
following commands, entered one command per line.

dbmlsrv8 -c "dsn=UltraLite 8.0 Sample;uid=DBA;pwd=SQL"
-x tcpip (port=3333;security=ecc_tls (
certificate=serv6.crt;
certificate_password=password6))

dbmlsrv8 -c "dsn=UltraLite 8.0 Sample;uid=DBA;pwd=SQL"
-x tcpip (port=4444;security=ecc_tls (
certificate=serv7.crt;
certificate_password=password7))

In addition, you must ensure that each client trusts your certificate authority’s
root certificate.

313

P A R T T W O

MobiLink Tutorials

This part provides hands-on tutorials that introduce you to the basic techniques
of creating MobiLink synchronization systems.

314

315

C H A P T E R 1 4

Tutorial: Synchronizing Adaptive Server
Anywhere Databases

This chapter provides a tutorial to guide you through the process of setting
up a synchronization system when the consolidated and remote databases are
both Adaptive Server Anywhere databases.

Topic Page

Introduction 316

Lesson 1: Creating and populating your databases 318

Lesson 2: Running the MobiLink synchronization server 322

Lesson 3: Running the MobiLink synchronization client 324

Tutorial cleanup 326

Summary 327

Further reading 328

About this chapter

Contents

Introduction

316

Introduction
In this tutorial, you create a consolidated database and a remote database.
You then synchronize these databases using MobiLink synchronization
technology.

The tutorial takes about 30 minutes.

You will require:

♦ Knowledge of and/or experience with command line processing.

♦ Knowledge of and/or experience with Interactive SQL.

$ For more information, see "Using Interactive SQL" on page 75 of
the book ASA Getting Started.

You will gain competence and familiarity with:

♦ The MobiLink synchronization server and client as an integrated system.

♦ The MobiLink synchronization server and client command lines and
options.

Timing

Competencies and
experience

Goals

Chapter 14 Tutorial: Synchronizing Adaptive Server Anywhere Databases

317

The MobiLink synchronization server connects to the consolidated database
using ODBC. The MobiLink synchronization client connects to your remote
database. The MobiLink synchronization server and client function as a
group, managing the upload and download of data from one database to
another, as shown in the figure below.

consolidated server

remote applications

MobiLink Clients

MobiLink Server

network

Key concepts

Lesson 1: Creating and populating your databases

318

Lesson 1: Creating and populating your
databases

MobiLink synchronization requires that you have data in a relational
database, an ODBC data source for each database, and two compatible
databases.

The first step is to create each of the databases. In this procedure, you build a
consolidated database and a remote database using the dbinit utility from a
command line.

The dbinit utility creates a database file with no user tables or procedures.
You create your database schema when you define, within the
newly-initialized file, user-defined tables and procedures.

v To create your database files:

1 Open a command prompt and navigate to the
Samples\MobiLink\AutoScripting subdirectory of your SQL Anywhere 8
installation.

2 Create a consolidated database for this tutorial. Run the following
command line:

dbinit consol.db

If this tutorial has been previously run on your computer, consol.db and
consol.log may already exist. This will cause dbinit to fail. Delete these
files before running dbinit.

3 Create the remote database for this tutorial. Run the following command
line:

dbinit remote.db

If this tutorial has been previously run on your computer, remote.db and
remote.log may already exist. This will cause dbinit to fail. Delete these
files before running dbinit.

4 Verify the successful creation of these database files by listing the
contents of the directory. You should see consol.db and remote.db in the
listing.

You are now ready to build ODBC data sources through which you can
connect to your Adaptive Server Anywhere databases.

$ For more information about creating ODBC data sources, see "The
Data Source utility" on page 451 of the book ASA Database Administration
Guide.

Create your
database files

Create ODBC data
sources

Chapter 14 Tutorial: Synchronizing Adaptive Server Anywhere Databases

319

v To create ODBC data sources:

1 Open a command prompt and navigate to the
Samples\MobiLink\AutoScripting subdirectory of your SQL Anywhere 8
installation.

2 Create your ODBC data source for a consolidated database by running
the following command line:

dbdsn -w test_consol -y -c
"uid=DBA;pwd=SQL;dbf=consol.db;eng=Consol"

This command line specifies the following options:

♦ -w Creates a data source definition.

♦ -y Delete or overwrite data source without confirmation.

♦ -c Specifies the connection parameters as a connection string.

$ For more information, see "Data Source utility options" on
page 453 of the book ASA Database Administration Guide.

3 Create an ODBC data source for a remote database by running the
following command line:

dbdsn -w test_remote -y -c
"uid=DBA;pwd=SQL;dbf=remote.db;eng=Remote"

4 Verify the successful creation of your data sources as follows.

v To verify your new data sources:

1 Choose Start➤Programs➤Sybase SQL Anywhere 8➤
Adaptive Server Anywhere➤ODBC Administrator.

The ODBC Data Source Administrator appears.

2 Click the User DSN tab.

3 Scroll through the list to find the test_remote and test_consol data
sources.

4 Select each data source and click Configure.

5 Test your data source by clicking the Test Connection button.

6 Click OK to close the ODBC Data Source Administrator.

The following procedure executes SQL statements using the Interactive SQL
utility to create and populate tables in the consolidated database. It also
creates tables and inserts synchronization subscriptions and publications into
the remote database.

Create your
schema

Lesson 1: Creating and populating your databases

320

The SQL files, build_consol.sql and build_remote.sql, are created specifically
for this tutorial.

v To call and run your scripts using Interactive SQL:

1 Open a command prompt and navigate to the
Samples\MobiLink\AutoScripting subdirectory of your SQL Anywhere 8
installation.

2 Run the following command line:

dbisql -c "dsn=test_consol;astop=no"
build_consol.sql

The SQL statements in build_consol.sql create and populate the emp and
cust tables in the consolidated database.

This step includes astop=no to instruct the server not to shut down
when the dbisql utility shuts down.

3 Run the following command line:

dbisql -c "dsn=test_remote;astop=no"
build_remote.sql

The SQL statements in build_remote.sql create the remote tables emp
and cust, and insert synchronization subscriptions and publications.

4 Verify the creation of the emp and cust tables in the remote and
consolidated databases using Interactive SQL.

♦ Open Interactive SQL by typing dbisql at a command prompt.
Connect using the test_consol DSN as DBA, using SQL as the
password.

♦ Execute the following SQL statement by typing it into the SQL
Statements pane and pressing F9.

SELECT * FROM emp, cust

The tables in the consolidated database are populated with data.

♦ Connect using the test_remote DSN and execute the following SQL
statement:

SELECT * FROM emp, cust

The tables in the remote database are empty.

5 Leave the consolidated and remote databases running for the next
lesson.

$ For more information about creating remote databases, see "Creating a
remote database" on page 118.

Further reading

Chapter 14 Tutorial: Synchronizing Adaptive Server Anywhere Databases

321

$ For more information about creating subscriptions and publications, see
"Publishing data" on page 119.

$ For more information about creating databases, see "The Initialization
utility" on page 465 of the book ASA Database Administration Guide and
"Creating a database using the dbinit command-line utility" on page 466 of
the book ASA Database Administration Guide.

$ For more information about running Interactive SQL, see "The
Interactive SQL utility" on page 472 of the book ASA Database
Administration Guide and "Using Interactive SQL" on page 75 of the book
ASA Getting Started.

$ For more information about SELECT statements, see "SELECT
statement" on page 526 of the book ASA SQL Reference Manual.

Lesson 2: Running the MobiLink synchronization server

322

Lesson 2: Running the MobiLink
synchronization server

Your consolidated database must be running prior to running MobiLink. If
you shut down your consolidated database following Lesson 1, you should
restart the database. You can start the MobiLink synchronization server from
a command prompt.

v To start the MobiLink synchronization server:

1 Open a command prompt and navigate to the
Samples\MobiLink\AutoScripting subdirectory of your SQL Anywhere 8
installation.

2 Run the following command line:

dbmlsrv8 -c "dsn=test_consol" -o mlserver.mls -v+
-dl -za -zu+

This command line specifies the following options:

♦ -c The connection string for the MobiLink synchronization server
uses the DSN for the consolidated database. For more information,
see "-c option" on page 384.

♦ -o The -o option is used to specify the message log file. For more
information, see "-o option" on page 387.

♦ -v+ The -v+ option sets verbose logging on. For more
information, see "-v option" on page 393.

♦ -dl The -dl option sets the display log feature ON. For more
information, see "-dl option" on page 386.

♦ -za The -za option turns automated scripting ON. For more
information, see "-za option" on page 402.

♦ -zu+ The -zu+ option automates the user authentication process.
For more information, see "-zu option" on page 405.

The options -o, -v, and -dl are chosen to provide debugging and
troubleshooting information. Using these options in a production
environment may affect performance. They typically are not used in a
production environment.

Chapter 14 Tutorial: Synchronizing Adaptive Server Anywhere Databases

323

Once you have executed the MobiLink synchronization server command, the
output below appears.

If MobiLink is already running when you attempt to run dbmlsrv8, you will
receive an error message. Shut down the current instance of MobiLink and
run the command again.

$ For more information about the MobiLink synchronization server, see
"The MobiLink synchronization server" on page 18.

$ For a complete list of dbmlsrv8 options, see "MobiLink
Synchronization Server Options" on page 379.

Further reading

Lesson 3: Running the MobiLink synchronization client

324

Lesson 3: Running the MobiLink
synchronization client

Adaptive Server Anywhere clients initiate MobiLink synchronization by
using the dbmlsync utility.

v To start the MobiLink synchronization client:

1 Open a command prompt and navigate to the
Samples\MobiLink\AutoScripting subdirectory of your SQL Anywhere 8
installation.

2 Run the following command line:

dbmlsync -c "dsn=test_remote" -o dbmlsync.out -v -e
"SendColumnNames=ON"

This command line specifies the following options:

♦ -c Supply database connection parameters. For more information,
see "-c option" on page 384.

♦ -o Specify the message log file. For more information, see "-o
option" on page 387.

♦ -v Verbose operation. For more information, see "-v option" on
page 393.

♦ -e Extended options. Specifying "SendColumnNames=ON" sends
column names to MobiLink. This is required when you use -za in
the dbmlsrv8 command line. For more information, see
"SendColumnNames" on page 420.

Once you have executed the MobiLink synchronization client command, the
output below appears to indicate that synchronization has succeeded. After
synchronization, the remote database is populated with the data from the
consolidated database.

Chapter 14 Tutorial: Synchronizing Adaptive Server Anywhere Databases

325

$ For more information about dbmlsync, see "MobiLink synchronization
client" on page 410.

$ For more information about remote clients, see "MobiLink clients" on
page 21.

$ For more information about dbmlsync, see "Initiating synchronization"
on page 138.

Further reading

Tutorial cleanup

326

Tutorial cleanup
You should remove tutorial materials from your computer.

v To remove tutorial materials from your computer:

1 Close the Adaptive Server Anywhere, MobiLink, and synchronization
client windows by right-clicking each taskbar item and choosing Close.

2 Delete all tutorial-related data sources.

♦ Choose Start➤Programs➤Sybase SQL Anywhere 8➤Adaptive
Server Anywhere➤ODBC Administrator.

The ODBC Data Source Administrator appears.

♦ Select test_remote and test_consol from the list of User Data
Sources. Click Remove.

♦ Click OK to close the ODBC Data Source Administrator.

3 Delete the consolidated and remote databases.

♦ Open Windows Explorer and navigate to the
Samples\MobiLink\AutoScripting subdirectory of your
SQL Anywhere 8 installation.

♦ Delete remote.db, remote.log, consol.db, and consol.log.

Chapter 14 Tutorial: Synchronizing Adaptive Server Anywhere Databases

327

Summary
During this tutorial, you:

♦ Created and populated Adaptive Server Anywhere consolidated and
remote databases.

♦ Started a MobiLink synchronization server.

♦ Started the MobiLink synchronization client and synchronized the
remote database with the consolidated database.

During this tutorial, you gained:

♦ Familiarity with the MobiLink synchronization server and client as an
integrated system.

♦ Competence in executing MobiLink synchronization server and client
commands.

♦ Familiarity with the MobiLink synchronization server and client
command lines and options.

Learning
accomplishments

Further reading

328

Further reading
The following documentation sections are good starting points for further
reading:

$ For more information about Adaptive Server Anywhere remote
databases, see "Adaptive Server Anywhere Clients" on page 117.

$ For more information about running the MobiLink synchronization
server, see "Synchronization Basics" on page 9.

$ For more information about synchronization scripting, see "Writing
Synchronization Scripts" on page 47.

329

C H A P T E R 1 5

Tutorial: Writing SQL Scripts Using Sybase
Central

This chapter provides a tutorial to guide you through the process of setting
up a synchronization system when the consolidated and remote databases are
both Adaptive Server Anywhere databases.

This tutorial guides you through the process of creating and modifying
synchronization scripts. You also view MobiLink objects using the Sybase
Central MobiLink plug-in.

Topic Page

Introduction 330

Lesson 1: Creating your databases 331

Lesson 2: Creating scripts for your synchronization 335

Lesson 3: Running the MobiLink synchronization server 338

Lesson 4: Running the MobiLink synchronization client 340

Lesson 5: Monitoring your MobiLink synchronization using log files 342

Tutorial cleanup 344

Further reading 345

About this chapter

Contents

Introduction

330

Introduction
In this tutorial, you create a consolidated database and a remote database,
and write scripts to perform synchronization. You then synchronize the two
databases.

The tutorial takes about 50 minutes.

You will require:

♦ An understanding of the role of synchronization scripts in the
synchronization process.

♦ An understanding of the properties of publications and subscriptions.

The goals for the tutorial are to gain competence and familiarity with the
following tasks:

♦ Creating MobiLink synchronization scripts using Sybase Central.

♦ Troubleshooting MobiLink errors.

The key concepts you will learn from this tutorial include:

♦ The role of the MobiLink synchronization server and client in the
synchronization process.

♦ How to create an ODBC connection and set the properties of an ODBC
connection for Adaptive Server Anywhere.

♦ How to create synchronization scripts to work with MobiLink.

♦ How to initialize a database.

$ For more information about Sybase Central, see "Tutorial: Managing
Databases with Sybase Central" on page 49 of the book Introducing SQL
Anywhere Studio.

$ For more information about synchronization, see "Tutorial:
Synchronizing Adaptive Server Anywhere Databases" on page 315.

$ For more information about synchronization scripts, see "Introduction
to synchronization scripts" on page 48.

Timing

Competencies and
experience

Goals

Key concepts

Suggested
background
reading

Chapter 15 Tutorial: Writing SQL Scripts Using Sybase Central

331

Lesson 1: Creating your databases
MobiLink synchronization requires that you have data in a relational
database, an ODBC data source for the consolidated database and two
supported databases.

Before you start, to ensure that there are no conflicts with databases or DSNs
created during other tutorials, navigate to the Samples\MobiLink\Autoscripting
subdirectory of your SQL Anywhere 8 installation and run clean.bat.

In this procedure, you build a consolidated database and a remote database
using Sybase Central.

v To create your databases:

1 Choose Start➤Programs➤Sybase SQL Anywhere 8➤
Sybase Central.

Sybase Central appears.

2 In Sybase Central, choose Tools➤Adaptive Server Anywhere 8➤Create
Database.

The Create Database wizard appears. Click Next.

3 Leave the default of Create a Database on this Machine. Click Next.

4 Enter the following filename and path for the database:

Samples\MobiLink\Autoscripting\test_consol.db

Click Finish.

5 Repeat steps 2 through 4 for the remote database, using the filename
test_remote.db in place of test_consol.db.

You will now build ODBC data sources through which you can connect to
your Adaptive Server Anywhere 8 databases.

v To create ODBC data sources:

1 In Sybase Central, choose Tools➤Adaptive Server Anywhere 8➤
Open ODBC Administrator.

2 Create your ODBC data source for a database:

♦ Click the User DSN tab and click Add.

The Create New Data Source dialog appears.

♦ Select Adaptive Server Anywhere 8.0 and click Finish.

Create databases

Create ODBC data
sources

Lesson 1: Creating your databases

332

The ODBC Configuration for Adaptive Server Anywhere 8.0 dialog
appears.

3 Click the ODBC tab and enter test_consol as the Data Source Name.

4 Click the Login tab and enter a User ID dba and password SQL.

5 Click the Database tab. Click Browse to locate test_consol.db. Clear the
Automatically Shut Down Database After Last Disconnect checkbox.

6 Enter test_consol under Server Name.

7 Click OK to return to the ODBC Data Source Administrator.

8 Repeat steps 2 through 7 using the name test_remote instead of
test_consol for the ODBC connection name, database file name, and
server name.

9 Click OK to close the ODBC Data Source Administrator.

v To verify your new data sources:

1 In Sybase Central, choose Tools➤Adaptive Server Anywhere 8➤Open
ODBC Administrator.

The ODBC Data Source Administrator appears.

2 Click the User DSN tab.

3 Scroll through the list to find test_consol and test_remote.

4 Select each data source and click Configure.

5 Test your data source by clicking the Test Connection button.

The following procedure executes SQL statements using the Interactive SQL
utility to create and populate tables in the consolidated database. It also
creates tables and inserts synchronization subscriptions and publications into
the remote database.

The SQL files build_consol.sql and build_remote.sql are created specifically
for this tutorial.

v To run your scripts in Interactive SQL:

1 In Sybase Central, choose Tools➤Adaptive Server Anywhere 8➤
Open Interactive SQL.

2 Connect to the consolidated database using the test_consol ODBC
data source.

3 Choose File➤Run Script.

Create your
schema

Chapter 15 Tutorial: Writing SQL Scripts Using Sybase Central

333

The Open File dialog appears. Browse to
Samples\MobiLink\AutoScripting\build_consol.sql.

The SQL statements create and populate two tables, emp and dept.

4 Verify the successful creation of each of the emp and cust tables.

♦ Execute the following command in the SQL Statements pane:

SELECT * FROM emp, cust

The tables should be populated with data.

5 Close Interactive SQL.

6 Repeat steps 1 to 3 for the remote, using the ODBC data source test_remote
and the file build_remote.sql.

The SQL statements create, but do not populate, two tables, emp and
dept. Synchronization subscriptions and publications define the
synchronization parameters for the MobiLink synchronization client.

7 Verify the successful creation of each of the emp and cust tables.

♦ Execute the following command in the SQL Statements pane:

SELECT * FROM emp, cust

The tables should contain no data.

8 Close Interactive SQL. Leave the consolidated and remote databases
running.

MobiLink synchronization requires a MobiLink synchronization subscription
and publication. Synchronization subscriptions and publications are stored in
the remote database.

Publications identify the tables and columns on your remote database that
you want synchronized. These tables and columns are called articles. After
you create articles for your publication, the MobiLink synchronization server
uses the information contained in the publication to construct SQL
statements that are used to transfer data from your remote to your
consolidated database.

This tutorial uses the SQL file build_remote.sql. The SQL statements in
build_remote perform the following steps to a build publication and a
synchronization subscription:

♦ The following SQL statement creates the emp_cust synchronization
publication that identifies two articles, the cust and emp tables:

CREATE PUBLICATION emp_cust (TABLE cust, TABLE emp)

♦ The following SQL statement creates a synchronization user, ml_user:

CREATE SYNCHRONIZATION SUBSCRIPTION USER ml_user

Synchronization
subscriptions and
publications

Lesson 1: Creating your databases

334

♦ The following SQL statement creates a synchronization subscription for
ml_user to the emp_cust publication. The synchronization subscription
identifies a MobiLink user, the publication name (emp_cust), and
optional communication parameters.

CREATE SYNCHRONIZATION SUBSCRIPTION TO emp_cust FOR
ml_user

♦ The following SQL statement specifies the communication mode for the
synchronization subscription as TCP/IP:

ALTER SYNCHRONIZATION SUBSCRIPTION
TO emp_cust FOR ml_user
TYPE TCPIP ADDRESS ’host=localhost’

In the next lesson, you will learn how to modify these objects in Sybase
Central.

$ For more information about consolidated databases, see "The
consolidated database" on page 12.

$ For more information about remote databases, see "MobiLink clients"
on page 21.

$ For more information about Interactive SQL, see "The Interactive SQL
utility" on page 472 of the book ASA Database Administration Guide.

$ For more information about creating ODBC data sources, see "The
Data Source utility" on page 451 of the book ASA Database Administration
Guide.

$ For more information about defining publications and subscriptions,
see "Publishing data" on page 119.

Further reading

Chapter 15 Tutorial: Writing SQL Scripts Using Sybase Central

335

Lesson 2: Creating scripts for your
synchronization

You can view, write, and modify synchronization scripts using Sybase
Central. In this section you add scripts to the consolidated database.

Each script belongs to a designated script version. You must add a script
version to the consolidated database before you add scripts.

v To add a script version:

1 Start Sybase Central and connect to the test_consol database using the
MobiLink plug-in.

2 Select the Versions folder. Double-click Add Version.

The Add a New Script Version dialog appears.

3 Name the new version default. Click Finish.

v To add synchronized tables to your consolidated database:

1 In the MobiLink Synchronization plug-in of Sybase Central, select the
Tables folder and double-click DBA.

You will see two tables, emp and cust.

2 Right-click each table and choose Add to Synchronized Tables.

Now that you have designated these tables as synchronized, you can add a
new table script for each upload and download to the consolidated database.

v To add table scripts to each synchronized table:

1 In the MobiLink Synchronization plug-in of Sybase Central, select the
Synchronized Tables folder. You will see two tables, emp and cust.
Double-click the emp table.

Lesson 2: Creating scripts for your synchronization

336

2 Double-click Add Table Script. The following dialog appears.

3 Select the upload_insert event from the dropdown list.

4 Click Finish.

5 Type the following SQL statement into the edit screen:

INSERT INTO emp (emp_id, emp_name)
VALUES (?, ?)

6 Save the script.

7 Close the dialog.

8 Repeat steps 2 to 7 for the download_cursor event using the following
SQL statement:

SELECT emp_id, emp_name FROM emp

9 Select the cust table.

10 Repeat steps 2 to 7 for the upload_insert event using the following SQL
statement:

INSERT INTO cust
(cust_id, emp_id, cust_name)
VALUES (?, ?, ?)

11 Repeat steps 2 to 7 for the download_cursor event using the following
SQL statement:

Chapter 15 Tutorial: Writing SQL Scripts Using Sybase Central

337

SELECT cust_id, emp_id, cust_name
FROM cust

$ For more information about the scripts you just created, see
"upload_insert table event" on page 549 and "download_cursor cursor event"
on page 474.

$ For more information about script versions, see "Script versions" on
page 61.

$ For more information about adding scripts, see "Adding and deleting
scripts in your consolidated database" on page 63.

$ For more information about writing table scripts, see "Table scripts" on
page 58.

$ For more information about writing synchronization scripts, see
"Writing Synchronization Scripts" on page 47.

Further reading

Lesson 3: Running the MobiLink synchronization server

338

Lesson 3: Running the MobiLink
synchronization server

The MobiLink synchronization server can be started from a command
prompt. Since the MobiLink synchronization server is a client to the
consolidated database, your consolidated database must be started prior to
starting MobiLink. If you shut down your consolidated database following
Lesson 1, you should restart the database.

v To start the MobiLink synchronization server:

1 Ensure that your consolidated database is running by looking in the
system tray for the SQL icon.

2 Open a command prompt and navigate to
Samples\MobiLink\Autoscripting. Run the following command:

dbmlsrv8 -c "dsn=test_consol" -o mlserver.mls -v+
-dl -zu+

This command line specifies the following options:

♦ -c Supply database connection parameters. For more information,
see "-c option" on page 384.

♦ -o Specify the message log file. For more information, see "-o
option" on page 387.

♦ -v+ Sets verbose logging on. For more information, see "-v
option" on page 393.

♦ -dl Sets the display log feature ON. For more information, see "-dl
option" on page 386.

♦ -zu+ Automates the user authentication process. For more
information, see "-zu option" on page 405.

The options -o, -v, and -dl are chosen to provide debugging and
troubleshooting information. Using these options in a production
environment may affect performance. They typically are not used in a
production environment.

Chapter 15 Tutorial: Writing SQL Scripts Using Sybase Central

339

Once you have executed the MobiLink synchronization server command, the
output below appears.

If MobiLink is already running when you attempt to run dbmlsrv8, you will
receive an error message. Shut down the current instance of MobiLink and
attempt to run the command again.

$ For more information about dbmlsrv8, see "The MobiLink
synchronization server" on page 18.

Further reading

Lesson 4: Running the MobiLink synchronization client

340

Lesson 4: Running the MobiLink
synchronization client

The MobiLink synchronization client may now be started from a command
prompt. Adaptive Server Anywhere clients initiate MobiLink
synchronization by using the dbmlsync utility.

You specify connection parameters on the dbmlsync command line using the
-c option. These parameters are for the remote database.

v To start the MobiLink client:

1 Ensure the MobiLink synchronization server is running by looking for
the MobiLink icon in the system tray.

2 Open a command prompt and navigate to the
Samples\MobiLink\AutoScripting subdirectory of your SQL Anywhere 8
installation.

3 Run the following command line:

dbmlsync -c "dsn=test_remote" -o dbmlsync.out -v+

This command line specifies the following options:

♦ -c Supply database connection parameters. For more information,
see "-c option" on page 384.

♦ -o Specify the message log file. For more information, see "-o
option" on page 387.

♦ -v+ Verbose operation. For more information, see "-v option" on
page 393.

Once you have executed the MobiLink synchronization client command, the
output below appears to indicate that synchronization has succeeded. After
synchronization, the remote database is populated with the data from the
consolidated database.

Chapter 15 Tutorial: Writing SQL Scripts Using Sybase Central

341

$ For more information about dbmlsync, see "MobiLink synchronization
client" on page 410.

$ For more information about synchronization, see "The synchronization
process" on page 24.

Further reading

Lesson 5: Monitoring your MobiLink synchronization using log files

342

Lesson 5: Monitoring your MobiLink
synchronization using log files

Once the tables have synchronized, you can view the progress of the
synchronization using the two message log files you created with each
command line, namely, mlserver.mls and dbmlsync.out.

v To find errors in a MobiLink synchronization log file:

1 Open your log file in a text editor. For this tutorial, the log file is
mlserver.mls.

2 Search the file for the string Synchronization Server started.

3 Scan down the left side of the file. A line beginning with I. contains an
informational message, and a line beginning with E. contains an error
message. For example:

4 Note that beside the E. in this example, there is the following text:

04/27 16:01:01. <Main>: Error: Unable to initialize

communications stream 1: tcpip.

This message indicates an error prior to the upload and download. There
may be errors in the synchronization subscription or publication
definitions.

5 Look for the clause that begins as follows:

Synchronization request from:

This clause indicates that a synchronization request has been established.

6 Look for the clause that begins Working on a request. This indicates
that the client and server are communicating. You may get this message
if you have specified a high level of verbosity.

v To detect errors in your MobiLink synchronization client log file:

1 Open your log file in a text editor. For this tutorial, the log file is
dbmlsync.out.

Chapter 15 Tutorial: Writing SQL Scripts Using Sybase Central

343

2 Search the file for the string COMMIT. If it appears, your synchronization
was successful.

3 Search the file for the string ROLLBACK. If the transaction was rolled
back, there were errors that prevented it from completing.

4 Scan down the left side of the file. If you see an E., you have an error. If
you don’t have any errors, your synchronization has completed
successfully.

$ For more information about MobiLink synchronization server log files,
see "Logging MobiLink synchronization server actions" on page 19.

Further reading

Tutorial cleanup

344

Tutorial cleanup
You should remove tutorial materials from your computer.

v To remove tutorial materials from your computer:

1 Close the Adaptive Server Anywhere, MobiLink, and synchronization
client windows by right-clicking on each taskbar item and choosing
Close.

2 Delete all tutorial-related data sources.

♦ Choose Start➤Programs➤Sybase SQL Anywhere 8➤Adaptive
Server Anywhere➤ODBC Administrator.

The ODBC Data Source Administrator appears.

♦ Select test_remote and test_consol from the list of User Data
Sources. Click Remove.

♦ Click OK to close the ODBC Data Source Administrator.

3 Delete the consolidated and remote databases.

♦ Open Windows Explorer and navigate to the
Samples\MobiLink\AutoScripting subdirectory of your
SQL Anywhere 8 installation.

♦ Delete remote.db, remote.log, consol.db, and consol.log.

Chapter 15 Tutorial: Writing SQL Scripts Using Sybase Central

345

Further reading
The following documentation sections are a good starting point for further
reading:

$ For more information about running the MobiLink synchronization
server, see "The MobiLink synchronization server" on page 18.

$ For more information about synchronization scripting, see "Writing
Synchronization Scripts" on page 47 and "Synchronization Events" on
page 433.

$ For an introduction to other methods of synchronization such as
timestamp, see "Synchronization Techniques" on page 83.

$ For information about testing your scripts in Sybase Central, see
"Testing script syntax" on page 78.

Further reading

346

347

C H A P T E R 1 6

Tutorial: Using MobiLink with an Oracle 8i
Consolidated Database

This chapter provides a tutorial to guide you through the process of setting
up a synchronization system when the consolidated database is an Oracle
database and the remote database is an Adaptive Server Anywhere database.

This tutorial will guide you through the process of creating and
synchronizing the two databases.

Topic Page

Introduction 348

Lesson 1: Create your databases 349

Lesson 2: Starting the MobiLink synchronization server 355

Lesson 3: Running the MobiLink synchronization client 356

Summary 357

Further reading 358

About this chapter

Contents

Introduction

348

Introduction
In this tutorial, you prepare an Oracle consolidated database and an Adaptive
Server Anywhere remote database. You then synchronize the two databases
using MobiLink.

The tutorial takes about 120 minutes.

♦ A full Adaptive Server Anywhere installation including Sybase Central.

♦ A full installation of MobiLink synchronization server and client.

♦ A full installation of Oracle Enterprise Edition 8i.

♦ The iAnywhere Solutions - Oracle 8, 8i and 9i driver.

You should have the following competencies and experience before
beginning the tutorial:

♦ Familiar with Sybase Central interface and functionality.

♦ Competent with Interactive SQL and Oracle SQL Plus.

♦ Competent programming Oracle.

The goals for the tutorial are:

♦ To acquire familiarity with the MobiLink synchronization server and
related components as they can be used with Oracle.

♦ To gain competence in executing MobiLink server and client commands
as they pertain to an Oracle consolidated database.

$ For more information about writing SQL scripts, see "Tutorial: Writing
SQL Scripts Using Sybase Central" on page 329.

$ For more information about running the MobiLink synchronization
server, see "Synchronization Basics" on page 9.

Timing

Required software

Competencies and
experience

Goals

Suggested
background
reading

Chapter 16 Tutorial: Using MobiLink with an Oracle 8i Consolidated Database

349

Lesson 1: Create your databases
MobiLink synchronization requires that you have data a relational database,
an ODBC data source for each database and two compatible databases.

SQL files

You may enter data into a database using a number of different methods.
This tutorial uses Oracle SQL Plus.

Completed SQL scripts for this tutorial are available in the
Samples/MobiLink/Autoscripting/Oracle subdirectory of your
SQL Anywhere 8 installation.

Create a directory called OracleTut for this tutorial, for example c:/OracleTut.
Copy build_consol.sql and build_remote.sql from the location above into
your OracleTut directory.

The following SQL statements, contained in build_consol.sql, drop, create
and populate tables in the consolidated database. If there are no tables to
drop, an error will appear in the SQL Plus output. This will not affect
processing.

create sequence emp_sequence;
create sequence cust_sequence;
drop table emp;
create table emp (emp_id int primary key, emp_name
varchar(128));

drop table cust;
create table cust (cust_id int primary key, emp_id int
references emp(emp_id), cust_name varchar(128));
insert into emp (emp_id, emp_name) values (
emp_sequence.nextval, ’emp1’);
insert into emp (emp_id, emp_name) values (
emp_sequence.nextval, ’emp2’);
insert into emp (emp_id, emp_name) values (
emp_sequence.nextval, ’emp3’);
commit;
insert into cust (cust_id, emp_id, cust_name) values (
cust_sequence.nextval, 1, ’cust1’);
insert into cust (cust_id, emp_id, cust_name) values (
cust_sequence.nextval, 1, ’cust2’);
insert into cust (cust_id, emp_id, cust_name) values (
cust_sequence.nextval, 2, ’cust3’);
commit;

Lesson 1: Create your databases

350

The following SQL statements, contained in build_remote.sql, drop and
create tables in the remote databases. If there are no tables to drop, an error
will appear in the SQL Plus output. This will not affect processing.
Synchronization subscriptions and publications are also inserted to define the
synchronization parameters for the MobiLink synchronization server.

create table emp (emp_id int primary key ,emp_name
varchar(128));
create table cust (cust_id int primary key, emp_id int
references emp (emp_id), cust_name varchar(128));
CREATE PUBLICATION emp_cust (TABLE cust, TABLE emp);
CREATE SYNCHRONIZATION USER ml_user;
CREATE SYNCHRONIZATION SUBSCRIPTION
TO emp_cust FOR ml_user TYPE TCPIP ADDRESS
’host=localhost’;

ODBC data sources

You can now create ODBC data sources through which you connect to the
Oracle consolidated database and the Adaptive Server Anywhere remote
database. MobiLink requires ODBC data source to perform data
synchronization.

Ensure that you know your Instance, Service and Database names, as these
values are required for the ODBC portion of the installation. These values
are established at the time of your Oracle installation.

The following steps set up an ODBC configuration for the Oracle
consolidated database. You will set up the ODBC connections for the
Adaptive Server Anywhere remote database later.

v To set up an ODBC data source for Oracle:

1 Choose Start➤Programs➤Sybase SQL Anywhere 8➤
Adaptive Server Anywhere➤ODBC Administrator.

The ODBC Data Source Administrator opens.

2 Click Add on the User DSN tab. The Create New Data Source window
appears.

3 Select iAnywhere Solutions - Oracle 8, 8i and 9i Driver and click Finish.

The ODBC Oracle Driver Setup window appears.

4 Click the General tab and type the data source name ora_consol. This
is the DSN value used for connecting to your Oracle database. You will
need it later.

The consolidated
data source

Chapter 16 Tutorial: Using MobiLink with an Oracle 8i Consolidated Database

351

5 Enter the server name. This value depends on your Oracle installation. If
the server is on your computer, you may be able to leave this field blank.

6 Click the Advanced tab. Enter a Default User Name. For this tutorial
you can use system, or any User Name with sufficient rights to create
objects. Click OK.

7 Click OK to close the ODBC Data Source Administrator.

MobiLink system tables

MobiLink comes with a script called syncora.sql, located in the
MobiLink\setup subdirectory of your SQL Anywhere installation. Syncora.sql
contains SQL statements, written in Oracle SQL, to prepare Oracle databases
for use as consolidated databases. It creates a series of system tables,
triggers, and procedures for use by MobiLink. The system tables are prefaced
with ML_. MobiLink works with these tables during the synchronization
process.

v Create MobiLink system tables within Oracle:

1 Start SQL Plus. Choose Start➤Programs➤Oracle - OraHome81➤
Application Development➤SQL Plus.

Connect to your Oracle database by using Oracle SQL Plus. Log on
using the system schema with password manager.

2 Run syncora.sql by typing the following command:

@path\syncora.sql;

where path is the MobiLink\setup subdirectory of your SQL Anywhere 8
installation. If there are spaces in your path, you should enclose the path
and filename in quotation marks.

v To verify that the system tables are installed:

1 Start SQL Plus. Choose Start➤Programs➤Oracle - OraHome81➤
Application Development➤SQL Plus.

2 Run the following SQL statement to yield a listing of the MobiLink
system tables, procedures, and triggers:

SELECT object_name
FROM all_objects
WHERE object_name
LIKE ’ML_%’;

If all of the objects shown in the following table are included, you can
proceed to the next step.

Lesson 1: Create your databases

352

OBJECT_NAME

ML_ADD_CONNECTION_SCRIPT

ML_ADD_DNET_CONNECTION_SCRIPT

ML_ADD_DNET_TABLE_SCRIPT

ML_ADD_JAVA_CONNECTION_SCRIPT

ML_ADD_JAVA_TABLE_SCRIPT

ML_ADD_LANG_CONNECTION_SCRIPT

ML_ADD_LANG_TABLE_SCRIPT

ML_ADD_TABLE_SCRIPT

ML_ADD_USER

ML_CONNECTION_SCRIPT

ML_CONNECTION_SCRIPT_TRIGGER

ML_SCRIPT

ML_SCRIPTS_MODIFIED

ML_SCRIPT_TRIGGER

ML_SCRIPT_VERSION

ML_SUBSCRIPTION

ML_TABLE

ML_TABLE_SCRIPT

ML_TABLE_SCRIPT_TRIGGER

ML_USER

Note
If any of the objects are missing, the procedure you just completed was
not successful. In this case, you need to review the MobiLink error
messages to see what went wrong; correct the problem; and then drop the
MobiLink system tables as follows. However, do not drop system tables if
there are any tables starting with ML_ other than the ones listed above.

v To drop the MobiLink system tables:

1 Generate and run the drop statements:

♦ Run the following SQL statement in SQL Plus:

Chapter 16 Tutorial: Using MobiLink with an Oracle 8i Consolidated Database

353

select ’drop ’ || object_type || ’ ’ || object_name
|| ’;’
from all_objects
where object_name like ’ML_%’;

This generates a list of tables, procedures and triggers to be
dropped. Copy this list to a text file and save it as drop.sql in your
OracleTut directory. Remove any lines that do not contain drop
statements.

♦ Execute the SQL statements in drop.sql by running the following
command:

@c:\OracleTut\drop.sql;

Replace c:\ with the location of your OracleTut directory. Run
drop.sql a second time to delete tables that were not removed the
first time because of dependencies.

You can now repeat the instructions for Creating MobiLink system
tables in Oracle.

v To initialize your remote database:

1 Open a command prompt and navigate to your OracleTut directory, for
example c:\OracleTut. Run the following command line:

dbinit remote.db

2 Verify the successful creation of the database by getting a listing of the
contents of this directory. The file remote.db should appear in the
directory listing.

v To create an ODBC data source for the remote database:

1 Open a command prompt and navigate to your OracleTut directory. Run
the following command line:

dbdsn -w test_remote -y -c
"uid=DBA;pwd=SQL;dbf=c:\OracleTut\remote.db;eng=remote"

Replace c:\ with the location of your OracleTut directory.

v To verify your new data source:

1 Choose Start➤Programs➤Sybase SQL Anywhere 8➤
Adaptive Server Anywhere➤ODBC Administrator.

The ODBC Data Source Administrator appears.

2 Click the User DSN tab.

3 Select test_remote from the list of data sources and click Configure.

The remote data
source

Lesson 1: Create your databases

354

4 Test test_remote by clicking the Test Connection button.

5 Click OK to close the ODBC Data Source Administrator.

Databases

In this procedure, you build a consolidated database using the dbisql
command line utility. The dbisql utility helps you to execute SQL commands
within your database. This procedure executes SQL statements within each
database.

$ For more information about dbisql, see "The Interactive SQL utility" on
page 472 of the book ASA Database Administration Guide.

v To create and populate tables in the consolidated database:

1 Start SQL Plus and connect to your consolidated database. Choose
Start➤Programs➤Oracle - OraHome81➤Application Development➤
SQL Plus.

2 Execute the SQL statements in build_consol.sql by running the following
command:

@c:\OracleTut\build_consol.sql;

Replace c:\ with the location of your OracleTut directory. If the path
contains spaces, enclose the path and filename in double quotes.

3 Verify the successful creation of each of the tables through SQL Plus
directly from within the application. Run the following SQL statements:

SELECT * FROM emp;
SELECT * FROM cust;

4 Leave the consolidated database running.

v To create tables and synchronization information in the remote
database:

1 Open a command prompt and navigate to your OracleTut directory. Run
the following command line:

dbisql -c "dsn=test_remote" build_remote.sql

The dbisql plug-in starts the remote database and executes the SQL
statements in build_remote.sql.

2 Verify the successful creation of the emp and cust tables using
Interactive SQL or Sybase Central.

3 Leave the consolidated and remote databases running.

Chapter 16 Tutorial: Using MobiLink with an Oracle 8i Consolidated Database

355

Lesson 2: Starting the MobiLink synchronization
server

The MobiLink synchronization server can now be started from a command
prompt. Since MobiLink synchronization server is a client to the
consolidated database, your consolidated database must be started prior to
starting MobiLink. If you shut down your consolidated database following
Lesson 1, you should restart the database.

v To start the MobiLink synchronization server:

1 Ensure that your consolidated database is running.

2 Open a command prompt and navigate to your OracleTut directory. Run
the following command line:

dbmlsrv8 -c "dsn=ora_consol;pwd=manager" -o
mlserver.mls -v+ -za -zu+

This command line specifies the following options:

♦ -c Specifies connection parameters. Note that we only use the
password as the User ID is contained in the DSN. For more
information, see "-c option" on page 384.

♦ -o Specifies the message log file. For more information, see "-o
option" on page 387.

♦ -v+ Sets verbose logging on. For more information, see "-v
option" on page 393.

♦ -dl Sets the display log feature ON.

♦ -za Turns automated scripting ON. For more information, see "-za
option" on page 402.

♦ -zu+ Automates the user authentication process. For more
information, see "-zu option" on page 405.

$ For more information about dbmlsrv8, see "MobiLink synchronization
server" on page 380.

Further reading

Lesson 3: Running the MobiLink synchronization client

356

Lesson 3: Running the MobiLink
synchronization client

The MobiLink client may now be started from a command prompt. The
MobiLink client initiates synchronization.

You can specify connection parameters on the dbmlsync command line using
the -c option. These parameters are for the remote database.

v To start the MobiLink client:

1 Ensure that the MobiLink synchronization server is started.

2 Open a command prompt and navigate to your OracleTut directory. Run
the following command line:

dbmlsync -c "dsn=test_remote" -o dbmlsync.out -v+ -e
"SendColumnNames=ON"

This command line specifies the following options:

♦ -c Supply database connection parameters. For more information,
see "-c option" on page 384.

♦ -o Specify the message log file. For more information, see "-o
option" on page 387.

♦ -v+ Verbose operation. For more information, see "-v option" on
page 393.

♦ -e Extended options. Specifying "SendColumnNames=ON" sends
column names to MobiLink. For more information, see "-e option"
on page 386.

$ For more information about dbmlsync, see "MobiLink synchronization
client" on page 410.

Further reading

Chapter 16 Tutorial: Using MobiLink with an Oracle 8i Consolidated Database

357

Summary
During this tutorial, you accomplished the following tasks.

♦ Created a new Adaptive Server Anywhere database to serve as a remote
database.

♦ Started a MobiLink synchronization server to work with your
consolidated Oracle database.

♦ Started the MobiLink synchronization client and synchronized the
remote database with the consolidated Oracle database.

In this tutorial, you gained:

♦ Familiarity with the MobiLink synchronization server and client and
how they work with an Oracle database.

♦ Competence in executing MobiLink server and client commands.

Learning
accomplishments

Further reading

358

Further reading
The following documentation areas are good starting points for further
reading:

$ For more information about running the MobiLink synchronization
server, see "Running the MobiLink synchronization server" on page 18.

$ For more information about synchronization scripting, see "Writing
Synchronization Scripts" on page 47, and "Synchronization Events" on
page 433.

$ For an introduction to other methods of synchronization such as
timestamp, see "Synchronization Techniques" on page 83.

359

C H A P T E R 1 7

Using MobiLink Sample Applications

This chapter uses MobiLink sample applications to describe a variety of
techniques that you can use for common synchronization tasks.

The techniques are illustrated using SQL scripts. Many of the same
techniques can be implemented in Java or .NET synchronization logic.

Topic Page

Introduction 360

The CustDB sample 361

The Contact sample 365

About this chapter

Contents

Introduction

360

Introduction
This chapter introduces you to two MobiLink sample applications, CustDB
and Contact. These samples are a valuable resource for the MobiLink
developer. They provide you with examples of how to implement many of
the techniques you will need to develop MobiLink applications.

For example, the synchronization design in the CustDB sample application
uses the following features:

♦ Complete table downloads All rows and columns of the ULProduct
table are shared in their entirety with the remote databases.

♦ Column subsets All rows, but not all columns, of the ULCustomer
table are shared with remote databases.

$ For more information, see "Partitioning rows among remote
databases" on page 91.

♦ Row subsets Different remote users get different sets of rows from
the ULOrder table.

$ For more information, see "Partitioning rows among remote
databases" on page 91.

♦ Timestamp-based synchronization A method of identifying changes
to the consolidated database made since the last time a device
synchronized. The ULCustomer and ULOrder tables are synchronized
using a method based on timestamps.

$ For more information about this technique, see "Timestamp-based
synchronization" on page 86.

♦ Snapshot synchronization The ULProduct table is synchronized
using a simple method that downloads all rows each time
synchronization occurs.

$ For more information about this technique, see "Snapshot
synchronization" on page 88.

♦ Primary key pools to maintain unique primary keys Ensuring that
primary key values are unique across a complete MobiLink installation
is essential. The primary key pool method used in this application is a
practical method for ensuring unique primary keys.

$ For more information about this technique, see "Maintaining
unique primary keys using key pools" on page 100.

Chapter 17 Using MobiLink Sample Applications

361

The CustDB sample
The CustDB sample application includes an UltraLite MobiLink client and a
consolidated database. The application has been designed to illustrate several
common techniques. To get the most out of this chapter, you should study
the sample application as you read.

$ Other samples are based on the Contact sample. For more information,
see "The Contact sample" on page 365.

This section describes the pieces that make up the code for the CustDB
sample application and database. The sample SQL scripts are in the
Samples\MobiLink\CustDB subdirectory of your SQL Anywhere installation,
and the application code is in Samples\UltraLite\CustDB. Platform-specific
user interface code is in subdirectories of Samples\UltraLite\CustDB named
for each operating system.

The CustDB sample database

The CustDB sample database is an Adaptive Server Anywhere database file.
CustDB serves both as the MobiLink consolidated database and as an
UltraLite reference database.

In addition, SQL scripts are provided so that you can rebuild the consolidated
database or use a Sybase Adaptive Server Enterprise, Microsoft SQL Server,
Oracle, or IBM DB2 database as a consolidated database.

$ For more information about preparing a database for use as a
consolidated database, see "Creating a consolidated database" on page 13.

The SQL scripts for the CustDB sample application perform the following
operations. On databases other than Adaptive Server Anywhere, these scripts
can be run only after the MobiLink system tables have been added.

♦ Create the CustDB tables The table definitions are included in the
scripts.

♦ Add the data The data for the CustDB database is added.

♦ Add the synchronization scripts The synchronization scripts control
what happens when an application synchronizes. These scripts are added
to the database.

The scripts implement the same features, but in a way that is appropriate
for each database management system.

The CustDB sample

362

Creating a DB2 consolidated database for CustDB

The files needed to create a DB2 consolidated database for the CustDB
sample application are as follows:

♦ Samples\MobiLink\CustDB\custdb2.sql.

♦ Samples\MobiLink\CustDB\custdb2.java and its compiled form,
custdb2.class.

♦ Samples\MobiLink\CustDB\custdb2setup.java and its compiled form,
custdb2setup.class.

The custdb2.class file must be copied to the SQLLIB\FUNCTION directory
on the DB2 server machine. This file contains the implementations of the
procedures created in custdb2.sql.

v To set up a DB2 consolidated database for the sample application:

1 Create a DB2 database on the DB2 server. Ensure that the default
tablespace (usually called USERSPACE1) uses 8 Kb pages. You may
have to delete the default tablespace and re-create it with 8 Kb pages.
Consult your DB2 documentation for more information.

2 If necessary, change the connect command in custdb2.sql.

3 Start a DB2 Command Window from either the server or client machine.
Enter the following command at the prompt:

db2 -c -ec -td~ +s -v -f custdb2.sql

4 When processing is complete, enter the following command to close the
command window:

exit

5 Create an ODBC data source called CustDB that references the DB2
database on the DB2 client machine.

If you use a name other than CustDB, you must change the connection
code in custdb2setup.java and recompile it. In the following example,
jdk11dir is the path to your JDK 1.1 installation.

javac -g -classpath
jdk11dir\lib\classes.zip;%db2path%\java\db2java.zip;
%db2path%\java\runtime.zip custdb2setup.java

6 Run the custdb2setup Java application on the DB2 client machine. In
the following example, username and password are the username and
password for connecting to the CustDB ODBC data source.

java custdb2setup [username password]

Chapter 17 Using MobiLink Sample Applications

363

The custdb2setup.class file contains a Java application that resets the
CustDB example in the DB2 database. After the initial setup, you can run
this application at any time to reset the DB2 CustDB database.

Application logic source code

The application logic for UltraLite clients is held in the
Samples\UltraLite\CustDB directory.

The embedded SQL logic is held in Samples\UltraLite\CustDB\custdb.sqc. It
holds the SQL statements needed to query and modify information from the
UltraLite database and also holds the calls needed to start synchronization
with the consolidated database.

The C++ API logic is held in Samples\UltraLite\CustDB\custdbapi.cpp.

The user-interface features are held separately, in platform-specific
subdirectories.

$ For more information, see "Source file locations" on page 18 of the
book UltraLite User’s Guide.

Synchronization logic source code

The source for the synchronization features of the sample application is the
Samples\MobiLink\CustDB\custdb.sql file, with custase.sql, custmss.sql,
custora.sql, and custdb2.sql holding versions for other database-management
systems. The scripts in custdb.sql are included in the custdb.db Adaptive
Server Anywhere database.

Cursor-based upload scripts
The synchronization logic for CustDB uses cursor-based upload scripts.
Statement-based uploads are recommended for most purposes. You can
find examples of statement-based uploads in the Contact sample.

$ For more information, see "The Contact sample" on page 365.

You can use Sybase Central to inspect the synchronization scripts in the
consolidated database.

$ For information about running Sybase Central, see "Lesson 8: Browse
the consolidated database" on page 35 of the book UltraLite User’s Guide.

The custdb.sql file adds each synchronization script to the consolidated
database by calling ml_add_connection_script or ml_add_table_script.

Inspecting the
synchronization
scripts

Script types and
events

The CustDB sample

364

The following lines in custdb.sql add a table-level script for the ULProduct
table, which is executed during the download_cursor event. The script
consists of a single SELECT statement.

call ml_add_table_script(
’CustDB’,
’ULProduct’, ’download_cursor’,
’SELECT prod_id, price, prod_name FROM ULProduct’)
go

Some table-level scripts, such as this one, are associated with cursor events.
These scripts are primarily responsible for the movement of data. As they
play such a central role, this kind of table script is described separately as a
cursor script.

$ For more information about script types, see "Script types" on page 55.

$ For reference material, including detailed information about each script
and its parameters, see "Synchronization Events" on page 433.

Examples

Further reading

Chapter 17 Using MobiLink Sample Applications

365

The Contact sample
The Contact sample contains an Adaptive Server Anywhere consolidated
database and two Adaptive Server Anywhere remote databases. It illustrates
many of the synchronization techniques discussed in this chapter.

Although the consolidated database is an Adaptive Server Anywhere
database, the synchronization scripts are made up of simple SQL statements
that should work with minimal changes on other database management
systems.

The Contact sample is held in the Samples\MobiLink\Contact subdirectory of
your SQL Anywhere directory. For an overview, see
Samples\MobiLink\Contact\readme.txt.

Building the Contact sample

A batch file named build.bat is provided to build the Contact sample
databases. On UNIX systems, the file is build.sh. You may want to examine
the contents of the batch file. It carries out the following actions:

♦ Creates ODBC data source definitions for a consolidated database and
each of two remote databases.

♦ Creates a consolidated database file named consol.db and loads the
database schema, some data, synchronization scripts and MobiLink user
names into the database.

♦ Creates subdirectories named remote_1 and remote_2. Each
subdirectory holds a single remote database.

♦ Creates a remote database file named remote_1\remote.db and loads
information common to all remote databases into the file. This database
is used as a template for the other remote database.

♦ Copies remote_1\remote.db into remote_2\remote.db.

♦ Applies customizations to each remote database. These customizations
include a global database identifier, a MobiLink user name, and
subscriptions to two publications.

v To run the build batch file (Command line):

1 At a command prompt, navigate to the Samples\MobiLink\Contact
subdirectory of your SQL Anywhere installation.

The Contact sample

366

2 Execute the following command:

build

Running the Contact sample

The Contact sample includes batch files that carry out initial
synchronizations and illustrate MobiLink synchronization server and
dbmlsync command lines. You can examine the contents of these batch files
in a text editor.

v To run the Contact sample:

1 Start the MobiLink synchronization server.

♦ At a command prompt, navigate to the Samples\MobiLink\Contact
directory and execute the following command:

step1

This is a batch file that starts the MobiLink synchronization server
in a verbose mode. This mode is useful during development or
troubleshooting, but has a significant performance impact and so
would not be used in a routine production environment.

2 Synchronize both remote databases.

♦ At a command prompt, navigate to the Samples\MobiLink\Contact
directory and execute the following command:

step2

This is a batch file that synchronizes both remote databases.

3 Shut down the MobiLink synchronization server.

♦ At a command prompt, navigate to the Samples\MobiLink\Contact
directory and execute the following command:

step3

This is a batch file that shuts down the MobiLink synchronization
server.

To explore how the synchronization scripts work in the Contact sample, you
can use Interactive SQL to modify the data in the remote and consolidated
databases, and use the batch files to synchronize.

Chapter 17 Using MobiLink Sample Applications

367

Tables in the Contact databases

The table definitions for the Contact database are held in the following files:

♦ Samples\MobiLink\Contact\build_consol.sql

♦ Samples\MobiLink\Contact\build_remote.sql

Both the consolidated and the remote databases hold the following three
tables, although their definition is slightly different in each place.

♦ SalesRep This table holds one row for each sales representative. Each
remote database belongs to a single sales representative.

In each remote database, the table holds the following columns:

♦ rep_id A primary key column that holds an identifying number
for the sales representative.

♦ name The name of the representative.

In the consolidated database only, there is also a ml_username column
holding the MobiLink user name for the representative.

♦ Customer This table holds one row for each customer. Each customer
is a company with which a single sales representative does business.
There is a one-to-many relationship between the SalesRep and
Customer tables.

In each remote database, the table holds the following columns:

♦ cust_id A primary key column holding an identifying number for
the customer.

♦ name The customer name. This is a company name.

♦ rep_id The identifier of the sales representative for the customer.

In the consolidated database, the table has the following additional
columns:

♦ last_modified The last time the row was modified. This column is
used for timestamp-based synchronization.

♦ active A BIT column that indicates if the customer is currently
active (1) or if the company no longer deals with this customer (0).
If the column is marked inactive (0) all rows corresponding to this
customer are deleted from remote databases.

♦ Contact This table holds one row for each contact. A contact is a
person who works at a customer company. There is a one-to-many
relationship between the Customer and Contact tables.

In each remote database, the table holds the following columns:

The Contact sample

368

♦ contact_id A primary key column holding an identifying number
for the customer.

♦ name The name of the individual contact.

♦ cust_id The identifier of the customer for whom the contact
works.

In the consolidated database, the table also has the following columns:

♦ last_modified The last time the row was modified. This column is
used for timestamp-based synchronization.

♦ active A BIT column that indicates if the contact is currently
active (1) or if the company no longer deals with this contact (0). If
the column is marked inactive (0) the row corresponding to this
contact is deleted from remote databases.

♦ Product This table holds a row for each product sold by the company.
It is held in a separate publication so that remote databases can
synchronize the table separately.

In each remote database, the table holds the following columns:

♦ id A primary key column holding an identifying number for the
product.

♦ name The name of the individual item.

♦ size The size of the item.

♦ quantity The number of items in stock. When a sales
representative takes an order, this column is updated.

♦ unit_price The price per unit of the product.

In the consolidated database, the table has the following additional
columns:

♦ supplier The company that manufactures the product.

♦ last_modified The last time the row was modified. This column is
used for timestamp-based synchronization.

♦ active A BIT column that indicates if the contact is currently
active (1) or if the company no longer deals with this contact (0). If
the column is marked inactive (0) the row corresponding to this
contact is deleted from remote databases.

Chapter 17 Using MobiLink Sample Applications

369

In addition to these tables, a set of tables is created at the consolidated
database only. These include the product_conflict table, which is a temporary
table used during conflict resolution, and a set of tables for monitoring
MobiLink activities owned by a user named mlmaint. Scripts to create the
MobiLink monitoring tables are in the file
Samples\MobiLink\Contact\mlmaint.sql.

Users in the Contact sample

Several different database user IDs and MobiLink user names are included in
the Contact sample.

The two remote databases belong to sales representatives Samuel Singer
(rep_id 856) and Pamela Savarino (rep_id 949).

When connecting to their remote database, these users both use the default
user ID dba and password SQL. In a security-conscious environment, these
user IDs and passwords must be changed.

Each remote database also has a user ID sync_user with password
sync_user. This user ID is employed only on the dbmlsync command line. It
is a user with REMOTE DBA authority, and so can carry out any operation
when connected from dbmlsync, but has no authority when connected from
any other application. The widespread availability of the user ID and
password is thus not a problem.

At the consolidated database, there is a user ID named mlmaint, who owns
the tables used for monitoring MobiLink synchronization statistics and
errors. This user has no right to connect. The assignment of the tables to a
separate user ID is done simply to separate the objects from the others in the
schema for easier administration in Sybase Central and other utilities.

MobiLink user names are distinct from database user IDs. Each user has a
MobiLink user name in addition to the user ID they use when connecting to a
database. The MobiLink user name for Samuel Singer is SSinger. The
MobiLink user name for Pamela Savarino is PSavarino. The MobiLink user
name is stored or used in the following locations:

♦ At the remote database, the MobiLink user name is added using a
CREATE SYNCHRONIZATION USER statement.

♦ At the consolidated database, the MobiLink user name and password are
added using the dbmluser utility.

♦ During synchronization, the MobiLink password for the connecting user
is supplied on the dbmlsync command line listed in
Samples\MobiLInk\Contact\step2.bat.

Database user IDs

MobiLink user
names

The Contact sample

370

♦ The MobiLink synchronization server supplies the MobiLink user name
as a parameter to many of the scripts during synchronization.

♦ The SalesRep table at the consolidated database has an ml_username
column. The synchronization scripts match the MobiLink user name
parameter against the value in this column.

Synchronizing sales representatives in the Contact sample

The business rules for the SalesRep table are as follows:

♦ The table must not be modified at the remote database.

♦ A sales representative’s MobiLink user name and rep_id value must not
change.

♦ Each remote database holds a single row from the SalesRep table,
corresponding to the remote database owner’s MobiLink user name.

These stringent rules make synchronization of this table simple.

There is very little overhead for the download of a single row, so a simple
snapshot download_cursor script is used:

SELECT rep_id, name
FROM SalesRep
WHERE ? IS NOT NULL
AND ml_username = ?

The first parameter in the script is the last download timestamp, which is not
used. The IS NOT NULL expression is a dummy expression supplied to use
the parameter.

The second parameter is the MobiLink user name. No
download_delete_cursor script is needed.

This table should not be updated at the remote database, so there are no
upload scripts for the table.

Synchronizing customers in the Contact sample

The business rules governing customers are as follows:

♦ Customer information can be modified at both the consolidated and
remote databases.

♦ Periodically, customers may be reassigned among sales representatives.
This process is commonly called territory realignment.

♦ Each remote database holds only the customers they are assigned to.

Business rules

Download

Upload

Business rules

Chapter 17 Using MobiLink Sample Applications

371

The following download_cursor script downloads all customers belonging
to the sales representative for which information has changed since the last
time the sales representative downloaded information. It also downloads only
customers marked active.

SELECT cust_id, Customer.name, Customer.rep_id
FROM Customer key join SalesRep
WHERE Customer.last_modified > ?
AND SalesRep.ml_username = ?
AND Customer.active = 1

The following download_delete_cursor script downloads all customers for
which information has changed since the last time the sales representative
downloaded information. It deletes from the remote database all customers
marked as inactive or who do not belong to the sales representative.

SELECT cust_id
FROM Customer key join SalesRep
WHERE Customer.last_modified > ?
AND (SalesRep.ml_username != ? OR Customer.active = 0)

If rows are deleted from the Customer table at the consolidated database,
they do not appear in this result set and so are not deleted from remote
databases. Instead, customers are marked inactive.

When territories are realigned, this script downloads those customers no
longer assigned to the sales representative. It also downloads unnecessary
deletes of customers that were transferred between other sales
representatives. Such additional deletes are flagged with a SQLCODE of 100
but do not interfere with synchronization. A more complex script could be
developed to identify just those customers transferred away from the current
sales representative.

The MobiLink client carries out cascading deletes at the remote database, so
this script also deletes all contacts who work with customers assigned to
some other sales representative.

Customer information can be inserted, updated, or deleted at the remote
database. The scripts corresponding to these operations are as follows:

♦ INSERT The following upload_insert script adds a row to the
Customer table, marking the customer as active:

INSERT INTO Customer(
cust_id, name, rep_id, active)

VALUES (?, ?, ?, 1)

♦ UPDATE The following upload_update script modifies the customer
information at the consolidated database:

Download

Upload

The Contact sample

372

UPDATE Customer
SET name = ?, rep_id = ?
WHERE cust_id = ?

Conflict detection is not carried out on this table.

♦ DELETE The following upload_delete script marks the customer as
inactive at the consolidated database. It does not delete a row.

UPDATE Customer
SET active = 0
WHERE cust_id = ?

Synchronizing contacts in the Contact sample

The business rules for this table are as follows:

♦ Contact information can be modified at both the consolidated and
remote databases.

♦ Each remote database holds only those contacts who work for customers
they are assigned to.

♦ When customers are reassigned among sales representatives, contacts
must also be reassigned

A trigger on the Customer table is used to ensure that the contacts get picked
up when information about a customer is changed. The trigger explicitly
alters the last_modified column of each contact whenever the corresponding
customer is altered:

CREATE TRIGGER UpdateCustomerForContact
AFTER UPDATE OF rep_id ORDER 1
ON DBA.Customer
REFERENCING OLD AS old_cust NEW as new_cust
FOR EACH ROW
BEGIN
 UPDATE Contact
 SET Contact.last_modified = new_cust.last_modified
 FROM Contact
 WHERE Contact.cust_id = new_cust.cust_id
END

By updating all contact records whenever a customer is modified, the trigger
ties the customer and their associated contacts together so that whenever a
customer is modified, all associated contacts are modified too, and will be
downloaded together on the next synchronization.

The download_cursor script is as follows:

Business rules

Trigger

Downloads

Chapter 17 Using MobiLink Sample Applications

373

SELECT contact_id, contact.name, contact.cust_id
FROM (contact JOIN customer) JOIN salesrep
ON contact.cust_id = customer.cust_id

AND customer.rep_id = salesrep.rep_id
WHERE Contact.last_modified > ?

AND salesrep.ml_username = ?
AND Contact.active = 1

This script retrieves all contacts that are active, that have been changed since
the last time the sales representative downloaded (either explicitly or by
modification of the corresponding customer), and that are assigned to the
representative. A join with the Customer and SalesRep table is needed to
identify the contacts associated with this representative.

The download_delete_cursor is as follows:

SELECT contact_id
FROM (Contact JOIN Customer) JOIN SalesRep
ON Contact.cust_id = Customer.cust_id

AND Customer.rep_id = SalesRep.rep_id
WHERE Contact.last_modified > ?

AND Contact.active = 0

The automatic use of cascading referential integrity by the MobiLink client
deletes contacts when the corresponding customer is deleted from the remote
database. The download_delete_cursor script therefor has to delete only
those contact explicitly marked as inactive.

Contact information can be inserted, updated, or deleted at the remote
database. The scripts corresponding to these operations are as follows:

♦ INSERT The following upload_insert script adds a row to the Contact
table, marking the contact as active:

INSERT INTO Contact (
contact_id, name, cust_id, active)

VALUES (?, ?, ?, 1)

♦ UPDATE The following upload_update script modifies the contact
information at the consolidated database:

UPDATE Contact
SET name = ?, cust_id = ?
WHERE contact_id = ?

Conflict detection is not carried out on this table.

♦ DELETE The following upload_delete script marks the contact as
inactive at the consolidated database. It does not delete a row.

UPDATE Contact
SET active = 0
WHERE contact_id = ?

Uploads

The Contact sample

374

Synchronizing products in the Contact sample

The scripts for the Product table illustrate conflict detection and resolution.

The Product table is kept in a separate publication from the other tables, so
that it can be downloaded separately. For example, if the price changes and
the sales representative is synchronizing over a slow link, they can download
the product changes without uploading their own customer and contact
changes.

The only change that can be made at the remote database is to change the
quantity column, when an order is taken.

The following download_cursor script downloads all rows changed since
the last time the remote database synchronized:

SELECT id, name, size, quantity, unit_price
FROM product
WHERE last_modified > ?
AND active = 1

The following download_delete_cursor script removes all products no
longer sold by the company. These products are marked as inactive in the
consolidated database.

SELECT id, name, size, quantity, unit_price
FROM product
WHERE last_modified > ?
AND active = 0

Only UPDATE operations are uploaded from the remote database. The major
feature of the upload scripts is a conflict detection and resolution procedure.

If two sales representatives take orders and then synchronize, each one
decrements the quantity column of the Product table. For example, if Sam
Singer takes an order for 20 baseball hats (product ID 400), he will
decrement the quantity from 90 to 70. If Pam Savarino takes an order for 10
baseball hats before receiving this change, she will decrement the column in
her database from 90 to 80.

When Sam Singer synchronizes his changes, the quantity column in the
consolidated database is changed from 90 to 70. When Pam Savarino
synchronizes her changes, the correct action is to set the value to 60. This
setting is accomplished by detecting the conflict.

The conflict detection scheme includes the following scripts:

♦ upload_update The following script is a straightforward UPDATE at
the consolidated database:

Business rules

Downloads

Uploads

Chapter 17 Using MobiLink Sample Applications

375

UPDATE product
SET name = ?, size = ?, quantity = ?, unit_price = ?
WHERE product.id = ?

♦ upload_fetch The following script fetches a single row from the
Product table for comparison with the old values of the uploaded row. If
the two rows differ, a conflict is detected.

SELECT id, name, size, quantity, unit_price
FROM Product
WHERE id = ?

♦ upload_old_row_insert If a conflict is detected, the old values are
placed into the product_conflict table for use by the resolve_conflict
script. The row is added with a value of O (for Old) in the row_type
column.

INSERT INTO DBA.product_conflict(
id, name, size, quantity, unit_price, row_type)

VALUES(?, ?, ?, ?, ?, ’O’)’)

♦ upload_new_row_insert The following script adds the new values of
the uploaded row into the product_conflict table for use by the
resolve_conflict script:

INSERT INTO DBA.product_conflict(
id, name, size, quantity, unit_price, row_type)

VALUES(?, ?, ?, ?, ?, ’N’)

♦ resolve_conflict script The following script resolves the conflict by
adding the difference between new and old rows to the quantity value in
the consolidated database:

UPDATE Product
SET p.quantity = p.quantity
 - old_row.quantity
 + new_row.quantity
FROM Product p,
 DBA.product_conflict old_row,
 DBA.product_conflict new_row
WHERE p.id = old_row.id
 AND p.id = new_row.id
 AND old_row.row_type = ’O’
 AND new_row.row_type = ’N’

Monitoring statistics and errors in the Contact sample

The Contact sample contains some simple error reporting and monitoring
scripts. The SQL statements to create these scripts are in the file
Samples\MobiLink\Contact\mlmaint.sql.

The Contact sample

376

The scripts insert rows into tables created to hold the values. For
convenience, the tables are owned by a distinct user, mlmaint.

377

P A R T T H R E E

MobiLink Reference

This part contains reference material that describes in detail the various
commands and components specific to MobiLink synchronization technology.

378

379

C H A P T E R 1 8

MobiLink Synchronization Server Options

This chapter describes the options that can be set when starting the MobiLink
synchronization server, dbmlsrv8.

Topic Page

MobiLink synchronization server 380

About this chapter

Contents

MobiLink synchronization server

380

MobiLink synchronization server
The MobiLink synchronization server lets you synchronize remote databases
or applications with an ODBC-compliant consolidated database.

Start a MobiLink synchronization server.

dbmlsrv8 –c "connection-string" [options]

Option Description

–a Disable automatic reconnection upon
synchronization error. See "-a option" on
page 383.

–bc size Specify the amount of memory to reserve for
blob caching. See "-bc option" on page 384.

–bn size Specify the maximum number of bytes to
consider when comparing blobs. See "-bn
option" on page 384.

–c "keyword=value; …" Supply ODBC database connection parameters
for your reference database. See "-c option" on
page 384.

–cn connections Set maximum number of connections with the
consolidated database server. See "-cn option"
on page 385.

–cr count Set maximum number of database connection
retries. See "-cr option" on page 385.

–ct connection-timeout Set the length of time a connection may be
unused before it is timed out. See "-ct option"
on page 385.

–d number Specify the size of the download cache. See "-d
option" on page 386.

–dl Display log messages on the console. See "-dl
option" on page 386;

–e filename Store remote error logs sent into a named file.
See "-e option" on page 386.

–et filename Truncate the file and append remote
synchronization logs to the new file. See "-et
option" on page 387.

–f Assume synchronization scripts do not change.
See "-f option" on page 387.

–o logfile Log messages to a file. See "-o option" on
page 387.

Function

Syntax

Chapter 18 MobiLink Synchronization Server Options

381

Option Description

–oq Prevent the popup dialog on startup error. See
"-oq option" on page 388.

–os size Maximum size of output file. See "-os option"
on page 388.

–ot logfile Log messages to a file, but truncate it first. See
"-ot option" on page 389.

–ps num Set maximum number of prepared statements to
cache per connection. See "-ps option" on
page 389.

–q Minimize the synchronization server window.
See "-q option" on page 389.

–r retries Retry deadlocked uploads at most this many
times. See "-r option" on page 389.

–rd delay Set maximum delay, in seconds, before retrying
a deadlocked transaction. See "-rd option" on
page 390.

–s count Specify the maximum number of rows to be
fetched or sent at once. See "-s option" on
page 390.

–sl dnet script-options Set the .NET CLR options and force loading of
the virtual machine on startup. See "-sl dnet
option" on page 390.

–sl java script-options Set the Java virtual machine options and force
loading of the virtual machine on startup. See
"-sl java option" on page 391.

–t ODBC-output-file Log ODBC statements issued by MobiLink to
this file. See "-t option" on page 392.

–tt ODBC-output-file Log ODBC statements issued by MobiLink to
this file, but first delete the file if it exists. See
"-tt option" on page 393.

–u size Specify the amount of memory to reserve for
caching upload streams. See "-u option" on
page 393.

–ud On UNIX platforms, run as a daemon. See "-ud
option" on page 393.

–v [levels] Controls the type of messages written to the log
file. See "-v option" on page 393.

–w count Set the number of worker threads. See "-w
option" on page 394.

–wu count Set the maximum number of worker threads

MobiLink synchronization server

382

Option Description
permitted to process uploads concurrently. See
"-wu option" on page 395.

–x protocol[
(network-parameters)]

Specify the communications protocol.
Optionally, specify network parameters in form
parameter=value, with multiple parameters
separated by semicolons. See "-x option" on
page 396.

–za Allow generation of active scripts. See "-za
option" on page 402.

–zac Allow generation of active cursored scripts. See
"-zac option" on page 403.

–zd Pass the last_download timestamp last. See
"-zd option" on page 403.

–ze Allow generation of sample scripts. See "-ze
option" on page 403.

–zec Allow generation of example cursor scripts. See
"-zec option" on page 404.

–zp In the event of a timestamp conflict between the
consolidated and remote database, this option
allows timestamp values with a precision higher
than the lowest-precision to be used for conflict
detection purposes. See "-zt option" on
page 405.

–zs name Identifying name for dbmlstop. See "-zs
option" on page 405.

–zt number Set number of operating system threads to run
concurrently. See "-zt option" on page 405.

–zu { + | – } Allow automatic addition of users when the
authenticate_user script is undefined. See "-zu
option" on page 405.

-zw 1,...5 Controls which levels of warning message to
display. See "-zw option" on page 405.

-zwd code Disables specific warning codes. See "-zwd
option" on page 406.

-zwe code Enables specific warning codes. See "-zwe
option" on page 407.

The MobiLink synchronization server opens connections, via ODBC, with
your consolidated database server. It then accepts connections from client
applications and controls the synchronization process.

Description

Chapter 18 MobiLink Synchronization Server Options

383

The MobiLink synchronization server is compatible with a variety of
database-management systems, including Adaptive Server Anywhere,
Adaptive Server Enterprise, Oracle, Microsoft SQL Server, and IBM DB2.

You must supply connection parameters for the consolidated database using
the –c option. The command line options may be presented in any order. The
–c option is shown here as the first item in a command string as a convention
only. It can be anywhere in a list of options, but must precede a connection
string.

The MobiLink server requires the consolidated database to be running.
Unless your ODBC data source is configured to automatically start the
consolidated database, the database must be running before you start the
MobiLink server.

You can put dbmlsrv8 command line options in a configuration file and
optionally use the File Hiding utility, dbfhide, to add simple encryption to
the configuration file.

$ For more information, see "Using configuration files" on page 10 of the
book ASA Database Administration Guide and "The File Hiding utility" on
page 446 of the book ASA Database Administration Guide.

dbmlsrv8 options

This section lists all MobiLink synchronization server command line options.

-a option

Instructs the MobiLink synchronization server not to reconnect on
synchronization error.

dbmlsrv8 –c " connection-string" –a ...

Should an error occur during synchronization, the MobiLink synchronization
server automatically disconnects from the consolidated database, and then
re-establishes the connection. Reconnecting ensures that the following
synchronization starts from a known state. When this behavior is not
required, you can use this option to disable it. The maintenance of state
information depends on programmer requirements and may vary depending
on the ways in which the programmer configures MobiLink scripting to work
with the DBMS. This applies even if that database is an Oracle, Adaptive
Server Anywhere database or other supported product. Some status
information may need to be re-initialized depending on the client
application.

Function

Syntax

Description

MobiLink synchronization server

384

-bc option

Sets the blob cache size.

dbmlsrv8 –c " connection-string" –bc size ...

The amount of memory to use for caching blobs. If more memory is
required, the MobiLink synchronization server uses disk space, instead. For
this reason, too small a value can degrade performance. To calculate the
minimum recommended size, multiply the maximum size of all blob data in
any one row by the number of worker threads, then multiply the result by 4,
which provides for a large reserve of memory.

The size is the amount of memory to reserve in bytes. Use the suffix "k", "m"
or "g" to specify units of kilobytes, megabytes or gigabytes, respectively.

-bn option

Sets the maximum number of blob bytes to compare.

dbmlsrv8 –c " connection-string" –bn size...

When two blobs contain similar or identical values, the operation of
comparing them for filtering or conflict detection can be expensive due to the
amount of data involved. This option tells the MobiLink synchronization
server to consider only the first size bytes of two blobs when making the
comparison. The default is to consider the entire blobs, no matter how big
they are.

Under some situations, limiting the maximum amount of data compared can
speed synchronization substantially; however, it can also cause errors.
For example, if two large blobs differ only in the last few bytes, the
MobiLink synchronization server may decide that they are identical when in
fact they are not.

-c option

Specifies connection parameters for the consolidated database.

dbmlsrv8 –c " connection-string" ...

The connection string must give the MobiLink synchronization server
information sufficient to connect to the consolidated database. The
connection string is required.

Function

Syntax

Description

Function

Syntax

Description

Function

Syntax

Description

Chapter 18 MobiLink Synchronization Server Options

385

The connection string must specify connection parameters in the form
keyword=value, separated by semicolons, with no spaces between
parameters.

Connection parameters must be included in the ODBC data source
specification if not given in the command line. Check your RDBMS and
ODBC data source to determine required connection data.

$ For a complete list of SQL Anywhere connection parameters, see
"Connection parameters" on page 164 of the book ASA Database
Administration Guide.

-cn option

Sets the maximum number of consolidated database connections.

dbmlsrv8 –c " connection-string" –cn value...

Specifies the maximum number of connections that the MobiLink
synchronization server should make to the consolidated database. The
minimum and the default value are one greater than the number of worker
threads. A warning is issued if the supplied value is too small.

A value larger than the number of worker threads may speed performance,
particularly if connecting to the consolidated database is slow or if multiple
script versions are in use. The optimum maximum number of database
connections is the number of script versions times the number of worker
threads. Connections above this optimum value will not necessarily speed
synchronization, and will needlessly consume resources in both the
MobiLink synchronization server and the consolidated database server.

"MobiLink database connections" on page 227

-cr option

Sets the maximum number of database connection retries.

dbmlsrv8 -c " connection-string" -cr value...

Set the maximum number of times that the MobiLink synchronization server
will attempt to connect to the database, before quitting, when a connection
goes bad. The default value is three connection retries.

-ct option

Sets the length of time a connection may be unused before it is timed out and
disconnected by the MobiLink synchronization server.

Function

Syntax

Description

See also

Function

Syntax

Description

Function

MobiLink synchronization server

386

dbmlsrv8 –c " connection-string" –ct connection-timeout...

MobiLink database connections that go unused for a specified amount of
time are freed by the server. The timeout can be set using the -ct option. A
default timeout period of 60 minutes is used.

-d option

Sets the size of the download cache.

dbmlsrv8 –c " connection-string" –d number...

When no download acknowledgement is required, MobiLink buffers the
download stream in a download cache. Since no acknowledgement is
required from the client to commit the download transaction, the buffered
download stream is sent to the client after the commit. The size of the
download cache can be specified with the d command line option in units of
kilobytes (k), megabytes (m), or gigabytes (g). The default size for the
download cache is 0.5 megabytes.

-dl option

Displays all log messages on screen.

dbmlsrv8 –c " connection-string" –v –dl ...

Display messages in the MobiLink synchronization server window if
specified by the -v command line option. By default, only a subset of all
messages is shown in the window when a log file is being output (using -o).
In circumstances with many messages, this option can degrade performance.

-e option

Stores error logs from Adaptive Server Anywhere MobiLink clients in a
named file.

dbmlsrv8 –c " connection-string" –e filename...

With no -e option, error logs from Adaptive Server Anywhere MobiLink
clients are stored in a file named dblmsrv.mle. The -e option instructs the
MobiLink synchronization server to store the error logs in a named file. By
default, dbmlsync will send, on the occurrence of an error on the remote site,
up to 32 kilobytes of remote log messages to a MobiLink synchronization
server.

"-et option" on page 387

Syntax
Description

Function

Syntax

Description

Function

Syntax

Description

Function

Syntax

Description

See also

Chapter 18 MobiLink Synchronization Server Options

387

-et option

Stores error logs from Adaptive Server Anywhere MobiLink clients in a
named file after truncating the existing file.

dbmlsrv8 –c " connection-string" –et filename...

The amount of information delivered from a remote site can be controlled by
a dbmlsync extended option, ErrorLogSendLimit. The valid setting for this
extended option is n, nk, nK, nm, or nM, where n is zero or a positive integer
and the units are bytes. Here, n means n bytes, nk or nK means n kilobytes
and nm or nM means n megabytes. If you don’t want to send any dbmlsync
output log messages, a zero value should be set for this extended option.

If ErrorLogSendLimit is set to be large enough, dbmlsync sends the entire
output log messages from the current session up to MobiLink
synchronization server. For instance, if the output log messages were
appended to an old output log file, dbmlsync will only send the new
messages generated in the current session to MobiLink synchronization
server. If the total length of new messages is greater than
ErrorLogSendLimit, dbmlsync will only log the last part of the newly
generated error and log messages up to the specified size.

The -et option is the same as the -e option, except that the error log file is
truncated before any new errors are added to it.

"-e option" on page 386

-f option

Loads synchronization scripts only on startup, for better performance.

dbmlsrv8 –c " connection-string" –f ...

Without the -f option, the MobiLink synchronization server checks to see if
synchronization scripts have changed during regular operation. This
checking is helpful during development, but can have an unnecessary
performance impact in a production environment. With the -f option, the
MobiLink synchronization server loads the synchronization scripts at startup
time only.

-o option

Logs output messages to a message log file.

dbmlsrv8 –c " connection-string" –o logfile...

Function

Syntax

Description

See also

Function

Syntax

Description

Function

Syntax

MobiLink synchronization server

388

Write all log messages to the specified file. Note that the MobiLink
synchronization server window, if present, usually shows a subset of all
messages logged.

The MobiLink synchronization server gives the full error context in its
output file if errors occur during synchronization. The error context may
include the following information:

♦ User Name This is the actual user name that is provided by MobiLink
Adaptive Server Anywhere applications during synchronization.

♦ Modified User Name This is the user name modified by the
modify_user script.

♦ Transaction This lists the transaction the error occurs. The
transaction could be authenticate_user, begin _synchronization, upload,
prepare_for_download, download, or end_synchronization.

♦ Table Name This shows the table name if it is available or NULL.

♦ Row The operation could be INSERT, UPDATE, DELETE or
FETCH.

♦ Row Data This shows all the column values of the row that caused the
error.

♦ Script Version This is the script version currently used for
synchronization.

♦ Script This is the actual script used for the synchronization.

You can see contextual information in the log regardless of your chosen level
of verbosity.

-oq option

Prevents the appearance of the dialog when a startup error occurs.

dbmlsrv8 –c " connection-string" –oq ...

By default, the MobiLink synchronization server displays a message box
dialog if a startup error occurs. The -oq option prevents this dialog from
being displayed.

-os option

Sets the maximum size of the message log file.

dbmlsrv8 –c " connection-string" –os size...

Description

Function

Syntax

Description

Function

Syntax

Chapter 18 MobiLink Synchronization Server Options

389

The size is the maximum file size for logging output messages, specified in
units of bytes. Use the suffix "k" or "m" to specify units of kilobytes or
megabytes, respectively. By default, there is no size limit. The minimum size
limit is 10 kb.

Before the MobiLink synchronization server logs output messages to a file, it
checks the current file size. If the log message will make the file size exceed
the specified size, the MobiLink synchronization server renames the message
log file to yymmddxx.mls. In this instance, xx are sequential characters
ranging from AA to ZZ, and yymmdd represents the final two digits of the
current year, the month, and the day of the month.

You can use this option to prune old message log files to free up disk space.
The latest output is always appended to the file specified by -o or -ot.

-ot option

Logs the output message to the message log file, but truncate it first.

dbmlsrv8 –c " connection-string" –ot logfilename ...

Truncate the message log file and then append output messages to it. The
default is to send output to the screen.

-ps option

Sets the maximum number of prepared statements to cache per connection.

dbmlsrv8 –c " connection-string" –ps num ...

Controls the maximum number of ODBC prepared statements kept in the
prepared statement cache.

-q option

Instructs MobiLink to run in a minimized window.

dbmlsrv8 –c " connection-string" –q ...

Minimize the MobiLink synchronization server window.

-r option

Sets the maximum number of deadlock retries.

dbmlsrv8 –c " connection-string" –r retries ...

Description

Function

Syntax

Description

Function

Syntax

Description

Function

Syntax

Description

Function

Syntax

MobiLink synchronization server

390

By default, MobiLink synchronization server retries uploads that are
deadlocked for a maximum of 10 attempts. If the deadlock is not broken,
synchronization fails, since there is no guarantee that the deadlock can be
overcome. This option allows an arbitrary retry limit to be set. To stop the
server from retrying deadlocked transactions, specify –r 0. The upper bound
on this setting is 2 to the power 32, minus one.

-rd option

Sets the maximum delay time between deadlock retries.

dbmlsrv8 –c " connection-string" –rd delay ...

When upload transactions are deadlocked, the MobiLink synchronization
server waits a random length of time before retrying each transaction. The
random nature of the delay greatly increases the likelihood that future
attempts will succeed. This option allows you to specify the maximum delay
in units of seconds. The value 0 (zero) makes retries instantaneous, but larger
values are recommended because they yield more successful retries. The
default and maximum delay value is 30.

-s option

Sets the number of rows fetched, inserted, updated, or deleted at once.

dbmlsrv8 –c " connection-string" –s count ...

Set the number of rows fetched or transferred at one time from the database
to count. Set this option to no less than the number of rows specified in the
ODBC prefetch option, if this option is set. The default value is 10. The
number of rows fetched at once can be viewed in the log file as rowset size.

-sl dnet option

Sets the .NET Common Language Runtime (CLR) options and forces the
CLR to load on startup.

dbmlsrv8 –c " connection-string" –sl dnet options ...

Sets options to pass directly to the .NET CLR. The available options are:

Description

Function

Syntax

Description

Function

Syntax

Description

Function

Syntax

Description

Chapter 18 MobiLink Synchronization Server Options

391

Option Description

-Dname=value Set an environment variable. For example,

-Dsynchtype=far -Dextra_rows=yes

For more information, see the .NET framework
class System.Environment.

-MLAutoLoadPath=path Set the location of base assemblies. Only works
with private assemblies. To tell MobiLink where
assemblies are located, use this option or -
MLDomConfigFile, but not both. When you use
this option, you cannot specify a domain in the
event script. The default is the current directory.

-MLDomConfigFile=file Set the location of base assemblies. Use when
you have shared assemblies, or you don’t want to
load all assemblies in the directory, or you can’t
use MLAutoLoadPath for some other reason. To
tell MobiLink where assemblies are located, use
this option or -MLAutoLoadPath, but not both.

-
MLStartClasses=classnames

At server startup, load user-defined start classes
in the order listed.

-clrConGC Enable concurrent garbage collection in the
CLR.

-clrFlavor=(wks | svr) Flavor of the .NET CLR to load. The flavor is
svr for server and wks for workstation. By
default, wks is loaded.

-clrVersion=version Version of the .NET CLR to load. This must be
prefixed with v. For example, v1.0.3705 loads
the directory
\WINNT\Microsoft.NET\Framework\v1.0.370
5.

To display this list of options, use the following command:

dbmlsrv8 -sl dnet (?)

"Loading assemblies" on page 191
"Writing Synchronization Scripts in .NET" on page 187

-sl java option

Sets the Java virtual machine options and forces the virtual machine to load
on startup.

dbmlsrv8 –c " connection-string" –sl java options ...

See also

Function

Syntax

MobiLink synchronization server

392

Sets -jrepath and sets other options to pass directly to the Java virtual
machine. The available options are:

Option Description

 (-hotspot | -server | -classic) Override the default choice for the Java VM to
use.

{ –cp | –classpath} location;... Specify a set of directories or jar files in which
to search for classes.

–Dname=value Set a system property. For example,

-Dsynchtype=far -Dextra_rows=yes

–DMLStartClasses=class, ... At server startup, load user-defined start
classes in the order listed.

–jrepath path Override the default JRE path, which is
sun\jre131 directory under the
Sybase\shared directory.

–verbose:(class | gc | jni) Enable verbose output.

–X vm-option Set a VM-specific option as described in the
file Xusage.txt, which by default is installed
to Sybase\Shared\Sun\jre131\bin\hotspot.

To display this list of options, use the following command:

dbmlsrv8 -sl java (?)

"Writing Synchronization Scripts in Java" on page 165
"User-defined start classes" on page 174

-t option

Creates a file containing all the ODBC statements issued by MobiLink.

dbmlsrv8 –c " connection-string" –t ODBC-output-file ...

This option can be used to create a file containing all of the ODBC
statements issued by MobiLink. If used on UNIX, with the Adaptive Server
Anywhere driver used as a driver manager, this feature is ignored. The
feature is useful for tracing what was called, passed, and retrieved. It has a
severe impact on performance.

To prevent the file from becoming large, use the "-tt option" on page 393.

"-tt option" on page 393

Description

See also

Function

Syntax

Description

See also

Chapter 18 MobiLink Synchronization Server Options

393

-tt option

Logs ODBC statements issued by MobiLink to a file. If the file already
exists, it first deletes it.

dbmlsrv8 –c " connection-string" –tt ODBC-output-file ...

This option is used to create a file containing all of the ODBC statements
issued by MobiLink. If used on UNIX with the Adaptive Server Anywhere
driver used as a driver manager, this feature is ignored. The feature is useful
for tracing what was called, passed, and retrieved. It has a severe impact on
performance.

"-t option" on page 392

-u option

Sets the upload cache size.

dbmlsrv8 –c " connection-string" –u size ...

The amount of space, in units of bytes, to reserve for caching upload streams
that are being processed. Use the suffix k, m, or g to specify units of
kilobytes, megabytes, or gigabytes respectively. You should consider
enlarging this value if your clients upload large streams, or many clients
synchronize at once, or both. The suggested size is the maximum expected
size of an upload stream multiplied by the number of worker threads. The
default value is 500 Kb.

-ud option

Instructs MobiLink to run as a daemon.

dbmlsrv8 –c " connection-string" –ud ...

UNIX platforms only.

"Running MobiLink Outside the Current Session" on page 275

-v option

Allows you to specify what information is logged to the message log file and
displayed in the synchronization window.

dbmlsrv8 –c " connection-string" –v [levels] ...

This option controls the type of messages written to the message log file.

Function

Syntax

Description

See also

Function

Syntax

Description

Function

Syntax

Description

See also

Function

Syntax

Description

MobiLink synchronization server

394

If you specify –v alone, the MobiLink synchronization server writes a
minimal amount of information about each synchronization.

The values of levels are as follows. You can use one or more of these options
at once; for example, -vnrsu.

♦ + Turn on all logging options that increase verbosity. Negative
verbosity options are not turned on by this option.

♦ c Show the content of each synchronization script when it is invoked.
This level implies s.

♦ h Show the remote schema as uploaded during synchronization.

♦ n Show row-count summaries.

♦ r Display the column values of each row uploaded or downloaded.

♦ s Show the name of each synchronization script as it is invoked.

♦ t Show the translated SQL that results from scripts that are written in
ODBC canonical format. This level implies c. The following example
shows the automatic translation of a statement for Adaptive Server
Anywhere.

I. 02/11 11:02:14. [102]: begin_upload synch2
{ call SynchLogLine(?, ?, ’begin_upload’) }

I. 02/11 11:02:14. [102]: Translated SQL:
call SynchLogLine(?, ?, ’begin_upload’)

The following example shows the translation of the same statement for
Microsoft SQL Server.

I. 02/11 11:03:21. [102]: begin_upload synch2
{ call SynchLogLine(?, ?, ’begin_upload’) }

I. 02/11 11:03:21. [102]: Translated SQL:
EXEC SynchLogLine ?, ?, ’begin_upload’

♦ u Show undefined table scripts. This may help new users understand
the synchronization process.

-w option

Sets the number of worker threads.

dbmlsrv8 –c " connection-string" –w count ...

Each worker thread accepts synchronization requests one at a time. Each
worker thread is associated with a network protocol. If you have more than
one protocol defined, the worker threads are divided evenly among the
protocols.

Function

Syntax

Description

Chapter 18 MobiLink Synchronization Server Options

395

Each worker thread uses one connection to the consolidated database. The
MobiLink synchronization server opens one additional connection for
administrative purposes. Hence, the minimum number of connections from
the MobiLink synchronization server to the consolidated database is
count + 1.

The number of worker threads has a strong influence on MobiLink
synchronization throughput, and you need to run tests to determine the
optimum number for your particular synchronization setup. The number of
worker threads determines how many synchronizations can be active
simultaneously; the rest will be queued waiting for worker threads to become
available. Thus adding worker threads should increase throughput, but it will
also increase the possibility of contention between the active
synchronizations. At some point adding more worker threads will decrease
throughput, because the increased contention outweighs the benefit of
overlapping synchronizations.

$ For more information, see the MobiLink Performance whitepaper at
http://my.sybase.com/detail?id=1009664, and "MobiLink Performance" on
page 219.

The value set for this option is also the default setting for the -wu option,
which can be used to limit the number of threads that can simultaneously
upload. This is useful if the optimum number of worker threads for
downloading is larger than the optimum number for uploading, as is typically
the case with remote databases on slow computers or with slow connections
to the MobiLink server. Tests have shown that for slow synchronization
clients (such as Palm devices or computers connected by dialup), the best
throughput is achieved with a large number of worker threads (via -w) with
a small number allowed to apply uploads simultaneously (via -wu). In
general, the optimum number for -wu depends on the consolidated database,
and is relatively independent of the processing or network speeds for the
remote databases. Therefore, when you increase the number of threads with
-w, you may want to use -wu to restrict the number that can upload
simultaneously. For more information, see "-wu option" on page 395.

The default number of worker threads is 5.

-wu option

Sets the maximum number of worker threads that can apply uploads
simultaneously.

dbmlsrv8 –c " connection-string" –wu count ...

Function

Syntax

MobiLink synchronization server

396

Use the -wu option to limit the number of worker threads that can
simultaneously apply uploads. When the limit is reached, a worker thread
that is ready to apply its upload must wait until another finishes its upload.
The excess worker threads are still free to receive uploads or to download.

The most common cause of contention in the consolidated database is having
too many worker threads applying uploads simultaneously. This can be an
issue when the network connection is slow, or when the client device has low
processing speed. For example, when working over a wide-area wireless
network or using a Palm device you may want to increase the total number of
threads (-w) but limit the number that can apply uploads simultaneously.

Consider the following example. In a pilot setup using a LAN and remote
databases on PCs, you find that the optimum number of worker threads is
approximately 10 for both upload-only and download-only
synchronizations, and that corresponds to 100% CPU utilization on the
consolidated database. With fewer worker threads you find that throughput is
less and the CPU utilization for the consolidated database is lower. With
more worker threads, throughput does not increase because the consolidated
database is already processing as fast as it can with 10 workers. When you
switch to using a dialup network with 10 MobiLink worker threads, you will
probably find that throughput is lower and the consolidated CPU utilization
has dropped. You may find that you can get throughput (and consolidated
CPU utilization) to approach the values obtained with the LAN by increasing
the number of worker threads (via -w) while keeping the number that apply
uploads simultaneously limited to 10 (via -wu).

By default, all worker threads can apply uploads simultaneously. The
number of worker threads that are used is set by the -w option. The default is
5.

-x option

Sets communications protocol and parameters for MobiLink clients. These
are used by the MobiLink synchronization server to listen for
synchronization requests.

dbmlsrv8 –c " connection-string" –x protocol[(network-parameters;...)]...

Specify communications protocol through which to communicate with client
applications.

Description

Function

Syntax

Description

Chapter 18 MobiLink Synchronization Server Options

397

Note for UltraLite users
If you are using an UltraLite Java application and you are using TLS
security, the syntax of -x is slightly different. For details, see "Using
transport-layer security from UltraLite Java applications" on page 353 of
the book UltraLite User’s Guide.

The allowed values of protocol are as follows:

♦ tcpip Accept connections from applications via TCP/IP.

♦ http Accept connections via the standard Web protocol. Client
applications can pick their HTTP version and the MobiLink
synchronization server adjusts on a per-connection basis.

♦ https Accept connections via a variant of HTTP that handles secure
transactions. The HTTPS stream implements HTTP over SSL/TLS using
RSA encryption, and is compatible with any other HTTPS server.

Optionally, you can also specify network parameters, in the form
parameter=value. Separate multiple parameters with semicolons. Which
parameters you specify depends on the protocol you choose.

♦ TCP/IP parameters If you specify the tcpip protocol, you can
optionally specify the following network-parameters:

♦ client_port=nnnnn or client_port=nnnnn-mmmmm A range of
client ports for communication. If only one value is specified, the
end of the range is 100 greater than the initial value, for a total of
101 ports.

The option can be useful for clients inside a firewall communicating
with a MobiLink synchronization server outside the firewall.

♦ host=hostname The host name or IP number on which the
MobiLink synchronization server should listen. The default value is
localhost.

♦ port=portnumber The socket port number on which the
MobiLink synchronization server should listen. The port number
must be a decimal number that matches the port the MobiLink
synchronization server is setup to monitor. The default port is 2439,
which is the IANA registered port number for the MobiLink
synchronization server.

MobiLink synchronization server

398

♦ keep_alive=[0|1] In some circumstances, MobiLink worker
threads become unavailable when TCP/IP-based connections
disappear during synchronization. These blocked worker threads are
waiting for replies from the MobiLink client. If all worker threads
reach this state, MobiLink cannot process synchronizations.
Similarly, MobiLink clients can become blocked if the connection
disappears. The TCP/IP-based streams that are used during
MobiLink synchronization accept a parameter, both on the client
and server side, to manage liveness. The default is 1 (On).

♦ security=cipher(keyword=value;…) All communication through
this connection is to be encrypted using the cipher suite specified.
The cipher can be one of ecc_tls or rsa_tls. These refer to elliptic-
curve and RSA certification. For backwards compatibility, ecc_tls
can also be specified as certicom_tls.

You can optionally specify the security keywords certificate (the
certificate that is to be used for server authentication), and
certificate_password. You must use a certificate that matches the
cipher suite you choose. If you do not specify a certificate,
MobiLink uses a sample certificate appropriate to the cipher suite
you chose.

Your installation includes a sample elliptic-curve certificate called
sample.crt with password tJ1#m6+W, and a sample RSA certificate
called rsaserver.crt with password test. The sample certificates are
for testing and development only. They provide no security because
the same certificates and passwords are distributed to all Adaptive
Server Anywhere customers. New certificates are available from
several companies, including Entrust Technologies and VeriSign.

Separately licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

$ For more information about security, see "Transport-Layer
Security" on page 283.

♦ HTTP parameters If you specify the http protocol, you can
optionally specify the following network-parameters:

♦ client_port=nnnnn or client_port=nnnnn-mmmmm A range of
client ports for communication. If only one value is specified, the
end of the range is 100 greater than the initial value, for a total of
101 ports.

Chapter 18 MobiLink Synchronization Server Options

399

The option can be useful for clients inside a firewall communicating
with a MobiLink synchronization server outside the firewall.

♦ contd_timeout=seconds The number of seconds the MobiLink
synchronization server waits to receive the next part of a partially
completed synchronization before the synchronization is
abandoned. You can tune this option to free MobiLink worker
threads when the wait time indicates that the client will never
continue the connection. The default value is 30 seconds.

♦ host=hostname The host name or IP number on which the
MobiLink synchronization server should listen. The default value is
localhost.

♦ port=portnumber The socket port number on which the
MobiLink synchronization server should listen. The port number
must be a decimal number that matches the port the MobiLink
synchronization server is setup to monitor. The default port is 80.

♦ keep_alive=[0|1] In some circumstances, MobiLink worker
threads become unavailable when TCP/IP-based connections
disappear during synchronization. These blocked worker threads are
waiting for replies from the MobiLink client. If all worker threads
reach this state, MobiLink cannot process synchronizations.
Similarly, MobiLink clients can become blocked if the connection
disappears. The TCP/IP-based streams that are used during
MobiLink synchronization accept a parameter, both on the client
and server side, to manage liveness. The default is 1 (On).

♦ security=cipher(keyword=value;…) All communication through
this connection is to be encrypted using the cipher suite specified.
The cipher can be one of ecc_tls or rsa_tls. These refer to elliptic-
curve and RSA certification. For backwards compatibility, ecc_tls
can also be specified as certicom_tls.

You can optionally specify the security keywords. certificate (the
certificate that is to be used for server authentication), and
certificate_password. You must use a certificate that matches the
cipher suite you choose. If you do not specify a certificate,
MobiLink uses a sample certificate appropriate to the cipher suite
you chose.

Your installation includes a sample elliptic-curve certificate called
sample.crt with password tJ1#m6+W, and a sample RSA certificate
called rsaserver.crt with password test. The sample certificates are
for testing and development only. They provide no security because
the same certificates and passwords are distributed to all Adaptive
Server Anywhere customers. New certificates are available from
several companies, including Entrust Technologies and VeriSign.

MobiLink synchronization server

400

Separately licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

$ For more information about security, see "Transport-Layer
Security" on page 283.

♦ unknown_timeout=seconds The number of seconds the
MobiLink synchronization server waits to receive HTTP headers on
a new connection before the synchronization is abandoned. You can
tune this option to free MobiLink worker threads when the wait
time indicates that a network failure has occurred. The default value
is 30 seconds.

♦ url_suffix=suffix The suffix to add to the URL on the first line of
each HTTP request. This parameter can be used to help ensure that
a particular client connects to the intended server.

♦ version=http-version The MobiLink synchronization server
automatically detects the HTTP version used by a client. This
parameter is a string specifying the default version of HTTP to use
in case the server cannot detect the method used by the client. You
have a choice of 1.0 or 1.1. The default value is 1.1.

♦ HTTPS parameters The HTTPS communication stream uses
Certicom RSA security.

Separately licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

$ For more information about security, see "Transport-Layer
Security" on page 283.

If you specify the https protocol, you can optionally specify the
following network-parameters:

♦ client_port=nnnnn or client_port=nnnnn-mmmmm A range of
client ports for communication. If only one value is specified, the
end of the range is 100 greater than the initial value, for a total of
101 ports.

The option can be useful for clients inside a firewall communicating
with a MobiLink synchronization server outside the firewall.

Chapter 18 MobiLink Synchronization Server Options

401

♦ contd_timeout=seconds The number of seconds the MobiLink
synchronization server waits to receive the next part of a partially
completed synchronization before the synchronization is
abandoned. You can tune this option to free MobiLink worker
threads when the wait time indicates that the client will never
continue the connection. The default value is 30 seconds.

♦ host=hostname The host name or IP number on which the
MobiLink synchronization server should listen. The default value is
localhost.

♦ keep_alive=[0|1] In some circumstances, MobiLink worker
threads become unavailable when TCP/IP-based connections
disappear during synchronization. These blocked worker threads are
waiting for replies from the MobiLink client. If all worker threads
reach this state, MobiLink cannot process synchronizations.
Similarly, MobiLink clients can become blocked if the connection
disappears. The TCP/IP-based streams that are used during
MobiLink synchronization accept a parameter, both on the client
and server side, to manage liveness. The default is 1 (On).

♦ port=portnumber The socket port number on which the
MobiLink synchronization server should listen. The port number
must be a decimal number that matches the port the MobiLink
synchronization server is setup to monitor. The default port is 443.

♦ certificate An optional parameter that specifies a certificate name.
This must be an RSA certificate. If you do not specify a certificate,
MobiLink uses the sample RSA certificate that is provided with
Adaptive Server Anywhere. It is called rsaserver.crt and has the
password test.

The sample certificates are for testing and development only. They
provide no security because the same certificates and passwords are
distributed to all Adaptive Server Anywhere customers. New
certificates are available from several companies, including Entrust
Technologies and VeriSign.

♦ certificate_password An optional parameter that specifies a
password for the certificate.

$ For more information about security, see "Transport-Layer
Security" on page 283.

♦ unknown_timeout=seconds The number of seconds the
MobiLink synchronization server waits to receive HTTP headers on
a new connection before the synchronization is abandoned. You can
tune this option to free MobiLink worker threads when the wait
time indicates that a network failure has occurred. The default value
is 30 seconds.

MobiLink synchronization server

402

♦ url_suffix=suffix The suffix to add to the URL on the first line of
each HTTP request. This parameter can be used to help ensure that
a particular client connects to the intended server.

♦ version=http-version The MobiLink synchronization server
automatically detects the HTTP version used by a client. This
parameter is a string specifying the default version of HTTP to use
in case the server cannot detect the method used by the client. You
have a choice of 1.0 or 1.1. The default value is 1.1.

-za option

Allows the generation of active statement-based scripts.

dbmlsrv8 –c " connection-string" –za

Generate statement-based scripts that perform a simple snapshot
synchronization.

To generate scripts, you must also specify that the client sends column
names. You do this when you initiate synchronization. For Adaptive Server
Anywhere remotes, see "SendColumnNames" on page 420. For UltraLite
remotes, see "send_column_names synchronization parameter" on page 389
of the book UltraLite User’s Guide.

The scripts that are generated are called upload_insert, upload_update,
upload_delete, and download_cursor. The generated scripts are used for the
current synchronization, as well as for following those using the same script
version.

The scripts are generated when dbmlsync synchronizes and apply to the
script version specified on the dbmlsync command line, with a default value
of default. The generated scripts perform one-to-one snapshot
synchronization using the table and column names sent from the client. If the
consolidated database has different table or column names, activating these
scripts will cause an error during the synchronization.

Note:
Scripts are generated the first time that a remote synchronizes with a
script version that doesn’t exist. If the given script version already exists, -
za has no effect. This means that you cannot use -za to generate scripts
one table at a time for the same script version. Using -za, you must
generate scripts for all tables and publications at once.

"-zec option" on page 404

The following dbmlsrv8 command enables automatic script generation. The
dbmlsync command sets the necessary SendColumnNames option.

Function

Syntax

Description

See also

Example

Chapter 18 MobiLink Synchronization Server Options

403

dbmlsrv8 -c "dsn=YourDBDSN" -za

dbmlsync -c dsn=dsn_remote -e "SendColumnNames=ON"

-zac option

Allows the generation of active cursor-based scripts.

dbmlsrv8 –c " connection-string" -zac

Generate cursor-based scripts that perform a simple snapshot
synchronization.

To generate scripts, you must also specify that the client sends column
names. You do this when you initiate synchronization. For Adaptive Server
Anywhere remotes, see "SendColumnNames" on page 420. For UltraLite
remotes, see "send_column_names synchronization parameter" on page 389
of the book UltraLite User’s Guide.

The scripts are named upload_cursor and download_cursor. The generated
scripts are used for the current synchronization, as well as for following
synchronizations using the same script version.

"-za option" on page 402

-zd option

Allows MobiLink to pass the read-only last download timestamp last.

dbmlsrv8 –c " connection-string" –zd

Pass the last_download timestamp as an argument last. If -zd is not used, the
last_download timestamp is sent first.

-ze option

Allows the generation of sample statement-based scripts.

dbmlsrv8 –c " connection-string" –ze

Generate sample scripts that, if activated, perform a simple snapshot
synchronization.

To generate scripts, you must also specify the SendColumnNames extended
option on the dbmlsync command line. For more information, see
"SendColumnNames" on page 420.

Function

Syntax

Description

See also

Function

Syntax

Description

Function

Syntax

Description

MobiLink synchronization server

404

The generated scripts are named example_upload_insert,
example_upload_update, example_upload_delete, and
example_download_cursor. The synchronization is canceled once the scripts
are generated.

Note:
Scripts are generated only the first time that a remote synchronizes, and
only when the given script version does not exist. Otherwise, -ze has no
effect.

"-za option" on page 402

-zec option

Allows the generation of sample cursor-based scripts.

dbmlsrv8 –c " connection-string" –zec

Generate sample cursor-based scripts that, if activated, perform a simple
snapshot synchronization. You must also specify the SendColumnNames
extended option on the dbmlsync command line to generate the scripts.

The generated scripts are named example_upload_cursor and
example_download_cursor.

"-za option" on page 402

-zp option

Adjusts which timestamp values will be used for conflict detection purposes.

dbmlsrv8 –c " connection-string" –zp

In the event of a timestamp conflict between the consolidated and remote
database, this option allows timestamp values with a precision higher than
the lowest precision to be used for conflict detection purposes. The option is
useful when the consolidated database is more precise than the remote, as
updated timestamps on the remote can cause conflicts in the next
synchronization. The option allows MobiLink to ignore these conflicts.
When there is a precision mismatch and zp is not used, a per synchronization
and a schema sensitive per table warning are written to the log to advertise
the -zp option. Another per synchronization warning is also added to advise
users to adjust the timestamp precision on the remote database where
possible.

"MobiLink stop utility" on page 613

See also

Function

Syntax

Description

See also

Function

Syntax

Description

See also

Chapter 18 MobiLink Synchronization Server Options

405

-zs option

Specifies a MobiLink server name.

dbmlsrv8 –c " connection-string" –zs name

Specify a server name for the MobiLink synchronization server. If the
MobiLink synchronization server is started using the -zs option, it must be
shut down using the dbmlstop server-name command. Shutdown may only
occur from the same machine as the server.

"MobiLink stop utility" on page 613

-zt option

Allows the given number of operating system threads that you specify to run
concurrently.

dbmlsrv8 –c " connection-string" –zt number

Run a number of operating system threads concurrently. This option may be
required for some ODBC drivers. It also gives you fine control of processor
resources.

-zu option

Allows the automatic addition of users when the authenticate_user script is
undefined.

dbmlsrv8 –c " connection-string" –zu { + | - } ...

If this is supplied as -zu+, then unrecognized MobiLink user names are
added to the ml_user table on first synchronizing. If the argument is supplied
as -zu-, or not supplied, unrecognized user names are prevented from
synchronizing. Adaptive Server Anywhere versions 7.0.x and previous
automatically added new users.

-zw option

Controls which levels of warning message to display.

dbmlsrv8 –c " connection-string" –zw levels

MobiLink has five levels of warning messages:

Function

Syntax

Description

See also

Function

Syntax

Description

Function

Syntax

Description

Function

Syntax

Description

MobiLink synchronization server

406

Level Description

0 Suppress all warning messages

1 Server and high ODBC level:
warning messages when the
MobiLink synchronization server
starts

2 Synchronization and user level:
warning messages when a
synchronization starts

3 Schema level: warning messages
when a MobiLink synchronization
server is processing a client schema

4 Script and lower ODBC level:
warning messages when a MobiLink
synchronization server fetches,
prepares, or executes scripts

5 Table or row level: warning messages
when a MobiLink synchronization
server performs table operations in an
upload or download

To specify the level of warning messages you want reported, you can
separate levels with a comma, or separate a range with two dots. For
example, -zw 1..3,5 is the same as -zw 1,2,3,5.

The reporting of messages has a slight impact on performance. Levels with a
higher number tend to produce more messages.

If -zw is used more than once in the same command line, MobiLink
recognizes only the last instance. If settings of -zw, -zwd, and -zwe conflict,
MobiLink gives priority to -zwe, then -zwd, then -zw.

The default is 1,2,3,4,5 which indicates that all levels of warning message
should be displayed.

-zwd option

Disables specific warning codes.

dbmlsrv8 –c " connection-string" –zwd code,…

You can disable specific warning codes so that they will not be reported,
even though other codes of the same level are reported.

$ For a complete list of warning message codes, see "MobiLink
synchronization server Warning Messages" on page 683.

Function

Syntax

Description

Chapter 18 MobiLink Synchronization Server Options

407

If -zwd is used more than once in the same command line, MobiLink
accumulates the settings. If settings of -zw, -zwd, and -zwe conflict,
MobiLink gives priority to -zwe, then -zwd, then -zw.

-zwe option

Enables specific warning codes.

dbmlsrv8 –c " connection-string" –zwe code,…

You can enable specific warning codes so that they will be reported even
though you have disabled other codes of the same level using -zw.

$ For a complete list of warning message codes, see "MobiLink
synchronization server Warning Messages" on page 683.

If -zwe is used more than once on the same command line, MobiLink
accumulates the settings. If settings of -zw, -zwd, and -zwe conflict,
MobiLink gives priority to -zwe, then -zwd, then -zw.

Function

Syntax

Description

MobiLink synchronization server

408

409

C H A P T E R 1 9

MobiLink Synchronization Client

This chapter describes details of the MobiLink synchronization client,
dbmlsync. It is used to synchronize Adaptive Server Anywhere remote
databases with a consolidated database.

$ The dbmlsync utility only works with Adaptive Server Anywhere
remote databases. To synchronize UltraLite remote databases, see
"Introduction to UltraLite" on page 3 of the book UltraLite User’s Guide.

Topic Page

MobiLink synchronization client 410

dbmlsync options 413

About this chapter

Contents

MobiLink synchronization client

410

MobiLink synchronization client
Use the dbmlsync utility to synchronize Adaptive Server Anywhere remote
databases with a consolidated database.

dbmlsync [options] [transaction-logs-directory]

Option Description

-a Do not prompt for input again on error.

-c connection-string Supply database connection parameters in the form
parm1=value1; parm2=value2,… If you do not supply
this option, a dialog will appear and you must supply
connection information. See "-c option" on page 413.

-d Drop any other connections to the database whose locks
conflict with the articles to be synchronized. See "-d
option" on page 413.

-dl Display log messages on the console. See "-dl option" on
page 413.

-e "keyword=value;…" Specify extended options. See "-e extended options" on
page 414.

-eh Ignore errors that occur in hook functions.

-ek key Specify encryption key. See "-ek option" on page 423.

-ep Prompt for encryption key. See "-ep option" on page 423.

-eu Specify extended options for upload defined by most
recent -n option. See "-eu option" on page 423.

-i filename Execute file containing SQL statements immediately after
synchronization. See "-i option" on page 424.

-is Ignore schedule. See "-is option" on page 424.

-k Close window on completion. See "-k option" on
page 424.

-l List available extended options. See "-l option" on
page 424.

-mn password Specify new MobiLink password. See "-mn option" on
page 425.

-mp password Specify MobiLink password. See "-mp option" on
page 425.

-n name Specify synchronization publication name. See "-n
option" on page 425.

-o logfile Log output messages to this file. See "-o option" on

Syntax

Chapter 19 MobiLink Synchronization Client

411

Option Description
page 426.

-os size Maximum size of output file. See "-os option" on
page 426.

-ot logfile Truncate file and log output messages to file. See "-ot
option" on page 426.

-p Disable logscan polling. See "-p option" on page 427.

-pi Test that you can connect to MobiLink. See "-pi option"
on page 427.

-pp number [h | m | s] Set logscan polling period. See "-pp option" on page 428.

-q Run in minimized window. See "-q option" on page 428.

-r[a | b] Upload retry on client progress. See "-r option" on
page 429.

-u ml_username Allows you to specify the MobiLink user to synchronize.
See "-u option" on page 429.

-urc row_estimate Allows you to specify and estimate of the rows that will
be uploaded. See "-urc option" on page 430.

-v[levels] Verbose operation. See "-v option" on page 430.

-wc classname Specify a Windows class name for ActiveSync
synchronization (Windows CE only). See "-wc option" on
page 431.

-x Rename and restart the transaction log. See "-x option" on
page 431.

transaction-logs-directo
ry

Specify the location of the transaction log. See
"Transaction log files" on page 140.

Run dbmlsync on the command line to synchronize an Adaptive Server
Anywhere remote database with a consolidated database. Dbmlsync uses the
information on the publication, synchronization user or synchronization
subscription to locate and connect to the MobiLink synchronization server.

Transaction log file The transaction-logs-directory is the directory that
contains the transaction log for the Adaptive Server Anywhere remote
database. There is an active transaction log and transaction log archive files,
both of which may be required by dbmlsync to determine what to upload.
You must specify this parameter if the following are true:

♦ the working log file has been truncated and renamed since you last
synchronized

♦ you run the dbmlsync utility from a directory other than the one where
the renamed log files are stored

Description

MobiLink synchronization client

412

TableOrder You must specify the extended option TableOrder in some
cases. For more information, see "TableOrder" on page 421 and "Referential
integrity and synchronization" on page 35.

Using a configuration file You can put dbmlsync command line options
in a configuration file and optionally use the File Hiding utility, dbfhide, to
add simple encryption to the configuration file. For more information, see
"Using configuration files" on page 10 of the book ASA Database
Administration Guide and "The File Hiding utility" on page 446 of the book
ASA Database Administration Guide.

Dbmlsync event hooks There are also dbmlsync client stored procedures
that can help you customize the synchronization process. For more
information, see "Customizing the client synchronization process" on
page 157 and "Client event-hook procedures" on page 592.

Using dbmlsync For more information about using dbmlsync, see
"Initiating synchronization" on page 138.

Chapter 19 MobiLink Synchronization Client

413

dbmlsync options
This section lists MobiLink synchronization client command line options.

-c option

Specifies connection parameters for the remote database.

dbmlsync -c "connection-string" …

The connection string must give dbmlsync permission to connect to the
Adaptive Server Anywhere remote database. Commonly, a user ID with
REMOTE DBA authority is used.

Specify the connection string in the form keyword=value, with multiple
parameters separated by semicolons. If any of the parameter names contain
spaces, you need to enclose the connection string in double quotes.

If you do not specify -c, a DBMLSync Setup dialog appears. You can
specify the remaining command line options in the fields of the connection
dialog.

For a complete list of connection parameters for connecting to Adaptive
Server Anywhere databases, see "Connection parameters" on page 164 of the
book ASA Database Administration Guide.

-d option

Drops conflicting locks to the remote database.

dbmlsync -d …

During synchronization, unless the locktables extended option is set to OFF,
all tables involved in the publications being synchronized are locked to
prevent any other processes from making changes. Ordinarily, if another
process has a lock on one of these tables, the synchronization is delayed until
that process releases its lock. Specifying this option forces Adaptive Server
Anywhere to drop any other connections to the remote database that hold
conflicting locks.

-dl option

Displays messages in the log file.

Function

Syntax

Description

Function

Syntax

Description

Function

dbmlsync options

414

dbmlsync -dl …

Normally when output is logged to a file, more messages are written to the
file than to the dbmlsync window. This option forces dbmlsync to write
information normally only written to the file to the window as well.

-e extended options

Specifies extended options.

dbmlsync -e keyword=value; …

Specify one or more of the following extended options.

Syntax

Description

Function

Syntax

Description

Chapter 19 MobiLink Synchronization Client

415

Extended option Short
name

Default Description

CommunicationAddress adr localhost Specifies the
communication address for
connecting to the MobiLink
server.

When using adr on the
command line, you must
ensure that all subscriptions
for a single synchronization
user are always
synchronized to only one
consolidated database.
Using this extended option
to synchronize publications
for one user to more than
one consolidated database
will result in data loss and
strange behavior.

$ For allowed values,
see "CREATE
SYNCHRONIZATION
USER statement
[MobiLink]" on page 335
of the book ASA SQL
Reference Manual.

dbmlsync options

416

Extended option Short
name

Default Description

CommunicationType ctp tcpip Specifies the
communication type for
connecting to the MobiLink
server.

When using ctp on the
command line, you must
ensure that all subscriptions
for a single synchronization
user are always
synchronized to only one
consolidated database.
Using this extended option
to synchronize publications
for one user to more than
one consolidated database
will result in data loss and
strange behavior.

$ For allowed values,
see "CREATE
SYNCHRONIZATION
USER statement
[MobiLink]" on page 335
of the book ASA SQL
Reference Manual.

ConflictRetries cr -1 (Continue
indefinitely)

Number of retries if
download fails because of
conflicts.

$ For more
information, see
"Concurrency during
synchronization" on
page 140.

DisablePolling p OFF Disable automatic logscan
polling when scheduling is
enabled.

Chapter 19 MobiLink Synchronization Client

417

Extended option Short
name

Default Description

DownloadBufferSize dbs 32 Kb on
Windows
CE,
1 Mb on all
other
operating
systems.

The valid settings are n,
nK, and nM, where n is
zero or a positive integer
and the units are in bytes.
If the setting is zero,
dbmlsync will not buffer
the download stream.
If the setting is greater than
zero, but less than 4K,
dbmlsync will give a
warning message and
automatically use 4K
memory for buffering the
download stream.
Download buffering at the
client side is advisable for
use with no download
acknowledgement. Enable
download buffering at the
client to get the most
benefit from eliminating the
download ack. That way
the worker thread can send
the download faster, as it
won’t have to wait while the
client applies it.

dbmlsync options

418

Extended option Short
name

Default Description

ErrorLogSendLimit EL 32 Kb Sends the dbmlsync remote
output log to MobiLink
server when an error occurs
on the remote. The option
controls the number of
bytes dbmlsync sends of its
output log to the MobiLink
server when errors occurred
during synchronization.
The valid settings for this
extended option are n, nk,
nK, nm, or nM, where n is
zero or an integer, and k, K,
m, or M specify megabytes
or kilobytes. If you don’t
want to send any dbmlsync
output log messages, a zero
value should be set for this
extended option.

The contents of the log are
determined by the verbosity
settings: either the -v
command line option or
extended options starting
with "verbose".

FireTriggers ft ON Fire triggers on download.

IgnoreHookErrors eh OFF Ignore errors that occur in
hook function.

IgnoreScheduling isc OFF Ignore scheduling
information.

Chapter 19 MobiLink Synchronization Client

419

Extended option Short
name

Default Description

Increment inc NULL Send the upload stream in
chunks of roughly the
specified size. Once the
specified size is reached, a
chunk is sent at the next
point in the stream at which
there are no outstanding
partial transactions.
MobiLink does not send a
download stream to the
remote until the last chunk
has been received. If you do
not specify an increment
size, the whole upload
stream is sent in a single
transfer (the default).

LockTables lt ON Set to OFF to allow
modifications during
synchronization

$ For more
information, see
"Concurrency during
synchronization" on
page 140.

Memory mem 1 Mb Memory used for building
upload stream.

MobiLinkPwd MP NULL MobiLink Password.

NewMobiLinkPwd mn NULL New MobiLink password.

OfflineDirectory dir NULL Path containing offline
transaction logs.

PollingPeriod pp 1 minute Logscan polling period.

Schedule sch No schedule Schedule string. For more
information, see "Schedule
option syntax" on page 347
of the book ASA SQL
Reference Manual.

ScriptVersion sv default Tells the MobiLink
synchronization server to
use the scripts for the
named schema version.

dbmlsync options

420

Extended option Short
name

Default Description

SendColumnNames scn OFF ON tells dbmlsync to send
column names from the
remote database to the
server. Used typically for
generating scripts
automatically using the -za
or -ze option on dbmlsrv8.

SendDownloadACK sa ON ON tells dbmlsync to send
a download
acknowledgement from the
client to the server. An
acknowledgement line
appears in the client log in
verbose mode. OFF means
dbmlsync does not send the
acknowledgement.
Turning the
acknowledgement off can
lead to less contention in
the consolidated database
and also increased
throughput due to shorter
download transactions.
Download transactions are
shorter because they are
committed or rolled back as
soon as possible, since
MobiLink doesn’t need to
keep these transactions
open for as long as it takes
the remote client to apply
the download.
Enable client side
download buffering to get
the most performance out
of eliminating the
download
acknowledgement.

SendTriggers st OFF Send trigger actions on
upload.

SiteScriptName sn NULL File containing SQL
statements to be executed
after synchronization. See
"-i option" on page 424.

StreamCompression
(deprecated)

sc MEDIUM This option has been
deprecated and is ignored.

Chapter 19 MobiLink Synchronization Client

421

Extended option Short
name

Default Description

TableOrder to default Allows users to specify the
ordering of table upload
during synchronization for
referential integrity
resolution. Use with a
comma delimited list. All
tables that are to be
uploaded in the
synchronization must be
listed. Other tables not
involved in the
synchronization may be
included and will be
ignored.

Verbose v OFF Full verbosity. This is the
same as setting the
command line option -v+.

VerboseHooks vs OFF Log messages related to
hook scripts.

VerboseMin vm OFF Log a minimal amount of
information.

VerboseOptions vo OFF Log a list of the extended
options you have specified.

VerboseRowCounts vn OFF Log the number of rows
that were uploaded or
downloaded.

VerboseRowValues vr OFF Log the values of rows that
were uploaded or
downloaded.

VerboseUpload vu OFF Log information about the
upload stream.

Options specified on the command line with the -e option apply to all
synchronizations requested on the command line. In the following example,
the extended option sv=test applies to the synchronization of both pub1 and
pub2.

dbmlsync -e sv=test -n pub1 -n pub2

In contrast, options specified on the command line with the -eu option apply
only to the synchronization specified by the -n option they follow.

Description

dbmlsync options

422

Extended options can be specified on the dbmlsync command line using the
-e or -eu options, or they can be stored in the database. You store extended
options in the database using Sybase Central; or by using the OPTIONS
clause in any of the following statements:

♦ CREATE SYNCHRONIZATION SUBSCRIPTION

♦ ALTER SYNCHRONIZATION SUBSCRIPTION

♦ CREATE SYNCHRONIZATION USER

♦ ALTER SYNCHRONIZATION USER

♦ CREATE SYNCHRONIZATION SUBSCRIPTION without specifying
a synchronization user. (This associates extended options with a
publication.)

When you store extended options and connection parameters in the database,
dbmlsync reads the information from the database. If extended options are
specified in both the database and the command line, the option strings are
combined. If conflicting options are specified, dbmlsync resolves them as
follows. In the following list, options specified by methods occurring earlier
in the list take precedence over those occurring later in the list.

♦ options specified on the command line with the -eu option

♦ options specified on the command line with the -e option

♦ options specified on the subscription (whether by a SQL statement or in
Sybase Central)

♦ options specified for the user (whether by a SQL statement or in Sybase
Central)

♦ options specified for the publication (whether by a SQL statement or in
Sybase Central)

You should ensure that the extended options you provide in your
synchronization subscription are ones you want for your synchronization.
You can review extended options in the log and the syssync system table.

When using adr or ctp on the command line, you must ensure that all
subscriptions for a single synchronization user are always synchronized to
only one consolidated database. Using these extended options to synchronize
publications for one user to more than one consolidated database will result
in data loss and strange behavior.

"-eu option" on page 423See also

Chapter 19 MobiLink Synchronization Client

423

-eh option

Ignores errors that occur in hook functions.

dbmlsync -eh …

-ek option

Allows you to specify the encryption key for strongly encrypted databases
directly on the command line.

dbmlsync -ek key …

If you have a strongly encrypted database, you must provide the encryption
key to use the database or transaction log in any way, including offline
transactions. For strongly encrypted databases, you must specify either -ek or
-ep, but not both. The command will fail if you do not specify a key for a
strongly encrypted database.

-ep option

Prompt for the encryption key.

dbmlsync -ep …

This option causes a dialog box to appear, in which you enter the encryption
key. It provides an extra measure of security by never allowing the
encryption key to be seen in clear text. For strongly encrypted databases, you
must specify either -ek or -ep, but not both. The command will fail if you do
not specify a key for a strongly encrypted database.

-eu option

Specifies extended upload options.

dbmlsync -n publication-name -eu keyword=value;…

Options specified on the command line with the -eu option apply only to the
synchronization specified by the -n option they follow. For example, on the
following command line, the extended option sv=test applies only to the
synchronization of pub2.

dbmlsync -n pub1 -n pub2 -eu sv=test

If extended options are specified in more than one way, the specified options
are combined.

Function

Syntax

Function

Syntax

Description

Function

Syntax

Description

Function

Syntax

Description

dbmlsync options

424

$ For more information, see "-e extended options" on page 414.

-i option

Executes the SQL script contained in the named file.

dbmlsync -i filename …

Immediately upon completing synchronization, and before releasing the table
locks, execute the SQL script contained in the named file. This option is
intended for upgrading applications and making schema changes to
deployed, remote databases. Schema changes must be accomplished in this
manner to ensure all changes are in a compatible format. The script specified
is executed if dbmlsync received confirmation from MobiLink that the
upload was applied even if an error occurs during the download. You should
be explicit about commit/rollback operations when using the -i option.
Failure to do so may cause inconsistent results.

-is option

Ignores scheduling instructions so that synchronization is immediate.

dbmlsync -is …

Ignore extended options that schedule synchronization.

$ For information about scheduling, see "Scheduling synchronization" on
page 162.

-k option

Closes window on completion.

dbmlsync -k …

Close window on completion, if used together with the -o option.

-l option

Lists available extended options.

dbmlsync -l …

Function

Syntax

Description

Function

Syntax

Description

Function

Syntax

Description

Function

Syntax

Chapter 19 MobiLink Synchronization Client

425

When used with the dbmlsync command line it shows you available
extended options.

-mn option

Supplies a new password for the user being synchronized.

dbmlsync -mn password …

Changes the MobiLink user’s password.

$ For more information, see "Authenticating MobiLink Users" on
page 251.

-mp option

Supplies the password of the user being synchronized.

dbmlsync -mp password …

Supplies the password for MobiLink user authentication.

$ For more information, see "Authenticating MobiLink Users" on
page 251.

-n option

Names the synchronization publication.

dbmlsync -n pubname …

Name of synchronization publication. You can supply more than one -n
option to synchronize more than one synchronization publication.

There are two ways to use -n to synchronize multiple publications:

♦ Specify -n pub1,pub2,pub3 to upload pub1, pub2 and pub3 in one
upload stream.

In this case, if you have set extended options on the publications, only
the options set on the first publication in the list are used. Extended
options set on subsequent publications are ignored.

♦ Specify -n pub1 -n pub2 -n pub3 to upload pub1 in one upload
stream, pub2 in another, and pub3 in a third upload stream.

Description

Function

Syntax

Description

Function

Syntax

Description

Function

Syntax

Description

dbmlsync options

426

There are cases where dbmlsync never terminates after synchronizing the
first publication, so the second will never be synchronized:

If an sp_hook_dbmlsync_end hook is defined, and the hook always sets the
restart parameter to true, then dbmlsync repeatedly synchronizes the first
publication and never synchronizes the second. You must be aware of
whether or not the sp_hook_dbmlsync_end_hook is defined before
specifying multiple publications with -n.

-o option

Sends output to a log file.

dbmlsync -o filename …

Append output to a log file. Default is to send output to the screen.

-os option

Specifies the maximum size of the output log messages.

dbmlsync -os size …

The size is the maximum file size for logging output messages, specified in
units of bytes. Use the suffix k, m or g to specify units of kilobytes,
megabytes or gigabytes, respectively. By default, there is no size limit. The
minimum size limit is 10 kb.

Before the dbmlsync utility logs output messages to a file, it checks the
current file size. If the log message will make the file size exceed the
specified size, the dbmlsync utility renames the output file to yymmddxx.dbr.
Here, xx are sequential characters ranging from AA to ZZ, and yymmdd
represents the year, month, and day.

This option allows you to manually delete old log files and free up disk
space.

-ot option

Truncates the log file and appends output messages to it.

dbmlsync -ot logfile …

The functionality is the same as the -o option except the log file is truncated
before any messages are written to it.

Function

Syntax

Description

Function

Syntax

Description

Function

Syntax

Description

Chapter 19 MobiLink Synchronization Client

427

-p option

Disables log scanning.

dbmlsync -p …

When scheduling is enabled, the log is scanned by default once per minute. If
changes have been made to any of the synchronized tables, then at the next
scheduled synchronization time, a synchronization session is initiated and the
affected rows uploaded. This option disables this feature. If present, the
client synchronization utility performs one synchronization session, then
exits. Polling improves performance by polling and caching the contents.
Upon the next poll, there is less log content available to scan, thus
performance on the subsequent scan is improved.

-pi option

Function

Pings a MobiLink synchronization server.

dbmlsync -pi -c connection_string -e sv=script_version [-n pubname] [-u
ml_username]

The ping option allows you to test that your connection information is
correct. When you use -pi, dbmlsync does not initiate synchronization.

In order to be able to ping, dbmlsync must have a unique address for the
MobiLink synchronization server. This means that you must include
connection parameters and a script version, as well as the publication name,
MobiLink user name, or both. The publication or user hold connection
information for the remote. You need to specify both when the user is
subscribed to multiple publications or the publication has multiple users. For
example, if there is only one subscription to the publication, you can specify
the publication without the user.

When the MobiLink synchronization server receives a ping request, it
connects to the consolidated database, authenticates the user, and then sends
the authenticating user status and value back to the client (dbmlsync or
UltraLite).

If the ping succeeds, the MobiLink server issues an information message. If
the ping does not succeed, it issues an error message.

If the MobiLink user name cannot be found in the ml_user system table and
the MobiLink server is running with the command line option -zu+, the
MobiLink server adds the user to ml_user.

Function

Syntax

Description

Syntax

Description

dbmlsync options

428

The MobiLink synchronization server may execute the following scripts, if
they exist:

♦ begin_connection

♦ authenticate_user

♦ authenticate_user_hashed

♦ end_connection

The client cannot synchronize while it is pinging the server.

-pp option

Specifies the frequency of log scans.

dbmlsync -pp frequency …

When scheduling is enabled, the log is scanned by default once per minute.
If changes have been made to any of the synchronized tables, a
synchronization session is initiated and the affected rows uploaded. This
option allows you to specify how frequently log scans are to be initiated. Use
the suffix h, m, or s to specify units of hours, minutes or seconds. Minutes
are assumed if no suffix is present. If a scan takes longer than the specified
period, or the specified period is zero, a new scan is initiated as soon as the
previous one completes. The default scan period is 1 minute.

$ For more information, see "-p option" on page 427.

-q option

Starts the MobiLink synchronization client in a minimized window.

dbmlsync -q …

For Windows operating systems only, starts dbmlsync with a minimized
window.

Function

Syntax

Description

Function

Syntax

Description

Chapter 19 MobiLink Synchronization Client

429

-r option

When you use -ra the upload continues from the offset recorded in the
remote database as long as the offset recorded in the remote is after that
recorded for the consolidated database. When you use -rb, the upload
continues from the offset recorded in the remote database as long as the
offset recorded in the remote is before that recorded for the consolidated
database.

dbmlsync { -ra | -rb } …

When either the client or consolidated database needs to be restored from a
backup, the records of the most recently transmitted offset in the client
transaction log can mismatch between the client and the consolidated
database. In this case, the options are to continue upload synchronization
from the remote database or the consolidated database’s record of the last
synchronization point. Which one is appropriate depends in part on the
synchronization scripts you use.

By default, uploads continue from the offset recorded by the consolidated
database. If you use -ra or -rb, the upload continues from the offset recorded
in the remote database as long as the offset recorded in the consolidated
database is ahead of that at the remote database.

If you use -ra, the upload is retried starting from the offset recorded in the
remote database even if the offset recorded in the remote database is ahead of
that recorded in the consolidated database. This option should be used with
care. If the offset mismatch is the result of a restore of the consolidated
database, changes that happened in the remote database in the gap between
the two recorded offsets are lost. The -ra option may be useful when the
remote database transaction log has been truncated and the synchronization
definition recreated after the last successful synchronization.

-u option

Specifies the MobiLink user name.

dbmlsync -u ml_username …

You can specify one user in the dbmlsync command line, where
ml_username is the name used in the FOR clause of the CREATE
SYNCHRONIZATION SUBSCRIPTION statement corresponding to the
subscription to be processed.

This option should be used in conjunction with -n publication to identify the
subscription on which dbmlsync should operate. Each subscription is
uniquely identified by an ml_username, publication pair.

Function

Syntax

Description

Function

Syntax

Description

dbmlsync options

430

You can only specify one user name on the command line. All subscriptions
to be synchronized in a single run must involve the same user. The -u option
can be omitted if each publication specified on the command line has only
one subscription.

-urc option

Specifies an estimate of the number of rows to be uploaded in a
synchronization.

dbmlsync -urc row_estimate …

To improve performance, you can specify an estimate of the number of rows
that will be uploaded in a synchronization. In general, a higher estimate
results in faster uploads but more memory usage.

Synchronization will proceed correctly regardless of the estimate that is
specified.

-v option

Allows you to specify what information is logged to the message log file and
displayed in the synchronization window. A high level of verbosity may
affect performance and should normally be used in the development phase
only.

dbmlsync -v [levels] ...

The -v options affect the message log file and synchronization window. You
only have a message log if you specify -o or -ot on the dbmlsync command
line.

If you specify –v alone, a minimal amount of information is logged.

The values of levels are as follows. You can use one or more of these options
at once; for example, -vnrsu or -v+cp.

♦ + Turn on all logging options except for c and p.

♦ c Expose the connect string in the log.

♦ p Expose the password in the log.

♦ n Log the number of rows that were uploaded and downloaded.

♦ o Log information about the command line options and extended
options that you have specified.

♦ r Log the values of rows that were uploaded and downloaded.

Function

Syntax

Description

Function

Syntax

Description

Chapter 19 MobiLink Synchronization Client

431

♦ s Log messages related to hook scripts.

♦ u Log information about the upload stream.

There are extended options that have similar functionality to the -v options.
If you specify both -v and the extended options and there are conflicts, the -v
option overrides the extended option. If there is no conflict, the verbosity
logging options are additive—all options that you specify are used.

When logging verbosity is set by extended option, the logging does not take
effect immediately, so startup information is not logged. By the time of the
first synchronization, the logging behavior is identical between the -v options
and the extended options.

$ For information about the extended options, see extended options
starting with the word "verbose" in "-e extended options" on page 414.

-wc option

For Windows CE only, this option specifies a Windows class name for use
with ActiveSync synchronization.

dbmlsync -wc class-name …

This option specifies a class name that identifies the application for
ActiveSync synchronization. The class name must be given when registering
the application for use with ActiveSync synchronization.

"Registering Adaptive Server Anywhere clients for ActiveSync" on page 146
"Using ActiveSync synchronization" on page 143

-x option

Renames and restarts the transaction log after it has been scanned for
outgoing messages.

dbmlsync -x …

In some circumstances, synchronizing data to a consolidated database can
take the place of backing up remote databases, or renaming the transaction
log when the database server is shut down.

Function

Syntax

Description

See also

Function

Syntax

Description

dbmlsync options

432

If backups are not routinely performed at the remote database, the transaction
log continues to grow. As an alternative to using the -x option to control
transaction log size, you can use an Adaptive Server Anywhere event handler
to control the size of the transaction log. For example, the following event
handler renames the transaction log at the remote database when its size
exceeds 5 Mb. You can use such an event handler together with the
DELETE_OLD_LOGS database option to control the space taken up by
transaction logs.

CREATE EVENT RenameLogLimit
TYPE GrowLog
WHERE event_condition(’LogSize’) > 5
AT REMOTE
HANDLER
BEGIN
 BACKUP DATABASE DIRECTORY backupdir
 TRANSACTION LOG ONLY
 TRANSACTION LOG RENAME
END

$ For more information, see "Automating Tasks Using Schedules and
Events" on page 231 of the book ASA Database Administration Guide, and
"DELETE_OLD_LOGS option" on page 566 of the book ASA Database
Administration Guide.

433

C H A P T E R 2 0

Synchronization Events

This chapter provides information about the MobiLink synchronization
events and the SQL scripts, Java methods, or .NET methods that handle these
events. You implement scripts to handle one or more of these events to
control the actions of the MobiLink synchronization server.

Topic Page

Overview of MobiLink events 436

authenticate_user connection event 446

authenticate_user_hashed connection event 450

begin_connection connection event 452

begin_download connection event 454

begin_download table event 456

begin_download_deletes table event 458

begin_download_rows table event 460

begin_synchronization connection event 462

begin_synchronization table event 464

begin_upload connection event 466

begin_upload table event 468

begin_upload_deletes table event 470

begin_upload_rows table event 472

download_cursor cursor event 474

download_delete_cursor cursor event 477

download_statistics connection event 479

download_statistics table event 482

end_connection connection event 485

end_download connection event 487

end_download table event 489

About this chapter

Contents

Overview of MobiLink events

434

end_download_deletes table event 491

end_download_rows table event 493

end_synchronization connection event 495

end_synchronization table event 497

end_upload connection event 499

end_upload table event 502

end_upload_deletes table event 504

end_upload_rows table event 506

example_upload_cursor table event 508

example_upload_delete table event 509

example_upload_insert table event 510

example_upload_update table event 511

handle_error connection event 512

handle_odbc_error connection event 515

modify_last_download_timestamp connection event 517

modify_next_last_download_timestamp connection event 519

modify_user connection event 521

new_row_cursor cursor event 523

old_row_cursor cursor event 525

prepare_for_download connection event 527

report_error connection event 529

report_odbc_error connection event 531

resolve_conflict table event 533

synchronization_statistics connection event 535

synchronization_statistics table event 537

time_statistics connection event 539

time_statistics table event 541

upload_cursor cursor event 543

upload_delete table event 545

upload_fetch table event 547

upload_insert table event 549

upload_new_row_insert table event 551

Chapter 20 Synchronization Events

435

upload_old_row_insert table event 553

upload_statistics connection event 554

upload_statistics table event 557

upload_update table event 560

Overview of MobiLink events

436

Overview of MobiLink events
The following pseudo code provides an overview of the sequence in which
events, and hence the script of the same name, are invoked.

--
Synchronization events in pseudo-code.
- Variables are shown with MixedCase and assigned with:
var <- value
--

CONNECT to consolidated database
begin_connection
COMMIT
for each synchronization request {
 <synchronize>
}
end_connection
COMMIT
DISCONNECT from consolidated database

--
synchronize
--

<authenticate>
begin_synchronization
COMMIT
<upload>
<prepare_for_download>
<download>
end_synchronization
synchronization_statistics
time_statistics
COMMIT

Chapter 20 Synchronization Events

437

--
authenticate
--

Status <- 1000
UseDefaultAuthentication <- TRUE
if(authenticate_user is defined) {
 UseDefaultAuthentication <- FALSE
 TempStatus <- authenticate_user
 if(TempStatus > Status) {
 Status <- TempStatus
 }
}
if(authenticate_user_hashed is defined) {
 UseDefaultAuthentication <- FALSE
 TempStatus <- authenticate_user_hashed
 if(TempStatus > Status) {
 Status <- TempStatus
 }
}
if(UseDefaultAuthentication) {
 if(the user exists in the ml_user table) {
 if(ml_user.hashed_password column is not NULL) {
 if(password matches ml_user.hashed_password) {
 Status <- 1000
 } else {
 Status <- 4000
 }
 } else {
 Status <- 1000
 }
 } else if(-zu+ was on the command line) {
 Status <- 1000
 } else {
 Status <- 4000
 }
}
if(Status >= 3000) {
 ROLLBACK
 // Abort the synchronization.
} else {
 // UserName defaults to the MobiLink user name.
 if(modify_user script is defined) {
 UserName <- modify_user
 }
 // The value of UserName is later passed to all
 // scripts that expect the MobiLink user name.
 if(authenticate_user script is defined or
 authenticate_user_hashed script is defined or
 modify_user script is defined) {
 if(no error in calling these scripts) {
 COMMIT

Overview of MobiLink events

438

 } else {
 ROLLBACK
 // Abort synchronization
 }
 }
}

$ For the details of upload stream processing, see "Events during upload"
on page 438.

$ For the details of download stream processing, see "Events during
download" on page 444.

♦ MobiLink synchronization allows multiple clients to synchronize
concurrently.

♦ A single connection to the consolidated database can be used for several
synchronizations from different clients, one after the other.

♦ The begin_connection and end_connection events are connection-level
events. They are independent of any single synchronization and have no
parameters.

♦ Some events are invoked once per synchronization for each table being
synchronized. Scripts associated with these events are called table-level
scripts.

While each table can have its own table scripts, you can also write table-
level scripts that are shared by several tables.

♦ Some events, such as begin_synchronization, occur at both the
connection level and the table level. You can supply both connection
and table scripts for these events.

♦ The COMMIT statements illustrate how the synchronization process is
broken up into distinct transactions.

♦ A database error event can occur at any point within the synchronization
process. Database errors are handled using the following script.

handle_error(error_code, error_message,
 user_name, table_name)

♦ An ODBC error can be handled by the handle_odbc_error event.

Events during upload

The following pseudo code illustrates how upload events and upload scripts
are invoked.

Notes

Chapter 20 Synchronization Events

439

These events take place at the process_upload_stream location in the
complete event model. For more information, see "Overview of MobiLink
events" on page 436.

--
upload
--

begin_upload
 for each table being synchronized {
 begin_upload_rows
 for each uploaded INSERT or UPDATE for this table {
 if(INSERT) {
 <upload_inserted_row>
 }
 if(UPDATE) {
 <upload_updated_row>
 }
 }
 end_upload_rows
 }
 for each table being synchronized IN REVERSE ORDER {
 begin_upload_deletes
 for each uploaded DELETE for this table {
 <upload_deleted_row>
 }
 end_upload_deletes
 }
if(no error in calling any of these scripts) {
 end_upload
 upload_statistics
 COMMIT
} else {
 ROLLBACK
 // Abort the synchronization
}

Overview of MobiLink events

440

--
<upload_inserted_row>
NOTE: Only table scripts for the current table are
involved.
--

UploadUsingStatements <- (upload_insert is defined
 or upload_update is defined
 or upload_delete is defined
 or upload_fetch is defined
 or upload_new_row_insert is defined
 or upload_old_row_insert is defined)
if(UploadUsingStatements) {
 ConflictsAreExpected <- (upload_new_row_insert is
 defined or upload_old_row_insert is defined
 or resolve_conflict is defined)
 if(upload_insert is defined) {
 upload_insert
 } else if(ConflictsAreExpected
 and upload_update is not defined
 and upload_insert is not defined
 and upload_delete is not defined) {
 // Forced conflict.
 upload_new_row_insert
 resolve_conflict
 }
} else {
 // Upload with cursors.
 ConflictsAreExpected <- (new_row_cursor is defined
 or old_row_cursor is defined
 or resolve_conflict is defined)
 if(upload_cursor is defined) {
 INSERT using upload_cursor
 } else if(ConflictsAreExpected) {
 INSERT using new_row_cursor
 resolve_conflict
 }
}

Chapter 20 Synchronization Events

441

--
upload_updated_row
Only table scripts for the current table are involved.
Both the old (original) and new rows are uploaded for
each update.
--

UploadUsingStatements <- (upload_insert is defined
 defined(upload_update)
 or defined(upload_delete)
 or upload_fetch is defined
 or upload_new_row_insert is defined
 or upload_old_row_insert is defined)
if(UploadUsingStatements) {
 ConflictsAreExpected <- (upload_new_row_insert is
 defined or upload_old_row_insert is defined
 or resolve_conflict is defined)
 Conflicted <- FALSE
 if(upload_update is defined) {
 if(ConflictsAreExpected
 and upload_fetch is defined) {
 FETCH using upload_fetch INTO current_row
 if(current_row <> old row) {
 Conflicted <- TRUE
 }
 }
 if(not Conflicted) {
 upload_update
 }
 } else if(upload_update is not defined
 and upload_insert is not defined
 and upload_delete is not defined) {
 // Forced conflict.
 Conflicted <- TRUE
 }
 if(ConflictsAreExpected and Conflicted) {
 upload_old_row_insert
 upload_new_row_insert
 resolve_conflict
 }
} else {
 // Upload with cursors.
 ConflictsAreExpected <- (new_row_cursor is defined
 or old_row_cursor is defined
 or resolve_conflict is defined)
 Conflicted <- FALSE
 if(upload_cursor is defined) {
 FETCH using upload_cursor INTO current_row
 if(ConflictsAreExpected and
 current_row <> old row)
{
 Conflicted <- TRUE

Overview of MobiLink events

442

 } else {
 UPDATE using upload_cursor
 }
 } else {
 // Forced conflict.
 Conflicted <- TRUE
 }
 if(ConflictsAreExpected and Conflicted) {
 INSERT using new_row_cursor
 INSERT using old_row_cursor
 resolve_conflict
 }
}

Chapter 20 Synchronization Events

443

--
upload_deleted_row
NOTE: Only table scripts for the current table are
 considered.
--

UploadUsingStatements <- (upload_insert is defined
 or upload_update is defined
 or upload_delete is defined
 or upload_fetch is defined
 or upload_new_row_insert is defined
 or upload_old_row_insert is defined)
if(UploadUsingStatements) {
 ConflictsAreExpected <- (upload_new_row_insert is
defined
 or upload_old_row_insert is defined
 or resolve_conflict is defined)
 if(upload_delete is defined) {
 upload_delete
} else if(ConflictsAreExpected
 and upload_update is not defined
 and upload_insert is not defined
 and upload_delete is not defined) {
 // Forced conflict.
 upload_old_row_insert
 resolve_conflict
 }
} else {
 // Upload with cursors.
 ConflictsAreExpected <- (new_row_cursor is defined
 or old_row_cursor is defined
 or resolve_conflict is defined)
 if(upload_cursor is defined) {
 DELETE using upload_cursor
 } else if(ConflictsAreExpected) {
 // Forced conflict.
 INSERT using old_row_cursor
 resolve_conflict
 }
}

♦ The upload starts and ends with connection events. Other events are
table-level events.

♦ The begin_upload and end_upload scripts for each remote table hold
logic that is independent of the individual rows being updated.

Notes

Overview of MobiLink events

444

Events during download

The following pseudo code provides an overview of the sequence in which
download events, and hence the script of the same name, are invoked.

These events take place at the process_download_stream location in the
complete event model provided in "Overview of MobiLink events" on
page 436.

--
prepare_for_download
--

if(prepare_for_download is defined) {
 prepare_for_download
}
if(modify_last_download_timestamp is defined) {
 call modify_last_download_timestamp script
}
if(prepare_for_download is defined or
 modify_last_download_timestamp is defined) {
 if(no error in calling any of these scripts) {
 COMMIT
 }
 else {
 ROLLBACK
 // Abort the synchronization
 }
}

Chapter 20 Synchronization Events

445

--
download
--

begin_download
for each table being synchronized {
 begin_download_deletes
 for each row in download_delete_cursor {
 send DELETE to remote
 }
 end_download_deletes
 begin_download_rows
 for each row in download_cursor {
 send INSERT WITH UPDATE to remote
 }
 end_download_rows
}
if (modify_next_last_download_timestamp is defined) {
 call modify_next_download_timestamp
}
end_download
if(no error in calling any of these scripts and
 no error in sending the download stream) {
 download_statistics
 COMMIT
} else {
 ROLLBACK
 // Abort the synchronization
}

♦ Like the upload stream, the download stream starts and ends with
connection events. Other events are table-level events.

♦ If an acknowledgement is expected, and if no confirmation of the
downloads is received from the client, the entire download transaction is
rolled back in the consolidated database.

♦ The begin_download and end_download scripts for each remote table
hold logic that is independent of the individual rows being updated.

♦ The download stream does not distinguish between inserts and updates.
The script associated with the download_cursor event is a SELECT
statement that defines the rows to be downloaded. The client detects
whether the row exists or not and carries out the appropriate insert or
update operation.

♦ At the end of the download processing, the client automatically deletes
rows if necessary to avoid referential integrity violations.

$ For more information, see "Referential integrity and
synchronization" on page 35.

Notes

authenticate_user connection event

446

authenticate_user connection event
Implements a custom user authentication mechanism.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 auth_status INTEGER. This is an
INOUT parameter.

2 ml_username VARCHAR(128).

3 user_password VARCHAR(128).

4 user_new_password VARCHAR(128)

Use MobiLink built-in user authentication mechanism.

The MobiLink synchronization server executes this event upon starting each
synchronization. It is executed before, and in the same transaction as, the
begin_synchronization event.

You can use this event to replace the built-in MobiLink authentication
mechanism with a custom mechanism. You may want to call into the
authentication mechanism of your DBMS, or you may wish to implement
features not present in the MobiLink built-in mechanism, such as password
expiry or a minimum password-length.

The parameters used in an authenticate_user event are as follows:

1 auth_status This required parameter is an INOUT parameter: a
parameter that provides a value to the script, and could be given a new
value by the script. The auth_status parameter indicates the overall
success of the authentication, and can be set to one of the following
values:

Function

Parameters

Default action

Description

Chapter 20 Synchronization Events

447

Returned Value Auth_status Description

V <= 1999 1000 Authentication succeeded.

1999 < V <= 2999 2000 Authentication succeeded: password
expiring soon.

2999 < V <= 3999 3000 Authentication failed: password
expired.

3999 < V <= 4999 4000 Authentication failed.

4999 < V <= 5999 5000 Authentication failed as user is already
synchronizing.

5999 < V 4000 If the returned value is greater than
5999, MobiLink interprets it as a
returned value of 4000.

2 ml_username This optional parameter indicates the user name for
authentication purposes.

3 user_password This optional parameter indicates the password for
authentication purposes. If the user does not supply a password, this is
NULL.

4 user_new_password This optional parameter indicates a new
password. If the user does not change their password, this is NULL.

SQL scripts for the authenticate_user event must be implemented as stored
procedures.

"Authenticating MobiLink Users" on page 251
"Custom user authentication mechanisms" on page 261
"authenticate_user_hashed connection event" on page 450
"begin_synchronization connection event" on page 462

A typical authenticate_user script is a call to a stored procedure. The order of
the parameters in the call must match the order above. In an Adaptive Server
Anywhere consolidated database, the script could be as follows.

call my_auth (?, ?, ?, ?)

In an Adaptive Server Enterprise consolidated database, the Transact-SQL
script could be as follows.

execute ? = my_auth ?, ?, ?

The following Adaptive Server Anywhere stored procedure uses only the
user name to authenticate—it has no password check. The procedure ensures
only that the supplied user name is one of the employee IDs listed in the
ULEmployee table.

See also

SQL example

authenticate_user connection event

448

CREATE PROCEDURE my_auth(in @user_name varchar(128))
begin
 if exists
 (select * from ulemployee
 where emp_id = @user_name)
 then
 message ’OK’ type info to client;
 return 1000;
 else
 message ’Not OK’ type info to client;
 return 4000;
 end if
end

The following stored procedure call registers a Java method called
authenticateUser as the script for the authenticate_user event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’,
’authenticate_user’,
’ExamplePackage.ExampleClass.authenticateUser’)

Following is the sample Java method authenticateUser. It calls Java functions
that check and, if needed, change the user’s password.

public String authenticateUser
(ianywhere.ml.script.InOutInteger authStatus,
 String user, String pwd, String newPwd)
 throws java.sql.SQLException
{ // in a real authenticate_user handler, we would
 // handle more auth code states
 _curUser = user;

 if(checkPwd(user, pwd))
 { // auth successful
 if(newPwd != null)
 { // pwd is being changed
 if(changePwd(user, pwd, newPwd))
 { // auth ok and pwd change ok use custom code
 authStatus.setValue(1001); }
 else { // authorization ok but password
 // change failed. Use custom code.
 java.lang.System.err.println("user: "
 + user + " pwd change failed!");
 authStatus.setValue(1002); } }
 else { authStatus.setValue(1000); } }
 else { // auth failed

 authStatus.setValue(4000); }

 return(null); }

Java example

Chapter 20 Synchronization Events

449

.NET example

The following stored procedure call registers a .NET method called
AuthUser as the script for the authenticate_user connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
 ’ver1’, ’authenticate_user’,
 ’TestScripts.Test.AuthUser’
)

Following is the C# signature for the call AuthUser.

public void AuthUser(ref int authStatus, string user,
string pwd, string newPwd)

$ For a more detailed example of an authenticate_user script written in
C# in .NET, see ".NET synchronization example" on page 200.

authenticate_user_hashed connection event

450

authenticate_user_hashed connection event
Implements a custom user authentication mechanism.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 auth_status INTEGER. This is an INOUT
parameter.

2 ml_username VARCHAR(128).

3 hashed_user_password BINARY(20). If the user does not
supply a password, this is NULL.

4 hashed_new_password BINARY(20). If the user does not
change their password, this is
NULL.

Use MobiLink built-in user authentication mechanism.

This event is identical to authenticate_user except for the passwords, which
are in the same hashed form as those stored in the ml_user.hashed_password
column. Passing the passwords in hashed form provides increased security.

When the two authentication scripts are both defined, and both scripts return
different auth_status codes, the higher value is used.

"Authenticating MobiLink Users" on page 251
"Custom user authentication mechanisms" on page 261
"authenticate_user connection event" on page 446

The following stored procedure call registers a Java method called
authUserHashed as the script for the authenticate_user_hashed event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’, ’authenticate_user_hashed’,
’ExamplePackage.ExampleClass.authUserHashed

Following is the sample Java method authUserHashed. It calls Java functions
that check and, if needed, change the user’s password.

Function

Parameters

Default action

Description

See also

Java example

Chapter 20 Synchronization Events

451

public String authUserHashed(
ianywhere.ml.script.InOutInteger authStatus,
String user, byte pwd[], byte newPwd[])
 throws java.sql.SQLException
{ // in a real authenticate_user_hashed handler, we
 // would handle more auth code states
 _curUser = user;
 if(checkPwdHashed(user, pwd)) {
 // auth successful
 if(newPwd != null)
 { // pwd is being changed
 if(changePwdHashed(user, pwd, newPwd))
 { // auth ok and pwd change ok use custom code
 authStatus.setValue(1001); }
 else
 { // auth ok but pwd change failed.
 // Use custom code
 java.lang.System.err.println("user: " + user
 + " pwd change failed!");
 authStatus.setValue(1002); } }
 else { authStatus.setValue(1000); } }
 else { // auth failed
 authStatus.setValue(4000); }
 return(null); }

.NET example

The following stored procedure call registers a .NET method called
AuthUserHashed as the script for the authenticate_user_hashed connection
event when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_dnet_connection_script(’ver1’,
’authenticate_user_hashed’,
’TestScripts.Test.AuthUserHashed’
)

Following is the C# signature for the call AuthUserHashed.

public void AuthUserHashed(ref int authStatus, string
user, byte[] pwd, byte[] newPwd)

begin_connection connection event

452

begin_connection connection event
Processes any statements at the time the MobiLink synchronization server
connects to the consolidated database server.

None.

None.

The MobiLink synchronization server executes this event upon opening each
worker-thread connection to the consolidated database server. The MobiLink
synchronization opens connections on demand as synchronization requests
come in. When an application forms or reforms a connection with the
MobiLink synchronization server, the MobiLink synchronization server
temporarily allocates one connection with the database server for the
duration of that synchronization.

"end_connection connection event" on page 485

The following SQL script works in an Adaptive Server Anywhere database.
Two variables are created, one for the last_download timestamp, and one for
employee ID.

call ml_add_connection_script(’custdb’,
 ’begin_connection’,
 ’create variable @LastDownload timestamp;
 create variable @EmployeeID integer;’)

Note: This script is not generally used in Java, because instead of database
variables you would use member variables in this class instance, and prepare
the members in the constructor.

The following stored procedure call registers a Java method called
beginConnection as the script for the begin_connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script (’ver1’,
’begin_connection’,
’ExamplePackage.ExampleClass.beginConnection’)

Following is the sample Java method beginConnection. This returns SQL
that will create a connection level variable.

public String beginConnection()
{ return("create variable @LastDownload timestamp;"); }

Function

Parameters

Default action

Description

See also

SQL example

Java example

Chapter 20 Synchronization Events

453

.NET example

The following stored procedure call registers a .NET method called
BeginConnection as the script for the begin_connection connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_dnet_connection_script(’ver1’,
 ’begin_connection’,
’TestScripts.Test.BeginConnection’
)

Following is the signature for the call BeginConnection.

public void BeginConnection()

begin_download connection event

454

begin_download connection event
Processes any statements just before the MobiLink synchronization server
commences preparing the download data stream.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

None.

The MobiLink synchronization server executes this event as the first step in
the processing of downloaded information. Download information is
processed in a single transaction. The execution of this event is the first
action in this transaction.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

"end_download connection event" on page 487

The following example works in an Adaptive Server Anywhere installation.

call ml_add_connection_script (’Lab’, ’begin_download’,
’CALL SetDownloadParameters (?, ?)’)

The following stored procedure call registers a Java method called
beginDownloadConnection as the script for the begin_download connection
event when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_connection_script(’example_ver’,
’begin_download’,
’ExamplePackage.ExampleClass.beginDownloadConnection’)

Following is the sample Java method beginDownloadConnection. It calls a
Java function that will prepare the delete tables using a JDBC
synchronization that was set earlier.

Function

Parameters

Default action

Description

See also

SQL example

Java example

Chapter 20 Synchronization Events

455

public String beginDownloadConnection (Timestamp ts,
String user)
 throws java.sql.SQLException
{ prepDeleteTables (_syncConn, ts, user);
 return (null); }

.NET example

The following stored procedure call registers a .NET method called
BeginDownload as the script for the begin_download connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
 ’ver1’,
 ’begin_download’,
 ’TestScripts.Test.BeginDownload’
)

Following is the C# signature for the call BeginDownload.

public void BeginDownload(
 DateTime timestamp,
 string user)

begin_download table event

456

begin_download table event
Provides a location to process statements related to a specific table just
before preparing the download stream of inserts, updates, and deletions.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

3 table VARCHAR (128)

None.

The MobiLink synchronization server executes this event as the first step in
preparing download information for a specific table. The download
information is prepared in its own transaction. The execution of this event is
the first table-specific action in the transaction.

You can have one begin_download script for each table in the remote
database. The script is only invoked when that table is synchronized.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

"end_download table event" on page 489

The following example can be used on an Adaptive Server Anywhere 8
database. The first chunk of code calls the ml_add_table_script, and the
second creates a BeginTableDownload procedure.

call ml_add_table_script (’version1’, ’Leads’,
’begin_download’, ’call BeginTableDownLoad(?, ?, ?));

Function

Parameters

Default action

Description

See also

SQL example

Chapter 20 Synchronization Events

457

create procedure BeginTableDownload (LastDownload
timestamp, MLUser varchar(128), TableName varchar(128))
begin
 exexcute immediate ’update ’ || TableName ||
’ set last_download_check = CURRENT TIMESTAMP
 where Owner = ’ ||MLUser;
end

The following stored procedure call registers a Java method called
beginDownloadTable as the script for the begin_download table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’begin_download’,
’ExamplePackage.ExampleClass.beginDownloadTable’)

Following is the sample Java method beginDownloadTable. It saves the
name of the current table for use in a later member function call.

public String beginDownloadTable(Timestamp ts,
String user, String table)
{ _curTable = table;
 return(null); }

.NET example

The following stored procedure call registers a .NET method called
BeginTableDownload as the script for the begin_download table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’begin_download’,
 ’TestScripts.Test.BeginTableDownload’
)

Following is the C# signature for the call BeginTableDownload.

public void BeginTableDownload(
 DateTime timestamp,
 string user,
 string table)

Java example

begin_download_deletes table event

458

begin_download_deletes table event
Processes statements related to a specific table just before fetching a list of
rows to be deleted from the specified table in the remote database.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR (128)

3 table VARCHAR (128)

None.

This event is executed immediately before fetching a list of rows to be
deleted from the named table in the remote database.

You can have one begin_download_deletes script for each table in the
remote database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

"begin_download_rows table event" on page 460
"end_download_rows table event" on page 493

To minimize the amount of data on remotes, you can use this event to flag
data that will be deleted when the download_delete_cursor is executed. The
following example flags for deletion sales leads from the remote device that
are over 10 weeks old. The example can be used on an Adaptive Server
Anywhere 8 database. The code calls the ml_add_table_script, and then
creates a beginDownloadDeletes procedure.

call ml_add_table_script (’version1’, ’Leads’,
’begin_download_deletes’,
’call BeginDownloadDeletes (?, ?, ?)’);

Function

Parameters

Default action

Description

See also

SQL example

Chapter 20 Synchronization Events

459

create procedure BeginDownloadDeletes (LastDownload
timestamp, MLUser varchar(128), TableName varchar(128))
begin
 execute immediate ’update ’ || TableName ||
 ’ set delete_flag = 1 where
 days(creation_time, CURRENT DATE) > 70 and Owner = ’
 || MLUser;
end;

The following stored procedure call registers a Java method called
beginDownloadDeletes as the script for the begin_download_deletes table
event when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script (’ver1’, ’table1’,
’begin_download_deletes’,
’ExamplePackage.ExampleClass.beginDownloadDeletes’)

Following is the sample Java method beginDownloadDeletes. It saves the
name of the current table for use in a later member function call.

public String beginDownloadDeletes(Timestamp ts,
String user, String table)
{ _curTable = table;
 return(null); }

.NET example

The following stored procedure call registers a .NET method called
BeginDownloadDeletes as the script for the begin_download_deletes table
event when synchronizing the script version ver1 and the table table1. This
syntax is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’begin_download_deletes’,
 ’TestScripts.Test.BeginDownloadDeletes’
)

Following is the C# signature for the call BeginDownloadDeletes.

public void BeginDownloadDeletes(
 DateTime timestamp,
 string user,
 string table)

Java example

begin_download_rows table event

460

begin_download_rows table event
Processes statements related to a specific table just before fetching a list of
rows to be inserted or updated in the specified table in the remote database.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR (128)

3 table VARCHAR (128)

None.

This event is executed immediately before fetching the stream of rows to be
inserted or updated in the named table in the remote database.

You can have one begin_download_rows script for each table in the remote
database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

"begin_download_deletes table event" on page 458
"end_download_deletes table event" on page 491

You can use the begin_download_rows table event to flag rows that you no
longer want to download for this table. The following example archives sales
leads that are over seven days old.

call ml_add_table_script (’version1’, ’Leads’,
 ’begin_download_rows’,
 ’call BeginDownloadRows (?, ?, ?)’);

Function

Parameters

Default action

Description

See also

SQL example

Chapter 20 Synchronization Events

461

create procedure BeginDownloadRows (
 LastDownload timestamp, MLUser varchar(128),
 TableName varchar(128))
begin
 execute immediate ’update ’ || TableName ||
 ’ set download_flag = 0 where
 days(creation_time, CURRENT DATE) > 7 and Owner = ’
 || MLUser;
end;

The following stored procedure call registers a Java method called
beginDownloadRows as the script for the begin_download_rows table event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’begin_download_rows’,
’ExamplePackage.ExampleClass.beginDownloadRows’)

Following is the sample Java method beginDownloadRows. It generates an
UPDATE statement using the table and user. MobiLink will execute this
SQL statement.

public String beginDownloadRows(Timestamp ts,
String user, String table)

{ return("update " + table + " set download_flag = 0 "
 + " where days(creation_time, CURRENT DATE) > 7 " +
 " and Owner = ’" + user + "’"); }

.NET example

The following stored procedure call registers a .NET method called
BeginDownloadRows as the script for the begin_download_rows table event
when synchronizing the script version ver1 and the table table1. This syntax
is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’begin_download_rows’,
 ’TestScripts.Test.BeginDownloadRows’
)

Following is the C# signature for the call BeginDownloadRows.

public void BeginDownloadRows(
 DateTime timestamp,
 string user,
 string table)

Java example

begin_synchronization connection event

462

begin_synchronization connection event
Processes any statements at the time an application connects to the MobiLink
synchronization server in preparation for the synchronization process.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Item Parameter Description

1 ml_username VARCHAR(128)

None.

The MobiLink synchronization server executes this event immediately after
an application preparing to synchronize has formed a connection with the
MobiLink synchronization server.

This event is executed within a separate transaction before the upload
transaction. It is useful for maintaining statistics.

"end_synchronization connection event" on page 495
"begin_synchronization table event" on page 464

You may want to store the ml_username value in a temporary table or
variable if you will be referencing that value many times in subsequent
scripts.

Call ml_add_connection_script (’version1’,
’begin_synchronization’, ’set @EmployeeID = ?’);

The following stored procedure call registers a Java method called
beginSynchronizationConnection as the script for the begin_synchronization
connection event when synchronizing the script version ver1. This syntax is
for Adaptive Server Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’, ’begin_synchronization’,
’ExamplePackage.ExampleClass.beginSynchronizationConnection’)

Following is the sample Java method beginSynchronizationConnection. It
saves the name of the synchronizing user for later use.

public String beginSynchronizationConnection(
 String user)
{ _curUser = user;
 return(null); }

Function

Parameters

Default action

Description

See also

SQL example

Java example

Chapter 20 Synchronization Events

463

.NET example

The following stored procedure call registers a .NET method called
BeginSync as the script for the begin_synchronization connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_dnet_connection_script(’ver1’,
 ’begin_synchronization’,
 ’TestScripts.Test.BeginSync’
)

Following is the C# signature for the call BeginSync.

public void BeginSync(string user)

begin_synchronization table event

464

begin_synchronization table event
Processes statements related to a specific table at the time an application
connects to the MobiLink synchronization server in preparation for the
synchronization process.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR (128)

2 table VARCHAR (128)

None.

The MobiLink synchronization server executes this event after an application
that is preparing to synchronize has formed a connection with the MobiLink
synchronization server, and after the begin_synchronization connection-level
event.

You can have one begin_synchronization script for each table in the remote
database. The event is only invoked when the table is synchronized.

"end_synchronization table event" on page 497
"begin_synchronization connection event" on page 462

The following stored procedure call registers a Java method called
beginSynchronizationTable as the script for the begin_synchronization table
event when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’, ’begin_synchronization’,
’ExamplePackage.ExampleClass.beginSynchronizationTable’)

Following is the sample Java method beginSynchronizationTable. It adds the
current table name to a list of table names contained in this instance.

public String beginSynchronizationTable(String user,
String table)
{ _tableList.add(table);
 return(null); }

Function

Parameters

Default action

Description

See also

Java example

Chapter 20 Synchronization Events

465

.NET example

The following stored procedure call registers a .NET method called
BeginTableSync as the script for the begin_synchronization table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’,
 ’begin_synchronization’,
 ’TestScripts.Test.BeginTableSync’

)

Following is the C# signature for the call BeginTableSync.

public void BeginTableSync(string user, string table)

begin_upload connection event

466

begin_upload connection event
Processes any statements just before the MobiLink synchronization server
commences processing the stream of uploaded inserts, updates, and deletes.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Item Parameter Description

1 ml_username VARCHAR (128)

None.

The MobiLink synchronization server executes this event as the first step in
the processing of uploaded information. Upload information is processed in a
single transaction. The execution of this event is the first action in this
transaction.

"end_upload connection event" on page 499
"begin_upload table event" on page 468

The following stored procedure call registers a Java method called
beginUploadConnection as the script for the begin_upload connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’,
’begin_upload’,
’ExamplePackage.ExampleClass. beginUploadConnection ’)

Following is the sample Java method beginUploadConnection. It prints a
message to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public String beginUploadConnection(String user)
{ java.lang.System.out.println(
 "Starting upload for user: " + user);
 return(null); }

.NET example

The following stored procedure call registers a .NET method called
BeginUpload as the script for the begin_upload connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

Function

Parameters

Default action

Description

See also

Java example

Chapter 20 Synchronization Events

467

call ml_add_dnet_connection_script(’ver1’,
 ’begin_upload’,
 ’TestScripts.Test.BeginUpload’
)

Following is the C# signature for the call BeginUpload.

public void BeginUpload(string user)

The following C# example saves the current user name for use in a later
event.

public void BeginUpload(string curUser)
{
 user = curUser;
}

begin_upload table event

468

begin_upload table event
Processes statements related to a specific table just before the MobiLink
synchronization server commences processing the stream of uploaded
inserts, updates, and deletes.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

None.

The MobiLink synchronization server executes this event as the first step in
the processing of uploaded information. Upload information is processed in a
separate transaction. The execution of this event is the first table-specific
action in this transaction.

You can have one begin_upload script for each table in the remote database.
The script is only invoked when the table is actually synchronized.

"end_upload table event" on page 502
"begin_upload connection event" on page 466

When uploading rows from a remote you may want to place the changes in
an intermediate table and manually process changes yourself. You can
populate a global temporary table in this event.

call ml_add_table_script (’version1’, ’Leads’ ,
’begin_upload’, ’insert into T_Leads SELECT *
FROM Leads WHERE Owner = @EmployeeID’)

The following stored procedure call registers a Java method called
beginUploadTable as the script for the begin_upload table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’begin_upload’,
’ExamplePackage.ExampleClass.a beginUploadTable ’)

Function

Parameters

Default action

Description

See also

SQL example

Java example

Chapter 20 Synchronization Events

469

Following is the sample Java method beginUploadTable. This example takes
no action. MobiLink interprets NULL as no script.

public String beginUploadTable(String user,
String table)
{ return(null); }

.NET example

The following stored procedure call registers a .NET method called
BeginTableUpload as the script for the begin_upload table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’begin_upload’,
 ’TestScripts.Test.BeginTableUpload’
)

Following is the C# signature for the call BeginTableUpload.

public void BeginTableUpload(
 string user,
 string table)

begin_upload_deletes table event

470

begin_upload_deletes table event
Processes statements related to a specific table just before uploading deleted
rows from the specified table in the remote database.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

None.

This event runs immediately before applying the changes that result from
rows deleted in the client table named in the second parameter.

You can have one begin_upload_deletes script for each table in the remote
database. The script is only invoked when the table is actually synchronized.

"end_upload_deletes table event" on page 504

The following stored procedure call registers a Java method called
beginUploadDeletes as the script for the begin_upload_deletes table event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’begin_upload_deletes’,
’ExamplePackage.ExampleClass. beginUploadDeletes’)

Following is the sample Java method beginUploadDeletes. It prints a
message to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public String beginUploadDeletes(String user,
String table)
 throws java.sql.SQLException
{ java.lang.System.out.println("Starting upload
 deleted for table: " + table);
 return(null); }

Function

Parameters

Default action

Description

See also

Java example

Chapter 20 Synchronization Events

471

.NET example

The following stored procedure call registers a .NET method called
BeginUploadDeletes as the script for the begin_upload_deletes table event
when synchronizing the script version ver1 and the table table1. This syntax
is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(’ver1’, ’table1’,
 ’begin_upload_deletes’,
 ’TestScripts.Test.BeginUploadDeletes’
)

Following is the C# signature for the call BeginUploadDeletes.

public void BeginUploadDeletes(string user,
 string table)

begin_upload_rows table event

472

begin_upload_rows table event
Processes statements related to a specific table just before uploading inserts
and updates from the specified table in the remote database.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

None.

This event is run immediately prior to applying the changes that result from
inserts and deletes to the client table named in the second parameter.

You can have one begin_upload_rows script for each table in the remote
database. The script is only invoked when the table is actually synchronized.

"end_upload_rows table event" on page 506

The following stored procedure call registers a Java method called
beginUploadRows as the script for the begin_upload_rows table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’begin_upload_rows’,
’ExamplePackage.ExampleClass.beginUploadRows’)

Following is the sample Java method beginUploadRows. It prints a message
to the MobiLink output log. (This might be useful at development time but
would slow down a production server.)

public String beginUploadRows (String user,
String table)
 throws java.sql.SQLException
{ java.lang.System.out.println("Starting upload rows
 for table: " + table + " and user: " + user);
 return(null); }

Function

Parameters

Default action

Description

See also

Java example

Chapter 20 Synchronization Events

473

.NET example

The following stored procedure call registers a .NET method called
BeginUploadRows as the script for the begin_upload_rows table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’begin_upload_rows’,
 ’TestScripts.Test.BeginUploadRows’
)

Following is the C# signature for the call BeginUploadRows.

public void BeginUploadRows(
 string user,
 string table)

download_cursor cursor event

474

download_cursor cursor event
Defines a cursor to select rows that are to be downloaded and inserted or
updated in the remote database.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

None.

A default download_cursor SQL script can be generated using the MobiLink
synchronization server -za option. Also, the UltraLite analyzer generates a
SELECT statement based on your reference database that you can use to get
started.

The MobiLink synchronization server opens a read-only cursor with which
to fetch a list of rows to download to the remote database. This script should
contain a suitable SELECT statement.

The parameters are the last_download timestamp and the user name. You can
use these values if you choose by placing question marks in your SQL
statement.

You can have one download_cursor script for each table in the remote
database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

To optimize performance of the download stage of synchronization to
UltraLite clients, when the range of primary key values is outside the current
rows on the device, you should order the rows in the download cursor by
primary key. Downloads of large reference tables, for example, can benefit
from this optimization.

Function

Parameters

Default action

Description

Chapter 20 Synchronization Events

475

Note that download_cursor allows for cascading deletes. Thus, you can
delete records from a database.

For Java and .NET applications, this script must return valid SQL.

"upload_cursor cursor event" on page 543
"download_delete_cursor cursor event" on page 477

The following example comes from an Oracle installation, although the
statement is valid against all supported databases. The example downloads
all rows that have been changed since the last time the user downloaded data,
and which match the user name in the emp_name column.

call ml_add_table_script(’Lab’, ’ULOrder’,
’download_cursor’, ’SELECT order_id, cust_id,
prod_id, emp_id, disc, quant, notes, status FROM
ULOrder WHERE last_modified >= ? AND emp_name = ?’)

To write a download_cursor SQL script that does not use the first parameter
(the last_download timestamp), but does use the second parameter (the
MobiLink user name), add a dummy clause that affects no rows. For
example:

call ml_add_table_script(’Lab’, ’ULOrder’,
’download_cursor’, ’SELECT order_id, cust_id,
prod_id, emp_id, disc, quant, notes, status
FROM ULOrder WHERE ? IS NOT NULL AND emp_name = ?’)

You must still use both parameters, but the first ? is a place holder that does
nothing.

The following stored procedure call registers a Java method called
downloadCursor as the script for the download_cursor cursor event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’download_cursor’,
’ExamplePackage.ExampleClass. downloadCursor ’)

Following is the sample Java method downloadCursor. It dynamically
creates the SQL statement for the download cursor.

public String downloadCursor(Timestamp ts,
String user)
{ return("SELECT order_id, cust_id, prod_id, emp_id,
disc, " + " quant, notes, status " + "FROM ULOrder " +
"WHERE emp_name = ’" + user + "’"); }

See also

SQL example

Java example

download_cursor cursor event

476

.NET example

The following stored procedure call registers a .NET method called
DownloadCursor as the script for the download_cursor cursor event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’download_cursor’,
 ’TestScripts.Test.DownloadCursor’
)

Following is the C# signature for the call DownloadCursor.

public string DownloadCursor(
 DateTime timestamp,
 string user)

The following C# example populates a temporary table with the contents of a
file called rows.txt. It then returns a cursor that causes MobiLink to send the
rows in the temporary table to the remote database.

public string DownloadCursor(DateTime ts, string user)
{
 DBCommand stmt = curConn.CreateCommand();
 StreamReader input = new StreamReader("rows.txt");
 string sql = input.ReadLine();

 stmt.CommandText = "DELETE FROM dnet_dl_temp";
 stmt.ExecuteNonQuery();

 while(sql != null){
 stmt.CommandText = "INSERT INTO dnet_dl_temp VALUES "
+ sql;
 stmt.ExecuteNonQuery();
 sql = input.ReadLine();
 }
 return("SELECT * FROM dnet_dl_temp");
}

Chapter 20 Synchronization Events

477

download_delete_cursor cursor event
Defines a cursor to select rows that are to be deleted in the remote database.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

None.

The MobiLink synchronization server opens a read-only cursor with which
to fetch a list of rows to download, and then insert or update in the remote
database. This script must contain a SELECT statement that returns the
primary key values of the rows to be deleted from the table in the remote
database.

The parameters are the last_download timestamp and the user name. You can
use these values by placing a question mark in your SQL statement.

You can have one download_delete_cursor script for each table in the remote
database.

If the download_delete_cursor has NULLs for the primary key columns for
one or more rows in a table, then MobiLink deletes all the data in the table.
For a complete description of this behavior, see "Deleting all the rows in a
table" on page 73.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

Note that rows deleted from the consolidated database will not appear in a
result set defined by a download_delete_cursor event, and so are not
automatically deleted from the remote database. One technique for
identifying rows to be deleted from remote databases is to add a column to
the consolidated database table identifying a row as inactive.

For Java and .NET applications, this script must return valid SQL.

Function

Parameters

Default action

Description

download_delete_cursor cursor event

478

"upload_cursor cursor event" on page 543
"download_cursor cursor event" on page 474

This example is taken from the Contact sample and can be found in
Samples\MobiLink\Contact\build_consol.sql. It deletes from the remote
database any customers that:

♦ have been changed since the last time this user downloaded data
(Customer.last_modified > ?), and either

♦ do not belong to the synchronizing user (SalesRep.ml_username !=
?), or

♦ are marked as inactive in the consolidated database (Customer.active
= 0).

SELECT cust_id FROM Customer key join SalesRep
WHERE Customer.last_modified > ? AND
(SalesRep.ml_username != ? OR Customer.active = 0)

The following stored procedure call registers a Java method called
downloadDeleteCursor as the script for the download_delete_cursor event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’download_delete_cursor’,
’ExamplePackage.ExampleClass.downloadDeleteCursor’)

Following is the sample Java method downloadDeleteCursor. It calls a Java
method that generates the SQL for the download delete cursor.

public String downloadDeleteCursor(Timestamp ts,
String user)
{ return(getDownloadCursor(_curUser, _curTable)); }

.NET example

The following stored procedure call registers a .NET method called
DownloadDeleteCursor as the script for the download_delete_cursor cursor
event when synchronizing the script version ver1 and the table table1. This
syntax is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’download_delete_cursor’,
 ’TestScripts.Test.DownloadDeleteCursor’
)

Following is the C# signature for the call DownloadDeleteCursor.

public string DownloadDeleteCursor(
 DateTime timestamp,
 string user)

See also

SQL example

Java example

Chapter 20 Synchronization Events

479

download_statistics connection event
Tracks synchronization statistics for download operations.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128). The MobiLink user
name as specified in your
SYNCHRONIZATION USER
definition.

2 warnings INTEGER. The number of warnings
issued.

3 errors INTEGER. The number of errors,
including handled errors, that
occurred.

4 fetched_rows INTEGER. The number of rows
fetched by the download_cursor
script.

5 deleted_rows INTEGER. The number of rows
fetched by the download_deletes
script.

6 filtered_rows INTEGER. The number of rows from
(5) actually sent to the remote. This
reflects download filtering of
uploaded values.

7 bytes INTEGER. The number of bytes sent
to the remote as the download.

None.

The download_statistics event allows you to gather, for any user, statistics on
downloads. The download_statistics connection script is called just prior to
the commit at the end of the download transaction.

Function

Parameters

Default action

Description

download_statistics connection event

480

Note:
Depending on the command line, not all warnings or errors are logged, so
the warnings and errors counts may be more than the number of warnings
or errors logged.

"download_statistics table event" on page 482
"upload_statistics connection event" on page 554
"upload_statistics table event" on page 557
"synchronization_statistics connection event" on page 535
"synchronization_statistics table event" on page 537
"time_statistics connection event" on page 539
"time_statistics table event" on page 541
"MobiLink Monitor" on page 231

The following example comes from an Oracle installation.

INSERT INTO download_audit (id, user_name, warnings,
errors, deleted_rows, fetched_rows, download_rows,
bytes) VALUES (d_audit.nextval, ?,?,?,?,?,?,?)

Once vital statistics are inserted into the audit table, you may use these
statistics to monitor your synchronizations and make optimizations where
applicable.

The following stored procedure call registers a Java method called
downloadStatisticsConnection as the script for the download_statistics event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’, ’download_statistics’,
’ExamplePackage.ExampleClass.downloadStatisticsConnection’)

Following is the sample Java method downloadStatisticsConnection. It prints
the number of fetched rows to the MobiLink output log.

public String downloadStatisticsConnection(String user,
int warnings, int errors, int fetchedRows,
int deletedRows, int bytes)
{ java.lang.System.out.println("download connection
 stats fetchedRows: " + fetchedRows);
 return(null); }

.NET example

The following stored procedure call registers a .NET method called
DownloadStats as the script for the download_statistics connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

See also

SQL example

Java example

Chapter 20 Synchronization Events

481

call ml_add_dnet_connection_script(
 ’ver1’,
 ’download_statistics’,
 ’TestScripts.Test.DownloadStats’
)

Following is the C# signature for the call DownloadStats.

public void DownloadStats(
 string user,
 int warnings,
 int errors,
 int deletedRows,
 int fetchedRows,
 int downloadRows,
 int bytes)

download_statistics table event

482

download_statistics table event
Tracks synchronization statistics for download operations by table.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128). This is the MobiLink user
name as specified in your
SYNCHRONIZATION USER definition.

2 table VARCHAR(128). The table name.

3 warnings INTEGER. The number of warnings issued.

4 errors INTEGER. The number of errors, including
handled errors, that occurred.

5 fetched_rows INTEGER. The number of rows fetched by
the download_cursor script.

6 deleted_rows INTEGER. The number of rows fetched by
the download_deletes script.

7 filtered_rows INTEGER. The number of rows from (6)
actually sent to the remote. This reflects
download filtering of uploaded values.

8 bytes INTEGER. The number of bytes sent to the
remote as the download.

None.

The download_statistics event allows you to gather, for any user and table,
statistics on downloads as they apply to that table. The download_statistics
table script is called just prior to the commit at the end of the download
transaction.

"download_statistics connection event" on page 479
"upload_statistics connection event" on page 554
"upload_statistics table event" on page 557
"synchronization_statistics connection event" on page 535
"synchronization_statistics table event" on page 537
"time_statistics connection event" on page 539

Function

Parameters

Default action

Description

See also

Chapter 20 Synchronization Events

483

"time_statistics table event" on page 541
"MobiLink Monitor" on page 231

The following example comes from an Oracle installation.

INSERT INTO download_audit (id, user_name, table,
warnings, errors, deleted_rows, fetched_rows,
download_rows, bytes)
VALUES (d_audit.nextval,?,?,?,?,?,?,?,?)

Once vital statistics are inserted into the audit table, you may use these
statistics to monitor your synchronizations and make optimizations where
applicable.

The following stored procedure call registers a Java method called
downloadStatisticsTable as the script for the download_statistics table event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’download_statistics’,
’ExamplePackage.ExampleClass.downloadStatisticsTable’)

Following is the sample Java method downloadStatisticsTable. It prints some
statistics for this table to the MobiLink output log.

public String downloadStatisticsTable(String user,
String table, int warnings, int errors, int fetchedRows,
int deletedRows, int bytes)
{ java.lang.System.out.println("download table stats "
 + "table: " + table + "bytes: " + bytes);
 return(null); }

.NET example

The following stored procedure call registers a .NET method called
DownloadTableStats as the script for the download_statistics table event
when synchronizing the script version ver1 and the table table1. This syntax
is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’download_statistics’,
 ’TestScripts.Test.DownloadTableStats’
)

Following is the C# signature for the call DownloadTableStats.

SQL example

Java example

download_statistics table event

484

public void DownloadTableStats(
 string user,
 string table,
 int warnings,
 int errors,
 int deletedRows,
 int fetchedRows,
 int downloadRows,
 int bytes)

Chapter 20 Synchronization Events

485

end_connection connection event
Processes any statements just before the MobiLink synchronization server
closes a connection with the consolidated database server, either in
preparation to shut down or when a connection is removed from the
connection pool.

This script is normally used to complete any actions started by the
begin_connection script and free any resources acquired by it.

None.

None.

You can use the end_connection script to perform an action of your choice
just prior to closing of a connection between the MobiLink synchronization
server and the consolidated database server.

"begin_connection connection event" on page 452

The following stored procedure call registers a Java method called
endConnection as the script for the end_connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’,
’end_connection’,
’ExamplePackage.ExampleClass.endConnection’)

Following is the sample Java method endConnection. It prints a message to
the MobiLink output log. (This might be useful at development time but
would slow down a production server.)

public String endConnection()
{ java.lang.System.out.println("ending connection");
 return(null); }

.NET example

The following stored procedure call registers a .NET method called
EndConnection as the script for the end_connection connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
 ’ver1’,
 ’end_connection’,
 ’TestScripts.Test.EndConnection’

)

Following is the C# signature for the call EndConnection.

Function

Parameters

Default action

Description

See also

Java example

end_connection connection event

486

public void EndConnection()

Chapter 20 Synchronization Events

487

end_download connection event
Processes any statements just after the MobiLink synchronization server
concludes preparation of the download data.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

None.

The MobiLink synchronization server executes this script after all rows have
been downloaded and, if expecting a download acknowledgement,
confirmation of receipt has been received. Download information is
processed in a single transaction. The execution of this script is the last non
statistical action in this transaction.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

"begin_download connection event" on page 454

The following example shows one possible use of an end_download
connection script.

DELETE FROM ULEmpCust ec WHERE ? IS NOT NULL AND
ec.emp_id = ? AND action = ’’D’’

The following stored procedure call registers a Java method called
endDownloadConnection as the script for the end_download connection
event when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’,
’end_download’,
’ExamplePackage.ExampleClass.endDownloadConnection’)

Function

Parameters

Default action

Description

See also

SQL example

Java example

end_download connection event

488

Following is the sample Java method endDownloadConnection. It uses the
current MobiLink connection (saved earlier) to perform an update before the
download ends.

public String endDownloadConnection(Timestamp ts,
String user)
 throws java.sql.SQLException
{ String del_sql = "DELETE FROM ULEmpCust ec " +
 "WHERE ec.emp_id = ’" + user + "’ " +
 "AND action = ’D’ ";
 execUpdate(_syncConn, del_sql);
 return(null);
}

.NET example

The following stored procedure call registers a .NET method called
EndDownload as the script for the end_download connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
 ’ver1’,
 ’end_download’,
 ’TestScripts.Test.EndDownload’)

Following is the C# signature for the call EndDownload.

public void EndDownload(
 DateTime timestamp,
 string user)

Chapter 20 Synchronization Events

489

end_download table event
Processes statements related to a specific table just after the MobiLink
synchronization server concludes preparing the stream of downloaded
inserts, updates, and deletes.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

3 table VARCHAR(128)

None.

The MobiLink synchronization server executes this script after all rows have
been downloaded and confirmation of receipt has been received. The
download information is prepared in a separate transaction. The execution of
this script is the last table-specific, non-statistical action in this transaction.

You can have one end_download script for each table in the remote database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

"begin_download table event" on page 456
"end_download connection event" on page 487

The following stored procedure call registers a Java method called
endDownloadTable as the script for the end_download table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script (’ver1’, ’table1’,
’end_download’,
’ExamplePackage.ExampleClass.endDownloadTable’)

Following is the sample Java method endDownloadTable. It resets the
current table member variable.

Function

Parameters

Default action

Description

See also

Java example

end_download table event

490

public String endDownloadTable(Timestamp ts,
String user, String table)
{ _curTable = null;
 return(null); }

.NET example

The following stored procedure call registers a .NET method called
EndTableDownload as the script for the end_download table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’end_download’,
 ’TestScripts.Test.EndTableDownload’
)

Following is the C# signature for the call EndTableDownload.

public void EndTableDownload
 DateTime timestamp,
 string user,
 string table)

Chapter 20 Synchronization Events

491

end_download_deletes table event
Processes statements related to a specific table just after preparing a list of
rows to be deleted from the specified table in the remote database.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

3 table VARCHAR(128)

None.

This script is executed immediately after preparing a list of rows to be
deleted from the named table in the remote database.

You can have one end_download_deletes script for each table in the remote
database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

"begin_download_deletes table event" on page 458
"end_download connection event" on page 487
"begin_download_rows table event" on page 460
"end_download_rows table event" on page 493

You may want to mark a row as deleted on the remote database in this event,
using a WHERE clause on the UPDATE that matches the WHERE clause
used for your download_delete_cursor.

Call ml_add_table_script(’version1’, ’Leads’,
’end_download_deletes’, ’UPDATE Leads SET OnRemote = 0
WHERE LastModified > ? AND Owner = ? AND DeleteFlag=1’);

Function

Parameters

Default action

Description

See also

SQL example

end_download_deletes table event

492

The following stored procedure call registers a Java method called
endDownloadDeletes as the script for the end_download_deletes table event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’end_download_deletes’,
’ExamplePackage.ExampleClass.endDownloadDeletes’)

Following is the sample Java method endDownloadDeletes. It returns the
end_download_deletes SQL statement. MobiLink will execute this
statement.

public String endDownloadDeletes(Timestamp ts,
String user, String table)
{ return("UPDATE Leads SET OnRemote = 0 WHERE
LastModified > ? AND Owner = ? AND DeleteFlag=1"); }

.NET example

The following stored procedure call registers a .NET method called
EndDownloadDeletes as the script for the end_download_deletes table event
when synchronizing the script version ver1 and the table table1. This syntax
is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’end_download_deletes’,
 ’TestScripts.Test.EndDownloadDeletes’
)

Following is the C# signature for the call EndDownloadDeletes.

public void EndDownloadDeletes(DateTime timestamp,
string user, string table)

Java example

Chapter 20 Synchronization Events

493

end_download_rows table event
Processes statements related to a specific table just after preparing a list of
rows to be inserted or updated in the specified table in the remote database.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

3 table VARCHAR(128)

None.

This script is executed immediately after preparing the stream of rows to be
inserted or updated in the named table in the remote database.

You can have one end_download_rows script for each table in the remote
database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

"begin_download_rows table event" on page 460
"end_download connection event" on page 487
"end_download_deletes table event" on page 491
"begin_download_deletes table event" on page 458

You may want to mark a row as successfully downloaded to the remote
database in this event, using a WHERE clause on the UPDATE that matches
the WHERE clause used for your download_cursor.

call ml_add_table_script(’version1’, ’Leads’,
’end_download_rows’, ’UPDATE Leads SET OnRemote = 1
WHERE LastModified > ? AND Owner = ? AND
DownloadFlag=1’);

Function

Parameters

Default action

Description

See also

SQL example

end_download_rows table event

494

The following stored procedure call registers a Java method called
endDownloadRows as the script for the end_download_rows table event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’end_download_rows’,
’ExamplePackage.ExampleClass.endDownloadRows’)

Following is the sample Java method endDownloadRows. It prints a message
to the MobiLink output log. (This might be useful at development time but
would slow down a production server.)

public String endDownloadRows(Timestamp ts,
String user, String table)
{ java.lang.System.out.println("Done downloading
 inserts and updates for table " + table);
 return(null); }

.NET example

The following stored procedure call registers a .NET method called
EndDownloadRows as the script for the end_download_rows table event
when synchronizing the script version ver1 and the table table1. This syntax
is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’end_download_rows’,
 ’TestScripts.Test.EndDownloadRows’
)

Following is the C# signature for the call EndDownloadRows.

public void EndDownloadRows(
 DateTime timestamp,
 string user,
 string table)

Java example

Chapter 20 Synchronization Events

495

end_synchronization connection event
Processes any statements at the time an application disconnects from the
MobiLink synchronization server upon completion of the synchronization
process.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Item Parameter Description

1 ml_username VARCHAR(128)

None.

The MobiLink synchronization server executes this script after
synchronization is complete and, if expecting a download acknowledgement,
the MobiLink client has returned confirmation of receipt of the download
stream.

This script is executed within a separate transaction after the download
transaction. It is useful for maintaining statistics.

"begin_synchronization connection event" on page 462
"begin_synchronization table event" on page 464
"end_synchronization table event" on page 497

The following stored procedure call registers a Java method called
endSynchronizationConnection as the script for the end_synchronization
event when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’, ’end_synchronization’,
’ExamplePackage.ExampleClass.endSynchronizationConnection’)

Following is the content of the sample Java method
endSynchronizationConnection. It uses the JDBC connection to execute an
update.

public String endSynchronizationConnection(
String user)
 throws java.sql.SQLException
{ execUpdate(_syncConn, "UPDATE sync_count set cnt =
 count + 1 where user_id = ’" + user + "’ ");
 return(null); }

Function

Parameters

Default action

Description

See also

Java example

end_synchronization connection event

496

.NET example

The following stored procedure call registers a .NET method called EndSync
as the script for the end_synchronization connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
 ’ver1’,
 ’end_synchronization’,
 ’TestScripts.Test.EndSync’
)

Following is the C# signature for the call EndSync.

public void EndSync(string user)

Chapter 20 Synchronization Events

497

end_synchronization table event
Processes statements related to a specific table at the time an application
disconnects from the MobiLink synchronization server upon completion of
the synchronization process.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

None.

The MobiLink synchronization server executes this script after an application
has synchronized and is about to disconnect from the MobiLink
synchronization server, and before the connection level script of the same
name.

You can have one end_synchronization script for each table in the remote
database.

"begin_synchronization table event" on page 464
"end_synchronization connection event" on page 495
"end_synchronization table event" on page 497

The following stored procedure call registers a Java method called
endSynchronizationTable as the script for the end_synchronization table
event when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’end_synchronization’,
’ExamplePackage.ExampleClass.endSynchronizationTable’)

Following is the sample Java method endSynchronizationTable. It takes no
action. MobiLink interprets NULL as no script.

public String endSynchronizationTable(String user,
String table)
{ return(null); }

Function

Parameters

Default action

Description

See also

Java example

end_synchronization table event

498

.NET example

The following stored procedure call registers a .NET method called
EndTableSync as the script for the end_synchronization table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’end_synchronization’,
 ’TestScripts.Test.EndTableSync’
)

Following is the C# signature for the call EndTableSync.

public void EndTableSync(string user, string table)

Chapter 20 Synchronization Events

499

end_upload connection event
Processes any statements just after the MobiLink synchronization server
concludes processing uploaded inserts, updates, and deletes.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Item Parameter Description

1 ml_username VARCHAR(128)

None.

The MobiLink synchronization server executes this script as the last step in
the processing of uploaded information. Upload information is processed in a
single transaction. The execution of this script is the last action in this
transaction before statistical scripts.

"begin_upload connection event" on page 466
"end_upload table event" on page 502

The following statements define a stored procedure and an end_upload script
suited to the CustDB sample application from an Oracle installation.

Function

Parameters

Default action

Description

See also

SQL example

end_upload connection event

500

CREATE OR REPLACE PROCEDURE ULCustomerIDPool_maintain(
 SyncUserID IN integer)
AS
 pool_count INTEGER;
 pool_max INTEGER;
BEGIN
 -- Determine how many ids to add to the pool
 SELECT COUNT(*)
 INTO pool_count
 FROM ULCustomerIDPool
 WHERE pool_emp_id = SyncUserID;
 -- Determine the current Customer id max
 SELECT MAX(pool_cust_id)
 INTO pool_max
 FROM ULCustomerIDPool;
 -- Top up the pool with new ids
 WHILE pool_count < 20 LOOP
 pool_max := pool_max + 1;
 INSERT INTO ULCustomerIDPool (pool_cust_id,
pool_emp_id) VALUES (pool_max, SyncUserID);
 pool_count := pool_count + 1;
 END LOOP;
END;
 ml_add_table_script(’custdb’, ’ULCustomerIDPool’,
’end_upload’, -
ULCustomerIDPool_maintain(?);)

The following stored procedure call registers a Java method called
endUploadConnection as the script for the end_upload connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’,
’end_upload’,
’ExamplePackage.ExampleClass.endUploadConnection’)

Following is the sample Java method endUploadConnection. It calls a
method to perform operations on the database.

public String endUploadConnection(String user)
{ // clean up new and old tables
 Iterator two_iter = _tables_with_ops.iterator();
 while(two_iter.hasNext())
 { TableInfo cur_table = (TableInfo)two_iter.next();
 dumpTableOps(_sync_conn, cur_table); }
 _tables_with_ops.clear(); }

.NET example

The following stored procedure call registers a .NET method called
EndUpload as the script for the end_upload connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

Java example

Chapter 20 Synchronization Events

501

call ml_add_dnet_connection_script(’ver1’,
 ’end_upload’,
 ’TestScripts.Test.EndUpload’
)

Following is the C# signature for the call EndUpload.

public void EndUpload(string user)

end_upload table event

502

end_upload table event
Processes statements related to a specific table just after the MobiLink
synchronization server concludes processing the stream of uploaded inserts,
updates, and deletions.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

None.

The MobiLink synchronization server executes this script as the last step in
the processing of uploaded information. Upload information is processed in a
separate transaction. The execution of this script is the last table-specific
action in this transaction.

You can have one end_upload script for each table in the remote database.

"begin_upload table event" on page 468
"end_upload connection event" on page 499

The event can be used to clean up anything that may still exist in the
database after the upload processing is done for a particular table.

Call ml_add_table_script (’version1’, ’Leads’,
’end_upload’, ’DELETE FROM T_Leads’);

The following stored procedure call registers a Java method called
endUploadTable as the script for the end_upload table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’end_upload’,
’ExamplePackage.ExampleClass.endUploadTable’)

Following is the sample Java method endUploadTable. It generates a delete
for a table with a name related to the passing-in table name.

Function

Parameters

Default action

Description

See also

SQL example

Java example

Chapter 20 Synchronization Events

503

public String endUploadTable(String user,
String table)
{ return("DELETE from ’" + table + "_temp’"); }

.NET example

The following stored procedure call registers a .NET method called
EndTableUpload as the script for the end_upload table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’end_upload’,
 ’TestScripts.Test.EndTableUpload’
)

Following is the C# signature for the call EndTableUpload.

public void EndTableUpload(string user, string table)

The following C# example moves rows inserted into a temporary table into
the table passed into the script.

public void EndUpload(string user, string table)
{
 DBCommand stmt = curConn.CreateCommand();

 // move the uploaded rows to the destination table
 stmt.CommandText = "INSERT INTO "
 + table
 + " SELECT * FROM dnet_ul_temp";
 stmt.ExecuteNonQuery();
 stmt.Close();
}

end_upload_deletes table event

504

end_upload_deletes table event
Processes statements related to a specific table just after applying deletes
uploaded from the specified table in the remote database.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

None.

This script is run immediately after applying the changes that result from
rows deleted in the remote table named in the second parameter.

You can have one end_upload_deletes script for each table in the remote
database.

"begin_upload_deletes table event" on page 470

You can use this event to process rows deleted during the upload stream on
an intermediate table. You can compare the rows in the base table with rows
in the intermediate table and decide what to do with the deleted row.

Call ml_add_table_script(’version1’, ’Leads’,
’end_uploads_deletes’, ’call EndUploadDeletesLeads()’);
Create procedure EndUploadDeletesLeads ()
Begin
 FOR names AS curs CURSOR FOR
 SELECT LeadID FROM Leads WHERE LeadID NOT IN (SELECT
LeadID FROM T_Leads);
 DO
 CALL decide_what_to_do(LeadID);
 END FOR;
end

The following stored procedure call registers a Java method called
endUploadDeletes as the script for the end_upload_deletes table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

Function

Parameters

Default action

Description

See also

SQL example

Java example

Chapter 20 Synchronization Events

505

call ml_add_java_table_script(’ver1’, ’table1’,
’end_upload_deletes’,
’ExamplePackage.ExampleClass.endUploadDeletes’)

Following is the sample Java method a endUploadDeletes. It calls a Java
method that manipulates the database.

public String endUploadDeletes(String user,
String table)
 throws java.sql.SQLException
{ processUploadedDeletes(_syncConn, table);
 return(null); }

.NET example

The following stored procedure call registers a .NET method called
EndUploadDeletes as the script for the end_upload_deletes table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’end_upload_deletes’,
 ’TestScripts.Test.EndUploadDeletes’

)

Following is the C# signature for the call EndUploadDeletes.

public void EndUploadDeletes(string user, string table
)

end_upload_rows table event

506

end_upload_rows table event
Processes statements related to a specific table just after applying uploaded
inserts and updates from the specified table in the remote database.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

None.

Uploaded information can require inserting or updating rows in the
consolidated database. This script is run immediately after applying the
changes that result from modifications to the remote table named in the
second parameter.

You can have one end_upload_rows script for each table in the remote
database.

"begin_upload_rows table event" on page 472

You use this event to process rows deleted during the upload stream on an
intermediate table. You can compare the rows in the base table with the rows
in the intermediate table and decide what to do with the deleted row.

Call ml_add_table_script(’version1’, ’Leads’,
’end_uploads_deletes’, ’call EndUploadDeletesLeads()’);
Create procedure EndUploadDeletesLeads ()
Begin
 FOR names AS curs CURSOR FOR
 SELECT LeadID FROM Leads WHERE LeadID NOT IN (select
LeadID from T_Leads);
 DO
 CALL decide_what_to_do(LeadID);
 END FOR;
end

Function

Parameters

Default action

Description

See also

SQL example

Chapter 20 Synchronization Events

507

The following stored procedure call registers a Java method called
endUploadRows as the script for the end_upload_rows table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’end_upload_rows’,
’ExamplePackage.ExampleClass.endUploadRows’)

Following is the sample Java method endUploadRows. It calls a Java method
that manipulates the database.

public String endUploadRows(String user,
String table)
 throws java.sql.SQLException
{ processUploadedRows(_syncConn, table);
 return(null); }

.NET example

The following stored procedure call registers a .NET method called
EndUploadRows as the script for the end_upload_rows table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(’ver1’, ’table1’,
 ’end_upload_rows’,
 ’TestScripts.Test.EndUploadRows’
)

Following is the C# signature for the call EndUploadRows.

public void EndUploadRows(
 string user,
 string table)

Java example

example_upload_cursor table event

508

example_upload_cursor table event
Provides an event that the MobiLink synchronization server does not use
during processing of the upload stream to handle rows inserted into the
remote database. The event is not called.

Item Parameter

1 column 1

2 column 2

... …

The statement based example_upload_cursor script performs direct inserts of
column values identical to those specified in the example_upload_cursor
statement. The example_upload_cursor event is not called by MobiLink.

The script is not called. If it were called, it would insert the values into a
table named Customer in the consolidated database. The final column of the
table identifies the Customer as active. The final column does not appear in
the remote database.

SELECT cust_id, name, rep_id
FROM customer

WHERE cust_id=?

Function

Parameters

Description

SQL example

Chapter 20 Synchronization Events

509

example_upload_delete table event
Processes the upload stream to handle rows deleted from the remote
database. The script is not called by MobiLink.

Item Parameter

1 column 1

2 column 2

... …

The statement based example_upload_delete script handles rows that are
deleted in the remote database. The action taken at the consolidated database
can be a DELETE statement, but need not be.

"upload_delete table event" on page 545

This example marks customers that are deleted from the remote database as
inactive.

UPDATE Customer
SET active = 0
WHERE cust_id=?

Function

Parameters

Description

See also

SQL example

example_upload_insert table event

510

example_upload_insert table event
Provides an event that the MobiLink synchronization server uses during
processing of the upload stream to handle rows inserted into the remote
database.

Item Parameter

1 column 1

2 column 2

... …

The statement based example_upload_insert script performs direct inserts of
column values identical to those specified in the upload_insert statement.

The example_upload_insert event is not called.

"upload_insert table event" on page 549

The script is not called. But if called, it would insert the values into a table
named Customer in the consolidated database. The final column of the table
identifies the Customer as active. The final column does not appear in the
remote database.

INSERT INTO Customer(cust_id, name, rep_id)
VALUES (?, ?, ?)

Function

Parameters

Description

See also

SQL example

Chapter 20 Synchronization Events

511

example_upload_update table event
An example event for the upload stream to handle rows updated at the
remote database. The example script is not called by MobiLink but is
identical in form to the upload_update event.

Clause Parameters

SET column 1
column 2
…

WHERE primary key 1
primary key 2
…

You create an example_upload_update event script by using the option -za in
the dbmlsync command line.

"upload_update table event" on page 560

This example handles updates made to the Customer table in the remote
database. The script updates the values in a table named Customer in the
consolidated database. Note: The script is never called and is only an
example script.

UPDATE Customer
SET name=?, rep_id=?
WHERE cust_id=?

Function

Parameters

Description

See also

SQL example

handle_error connection event

512

handle_error connection event
Executed whenever the MobiLink synchronization server encounters a SQL
error.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 action_code INTEGER. This is
an INOUT
parameter.

2 error_code INTEGER

3 error_message TEXT

4 ml_username VARCHAR(128)

5 table VARCHAR(128).
If the script is not a
table script, the
table name is
NULL.

When no handle_error script is defined or this script causes an error, the
default action code is 3000: rollback the current transaction and cancel the
current synchronization.

The MobiLink synchronization server sends in the current action_code.
Initially, this is set to 3000 for each set of errors caused by a single SQL
operation. Usually, there is only one error per SQL operation, but there may
be more. This handle_error script is called once per error in the set. The
action code passed into the first error is 3000. Subsequent calls are passed in
the action code returned by the previous call. MobiLink will use the
numerically highest value returned from multiple calls.

You can modify the action code in the script, and return a value instructing
MobiLink how to proceed. The action code parameter takes one of the
following values:

♦ 1000 Skip the current row and continue processing.

Function

Parameters

Default action

Description

Chapter 20 Synchronization Events

513

♦ 3000 Rollback the current transaction and cancel the current
synchronization. This is the default action code, and is used when no
handle_error script is defined or this script causes an error.

♦ 4000 Rollback the current transaction, cancel the synchronization, and
shut down the MobiLink synchronization server.

SQL scripts for the handle_error event must be implemented as stored
procedures.

The action_code parameter is an INOUT parameter: a parameter that
provides a value to the procedure, and could be given a new value by the
procedure.

The MobiLink synchronization server executes this script whenever it
encounters an error during the synchronization process. The error codes and
message allow you to identify the nature of the error. If the error happened as
part of synchronization, the user name is supplied. Otherwise, this value is
NULL.

If the error happened while manipulating a particular table, the table name is
supplied. Otherwise, this value is NULL. The table name is the name of a
table in the client application. This name may or may not have a direct
counterpart in the consolidated database, depending upon the design of the
synchronization system.

The action code tells the MobiLink synchronization server what to do next.
Before it calls this script, the MobiLink synchronization server sets the
action code to a default value, which depends upon the severity of the error.
Your script may modify this value. Your script must return or set an action
code.

You can return a value from the handle_error script in two ways.

♦ Pass the action parameter to an OUTPUT parameter of a procedure:

CALL my_handle_error(?, ?, ?, ?, ?)

♦ Set the action code via a procedure or function return value:

? = CALL my_handle_error(?, ?, ?, ?)

Most DBMSs use the RETURN statement to set the return value from a
procedure or function.

The CustDB sample application contains error handlers for various database-
management systems.

"report_error connection event" on page 529
"report_odbc_error connection event" on page 531
"handle_odbc_error connection event" on page 515

See also

handle_error connection event

514

The following example works with an Adaptive Server Anywhere
consolidated database. It allows your application to ignore redundant inserts.

CREATE PROCEDURE ULHandleError(INOUT action integer,
IN error_code integer, IN error_message varchar(1000),
IN user_name varchar(128), IN table_name varchar(128))
BEGIN
 -- -196 is SQLE_INDEX_NOT_UNIQUE
 -- -194 is SQLE_INVALID_FOREIGN_KEY
 if error_code = -196 or error_code = -194 then
 -- ignore the error and keep going
 SET action = 1000;
 else
 -- abort the synchronization
 SET action = 3000;
 end if;
END

The following stored procedure call registers a Java method called
handleError as the script for the handle_error connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’,
’handle_error’,
’ExamplePackage.ExampleClass.handleError’)

Following is the sample Java method handleError. It processes an error based
on the data that is passed in. It also determines the resulting error code.

public String handleError(
ianywhere.ml.script.InOutInteger actionCode, int
errorCode, String errorMessage, String user, String
table)
{ int new_ac;
 if(user == null)
 { new_ac = handleNonSyncError(errorCode,
 errorMessage); }
 else if(table == null)
 { new_ac = handleConnectionError(errorCode,
 errorMessage, user); }
 else
 { new_ac = handleTableError(errorCode,
 errorMessage, user, table); }
 // keep the most serious action code
 if(actionCode.getValue() < new_ac)
 { actionCode.setValue(new_ac); }
 return(null); }

SQL example

Java example

Chapter 20 Synchronization Events

515

handle_odbc_error connection event
Executed whenever the MobiLink synchronization server encounters an error
triggered by the ODBC Driver Manager.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 action_code INTEGER. This is an
INOUT parameter.

2 ODBC_state VARCHAR(5)

3 error_message TEXT

4 ml_username VARCHAR(128)

5 table VARCHAR(128)

The MobiLink synchronization server selects a default action code. You can
modify the action code in the script, and return a value instructing MobiLink
how to proceed. The action code parameter takes one of the following
values:

♦ 1000 Skip the current row and continue processing.

♦ 3000 Rollback the current transaction and cancel the current
synchronization. This is the default action code, and is used when no
handle_error script is defined or this script causes an error.

♦ 4000 Rollback the current transaction, cancel the synchronization, and
shut down the MobiLink synchronization server.

The MobiLink synchronization server executes this script whenever it
encounters an error flagged by the ODBC Driver Manager during the
synchronization process. The error codes allow you to identify the nature of
the error.

The action code tells the MobiLink synchronization server what to do next.
Before it calls this script, the MobiLink synchronization server sets the
action code to a default value, which depends upon the severity of the error.
Your script may modify this value. Your script must return or set an action
code.

Function

Parameters

Default action

Description

handle_odbc_error connection event

516

The handle_odbc_error script is called after the handle_error and
report_error scripts, and before the report_odbc_error script.

When only one, but not both, error-handling script is defined, the return
value from that script decides error behavior. When both error-handling
scripts are defined, the MobiLink synchronization server uses the
numerically highest action code. If both handle_error and
handle_ODBC_error are defined, MobiLink uses the numerically highest
action code returned from all calls.

"handle_error connection event" on page 512
"report_error connection event" on page 529
"report_odbc_error connection event" on page 531

The following stored procedure call registers a Java method called
handleODBCError as the script for the handle_odbc_error event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’,
’handle_odbc_error’,
’ExamplePackage.ExampleClass.handleODBCError’)

Following is the sample Java method handleODBCError. It processes an
error based on the data that is passed in. It also determines the resulting error
code.

public String handleODBCError(
ianywhere.ml.script.InOutInteger actionCode,
String ODBCState, String errorMessage, String user,
String table)
{ int new_ac;
 if(user == null)
 { new_ac = handleNonSyncError(ODBCState,
 errorMessage); }
 else if(table == null)
 { new_ac = handleConnectionError(ODBCState,
 errorMessage, user); }
 else { new_ac = handleTableError(ODBCState,
 errorMessage, user, table); }
 // keep the most serious action code
 if(actionCode.getValue() < new_ac)
 { actionCode.setValue(new_ac); }
 return(null); }

See also

Java example

Chapter 20 Synchronization Events

517

modify_last_download_timestamp connection
event

The script can be used to modify the last_download timestamp for the
current synchronization.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 download_timestamp TIMESTAMP. This
is an INOUT
parameter.

2 ml_username VARCHAR(128)

None.

Use this script when you want to modify the last_download time for the
current synchronization. If this script is defined, the MobiLink
synchronization server calls this script and uses the modified last_download
timestamp as the last_download timestamp passed to the download scripts.

SQL scripts for the modify_last_download_timestamp event must be
implemented as stored procedures.

The download_timestamp parameter is an INOUT parameter: a parameter
that provides a value to the procedure, and could be given a new value by the
procedure.

The following example downloads everything from one day ago, regardless
of whether the databases were synchronized since then.

First, create a procedure for your Adaptive Server Anywhere consolidated
database:

CREATE PROCEDURE ModifyLastDownloadTimestamp (
inout last_download_time TIMESTAMP , in user_name
VARCHAR(128))
BEGIN
 SELECT dateadd(day, -1, last_download_time)
 INTO last_download_time
END

Function

Parameters

Default action

Description

SQL example

modify_last_download_timestamp connection event

518

Second, install the script into your Adaptive Server Anywhere consolidated
database:

call ml_add_connection_script(’modify_ts_test’,
 ’modify_last_download_timestamp’,
 ’call ModifyLastDownloadTimestamp (?, ?)’)

The following stored procedure call registers a Java method called
modifyLastDownloadTimestamp as the script for the
modify_last_download_timestamp connection event when synchronizing the
script version ver1. This syntax is for Adaptive Server Anywhere
consolidated databases.

call ml_add_java_connection_script(’ver1’,
’modify_last_download_timestamp’,
’ExamplePackage.ExampleClass.modifyLastDownloadTimestamp’)

Following is the sample Java method modifyLastDownloadTimestamp. It
prints the current and new timestamp and modifies the timestamp that is
passed in.

public String modifyLastDownloadTimestamp(Timestamp
last_download_time, String user_name)
{ java.lang.System.out.println("old date: " +
 last_download_time.toString());
 last_download_time.setDate(
 last_download_time.getDate() -1);
 java.lang.System.out.println("new date: " +
 last_download_time.toString());
 return(null); }

Java example

Chapter 20 Synchronization Events

519

modify_next_last_download_timestamp
connection event

The script can be used to modify the last_download timestamp for the next
synchronization.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 download_timestamp TIMESTAMP. This
is an INOUT
parameter.

2 last_download TIMESTAMP

3 ml_username VARCHAR(128)

None.

Use this script when you want to modify the last_download time for the next
synchronization. If this script is defined, the MobiLink synchronization
server calls this script and sends the next last_download timestamp down to
the remote, which will send it as part of the next synchronization.

SQL scripts for the modify_next_last_download_timestamp event must be
implemented as stored procedures.

The download_timestamp parameter is an INOUT parameter: a parameter
that provides a value to the procedure, and could be given a new value by the
procedure.

The order of parameters changes if you use the -zd dbmlsrv8 option. When
you use -zd, the order is download_timestamp, ml_username, last_download.

The following example shows one application of this script. First, create a
procedure for your Adaptive Server Anywhere consolidated database:

Function

Parameters

Default action

Description

SQL example

modify_next_last_download_timestamp connection event

520

CREATE PROCEDURE ModifyNextDownloadTimestamp (
 inout download_timestamp TIMESTAMP ,
 in last_download TIMESTAMP ,
 in user_name VARCHAR(128))
 BEGIN
 SELECT dateadd(hour, -1, download_timestamp)
 INTO download_timestamp
END

Second, install the script into your Adaptive Server Anywhere consolidated
database:

call ml_add_connection_script(
 ’modify_ts_test’,
 ’modify_next_last_download_timestamp’,
 ’call ModifyNextDownloadTimestamp (?, ?, ?)’)

The following stored procedure call registers a Java method called
modifyNextDownloadTimestamp as the script for the
modify_next_last_download_timestamp connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’,
’modify_next_last_download_timestamp’,
’ExamplePackage.ExampleClass.modifyNextDownloadTimestamp’)

Following is the sample Java method modifyNextDownloadTimestamp. It
sets the download timestamp back an hour.

public String modifyNextDownloadTimestamp(Timestamp
download_timestamp, Timestamp last_download,
String user_name)
{ download_timestamp.setHours(
 download_timestamp.getHours() -1);
 return(null); }

Java example

Chapter 20 Synchronization Events

521

modify_user connection event
Provide the MobiLink user name.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Item Parameter Description

1 ml_username VARCHAR(128).
This is an INOUT
parameter.

None

The MobiLink server provides the user name as a parameter when it calls
scripts; the user name is sent by the MobiLink client. In some cases, you may
want to have an alternate user name. This script allows you to modify the
user name used in calling MobiLink scripts.

The ml_username parameter is an INOUT parameter: a parameter that
provides a value to the script, and could be given a new value by the script.
The parameter must be long enough to hold the user name.

SQL scripts for the modify_last_download_timestamp event must be
implemented as stored procedures.
"authenticate_user connection event" on page 446
"authenticate_user_hashed connection event" on page 450

The following stored procedure call registers a Java method called
modifyUser as the script for the modify_user connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’,
’modify_user’,
’ExamplePackage.ExampleClass.modifyUser’)

Following is the sample Java method modifyUser. It gets the user ID from
the database and then uses it to set the user name.

Function

Parameters

Default action

Description

See also

Java example

modify_user connection event

522

public void ModifyUser(InOutString io_user_name)
 throws SQLException
{ Statement uid_select = curConn.createStatement();
 ResultSet uid_result = uid_select.executeQuery(
 "select rep_id from SalesRep where name = ’" +
 io_user_name.getValue() + "’ ");
 uid_result.next();
 io_user_name.setValue(
 java.lang.Integer.toString(uid_result.getInt(1))
 uid_result.close();
 uid_select.close();
 return; }

.NET example

The following stored procedure call registers a .NET method called ModUser
as the script for the modify_user connection event when synchronizing the
script version ver1. This syntax is for Adaptive Server Anywhere
consolidated databases.

call ml_add_dnet_connection_script(’ver1’,
 ’modify_user’,
 ’TestScripts.Test.ModUser’
)

Following is the C# signature for the call ModUser.

public void ModUser(string user)

Chapter 20 Synchronization Events

523

new_row_cursor cursor event
Defines the insert cursor that the MobiLink synchronization server uses to
insert the new values of rows that were updated in the remote database, but
conflict with values presently in the consolidated database.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Item Parameter Description

1 ml_username VARCHAR(128)

When a row is updated on a remote database, the MobiLink client saves a
copy of the original values. The client sends both old and new values to the
MobiLink synchronization server. Also used to input an INSERT operation
in forced conflict mode.

When the MobiLink synchronization server receives an updated row, it
compares the orginal values with the present values in the consolidated
database, using the upload_cursor. If the old uploaded values do not match
the current value in the consolidated database, the row conflicts. Instead of
updating the row, the MobiLink synchronization server inserts both old and
new values into the consolidated database using the old_row_cursor and the
new_row_cursor, respectively.

The MobiLink synchronization server uses a cursor to insert the new
uploaded values from conflicting rows into the consolidated database. This
script contains the SELECT statement used to define this cursor.

It is common practice to use temporary tables to store the old and new
versions of conflicting rows. You can create these temporary tables in an
earlier script.

You can have one new_row_cursor script for each table in the remote
database.

Normally, the columns in the select list must match those in the client table
in both order and type. However, the MobiLink synchronization server
permits you to add one extra column. If you do so, the MobiLink
synchronization server automatically inserts the user name into the first
column, then proceeds to insert the new row values using the remaining
columns, as usual.

Function

Parameters

Description

new_row_cursor cursor event

524

Note
The script is ignored if any of the following scripts are defined for the
same table: upload_insert, upload_update, upload_delete, upload_fetch,
upload_new_row_insert, upload_old_row_insert.

"Writing upload_cursor scripts" on page 68
"upload_cursor cursor event" on page 543
"old_row_cursor cursor event" on page 525
"Handling conflicts" on page 104
"resolve_conflict table event" on page 533

The following SELECT statement defines a new_row_cursor script suited to
the CustDB sample application.

SELECT order_id, cust_id, prod_id, emp_id, disc, quant,
notes, status FROM ULNewOrder FOR update

The primary key of the ULOrder table is order_id.

The following SELECT statement could instead be used for the same client
table. This variation includes the permitted one extra row. The MobiLink
synchronization server automatically stores the user name in the first column.

SELECT user_name, order_id, cust_id, prod_id, emp_id,
disc, quant, notes, status FROM ULNewOrder FOR update

This script must return valid SQL.

The following stored procedure call registers a Java method called
newRowCursor as the script for the new_row_cursor event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
 ’ver1’, ’table1’, ’new_row_cursor’,
 ’ExamplePackage.ExampleClass.newRowCursor’)

Following is the sample Java method newRowCursor. It dynamically
generates a new row cursor statement by calling a Java method.

public String newRowCursor()
{ return(getRowCursor (_curTable)); }

See also

SQL example

Java example

Chapter 20 Synchronization Events

525

old_row_cursor cursor event
Defines the cursor that the MobiLink synchronization server uses to insert
the old values of rows that were updated in the remote database, but that
conflict with values presently in the consolidated database. The event is also
used to insert the values of deleted rows when in forced conflict mode.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Item Parameter Description

1 ml_username VARCHAR(128)

None.

When a row is updated on a remote database, the MobiLink client saves a
copy of the original values. The client sends both old and new values to the
MobiLink synchronization server.

When the MobiLink synchronization server receives an updated row, it
compares the original values with the present values in the consolidated
database, using the upload_cursor cursor event. If the old uploaded values do
not match the current values in the consolidated database, the row conflicts.
Instead of updating the row, the MobiLink synchronization server inserts
both old and new values into the consolidated database using the
old_row_cursor event and the new_row_cursor event.

It is common practice to use temporary tables to store the old and new
versions of conflicting rows. In Adaptive Server Anywhere, you can create
these tables in an earlier script. Some non-ASA consolidated databases
support temporary tables, but they usually differ significantly from the
temporary tables offered by ASA. Consult your DBMS documentation for
details. An alternative to a temporary table is a base table with an extra
column for the MobiLink user name. This effectively partitions the rows of
the base table between concurrent synchronizations.

The MobiLink synchronization server uses a cursor to insert the old uploaded
values from conflicting rows into the consolidated database. This script
contains the SELECT statement used to define this cursor.

You can have one old_row_cursor script for each table in the remote
database.

Function

Parameters

Default action

Description

old_row_cursor cursor event

526

Normally, the columns in the SELECT list must match those in the client
table in both order and type. However, the MobiLink synchronization server
permits you to add one extra column. If you do so, the MobiLink
synchronization server automatically inserts the user name into the first
column, then proceeds to insert the old row values using the remaining
columns, as usual.

"Writing upload_cursor scripts" on page 68
"upload_cursor cursor event" on page 543
"new_row_cursor cursor event" on page 523

The following SELECT statement defines an old_row_cursor script suited to
the CustDB sample application for an Oracle installation. The primary key of
the ULOrder table is order_id.

SELECT order_id, cust_id, prod_id, emp_id, disc, quant,
notes, status FROM ULOldOrder

The following SELECT statement could instead be used for the same client
table. This variation includes the permitted one extra row. The MobiLink
synchronization server automatically stores the user name in the first column.

SELECT user_name, order_id, cust_id, prod_id, emp_id,
disc, quant, notes, status FROM ULOldOrder

This script must return valid SQL.

The following stored procedure call registers a Java method called
oldRowCursor as the script for the old_row_cursor event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’old_row_cursor’,
’ExamplePackage.ExampleClass.oldRowCursor’)

Following is the sample Java method oldRowCursor. It dynamically
generates an old row cursor statement by calling a Java method.

public String oldRowCursor()
{ return(getRowCursor(_curTable)); }

See also

SQL example

Java example

Chapter 20 Synchronization Events

527

prepare_for_download connection event
Processes any required operations between the upload and download
transactions.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

None.

The MobiLink synchronization server executes this script as a separate
transaction, between the upload transaction and the start of the download
transaction.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

"end_upload connection event" on page 499
"begin_download connection event" on page 454

You use this event to process rows deleted during the upload stream on the
intermediate table. You can compare the rows in the base table with the rows
in the intermediate table and decide what to do with the deleted row.

Call ml_add_table_script(’version1’, ’Leads’,
’end_uploads_deletes’, ’call EndUploadDeletesLeads()’);

Create procedure EndUploadDeletesLeads ()
Begin
 FOR names AS curs CURSOR FOR
 SELECT LeadID FROM Leads WHERE LeadID NOT IN (SELECT
LeadID FROM T_Leads);
 DO
 CALL decide_what_to_do(LeadID);
 END FOR;
end

Function

Parameters

Default action

Description

See also

SQL example

prepare_for_download connection event

528

The following stored procedure call registers a Java method called
prepareForDownload as the script for the prepare_for_download event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’,
’prepare_for_download’,
’ExamplePackage.ExampleClass.prepareForDownload’)

Following is the sample Java method prepareForDownload. It calls a Java
method to modify some rows in the database.

public String prepareForDownload (Timestamp ts,
String user)
{ adjustUploadedRows(_syncConn, user);
 return(null); }

.NET example

The following stored procedure call registers a .NET method called
PrepareForDownload as the script for the prepare_for_download connection
event when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_dnet_connection_script(’ver1’,
 ’prepare_for_download’,
 ’TestScripts.Test.PrepareForDownload’
)

Following is the C# signature for the call PrepareForDownload.

public void PrepareForDownload(
 DateTime timestamp,
 string user)

Java example

Chapter 20 Synchronization Events

529

report_error connection event
Allows you to log errors and to record the actions selected by the
handle_error script.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 action_code INTEGER. This parameter is
mandatory.

2 error_code INTEGER. This parameter is
optional if none of the following
parameters are specified.

3 error_message TEXT. This parameter is optional
if none of the following
parameters are specified.

4 ml_username VARCHAR(128). This parameter
is optional if none of the
following parameters are
specified.

5 table VARCHAR(128). This parameter
is optional.

None.

This script allows you to log errors and to record the actions selected by the
handle_error script. This script is executed after the handle_error event,
whether or not a handle_error script is defined. It is always executed in its
own transaction, on a different database connection than the synchronization
connection (the administrative/information connection).

The error code and error message allow you to identify the nature of the
error. The action code value is returned by the last call to an error handling
script for the SQL operation that caused the current error.

If the error happened as part of synchronization, the user name is supplied.
Otherwise, this value is NULL.

Function

Parameters

Default action

Description

report_error connection event

530

If the error happened while manipulating a particular table, the table name is
supplied. Otherwise, this value is NULL. The table name is the name of a
table in the remote database. This name may or may not have a direct
counterpart in the consolidated database, depending on the design of the
synchronization system.

"handle_error connection event" on page 512
"handle_odbc_error connection event" on page 515
"report_odbc_error connection event" on page 531

The following stored procedure call registers a Java method called
reportError as the script for the report_error connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’,
’report_error’,
’ExamplePackage.ExampleClass.reportError’)

Following is the sample Java method reportError. It logs the error to a table
using the JDBC connection provided by MobiLink. It also sets the action
code.

public String reportError(
ianywhere.ml.script.InOutInteger actionCode,
int errorCode, String errorMessage, String user,
String table)
 throws java.sql.SQLException
{ // insert error information in a table
 JDBCLogError(_syncConn, errorCode, errorMessage,
 user, table);
 actionCode.setValue(getActionCode(errorCode));
 return(null); }

See also

Java example

Chapter 20 Synchronization Events

531

report_odbc_error connection event
Allows you to log errors and to record the actions selected by the
handle_odbc_error script.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 action_code INTEGER. This parameter is
mandatory.

2 ODBC_state VARCHAR(5). This parameter is
optional if none of the following
parameters are specified.

3 error_message TEXT. This parameter is optional if
none of the following parameters are
specified.

4 ml_username VARCHAR(128). This parameter is
optional if none of the following
parameters are specified.

5 table VARCHAR(128). This parameter is
optional.

None.

This script allows you to log errors and to record the actions selected by the
handle_odbc_error script. This script is executed after the handle_odbc_error
event, whether or not a handle_odbc_error script is defined. It is always
executed in its own transaction, on a different database connection than the
synchronization connection (the administrative/information connection).

The error code and error message allow you to identify the nature of the
error. The action code value is returned by the last call to an error handling
script for the SQL operation that caused the current error.

If the error happened as part of synchronization, the user name is supplied.
Otherwise, this value is NULL.

Function

Parameters

Default action

Description

report_odbc_error connection event

532

If the error happened while manipulating a particular table, the table name is
supplied. Otherwise, this value is NULL. The table name is the name of a
table in the remote database. This name may or may not have a direct
counterpart in the consolidated database, depending on the design of the
synchronization system.

"handle_error connection event" on page 512
"handle_odbc_error connection event" on page 515
"report_error connection event" on page 529

The following stored procedure call registers a Java method called
reportODBCError as the script for the report_odbc_error event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’,
’report_odbc_error’,
’ExamplePackage.ExampleClass.reportODBCError’)

Following is the sample Java method reportODBCError. It logs the error to a
table using the JDBC connection provided by MobiLink. It also sets the
action code.

public String reportODBCError (
ianywhere.ml.script.InOutInteger actionCode,
String ODBCState, String errorMessage, String user,
String table)
 throws java.sql.SQLException
{ JDBCLogError(_syncConn, ODBCState, errorMessage,
 user, table);
 actionCode.setValue(getActionCode(ODBCState));
 return(null); }

See also

Java example

Chapter 20 Synchronization Events

533

resolve_conflict table event
Defines a process for resolving a conflict in a specific table.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

None.

When a row is updated on a remote database, the MobiLink client saves a
copy of the original values. The client sends both old and new values to the
MobiLink synchronization server.

When the MobiLink synchronization server receives an updated row, it
compares the orginal values with the present values in the consolidated
database. The comparison is carried out using the upload_fetch script or, if
using cursor-based uploads, the upload_cursor script.

If the old uploaded values do not match the current values in the consolidated
database, the row conflicts. Instead of updating the row, the MobiLink
synchronization server inserts both old and new values into the consolidated
database. The old and new rows are handled using the
upload_old_row_insert and upload_new_row_insert scripts, respectively. If
you are using cursor-based uploads the rows are handled using
old_row_cursor and new_row_cursor, respectively.

Once the values have been inserted, the MobiLink synchronization server
executes the resolve_conflict script. It provides the opportunity to resolve the
conflict. You can implement any scheme of your choosing.

This script is executed once per conflict.

Alternatively, instead of defining the resolve_conflict script, you can resolve
conflicts in a set-oriented fashion by putting conflict-resolution logic either
in your end_upload_rows script or in your end_upload table script.

You can have one resolve_conflict script for each table in the remote
database.

Function

Parameters

Default action

Description

resolve_conflict table event

534

"upload_old_row_insert table event" on page 553
"upload_new_row_insert table event" on page 551
"upload_update table event" on page 560
"old_row_cursor cursor event" on page 525
"new_row_cursor cursor event" on page 523
"end_upload_rows table event" on page 506

The following statement defines a resolve_conflict script suited to the
CustDB sample application for an Oracle installation. It calls a stored
procedure ULResolveOrderConflict .

exec ml_add_table_script(’custdb’, ’ULOrder’,
’resolve_conflict’,’begin ULResolveOrderConflict();
end; ’)
CREATE OR REPLACE PROCEDURE ULResolveOrderConflict()
AS
 new_order_id integer;
 new_status varchar(20);
 new_notes varchar(50);
BEGIN
 -- approval overrides denial
 SELECT order_id, status, notes
 INTO new_order_id, new_status, new_notes
 FROM ULNewOrder
 WHERE syncuser_id = SyncUserID;
 IF new_status = ’Approved’ THEN
 UPDATE ULOrder o
 SET o.status = new_status, o.notes =
 new_notes
 WHERE o.order_id = new_order_id;
 END IF;
 DELETE FROM ULOldOrder;
 DELETE FROM ULNewOrder;
END;

The following stored procedure call registers a Java method called
resolveConflict as the script for the resolve_conflict table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’resolve_conflict’,
’ExamplePackage.ExampleClass.resolveConflict’)

Following is the sample Java method resolveConflict. It calls a Java method
that will use the JDBC connection provided by MobiLink. It also sets the
action code.

public String resolveConflict(String user,
 String table)
{ resolveRows(_syncConn, user); }

See also

SQL example

Java example

Chapter 20 Synchronization Events

535

synchronization_statistics connection event
Tracks synchronization statistics.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 warnings INTEGER

3 errors INTEGER

4 deadlocks INTEGER

5 synchronized_tables INTEGER

6 connection_retries INTEGER

None.

The synchronization_statistics event allows you to gather, for any user and
connection, various statistics about the current synchronization. The
synchronization_statistics connection script is called just prior to the commit
at the end of the end synchronization transaction.

"download_statistics connection event" on page 479
"download_statistics table event" on page 482
"upload_statistics connection event" on page 554
"upload_statistics table event" on page 557
"synchronization_statistics table event" on page 537
"time_statistics connection event" on page 539
"time_statistics table event" on page 541
"MobiLink Monitor" on page 231

The following example comes from an Oracle installation.

INSERT INTO sync_con_audit (id, ml_user, warnings,
errors, deadlocks, synchronized_tables,
connection_retries) VALUES (s_audit.nextval,?,?,?,?,?,?)

Once statistics are inserted into the audit table, you may use these statistics to
monitor your synchronizations and make optimizations where applicable.

Function

Parameters

Default action

Description

See also

SQL example

synchronization_statistics connection event

536

The following stored procedure call registers a Java method called
synchronizationStatisticsConnection as the script for the
synchronization_statistics connection event when synchronizing the script
version ver1. This syntax is for Adaptive Server Anywhere consolidated
databases.

call ml_add_java_connection_script(’ver1’, ’synchronization_statistics’,
’ExamplePackage.ExampleClass.synchronizationStatisticsConnection’)

Following is the sample Java method synchronizationStatisticsConnection. It
logs some of the statistics to the MobiLink output log. (This might be useful
at development time but would slow down a production server.)

public String synchronizationStatisticsConnection(
 String user, int warnings, int errors, int deadlocks,
 int synchronizedTables, int connectionRetries)
{ java.lang.System.out.println("synch statistics
 number of deadlocks: " + deadlocks ;
 return(null); }

.NET example

The following stored procedure call registers a .NET method called
SyncStats as the script for the synchronization_statistics connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_dnet_connection_script(
 ’ver1’,
 ’synchronization_statistics’,
 ’TestScripts.Test.SyncStats’
)

Following is the C# signature for the call SyncStats.

public void SyncStats(string user,
 int warnings,
 int errors,
 int deadLocks,
 int syncedTables,
 int connRetries)

Java example

Chapter 20 Synchronization Events

537

synchronization_statistics table event
Tracks synchronization statistics.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

3 warnings INTEGER

4 errors INTEGER

None.

The synchronization_statistics event allows you to gather, for any user and
table, the number of warnings and errors that occurred during
synchronization. The synchronization_statistics table script is called just
prior to the commit at the end of the end synchronization transaction.

"download_statistics connection event" on page 479
"download_statistics table event" on page 482
"upload_statistics connection event" on page 554
"upload_statistics table event" on page 557
"synchronization_statistics connection event" on page 535
"time_statistics connection event" on page 539
"time_statistics table event" on page 541
"MobiLink Monitor" on page 231

The following example comes from an Oracle installation.

INSERT INTO sync_tab_audit (id, ml_user, table,
warnings, errors) VALUES (s_audit.nextval,?,?,?,?)

Once synchronization statistics are inserted into the audit table, you may use
these statistics to monitor your synchronizations and make optimizations
where applicable.

Function

Parameters

Default action

Description

See also

SQL example

synchronization_statistics table event

538

The following stored procedure call registers a Java method called
synchronizationStatisticsTable as the script for the synchronization_statistics
table event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’synchronization_statistics’,
’ExamplePackage.ExampleClass.synchronizationStatisticsTable’)

Following is the sample Java method synchronizationStatisticsTable. It logs
some of the statistics to the MobiLink output log. (This might be useful at
development time but would slow down a production server.)

public String synchronizationStatisticsTable(
String user, String table, int warnings, int errors)
{ java.lang.System.out.println("synch statistics for
 table: " + table + " errors: " + errors);
 return(null); }

.NET example

The following stored procedure call registers a .NET method called
SyncTableStats as the script for the synchronization_statistics table event
when synchronizing the script version ver1 and the table table1. This syntax
is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’synchronization_statistics’,
 ’TestScripts.Test.SyncTableStats’
)

Following is the C# signature for the call SyncTableStats.

public void SyncTableStats(
 string user,
 string table,
 int warnings,
 int errors)

Java example

Chapter 20 Synchronization Events

539

time_statistics connection event
Tracks time statistics by user and event.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 event_name VARCHAR(128)

3 num_calls INTEGER

4 min_time INTEGER

5 max_time INTEGER

6 total_time INTEGER

None.

The time_statistics event allows you to gather time statistics for any user
during synchronization. The statistics are gathered only for those events for
which there is a corresponding script. The script gathers aggregate data for
occasions where a single event occurs multiple times. The script can be
especially useful for time comparisons across users, events and tables.

"time_statistics table event" on page 541
"download_statistics connection event" on page 479
"download_statistics table event" on page 482
"upload_statistics connection event" on page 554
"upload_statistics table event" on page 557
"synchronization_statistics connection event" on page 535
"synchronization_statistics table event" on page 537
"MobiLink Monitor" on page 231

The following example comes from an Oracle installation.

INSERT INTO time_statistics (id, ml_user, table,
event_name, num_calls, min_time, max_time, total_time)
VALUES (ts_id.nextval,?,?,?,?,?,?)

Function

Parameters

Default action

Description

See also

SQL example

time_statistics connection event

540

The following stored procedure call registers a Java method called
timeStatisticsConnection as the script for the time_statistics connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’,
’time_statistics’,
’ExamplePackage.ExampleClass.timeStatisticsConnection’)

Following is the sample Java method timeStatisticsConnection. It prints
statistics for the prepare_for_download event.

public void timeStatisticsConnection(String
ml_username, String table_name, String event_name,
int num_calls, int min_time, int max_time,
int total_time)
{ if(event_name.equals("prepare_for_download")
 { java.lang.System.out.println(
 "preapre_for_download num_calls: " + num_calls +
 "total_time: " + total_time); } }

.NET example

The following stored procedure call registers a .NET method called
TimeStats as the script for the time_statistics connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(’ver1’,
 ’time_statistics’,
 ’TestScripts.Test.TimeStats’
)

Following is the C# signature for the call TimeStats.

public void TimeStats(
 string user,
 string eventName,
 int numCalls,
 int minTime,
 int maxTime,
 int totTime)

Java example

Chapter 20 Synchronization Events

541

time_statistics table event
Tracks time statistics.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

3 event_name VARCHAR(128)

4 num_calls INTEGER

5 min_time INTEGER

6 max_time INTEGER

7 total_time INTEGER

None.

The time_statistics table event allows you to gather time statistics for any
user and table during synchronization. The statistics are gathered only for
those events for which there is a corresponding script. The script gathers
aggregate data for occasions where a single event occurs multiple times. The
script can be especially useful for time comparisons across users, events and
tables.

"time_statistics connection event" on page 539
"download_statistics connection event" on page 479
"download_statistics table event" on page 482
"upload_statistics connection event" on page 554
"upload_statistics table event" on page 557
"synchronization_statistics connection event" on page 535
"synchronization_statistics table event" on page 537
"MobiLink Monitor" on page 231

The following example comes from an Oracle installation.

INSERT INTO time_statistics (id, ml_user, table,
event_name, num_calls, min_time, max_time, total_time)
VALUES (ts_id.nextval,?,?,?,?,?,?,?)

Function

Parameters

Default action

Description

See also

SQL example

time_statistics table event

542

The following stored procedure call registers a Java method called
timeStatisticsTable as the script for the time_statistics table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
 ’ver1’, ’table1’, ’time_statistics’,
 ’ExamplePackage.ExampleClass.timeStatisticsTable’)

Following is the sample Java method timeStatisticsTable. It prints statistics
for the upload_old_row_insert event.

public void timeStatisticsConnection(String
ml_username, String table_name, String event_name,
int num_calls, int min_time, int max_time,
int total_time)
{ if(event_name.equals("upload_old_row_insert")
 { java.lang.System.out.println(
 "upload_old_row_insert num_calls: " + num_calls +
 "total_time: " + total_time); } }

.NET example

The following stored procedure call registers a .NET method called
TimeTableStats as the script for the time_statistics table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’time_statistics’,
 ’TestScripts.Test.TimeTableStats’
)

Following is the C# signature for the call TimeTableStats.

public void TimeTableStats(
 string user,
 string table,
 string eventName,
 int numCalls,
 int minTime,
 int maxTime,
 int totTime)

Java example

Chapter 20 Synchronization Events

543

upload_cursor cursor event
Defines a cursor that the MobiLink synchronization server uses to insert,
update, or delete rows during processing of the upload stream.

Statement-based events recommended
For most purposes, it is recommended that you use the statement-based
events upload_delete, upload_insert, and upload_update instead of the
upload_cursor event to process the upload stream.

Item Parameter

1 primary key 1

2 primary key 2

... …

None.

A default upload_cursor SQL script can be generated using the MobiLink
synchronization server -zac option. Also, the UltraLite analyzer generates a
SELECT statement based on your reference database that you can use to get
started.

The MobiLink synchronization server opens a cursor with which to insert,
update, or delete rows in the consolidated database based on rows uploaded
from a client application. This script should contain a suitable SELECT
statement or call a stored procedure that contains a suitable SELECT
statement.

The parameters are the values of each column included in the primary key of
the corresponding client table. You must use these in a WHERE clause, so
that the synchronization can identify a unique row based on these values. The
type and order of the parameters is as defined in the example_upload_cursor
script. This order is the same as that in the corresponding table definition in
the remote database, which in turn may have been copied from your
reference database.

You can have one upload_cursor script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.
"Writing upload_cursor scripts" on page 68
"upload_delete table event" on page 545
"upload_insert table event" on page 549
"upload_update table event" on page 560
"download_cursor cursor event" on page 474

Function

Parameters

Default action

Description

See also

upload_cursor cursor event

544

The following SELECT statement defines the upload cursor in the CustDB
sample application.

SELECT cust_id, cust_name
FROM ULCustomer
WHERE cust_id = ?

The primary key of the ULCustomer table in the CustDB sample application
is the column cust_id. If the corresponding table in the consolidated database
is, instead, named Customer, then change the above statement as follows.

SELECT cust_id, cust_name
FROM Customer
WHERE cust_id = ?

The following stored procedure call registers a Java method called
uploadCursor as the script for the upload_cursor cursor event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
 ’ver1’, ’table1’, ’upload_cursor’,
 ’ExamplePackage.ExampleClass.uploadCursor’)

Following is the sample Java method uploadCursor. It dynamically generates
an upload cursor.

public String uploadCursor()
{ return(getUploadCursor(_curTable)); }

.NET example

The following C# example deletes the contents of a temporary table. It then
returns SQL that causes rows to be uploaded into the temporary table.

public string UploadCursor()
{
 DBCommand stmt = curConn.CreateCommand();
 stmt.CommandText = "DELETE FROM dnet_ul_temp";
 stmt.ExecuteNonQuery();
 stmt.Close();

 return("SELECT * FROM dnet_ul_temp WHERE pk = ?");
}

SQL example

Java example

Chapter 20 Synchronization Events

545

upload_delete table event
Provides an event that the MobiLink synchronization server uses during
processing of the upload stream to handle rows deleted from the remote
database.

Item Parameter

1 primary key 1

2 primary key 2

... …

The statement-based upload_delete script handles rows that are deleted in the
remote database. The action taken at the consolidated database can be a
DELETE statement, but need not be.

You can have one upload_delete script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

"upload_insert table event" on page 549
"upload_update table event" on page 560

This example is taken from the Contact sample and can be found in
Samples\MobiLink\Contact\build_consol.sql. It marks customers that are
deleted from the remote database as inactive.

UPDATE Customer SET active = 0 WHERE cust_id=?

The following stored procedure call registers a Java method called
uploadDeleteTable as the script for the upload_delete table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
 ’ver1’, ’table1’, ’upload_delete’,
 ’ExamplePackage.ExampleClass.uploadDeleteTable’)

Following is the sample Java method uploadDeleteTable. It dynamically
generates an UPLOAD statement.

public string uploadDeleteTable()
{ return(genUD(_curTable)); }

Function

Parameters

Description

See also

SQL example

Java example

upload_delete table event

546

.NET example

The following stored procedure call registers a .NET method called
UploadDelete as the script for the upload_delete table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’upload_delete’,
 ’TestScripts.Test.UploadDelete’
)

Following is the C# signature for the call UploadDelete.

public string UploadDelete(object pk1)

Chapter 20 Synchronization Events

547

upload_fetch table event
Provides an event that the MobiLink synchronization server uses to identify
update conflicts during statement-based processing of the upload stream.

Item Parameter

1 primary key 1

2 primary key 2

... …

The statement-based upload_fetch script fetches rows from a synchronized
table for the purposes of conflict detection. It is a companion to the
upload_update event.

The columns of the result set must match the number of columns being
uploaded from the remote database for this table. If the values returned do
not match the before image in the uploaded row, a conflict is identified.

You can have one upload_fetch script for each table in the remote database.

"resolve_conflict table event" on page 533
"upload_delete table event" on page 545
"upload_insert table event" on page 549
"upload_update table event" on page 560

The following SQL script is taken from the Contact sample and can be found
in Samples\MobiLink\Contact\build_consol.sql. It is used to identify conflicts
that occur when rows updated in the remote database Product table are
uploaded. This script selects rows from a table also named Product, but
depending on your consolidated and remote database schema, the two table
names may not match.

SELECT id, name, size, quantity, unit_price
FROM Product WHERE id=?

This script must return valid SQL.

The following stored procedure call registers a Java method called
uploadFetchTable as the script for the upload_fetch table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
 ’ver1’, ’table1’, ’upload_fetch’,
 ’ExamplePackage.ExampleClass.uploadFetchTable’)

Function

Parameters

Description

See also

SQL example

Java example

upload_fetch table event

548

Following is the sample Java method uploadFetchTable. It dynamically
generates an UPLOAD statement.

public string uploadFetchTable()
{ return(genUF(_curTable)); }

Chapter 20 Synchronization Events

549

upload_insert table event
Provides an event that the MobiLink synchronization server uses during
processing of the upload stream to handle rows inserted into the remote
database.

Item Parameter

1 column 1

2 column 2

... …

The statement based upload_insert script performs direct inserts of column
values.

You can have one upload_insert script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

"upload_delete table event" on page 545
"upload_update table event" on page 560
"upload_fetch table event" on page 547

This example is taken from the Contact sample and can be found in
Samples\MobiLink\Contact\build_consol.sql. It handles inserts made on the
Customer table in the remote database. The script inserts the values into a
table named Customer in the consolidated database. The final column of the
table identifies the Customer as active. The final column does not appear in
the remote database.

INSERT INTO Customer(cust_id, name, rep_id, active)
VALUES (?, ?, ?, 1)

The following stored procedure call registers a Java method called
uploadInsertTable as the script for the upload_insert table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
 ’ver1’, ’table1’, ’upload_insert’,
 ’ExamplePackage.ExampleClass.uploadInsertTable’)

Following is the sample Java method uploadInsertTable. It dynamically
generates an UPLOAD statement.

public string uploadInsertTable()
{ return("insert into" + _curTable + getCols(_curTable)
 + "values" + getQM(_curTable)); }

Function

Parameters

Description

See also

SQL example

Java example

upload_insert table event

550

.NET example

The following stored procedure call registers a .NET method called
UploadInsert as the script for the upload_insert table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’upload_insert’,
 ’TestScripts.Test.UploadInsert’
)

Following is the C# signature for the call UploadInsert.

public string UploadInsert(string user)

Chapter 20 Synchronization Events

551

upload_new_row_insert table event
Conflict resolution scripts for statement-based uploads commonly require
access to the old and new values of rows updated in the remote database.
This event allows you to handle the new values of rows updated rows in the
remote database during conflict resolution.

Item Parameter

1 column 1

2 column 2

... …

You can use this event to assist in developing conflict resolution procedures
for statement-based updates. The event parameters hold the values for the
row in the remote database before the update was carried out. It is also used
to insert INSERTed rows in statement-based, forced-conflict mode.

A typical action for this event is to hold the row in a temporary table for use
by a resolve_conflict script.

You can have one upload_new_row_insert script for each table in the remote
database.

For Java and .NET applications, this script must return valid SQL.

"resolve_conflict table event" on page 533
"upload_update table event" on page 560

This example is taken from the Contact sample and can be found in
Samples\MobiLink\Contact\build_consol.sql. It handles updates made on the
product table in the remote database. The script inserts the new value of the
row into a global temporary table named product_conflict. The final column
of the table identifies the row as a new row.

INSERT INTO DBA.product_conflict(id, name, size,
quantity, unit_price, row_type)
VALUES(?, ?, ?, ?, ?, ’N’)

The following stored procedure call registers a Java method called
uploadNewRowInsertTable as the script for the upload_new_row_insert
table event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_java_table_script(
 ’ver1’, ’table1’, ’upload_new_row_insert’,
 ’ExamplePackage.ExampleClass.uploadNewRowInsertTable’
)

Function

Parameters

Description

See also

SQL example

Java example

upload_new_row_insert table event

552

Following is the sample Java method uploadNewRowInsertTable. It
dynamically generates an UPLOAD statement.

public string uploadNewRowInsertTable()
{ return("insert into" + _curTable + "_new" +
 getCols(_curTable) + "values" + getQM(_curTable)); }

Chapter 20 Synchronization Events

553

upload_old_row_insert table event
Conflict resolution scripts for statement-based uploads commonly require
access to the old and new values of rows updated in the remote database.
This event allows you to handle the new values of rows updated rows in the
remote database during conflict resolution.

Item Parameter

1 column 1

2 column 2

... …

The statement based upload_old_row_insert script performs direct insert of
column values as specified in the upload_old_row_insert statement. You can
have one upload_old_row_insert script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

"resolve_conflict table event" on page 533
"upload_update table event" on page 560

This example is taken from the Contact sample and can be found in
Samples\MobiLink\Contact\build_consol.sql. It handles updates made on the
product table in the remote database. The script inserts the old value of the
row into a global temporary table named product_conflict. The final column
of the table identifies the row as an old row.

insert into DBA.product_conflict(id, name, size,
quantity, unit_price, row_type)
values(?, ?, ?, ?, ?, ’O’)

The following stored procedure call registers a Java method called
uploadOldRowInsertTable as the script for the upload_old_row_insert table
event when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(
 ’ver1’, ’table1’, ’upload_old_row_insert’,
 ’ExamplePackage.ExampleClass.uploadNewRowInsertTable’
)

Following is the sample Java method uploadOldRowInsertTable. It
dynamically generates an UPLOAD statement.

public string uploadOldRowInsertTable()
{ old" + getCols(_curTable) +
 "values" + getQM(_curTable)); }

Function

Parameters

Description

See also

SQL example

Java example

upload_statistics connection event

554

upload_statistics connection event
Tracks synchronization statistics for upload operations.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 warnings INTEGER

3 errors INTEGER

4 inserted_rows INTEGER

5 deleted_rows INTEGER

6 updated_rows INTEGER

7 conflicted_inserts INTEGER

8 conflicted_deletes INTEGER

9 conflicted_updates INTEGER

10 ignored_inserts INTEGER

11 ignored_deletes INTEGER

12 ignored_updates INTEGER

13 bytes INTEGER

14 deadlocks INTEGER

None.

The upload_statistics event allows you to gather, for any user, statistics on
upload happenings. The upload_statistics connection script is called just
prior to the commit at the end of the upload transaction.

"download_statistics connection event" on page 479
"download_statistics table event" on page 482
"upload_statistics table event" on page 557
"synchronization_statistics connection event" on page 535
"synchronization_statistics table event" on page 537
"time_statistics connection event" on page 539

Function

Parameters

Default action

Description

See also

Chapter 20 Synchronization Events

555

"time_statistics table event" on page 541
"MobiLink Monitor" on page 231

The following example comes from an Oracle installation.

INSERT INTO upload_summary_audit (
id, ml_user, warnings, errors, inserted_rows,
deleted_rows, updated_rows, conflicted_inserts,
conflicted_deletes, conflicted_updates,
bytes, ignored_inserts, ignored deletes,
ignored_updates, bytes, deadlocks)
VALUES (usa_audit.nextval,?,?,?,?,?,?,?,?,?,?,?,?,?,?)

Once statistics are inserted into the audit table, you may use these statistics to
monitor your synchronizations and make optimizations where applicable.

The following stored procedure call registers a Java method called
uploadStatisticsConnection as the script for the upload_statistics connection
event when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’, ’upload_statistics’,
’ExamplePackage.ExampleClass.uploadStatisticsConnection’)

Following is the sample Java method uploadStatisticsConnection. It logs
some statistics to the MobiLink output log. (This might be useful at
development time but would slow down a production server.)

public String uploadStatisticsConnection(
 String user,
 int warnings,
 int errors,
 int insertedRows,
 int deletedRows,
 int updatedRows,
 int conflictedInserts,
 int conflictedDeletes,
 int conflictedUpdates,
 int ignoredInserts,
 int ignoredDeletes,
 int ignoredUpdates,
 int bytes,
 int deadlocks
)
{ java.lang.System.out.println("updated rows: " +
 updatedRows); }

.NET example

The following stored procedure call registers a .NET method called
UploadStats as the script for the upload_statistics connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

SQL example

Java example

upload_statistics connection event

556

call ml_add_dnet_connection_script(’ver1’,
 ’upload_statistics’,
 ’TestScripts.Test.UploadStats’
)

Following is the C# signature for the call UploadStats.

public void UploadStats(
 string user,
 int warnings,
 int errors,
 int insertedRows,
 int deletedRows,
 int updatedRows,
 int conflictInserts,
 int conflictDeletes,
 int conflictUpdates,
 int ignoredInserts,
 int ignoredDeletes,
 int ignoredUpdates,
 int bytes,
 int deadlocks)

Chapter 20 Synchronization Events

557

upload_statistics table event
Tracks synchronization statistics for upload operations for a specific table.

In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See "SQL-Java data types" on page 171 and "SQL-
.NET data types" on page 195.

Event parameters are optional only if no subsequent parameters are specified.
For example, you must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

3 warnings INTEGER

4 errors INTEGER

5 inserted_rows INTEGER

6 deleted_rows INTEGER

7 updated_rows INTEGER

8 conflicted_inserts INTEGER

9 conflicted_deletes INTEGER

10 conflicted_updates INTEGER

11 ignored_inserts INTEGER

12 ignored_deletes INTEGER

13 ignored_updates INTEGER

14 bytes INTEGER

15 deadlocks INTEGER

None.

The upload_statistics event allows you to gather, for any user, vital statistics
on synchronization happenings as they apply to any table. The
upload_statistics table script is called just prior to the commit at the end of
the upload transaction.

"download_statistics connection event" on page 479
"upload_statistics connection event" on page 554
"upload_statistics table event" on page 557

Function

Parameters

Default action

Description

See also

upload_statistics table event

558

"synchronization_statistics connection event" on page 535
"synchronization_statistics table event" on page 537
"time_statistics connection event" on page 539
"time_statistics table event" on page 541
"MobiLink Monitor" on page 231

The following example comes from an Oracle installation.

INSERT INTO upload_tables_audit (
id, user_name, table, warnings, errors,
inserted_rows, deleted_rows, updated_rows,
conflicted_inserts, conflicted_deletes,
conflicted_updates, ignored_inserts, ignored_deletes,
ignored_updates, bytes, deadlocks)
VALUES (ut_audit.nextval,
?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)

Once statistics are inserted into the audit table, you may use these statistics to
monitor your synchronizations and make optimizations where applicable.

The following stored procedure call registers a Java method called
uploadStatisticsTable as the script for the upload_statistics table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
 ’ver1’, ’table1’, ’upload_statistics’,
 ’ExamplePackage.ExampleClass.uploadStatisticsTable’)

Following is the sample Java method uploadStatisticsTable. It logs some
statistics to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public String uploadStatisticsTable(
 String user,
 int warnings,
 int errors,
 int insertedRows,
 int deletedRows,
 int updatedRows,
 int conflictedInserts,
 int conflictedDeletes,
 int conflictedUpdates,
 int ignoredInserts,
 int ignoredDeletes,
 int ignoredUpdates,
 int bytes,
 int deadlocks
)
{ java.lang.System.out.println("updated rows: " +
 updatedRows); }

SQL Example

Java example

Chapter 20 Synchronization Events

559

.NET example

The following stored procedure call registers a .NET method called
UploadTableStats as the script for the upload_statistics table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’upload_statistics’,
 ’TestScripts.Test.UploadTableStats’
)

Following is the C# signature for the call UploadTableStats.

public void UploadTableStats(
 string user,
 string table,
 int warnings,
 int errors,
 int insertedRows,
 int deletedRows,
 int updatedRows,
 int conflictInserts,
 int conflictDeletes,
 int conflictUpdates,
 int ignoredInserts,
 int ignoredDeletes,
 int ignoredUpdates,
 int bytes,
 int deadlocks)

upload_update table event

560

upload_update table event
Provides an event that the MobiLink synchronization server uses during
processing of the upload stream to handle rows updated at the remote
database.

Clause Parameters

SET column 11
column 22
…

WHERE primary key 1
primary key 2
…

The statement-based upload_update script performs direct update of column
values as specified in the upload_update statement.

The WHERE clause must include all of the primary key columns that are
being synchronized. The SET clause must contain all of the non-primary key
columns that are being synchronized.

You use as many non-primary key columns in your SET clause as exist in
the table, and MobiLink will send the correct number of column values.
Similarly, in the WHERE clause, you can have any number of primary keys,
but all must be specified here, and MobiLink will send the correct values.
MobiLink sends these column values and primary key values in the order the
columns or primary keys appear in a MobiLink report of your schema. You
can use the -vh option to determine the column ordering for this table
schema.

You can have one upload_update script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

"upload_delete table event" on page 545
"upload_fetch table event" on page 547
"upload_insert table event" on page 549

This example is taken from the Contact sample and can be found in
Samples\MobiLink\Contact\build_consol.sql. It handles updates made to the
Customer table in the remote database. The script updates the values in a
table named Customer in the consolidated database.

UPDATE Customer SET name=?, rep_id=? WHERE cust_id=?

Function

Parameters

Description

See also

SQL example

Chapter 20 Synchronization Events

561

The following stored procedure call registers a Java method called
uploadUpdateTable as the script for the upload_update table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
 ’ver1’, ’table1’, ’upload_update’,
 ’ExamplePackage.ExampleClass.uploadUpdateTable’)

Following is the sample Java method uploadUpdateTable. It dynamically
generates an UPLOAD statement.

public string uploadUpdateTable()
{ return(genUU(_curTable)); }

.NET example

The following stored procedure call registers a .NET method called
UploadUpdate as the script for the upload_update table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
 ’ver1’, ’table1’, ’upload_update’,
 ’TestScripts.Test.UploadUpdate’
)

Following is the C# signature for the call UploadUpdate.

public string UploadUpdate()

Java example

upload_update table event

562

563

C H A P T E R 2 1

MobiLink SQL Statements

This chapter provides reference material about the SQL statements required
synchronize Adaptive Server Anywhere clients.

Topic Page

ALTER PUBLICATION statement 565

ALTER SYNCHRONIZATION DEFINITION statement
(deprecated) 566

ALTER SYNCHRONIZATION SITE statement (deprecated) 567

ALTER SYNCHRONIZATION SUBSCRIPTION statement 568

ALTER SYNCHRONIZATION TEMPLATE statement (deprecated) 569

ALTER SYNCHRONIZATION USER statement 570

CREATE PUBLICATION statement 571

CREATE SYNCHRONIZATION DEFINITION statement
(deprecated) 572

CREATE SYNCHRONIZATION SITE statement (deprecated) 573

CREATE SYNCHRONIZATION SUBSCRIPTION statement 574

CREATE SYNCHRONIZATION TEMPLATE statement
(deprecated) 575

CREATE SYNCHRONIZATION USER statement 576

DROP PUBLICATION statement 577

DROP SYNCHRONIZATION DEFINITION statement (deprecated) 578

DROP SYNCHRONIZATION SITE statement (deprecated) 579

DROP SYNCHRONIZATION SUBSCRIPTION statement 580

DROP SYNCHRONIZATION TEMPLATE statement (deprecated) 581

DROP SYNCHRONIZATION USER statement [MobiLink] 582

START SYNCHRONIZATION DELETE statement 583

STOP SYNCHRONIZATION DELETE statement 584

About this chapter

Contents

ALTER PUBLICATION statement

564

Chapter 21 MobiLink SQL Statements

565

ALTER PUBLICATION statement
Use this statement to alter a publication. A publication identifies
synchronized data in a Adaptive Server Anywhere remote database.

$ For complete documentation of this statement, see "ALTER
PUBLICATION statement" on page 216 of the book ASA SQL Reference
Manual.

ALTER PUBLICATION [owner.]publication-name alterpub-clause, ...

alterpub-clause:
ADD TABLE article-description
| MODIFY TABLE article-description
| { DELETE | DROP } TABLE [owner.]table-name
| RENAME publication-name

owner, publication-name, table-name : identifier

article-description :
table-name [(column-name, …)]
[WHERE search-condition]
[SUBSCRIBE BY expression]

Must have DBA authority, or be owner of the publication. Requires
exclusive access to all tables referred to in the statement.

Automatic commit.

Function

Syntax

Permissions

Side effects

ALTER SYNCHRONIZATION DEFINITION statement (deprecated)

566

ALTER SYNCHRONIZATION DEFINITION
statement (deprecated)

Use this statement to alter a synchronization definition. This command is
deprecated. Please use synchronization publications and subscriptions
instead.

$ For complete documentation of this statement, see "ALTER
SYNCHRONIZATION DEFINITION statement" on page 222 of the
book ASA SQL Reference Manual.

ALTER SYNCHRONIZATION DEFINITION sync-def-name
[SITE sync-site-name,]
[TYPE sync-type,]
[ADDRESS network-parameters,]
[ADD OPTION parameter=value, …]
[MODIFY OPTION parameter=value, …]
[DELETE OPTION parameter, …

| DELETE ALL OPTION,]
[RENAME new-sync-def-name,]
[ADD TABLE article-description, …]
[MODIFY TABLE article-description, …]
[DELETE TABLE table-name, …]

network-parameters : string

article-description :
table-name [(column-name, ...)]

[WHERE search-condition]

value : string | integer

Must have DBA authority. Requires exclusive access to all tables referred to
in the statement.

Automatic commit.

Function

Syntax

Permissions

Side effects

Chapter 21 MobiLink SQL Statements

567

ALTER SYNCHRONIZATION SITE statement
(deprecated)

Use this statement to alter a site within a MobiLink reference database, to be
used when extracting Adaptive Server Anywhere remote databases with the
mlxtract utility. This command is deprecated. Please use synchronization
publications and subscriptions instead.

$ For complete documentation of this statement, see "ALTER
SYNCHRONIZATION SITE statement [MobiLink]" on page 225 of the
book ASA SQL Reference Manual.

ALTER SYNCHRONIZATION SITE sync-site-name
[RENAME new-sync-site-name,]
[TYPE sync-type,]
[ADDRESS network-parameters,]
[ADD OPTION parameter=value, …]
[MODIFY OPTION parameter=value, …]
[DELETE OPTION parameter, …| DELETE ALL OPTION]

network-parameters : string

value : string | integer

Must have DBA authority.

Automatic commit.

Function

Syntax

Permissions

Side effects

ALTER SYNCHRONIZATION SUBSCRIPTION statement

568

ALTER SYNCHRONIZATION SUBSCRIPTION
statement

Use this statement in an Adaptive Server Anywhere remote database to alter
the properties of a subscription of a MobiLink user to a publication.

$ For complete documentation of this statement, see "ALTER
SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]" on
page 227 of the book ASA SQL Reference Manual.

ALTER SYNCHRONIZATION SUBSCRIPTION
TO publication-name
[FOR ml_username, …]
[TYPE sync-type]
[ADDRESS network-parameters]
[ADD OPTION option=value, …]
[MODIFY OPTION option=value, …]
[DELETE { ALL OPTION | OPTION option=value, … }]

ml_username: identifier

network-parameters: string

sync-type: http | https | tcpip | ActiveSync

value: string | integer

Automatic commit.

Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Description

Syntax

Side effects

Permissions

Chapter 21 MobiLink SQL Statements

569

ALTER SYNCHRONIZATION TEMPLATE
statement (deprecated)

Use this statement to alter a template within a MobiLink reference database,
to be used when extracting Adaptive Server Anywhere remote databases
with the mlxtract utility. This command is deprecated. Please use
synchronization publications and subscriptions instead.

$ For complete documentation of this statement, see "ALTER
SYNCHRONIZATION TEMPLATE statement [MobiLink]" on page 229
of the book ASA SQL Reference Manual.

ALTER SYNCHRONIZATION TEMPLATE sync-template-name,
[TYPE sync-type,]
[ADDRESS network-parameters,]
[ADD OPTION parameter=value, …]
[MODIFY OPTION parameter=value, …]
[DELETE OPTION parameter, …| DELETE ALL OPTION,]
[RENAME new-sync-def-name,]
[ADD TABLE article-description, …]
[MODIFY TABLE article-description, …]
[DELETE TABLE table-name, …]

article-description:
table-name [(column-name, ...)]

[WHERE search-condition]

value:
string | integer

Must have DBA authority. Requires exclusive access to all tables referred to
in the statement.

Automatic commit.

Function

Syntax

Permissions

Side effects

ALTER SYNCHRONIZATION USER statement

570

ALTER SYNCHRONIZATION USER statement
Use this statement in an Adaptive Server Anywhere remote database to alter
the properties of a MobiLink user.

$ For complete documentation of this statement, see "ALTER
SYNCHRONIZATION USER statement [MobiLink]" on page 231 of the
book ASA SQL Reference Manual.

ALTER SYNCHRONIZATION USER ml_username
[TYPE sync-type]
[ADDRESS network-parameters]
[ADD OPTION option=value, …]
[MODIFY OPTION option=value, …]
[DELETE { ALL OPTION | OPTION option }]

ml_username: identifier

network-parameters: string

sync-type: http | https | tcpip | ActiveSync

value: string | integer

Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Automatic commit.

Description

Syntax

Permissions

Side effects

Chapter 21 MobiLink SQL Statements

571

CREATE PUBLICATION statement
Use this statement to create a publication. In MobiLink a publication
identifies synchronized data in a Adaptive Server Anywhere remote
database.

$ For complete documentation of this statement, see "CREATE
PUBLICATION statement" on page 314 of the book ASA SQL Reference
Manual.

CREATE PUBLICATION [owner.]publication-name
(TABLE article-description, …)

owner, publication-name : identifier

article-description:
 table-name [(column-name, …)]
[WHERE search-condition]
[SUBSCRIBE BY expression]

Must have DBA authority. Requires exclusive access to all tables referred to
in the statement.

Automatic commit.

Function

Syntax

Permissions

Side effects

CREATE SYNCHRONIZATION DEFINITION statement (deprecated)

572

CREATE SYNCHRONIZATION DEFINITION
statement (deprecated)

Use this statement to specify how to register with the MobiLink
synchronization server and to identify the contents that are to be uploaded
from the remote database to the consolidated database. This command is
deprecated. Please use synchronization publications and subscriptions
instead.

$ For complete documentation of this statement, see "CREATE
SYNCHRONIZATION DEFINITION statement [MobiLink]" on
page 326 of the book ASA SQL Reference Manual.

CREATE SYNCHRONIZATION DEFINITION sync-def-name
SITE ml_username
[TYPE sync-type]
ADDRESS network-parameters
[OPTION parameter=value, …]
(TABLE article-description, …)

ml_username: identifier

network-parameters: string

sync-type: http | https | tcpip

value: string | integer

article-description:
table-name [(column-name, ...)]

[WHERE search-condition]

Must have DBA authority. Requires exclusive access to all tables named in
the article description.

Automatic commit.

Function

Syntax

Permissions

Side effects

Chapter 21 MobiLink SQL Statements

573

CREATE SYNCHRONIZATION SITE statement
(deprecated)

Use this statement to create a site within a MobiLink reference database, to
be used when extracting Adaptive Server Anywhere remote databases with
the mlxtract utility. This command is deprecated. Please use synchronization
publications and subscriptions instead.

$ For complete documentation of this statement, see "CREATE
SYNCHRONIZATION SITE statement [MobiLink]" on page 328 of the
book ASA SQL Reference Manual.

CREATE SYNCHRONIZATION SITE ml_username
USING sync-template-name
[TYPE sync-type]
[ADDRESS network-parameters]
[OPTION option=value, …]

ml_username, sync-template-name: identifier

network-parameters: string

sync-type: http | https | tcpip

value: string | integer

Must have DBA authority.

Automatic commit.

Function

Syntax

Permissions

Side effects

CREATE SYNCHRONIZATION SUBSCRIPTION statement

574

CREATE SYNCHRONIZATION SUBSCRIPTION
statement

Use this statement in an Adaptive Server Anywhere remote database to
subscribe a MobiLink user to a publication.

$ For complete documentation of this statement, see "CREATE
SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]" on
page 331 of the book ASA SQL Reference Manual.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO publication-name
[FOR ml_username, …]
[TYPE sync-type]
[ADDRESS network-parameters]
[OPTION option=value, …]

ml_username: identifier

network-parameters: string

sync-type: http | https | tcpip | ActiveSync

value: string | integer

Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Automatic commit.

Function

Syntax

Permissions

Side effects

Chapter 21 MobiLink SQL Statements

575

CREATE SYNCHRONIZATION TEMPLATE
statement (deprecated)

Use this statement to create a template within a MobiLink reference
database, to be used when extracting Adaptive Server Anywhere remote
databases with the mlxtract utility. This command is deprecated. Please use
synchronization publications and subscriptions instead.

$ For complete documentation of this statement, see "CREATE
SYNCHRONIZATION TEMPLATE statement [MobiLink]" on page 333
of the book ASA SQL Reference Manual.

CREATE SYNCHRONIZATION TEMPLATE sync-template-name
[TYPE sync-type]
ADDRESS network-parameters
[OPTION option=value]
(TABLE article-description, …)

network-parameters : string

article-description :
table-name [(column-name, ...)]

[WHERE search-condition]

value : string | integer

Must have DBA authority. Requires exclusive access to all tables referred to
in the statement.

Automatic commit.

Function

Syntax

Permissions

Side effects

CREATE SYNCHRONIZATION USER statement

576

CREATE SYNCHRONIZATION USER statement
Use this statement in an Adaptive Server Anywhere remote database to
create a synchronization user.

$ For complete documentation of this statement, see "CREATE
SYNCHRONIZATION USER statement [MobiLink]" on page 335 of the
book ASA SQL Reference Manual.

CREATE SYNCHRONIZATION USER ml_username
[TYPE sync-type]
[ADDRESS network-parameters]
[OPTION option=value, …]

ml_username: identifier

network-parameters: string

sync-type: http | https | tcpip | ActiveSync

value:
string | integer

Must have DBA authority.

Automatic commit.

Description

Syntax

Permissions

Side effects

Chapter 21 MobiLink SQL Statements

577

DROP PUBLICATION statement
Use this statement to drop a publication. In MobiLink a publication identifies
synchronized data in a Adaptive Server Anywhere remote database.

$ For complete documentation of this statement, see "DROP
PUBLICATION statement" on page 402 of the book ASA SQL Reference
Manual.

DROP PUBLICATION [owner.]publication-name

owner, publication-name : identifier

Must have DBA authority.

Automatic commit. All subscriptions to the publication are dropped.

Function

Syntax

Permissions

Side effects

DROP SYNCHRONIZATION DEFINITION statement (deprecated)

578

DROP SYNCHRONIZATION DEFINITION
statement (deprecated)

Use this statement to drop a synchronization definition. This command is
deprecated. Definitions and sites have been replaced with synchronization
publications and subscriptions.

$ For complete documentation of this statement, see "DROP
SYNCHRONIZATION DEFINITION statement [MobiLink]" on
page 408 of the book ASA SQL Reference Manual.

DROP SYNCHRONIZATION DEFINITION sync-def-name

Must have DBA authority.

Automatic commit.

Function

Syntax

Permissions

Side effects

Chapter 21 MobiLink SQL Statements

579

DROP SYNCHRONIZATION SITE statement
(deprecated)

Use this statement to drop a specific synchronization site. This command is
deprecated. Definitions and sites have been replaced with synchronization
publications and subscriptions.

$ For complete documentation of this statement, see "DROP
SYNCHRONIZATION SITE statement [MobiLink]" on page 409 of the
book ASA SQL Reference Manual.

DROP SYNCHRONIZATION SITE sync-site-name

Must have DBA authority.

Automatic commit.

Function

Syntax

Permissions

Side effects

DROP SYNCHRONIZATION SUBSCRIPTION statement

580

DROP SYNCHRONIZATION SUBSCRIPTION
statement

Use this statement to drop a synchronization subscription within a MobiLink
remote database or a MobiLink reference database.

$ For complete documentation of this statement, see "DROP
SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]" on
page 410 of the book ASA SQL Reference Manual.

DROP SYNCHRONIZATION SUBSCRIPTION
TO publication-name
[FOR ml_username, …]

ml_username: identifier

Automatic commit.

Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Function

Syntax

Side Effects

Permissions

Chapter 21 MobiLink SQL Statements

581

DROP SYNCHRONIZATION TEMPLATE
statement (deprecated)

Use this statement to drop a synchronization template. This command is
deprecated. Please use synchronization publications and subscriptions
instead.

DROP SYNCHRONIZATION TEMPLATE sync-template-name

Must have DBA authority.

Automatic commit. Dropping a synchronization template implicitly drops all
sites using that template.

Function

Syntax

Permissions

Side effects

DROP SYNCHRONIZATION USER statement [MobiLink]

582

DROP SYNCHRONIZATION USER statement
[MobiLink]

Use this statement to drop a synchronization user from a MobiLink remote
database.

$ For complete documentation of this statement, see "DROP
SYNCHRONIZATION USER statement [MobiLink]" on page 412 of the
book ASA SQL Reference Manual.

DROP SYNCHRONIZATION USER ml_username, …

ml_username: identifier

Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

All subscriptions associated with the user are also deleted.

Description

Syntax

Permissions

Side Effects

Chapter 21 MobiLink SQL Statements

583

START SYNCHRONIZATION DELETE statement
Use this statement to restart logging of deletes for MobiLink
synchronization.

$ For complete documentation of this statement, see "START
SYNCHRONIZATION DELETE statement [MobiLink]" on page 556 of
the book ASA SQL Reference Manual.

START SYNCHRONIZATION DELETE

Must have DBA authority.

None.

Function

Syntax

Permissions

Side Effects

STOP SYNCHRONIZATION DELETE statement

584

STOP SYNCHRONIZATION DELETE statement
Use this statement to temporarily stop logging of deletes for MobiLink
synchronization.

$ For complete documentation of this statement, see "STOP
SYNCHRONIZATION DELETE statement [MobiLink]" on page 563 of
the book ASA SQL Reference Manual.

STOP SYNCHRONIZATION DELETE

Must have DBA authority.

None.

Function

Syntax

Permissions

Side Effects

585

C H A P T E R 2 2

Stored Procedures

This chapter provides information about the MobiLink pre-defined stored
procedures. There are two types of stored procedure:

♦ Server stored procedures facilitate management of synchronization
scripts using SQL statements. They are stored in the consolidated
database.

♦ Client stored procedures perform specific tasks during
synchronization on an Adaptive Server Anywhere client. These are
called client event-hook procedures.

Topic Page

Stored procedures to add or delete scripts 586

Client event-hook procedures 592

About this chapter

Contents

Stored procedures to add or delete scripts

586

Stored procedures to add or delete scripts
You must add synchronization scripts to system tables in the consolidated
database before you can use them. The following stored procedures add
synchronization scripts to the consolidated database. They can also be used
to delete scripts.

♦ When you add a script using a stored procedure, the script is a string.
Any strings within the script need to be escaped. For Adaptive Server
Anywhere, each quotation mark (’) needs to be doubled so as not to
terminate the string.

♦ You cannot use stored procedures to add scripts longer than 255 bytes to
Adaptive Server Enterprise 11.5 or earlier. Instead, use Sybase Central
or direct insertion to define longer scripts.

♦ IBM DB2 prior to version 6 only supports column names and other
identifiers of 18 characters or less, and so the names are truncated. For
example, ml_add_connection_script is shortened to
ml_add_connection_.

ml_add_connection_script

Use this stored procedure to add or delete SQL connection scripts in the
consolidated database.

Item Parameter Description

1 version CHAR(128)

2 event CHAR(128)

3 script For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this
is VARCHAR(16384). For ASE prior to
12.5, this is VARCHAR(255). For DB2,
this is VARCHAR(4000). For Oracle,
this is VARCHAR.

To delete a connection script, set the script parameter to NULL.

When you add a script, the script is inserted into the ml_script table and the
appropriate references are defined to associate the script with the event and
script version that you specify. If the version name is new, it is automatically
inserted into the ml_version table.

"Adding and deleting scripts in your consolidated database" on page 63

Notes

Function

Parameters

Description

See also

Chapter 22 Stored Procedures

587

"ml_add_table_script" on page 587
"ml_add_dnet_connection_script" on page 588
"ml_add_dnet_table_script" on page 589
"ml_add_java_connection_script" on page 589
"ml_add_java_table_script" on page 590

The following statement adds a connection script associated with the
begin_synchronization event to an Adaptive Server Anywhere consolidated
database. The script itself is the single statement that sets the @EmployeeID
variable.

call ml_add_connection_script(’custdb’,
’begin_synchronization’,
’set @EmployeeID = ?’)

ml_add_table_script

Use this stored procedure to add or delete SQL table scripts in the
consolidated database.

Item Parameter Description

1 version VARCHAR(128)

2 table_name VARCHAR(128)

3 event VARCHAR(128)

4 script For Adaptive Server Anywhere and
MS SQL Server, this is TEXT. For
ASE, this is VARCHAR(16384). For
ASE prior to 12.5, this is
VARCHAR(255). For DB2, this is
VARCHAR(4000). For Oracle, this is
VARCHAR.

To delete a table script, set the script parameter to NULL.

When you add a script, the script is inserted into the ml_script table and the
appropriate references are defined to associate the script with the table, event
and script version that you specify. If the version name is new, it is
automatically inserted into the ml_version table.

"Adding and deleting scripts in your consolidated database" on page 63
"ml_add_connection_script" on page 586
"ml_add_dnet_connection_script" on page 588
"ml_add_dnet_table_script" on page 589
"ml_add_java_connection_script" on page 589
"ml_add_java_table_script" on page 590

Example

Function

Parameters

Description

See also

Stored procedures to add or delete scripts

588

The following command adds a cursor script associated with the
upload_cursor event on the ULCustomer table.

call ml_add_table_script(’custdb’,
’ULCustomer’,
’upload_cursor’,
’SELECT cust_id, cust_name

FROM ULCustomer WHERE cust_id = ?’)

ml_add_dnet_connection_script

Use this stored procedure to add or delete .NET connection scripts in the
consolidated database.

Item Parameter Description

1 version CHAR(128)

2 event CHAR(128)

3 script For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this is
VARCHAR(16384). For ASE prior to 12.5,
this is VARCHAR(255). For DB2, this is
VARCHAR(4000). For Oracle, this is
VARCHAR.

To delete a connection script, set the script parameter to NULL.

The script value is a public method in a class in the MobiLink
synchronization server classpath (for example, MyClass.MyMethod).

When you add a script, the method is associated with the event and script
version that you specify. If the version name is new, it is automatically
inserted into the ml_version table.

"Adding and deleting scripts in your consolidated database" on page 63
"ml_add_dnet_table_script" on page 589
"ml_add_connection_script" on page 586
"ml_add_table_script" on page 587
"ml_add_java_table_script" on page 590
"Methods" on page 172

The following example assigns the beginDownloadConnection method of the
ExampleClass class to the begin_download event.

call ml_add_dnet_connection_script(’ver1’,
’begin_download’,
’ExamplePackage.ExampleClass.beginDownloadConnection’)

Example

Function

Parameters

Description

See also

Example

Chapter 22 Stored Procedures

589

ml_add_dnet_table_script

Use this stored procedure to add or delete .NET table scripts in the
consolidated database.

Item Parameter Description

1 version VARCHAR(128)

2 table VARCHAR(128)

3 event VARCHAR(128)

4 script For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this
is VARCHAR(16384). For ASE prior to
12.5, this is VARCHAR(255). For DB2,
this is VARCHAR(4000). For Oracle, this
is VARCHAR.

To delete a connection script, set the script parameter to NULL.

The script value is a public method in a class in the MobiLink
synchronization server classpath (for example, MyClass.MyMethod).

When you add a script, the method is associated with the table, event, and
script version that you specify. If the version name is new, it is automatically
inserted into the ml_version table.

"Adding and deleting scripts in your consolidated database" on page 63
"ml_add_dnet_connection_script" on page 588
"ml_add_connection_script" on page 586
"ml_add_table_script" on page 587
"ml_add_java_connection_script" on page 589
"Methods" on page 172

The following example assigns the empDownloadCursor method of the
EgClass class to the download_cursor event for the table emp.

call ml_add_dnet_table_script(’ver1’, ’emp’,
’download_cursor’,EgPackage.EgClass.empDownloadCursor’)

ml_add_java_connection_script

Use this stored procedure to add or delete Java connection scripts in the
consolidated database.

Function

Parameters

Description

See also

Example

Function

Stored procedures to add or delete scripts

590

Item Parameter Description

1 version CHAR(128)

2 event CHAR(128)

3 script For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this is
VARCHAR(16384). For ASE prior to 12.5,
this is VARCHAR(255). For DB2, this is
VARCHAR(4000). For Oracle, this is
VARCHAR.

To delete a connection script, set the script parameter to NULL.

The script value is a public method in a class in the MobiLink
synchronization server classpath (for example, MyClass.MyMethod).

When you add a script, the method is associated with the event and script
version that you specify. If the version name is new, it is automatically
inserted into the ml_version table.

"Adding and deleting scripts in your consolidated database" on page 63
"ml_add_connection_script" on page 586
"ml_add_table_script" on page 587
"ml_add_dnet_connection_script" on page 588
"ml_add_dnet_table_script" on page 589
"ml_add_java_table_script" on page 590
"Methods" on page 172

The following example is taken from the
Samples\MobiLink\JavaAuthentication sample. It assigns the endConnection
method of the CustEmpScripts class to the end_connection event.

call ml_add_java_connection_script(’ver1’,
’end_connection’,
’CustEmpScripts.endConnection’)

ml_add_java_table_script

Use this stored procedure to add or delete Java table scripts in the
consolidated database.

Parameters

Description

See also

Example

Function

Chapter 22 Stored Procedures

591

Item Parameter Description

1 version VARCHAR(128)

2 table VARCHAR(128)

3 event VARCHAR(128)

4 script For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this
is VARCHAR(16384). For ASE prior to
12.5, this is VARCHAR(255). For DB2,
this is VARCHAR(4000). For Oracle, this
is VARCHAR.

To delete a connection script, set the script parameter to NULL.

The script value is a public method in a class in the MobiLink
synchronization server classpath (for example, MyClass.MyMethod).

When you add a script, the method is associated with the table, event, and
script version that you specify. If the version name is new, it is automatically
inserted into the ml_version table.

"Adding and deleting scripts in your consolidated database" on page 63
"ml_add_connection_script" on page 586
"ml_add_table_script" on page 587
"ml_add_dnet_connection_script" on page 588
"ml_add_dnet_table_script" on page 589
"ml_add_java_connection_script" on page 589
"Methods" on page 172

The following example is taken from the
Samples\MobiLink\JavaAuthentication sample. It assigns the
empDownloadCursor method of the CustEmpScripts class to the
download_cursor event for the table emp.

call ml_add_java_table_script(’ver1’, ’emp’,
’download_cursor’,’CustEmpScripts.empDownloadCursor’)

Parameters

Description

See also

Example

Client event-hook procedures

592

Client event-hook procedures
The following stored procedures provide the interface for customizing
synchronization at Adaptive Server Anywhere clients.

Tip
If a *_begin hook executes successfully, the corresponding *_end hook is
called regardless of any error that occurs afterwards. If the *_begin hook is
not defined, but you have defined an *_end hook, then the *_end hook is
called unless an error occurs prior the point in time where the *_begin
hook would normally be called.

$ For more information about using client event hooks, see "Customizing
the client synchronization process" on page 157.

The dbmlsync utility calls the stored procedures without qualifying them by
owner. The stored procedures must therefore be owned by one of the
following:

♦ The user name employed on the dbmlsync connection (typically a user
with REMOTE DBA authority).

♦ A group ID of which the dbmlsync user is a member.

Caution
Do not perform any COMMIT or ROLLBACK operations in event-hook
procedures. The procedures are executed on the same connection as the
synchronization, and a COMMIT or ROLLBACK may interfere with
synchronization.

The #hook_dict table is created in the remote database immediately before a
hook is called using the following CREATE statement:

CREATE TABLE #hook_dict(
name VARCHAR(128) NOT NULL UNIQUE,
value VARCHAR(255) NOT NULL)

dbmlsync uses the #hook_dict table to pass values to hook functions; hook
functions use the #hook_dict table to pass values back to dbmlsync.

For example, if your dbmlsync command line is like the one below:

dbmlsync -c ’dsn=MyDsn’ -n pub1,pub2 -u MyUser

When the sp_hook_dbmlsync_abort hook is called the #hook_dict table will
contain the following rows:

The #hook_dict
table

Chapter 22 Stored Procedures

593

Name Value

publication_0 pub1

publication_1 pub2

MobiLink user MyUser

Abort synchronization false

Your abort hook can retrieve values from the #hook_dict table and use them
to customize behavior. For example, to retrieve the MobiLink user you
would use a SELECT statement like this:

SELECT value
FROM #hook_dict
WHERE name = ’MobiLink user’

In/out parameters can be updated by your hook to modify the behavior of
dbmlsync. For example, your hook could instruct dbmlsync to abort
synchronization by updating the abort synchronization row of the table using
a statement like this:

UPDATE #hook_dict
SET value=’true’
WHERE name=’abort synchronization’

The description of each hook lists the rows in the #hook_dict table. Each is a
member of a matched pair of cell values in a the table. Given a single row,
you can use a SELECT statement to retrieve a corresponding matched value.

sp_hook_dbmlsync_abort

Use this stored procedure to cancel the synchronization process.

Name Values Description

abort synchronization
(in | out)

True | False If you set the abort synchronization
row of the #hook_dict table to
true, then dbmlsync terminates
immediately after the event.

publication_n
(in)

Any
publication
name

The publications being
synchronized. There is one
publication_n entry for each
publication being uploaded.

MobiLink user
(in)

Any
MobiLink
user name

The MobiLink user for which you
are synchronizing.

Function

Rows in #hook_dict
table

Client event-hook procedures

594

If a procedure of this name exists, it is called at the beginning of the
sequence of events, and then again after each synchronization delay.

Actions of this procedure are committed immediately after execution.

"Synchronization event hook sequence" on page 157

The following procedure prevents synchronization during a scheduled
maintenance hour between 19:00 and 20:00 each day.

create procedure sp_hook_dbmlsync_abort()
begin
 declare down_time_start time;
 declare is_down_time varchar(128);
 set down_time_start=’19:00’;
 if abs(datediff(hour,down_time_start,now(*))) < 1
 then
 set is_down_time=’true’;
 else
 set is_down_time=’false’;
 end if;
 UPDATE #hook_dict
 SET value = is_down_time
 WHERE name = ’abort synchronization’
end

sp_hook_dbmlsync_begin

Use this stored procedure to add custom actions at the beginning of the
synchronization process.

Name Values Description

publication_n (in) Any publication
name

The publications being
synchronized. There is one
publication_n entry for each
publication being uploaded.

MobiLink user (in) Any MobiLink
user name

The MobiLink user for which you
are synchronizing.

If a procedure of this name exists, it is called at the beginning of the
synchronization process.

Actions of this procedure are committed immediately after execution.

"Synchronization event hook sequence" on page 157

Description

See also

Example

Function

Rows in #hook_dict
table

Description

See also

Chapter 22 Stored Procedures

595

sp_hook_dbmlsync_delay

Use this stored procedure to control when synchronization takes place.

Name Values Description

delay duration
(in | out)

Any number
of seconds

If the procedure sets the delay
duration value to zero, then
dbmlsync synchronization
proceeds. A non-zero
delay_duration value specifies the
number of seconds before the delay
hook is called again.

maximum
accumulated delay
(in | out)

The maximum accumulated delay
specifies the maximum number of
seconds delay you wish to create
before each synchronization using
the delay hook. Dbmlsync keeps
track of the total delay created by
all calls to the delay hook since the
last synchronization. If no
synchronization has occurred since
dbmlsync started running, the total
delay is calculated from the time
dbmlsync started up. When the
total delay exceeds the value of
Maximum Accumulated delay,
synchronization begins without any
further calls to the delay hook.

publication_n
(in)

Any
publication
name

The publications being
synchronized. There is one
publication_n entry for each
publication being uploaded.

MobiLink user
(in)

Any
MobiLink
user name

The MobiLink user for which you
are synchronizing.

If a procedure of this name exists, it is called before
sp_hook_dbmlsync_begin at the beginning of the synchronization process.

Actions of this procedure are committed immediately after execution.

"Synchronization event hook sequence" on page 157

The following procedure delays synchronization during a scheduled
maintenance hour between 19:00 and 20:00 each day.

Function

Rows in #hook_dict
table

Description

See also

Example

Client event-hook procedures

596

create procedure sp_hook_dbmlsync_delay()
begin
 declare down_time_start time;
 declare is_down_time varchar(128);
 set down_time_start=’19:00’;
 if abs(datediff(minute,down_time_start,now(*))) <
 60 then
 set is_down_time=’10’;
 else
 set is_down_time=’0’;
 end if;
 UPDATE #hook_dict
 SET value = is_down_time
 WHERE name = ’delay duration’
end

sp_hook_dbmlsync_download_begin

Use this stored procedure to add custom actions at the beginning of the
download stage of the synchronization process.

Name Values Description

publication_n
(in)

Any publication
name

The publications being synchronized.
There is one publication_n entry for
each publication being uploaded.

MobiLink user
(in)

Any MobiLink
user name

The MobiLink user for which you are
synchronizing.

If a procedure of this name exists, it is called at the beginning of the
download stage of the synchronization process.

Actions of this procedure are committed or rolled back when the download
stream is committed or rolled back.

"Synchronization event hook sequence" on page 157

sp_hook_dbmlsync_download_com_error

Use this stored procedure to add custom actions when communications errors
occur while reading the download stream sent by the MobiLink
synchronization server.

Function

Rows in #hook_dict
table

Description

See also

Function

Chapter 22 Stored Procedures

597

Name Values Description

table name
(in)

A table name The table to which operations were
being applied when the error
occurred. The value is an empty
string if dbmlsync is unable to
identify the table.

publication_n
(in)

Any
publication
name

The publications being
synchronized. There is one
publication_n entry for each
publication being uploaded.

MobiLink user
(in)

Any
MobiLink
user name

The MobiLink user for which you
are synchronizing.

If a procedure of this name exists, it is invoked when a communication error
is detected during the download phase of synchronization. The download is
then terminated.

This procedure executes on a separate connection, so that failures can be
logged. Otherwise, the action of logging would be rolled back along with the
synchronization actions. If dbmlsync cannot establish a separate connection,
the procedure is not called.

Actions of this procedure are committed immediately after execution.

"Synchronization event hook sequence" on page 157

sp_hook_dbmlsync_download_end

Use this stored procedure to add custom actions at the end of the download
stage of the synchronization process.

Name Values Description

publication_n
(in)

Any
publication
name

The publications being
synchronized. There is one
publication_n entry for each
publication being uploaded.

MobiLink user
(in)

Any
MobiLink
user name

The MobiLink user for which you
are synchronizing.

If a procedure of this name exists, it is called at the end of the download
stage of the synchronization process.

Rows in #hook_dict
table

Description

See also

Function

Rows in #hook_dict
table

Description

Client event-hook procedures

598

Actions of this procedure are committed or rolled back when the download
stream is committed or rolled back.

"Synchronization event hook sequence" on page 157

sp_hook_dbmlsync_download_fatal_sql_error

Take action when a synchronization download is about to be rolled back
because of a database error.

Name Values Description

table name
(in)

A table name The table to which operations were
being applied when the error
occurred. The value is an empty
string if dbmlsync is unable to
identify the table.

SQL error code
(in)

SQL error
code

Identifies the SQL error code
returned by the database when the
operation failed.

publication_n
(in)

Any
publication
name

The publications being
synchronized. There is one
publication_n entry for each
publication being uploaded.

MobiLink user
(in)

Any
MobiLink
user name

The MobiLink user for which you
are synchronizing.

If a procedure of this name exists, it is called immediately before a
synchronization download is rolled back because of a database error. This
occurs whenever an SQL error is encountered that cannot be ignored, or
when the sp_hook_dbmlsync_download_SQL_error hook has already been
called and has chosen not to ignore the error.

This procedure executes on a separate connection, so that failures can be
logged. Otherwise, the action of logging would be rolled back along with the
synchronization actions. If dbmlsync cannot establish a separate connection,
the procedure is not called.

Actions of this procedure are committed immediately after execution.

"Synchronization event hook sequence" on page 157
"sp_hook_dbmlsync_download_sql_error" on page 601

See also

Function

Rows in #hook_dict
table

Description

See also

Chapter 22 Stored Procedures

599

sp_hook_dbmlsync_download_log_ri_violation

Logs referential integrity violations in the download process.

Name Values Description

publication_n
(in)

Any
publication
name

The publications being
synchronized. There is one
publication_n entry for each
publication being uploaded.

MobiLink user
(in)

Any
MobiLink
user name

The MobiLink user for which you
are synchronizing.

Foreign key table
(in)

A table name The table containing the foreign
key column for which the hook is
being called.

Primary key table
(in)

A table name The table referenced by the foreign
key for which the hook is being
called.

Role name
(in)

A role name The role name of the foreign key
for which the hook is being called.

A download RI violation occurs when rows in the download stream violate
foreign key relationships on the remote database. This hook allows you to
log RI violations as they occur so that you can investigate their cause later.

After the download is complete, but before it is committed, dbmlsync checks
for RI violations. If it finds any, it identifies a foreign key that has an RI
violation and calls sp_hook_dbmlsync_download_log_ri_violation (if it is
implemented). It then calls sp_hook_dbmlsync_download_ri_conflict (if it is
implemented). If there is still a conflict, dbmlsync deletes the rows. This
process is repeated for remaining foreign keys that have RI violations.

This hook is called only when there are RI violations involving tables that
are currently being synchronized. If there are RI violations involving tables
that are not being synchronized, this hook is not called and the
synchronization fails.

This hook is called on a separate connection from the one that dbmlsync uses
for the download. The connection used by the hook has an isolation level of
0 so that the hook can see the rows that have been applied from the download
stream that are not yet committed. The actions of the hook are committed
immediately after it completes so that changes made by this hook will be
preserved regardless of whether the download stream is committed or rolled
back.

Function

Rows in #hook_dict
table

Description

Client event-hook procedures

600

Do not attempt to use this hook to correct RI violation problems. It should be
used for logging only. Use sp_hook_dbmlsync_download_ri_violation to
resolve RI violations.

"sp_hook_dbmlsync_download_ri_violation" on page 600

sp_hook_dbmlsync_download_ri_violation

Allows you to resolve referential integrity violations in the download
process.

Name Values Description

publication_n
(in)

Any
publication
name

The publications being
synchronized. There is one
publication_n entry for each
publication being uploaded.

MobiLink user
(in)

Any
MobiLink
user name

The MobiLink user for which you
are synchronizing.

Foreign key table
(in)

A table name The table containing the foreign
key column for which the hook is
being called.

Primary key table
(in)

A table name The table referenced by the foreign
key for which the hook is being
called.

Role name
(in)

A role name The role name of the foreign key
for which the hook is being called.

A download RI violation occurs when rows in the download stream violate
foreign key relationships on the remote database. This hook allows you to
attempt to resolve RI violations before dbmlsync deletes the rows that are
causing the conflict.

After the download is complete, but before it is committed, dbmlsync checks
for RI violations. If it finds any, it identifies a foreign key that has an RI
violation and calls sp_hook_dbmlsync_download_log_ri_violation (if it is
implemented). It then calls sp_hook_dbmlsync_download_ri_conflict (if it is
implemented). If there is still a conflict, dbmlsync deletes the rows. This
process is repeated for remaining foreign keys that have RI violations.

This hook is called only when there are RI violations involving tables that
are currently being synchronized. If there are RI violations involving tables
that are not being synchronized, this hook is not called and the
synchronization fails.

See also

Function

Rows in #hook_dict
table

Description

Chapter 22 Stored Procedures

601

This hook is called on the same connection that dbmlsync uses for the
download. This hook should not contain any explicit or implicit commits,
because they may lead to inconsistent data in the database. The actions of
this hook are committed or rolled back when the download stream is
committed or rolled back.

Unlike other hook actions, the operations performed during this hook are not
uploaded during the next synchronization.

"sp_hook_dbmlsync_download_log_ri_violation" on page 599

sp_hook_dbmlsync_download_sql_error

Handle database errors reading the download stream sent by the MobiLink
synchronization server.

Name Values Description

table name
(in)

A table name The table to which operations were
being applied when the error
occurred. The value is an empty
string if dbmlsync is unable to
identify the table.

continue
(in | out)

True | False Indicates whether the error should
be ignored and synchronization
should continue. This parameter
should be set to true to ignore the
error and continue or false to call
the sp_hook_dbmlsync_-
download_fatal_sql_error hook
and stop synchronization. When
true is returned in this field the
operation that caused the SQL
error is lost.

SQL error code
(in)

SQL error
code

Identifies the SQL error code
returned by the database when the
operation failed.

publication_n
(in)

Any
publication
name

The publications being
synchronized. There is one
publication_n entry for each
publication being uploaded.

MobiLink user
(in)

Any
MobiLink
user name

The MobiLink user for which you
are synchronizing.

See also

Function

Rows in #hook_dict
table

Client event-hook procedures

602

If a procedure of this name exists, it is invoked when a database error is
detected during the download phase of synchronization. The procedure is
only invoked for errors where it is possible to ignore the error and continue
with synchronization. For fatal errors, the
sp_hook_dbmlsync_download_fatal_SQL_error procedure is called.

Actions of this procedure are committed or rolled back when the download
stream is committed or rolled back.

"Synchronization event hook sequence" on page 157
"sp_hook_dbmlsync_download_fatal_sql_error" on page 598

sp_hook_dbmlsync_download_table_begin

Use this stored procedure to add custom actions immediately before each
table is downloaded.

Name Values Description

table name
(in)

A table name The table to which operations are about
to be applied.

publication_n
(in)

Any
publication
name

The publications being synchronized.
There is one publication_n entry for
each publication being uploaded.

MobiLink user
(in)

Any MobiLink
user name

The MobiLink user for which you are
synchronizing.

If a procedure of this name exists, it is called for each table immediately
before downloaded operations are applied to that table. Actions of this
procedure are committed or rolled back when the download stream is
committed or rolled back.

"Synchronization event hook sequence" on page 157

sp_hook_dbmlsync_download_table_end

Use this stored procedure to add custom actions immediately after each table
is downloaded.

Description

See also

Function

Rows in #hook_dict
table

Description

See also

Function

Chapter 22 Stored Procedures

603

Name Values Description

table name
(in)

A table name The table to which operations have
just been applied.

delete count
(in)

Number of
rows

The number of rows in this table
deleted by the download stream.

upsert count
(in)

Number of
rows

The number of rows in this table
updated or inserted by the
download stream.

publication_n
(in)

Any
publication
name

The publications being
synchronized. There is one
publication_n entry for each
publication being uploaded.

MobiLink user
(in)

Any
MobiLink
user name

The MobiLink user for which you
are synchronizing.

If a procedure of this name exists, it is called immediately after all operations
in the download stream for a table have been applied.

Actions of this procedure are committed or rolled back when the download
stream is committed or rolled back.

"Synchronization event hook sequence" on page 157

sp_hook_dbmlsync_end

Use this stored procedure to add custom actions immediately before
synchronization is complete.

Rows in #hook_dict
table

Description

See also

Function

Client event-hook procedures

604

Name Values Description

restart
(in | out)

true | false If set to true then, instead of
shutting down, dbmlsync begins a
new synchronization subject to the
same scheduling parameters that
applied to the synchronization it
just completed. If the field is false
(the default) then dbmlsync shuts
down or restarts according to its
command line arguments.

exit code
(in)

Any number If set to anything other than zero
(the default), this represents a
synchronization error.

publication_n
(in)

Any
publication
name

The publications being
synchronized. There is one
publication_n entry for each
publication being uploaded.

MobiLink user
(in)

Any
MobiLink
user name

The MobiLink user for which you
are synchronizing.

If a procedure of this name exists, it is called as the last event during
synchronization.

Actions of this procedure are committed immediately after execution.

"Customizing the client synchronization process" on page 157
"Synchronization event hook sequence" on page 157

sp_hook_dbmlsync_logscan_begin

Use this stored procedure to add custom actions immediately before the
transaction log is scanned for upload.

Rows in #hook_dict
table

Description

See also

Function

Chapter 22 Stored Procedures

605

Name Values Description

starting log offset_n
(in)

A number The log offset value where
scanning is to begin. There is one
value for each publication being
uploaded.

log scan retry
(in)

True | False If this is the first time the
transaction log has been scanned
for this synchronization, the value
is false; otherwise it is true. The
log is scanned twice when the
MobiLink synchronization server
and dbmlsync have different
information about where the
scanning should begin.

publication_n
(in)

Any
publication
name

The publications being
synchronized. There is one
publication_n entry for each
publication being uploaded.

MobiLink user
(in)

Any
MobiLink
user name

The MobiLink user for which you
are synchronizing.

If a procedure of this name exists, it is called immediately before dbmlsync
scans the transaction log to assemble the upload stream.

Actions of this procedure are committed immediately after execution.

"Synchronization event hook sequence" on page 157

sp_hook_dbmlsync_logscan_end

Use this stored procedure to add custom actions immediately after the
transaction log is scanned for upload.

Rows in #hook_dict
table

Description

See also

Function

Client event-hook procedures

606

Name Values Description

ending log offset
(in)

A number The log offset value where
scanning ended.

starting log offset_n
(in)

A number The log offset value where
scanning began.

log scan retry
(in)

True | False If this is the first time the
transaction log has been scanned
for this synchronization, the value
is false; otherwise it is true. The
log is scanned twice when the
MobiLink synchronization server
and dbmlsync have different
information about where the
scanning should begin.

publication_n
(in)

Any
publication
name

The publications being
synchronized. There is one
publication_n entry for each
publication being uploaded.

MobiLink user
(in)

Any
MobiLink
user name

The MobiLink user for which you
are synchronizing.

If a procedure of this name exists, it is called immediately after dbmlsync has
scanned the transaction log to assemble the upload stream.

Actions of this procedure are committed immediately after execution.

"Synchronization event hook sequence" on page 157

sp_hook_dbmlsync_upload_begin

Use this stored procedure to add custom actions immediately before the
transmission of the upload.

Name Values Description

publication_n
(in)

Any publication
name

The publications being
synchronized. There is one
publication_n entry for each
publication being uploaded.

MobiLink user
(in)

Any MobiLink user
name

The MobiLink user for which you
are synchronizing.

Rows in #hook_dict
table

Description

See also

Function

Rows in #hook_dict
table

Chapter 22 Stored Procedures

607

If a procedure of this name exists, it is called immediately before dbmlsync
sends the upload stream.

Actions of this procedure are committed immediately after execution.

"Synchronization event hook sequence" on page 157

sp_hook_dbmlsync_upload_end

Use this stored procedure to add custom actions after dbmlsync has verified
receipt of the upload stream by the MobiLink synchronization server.

Name Values Description

failure cause
(in)

See range of values
in Description,
below

The cause of failure of an upload.
For more information, see
Description.

upload status
(in)

retry
committed
failed

Specifies the status returned by the
MobiLink synchronization server
when dbmlsync attempts to verify
receipt of the upload stream.

retry The MobiLink
synchronization server and
dbmlsync had different values for
the log offset that the upload
stream should start from. The
upload stream was not committed
by the MobiLink synchronization
server. The dbmlsync utility will
attempt to send another upload
stream starting from a new log
offset.

committed The upload stream
was received by the MobiLink
synchronization server, and
committed.

failed The MobiLink
synchronization server did not
commit the upload stream.

publication_n
(in)

Any publication
name

The publications being
synchronized. There is one
publication_n entry for each
publication being uploaded.

MobiLink user
(in)

Any MobiLink user
name

The MobiLink user for which you
are synchronizing.

Description

See also

Function

Rows in #hook_dict
table

Client event-hook procedures

608

If a procedure of this name exists, it is called immediately after dbmlsync has
sent the upload stream and received confirmation of it from the MobiLink
synchronization server.

Actions of this procedure are committed immediately after execution.

The range of possible parameter values for the failure cause row in the
#hook_dict table includes:

♦ UPLD_ERR_COMMUNICATIONS_FAILURE A communication error
occurred.

♦ UPLD_ERR_LOG_OFFSET_MISMATCH The upload failed because
of conflict between log offset stored on the remote and consolidated
databases.

♦ UPLD_ERR_GENERAL_FAILURE The upload failed for an unknown
reason.

♦ UPLD_ERR_INVALID_USERID_OR_PASSWORD The userid or
password was incorrect.

♦ UPLD_ERR_USERID_OR_PASSWORD_EXPIRED The userid or
password expired.

♦ UPLD_ERR_USERID_ALREADY_IN_USE The userid was already in
use.

♦ UPLD_ERR_DOWNLOAD_NOT_AVAILABLE The upload was
committed on the consolidated but an error occurred that prevented
MobiLink from generating a download stream.

♦ UPLD_ERR_PROTOCOL_MISMATCH Dbmlsync received unexpected
data from the MobiLink synchronization server.

♦ UPLD_ERR_SQLCODE_n Here, n is an integer. A SQL error
occurred in the consolidated database. The integer specified is the
SQLCODE for the error encountered.

"Synchronization event hook sequence" on page 157

Description

See also

609

C H A P T E R 2 3

Utilities

This chapter describes the MobiLink utility programs that are required to
build and synchronize UltraLite applications.

$ For information about the MobiLink synchronization server, see
"MobiLink Synchronization Server Options" on page 379.

$ For information about other Adaptive Server Anywhere utilities, see
"Database Administration Utilities" on page 435 of the book ASA Database
Administration Guide.

Topic Page

ActiveSync provider installation utility 610

MobiLink stop utility 613

MobiLink client database extraction utility 614

MobiLink user authentication utility 618

Certificate reader utility 620

Certificate generation utility 621

About this chapter

Contents

ActiveSync provider installation utility

610

ActiveSync provider installation utility
Installs a MobiLink provider for ActiveSync, or registers and installs
UltraLite applications on Windows CE devices.

dbasinst [options] [[src] dst name class [args]]

Options Description

-d Disable the application on creation.

-k path Specify the location of the desktop provider dbasdesk.dll.

-n Register the application but do not copy it to the device.

-u Uninstall the MobiLink ActiveSync provider.

-v path Specify the location of the device provider dbasdev.dll.

Args Description

src The source filename and path for an application.

dst The destination filename and path for an application.

name The name of the application.

class The registered Windows class name of the application.

args Command line arguments to use when ActiveSync starts the
application.

This utility installs a MobiLink provider for ActiveSync. The provider
includes both a component that runs on the desktop (dbasdesk.dll) and a
component that is deployed to the Windows CE device (dbasdev.dll). The
dbasinst utility makes a registry entry pointing to the current location of the
desktop provider; and copies the device provider to the device.

If additional arguments are supplied, the dbasinst utility can also be used to
register and install UltraLite applications onto a Windows CE device.
Alternatively, you can register and install UltraLite applications using the
ActiveSync software.

Subject to licensing requirements, you may supply this application, together
with the desktop and device components to end users, so that they can
prepare their copies of your application for use with ActiveSync.

You must be connected to a remote device to install the ActiveSync provider.

Syntax

Description

Chapter 23 Utilities

611

$ For complete instructions on using the ActiveSync provider installation
utility, see "Installing the MobiLink provider for ActiveSync" on page 301 of
the book UltraLite User’s Guide, and "Registering applications for use with
ActiveSync" on page 302 of the book UltraLite User’s Guide.

-d By default, an application registered by dbasinst is enabled, meaning
that it is automatically synchronized when ActiveSync begins a
synchronization. With the -d option, the application is still registered, but it is
unchecked in the ActiveSync MobiLink settings dialog.

-k The path to the desktop provider dbasdesk.dll. By default the file is
looked for in the win32 subdirectory of your SQL Anywhere directory. End
users (who generally do not have the full SQL Anywhere install) may need
to specify -k when installing the MobiLink ActiveSync provider.

-n In addition to installing the MobiLink ActiveSync provider, register an
application but do not copy it to the device. This is appropriate if the
application includes more than one file (for example, if it is compiled to use
the UltraLite runtime library DLL rather than a static library) or if you have
an alternative method of copying the application to the device.

-u Unregister all applications that have been registered for use with the
MobiLink ActiveSync provider and uninstall the MobiLink ActiveSync
provider. No files are deleted from the desktop machine or the device by this
operation. If the device is not connected to the desktop, an error is reported.

-v The path to the device provider dbasdev.dll. By default the file is
looked for in a platform-specific directory under the CE subdirectory of your
SQL Anywhere directory. End users (who generally do not have the full
SQL Anywhere install) may need to specify -v when installing the MobiLink
ActiveSync provider.

src The source filename and path for copying an application to the device.
Supply this parameter only if you are registering an application and copying
it to the device: do not supply the parameter if you use the -n option.

dst The destination filename and path on the device for an application.

name The application name. This is the name by which ActiveSync refers
to the application.

class The registered Windows class name for the application.

args Any command line arguments to be used when ActiveSync starts the
application.

Options

Arguments

ActiveSync provider installation utility

612

The following command installs the MobiLink provider for ActiveSync
using default arguments. It does not register an application. The device must
be connected to your desktop for the installation to succeed.

dbasinst

The following command uninstalls the MobiLink provider for ActiveSync.
The device must be connected to your desktop for the uninstall to succeed:

dbasinst -u

The following command installs the MobiLink provider for ActiveSync, if it
is not already installed, and registers the application myapp.exe. It also
copies the c:\My Files\myapp.exe file to \Program Files\myapp.exe on the
device. The -p -x arguments are command line options for myapp.exe when
started by ActiveSync. The command must be entered on a single line:

dbasinst "C:\My Files\myapp.exe" "\Program
Files\myapp.exe"
 "My Application" MYAPP -p -x

"Using ActiveSync synchronization" on page 143
"Installing the MobiLink provider for ActiveSync" on page 301 of the book

UltraLite User’s Guide
"Registering applications for use with ActiveSync" on page 302 of the book

UltraLite User’s Guide
"Adding ActiveSync synchronization to your application" on page 305 of the

book UltraLite User’s Guide
"ActiveSync parameters" on page 399 of the book UltraLite User’s Guide

Examples

See also

Chapter 23 Utilities

613

MobiLink stop utility
Stops the MobiLink synchronization server on the local machine.

dbmlstop [options] [server-name]

Option Description

-f Forced shutdown. Use if a hard shutdown does
not work.

-h Hard shutdown. MobiLink stops all
synchronizations and exits. Some remotes may
report an error.

-q Quiet mode. Suppresses the banner.

-t time Soft shutdown, with a hard shutdown done after
the specified time. time is a number followed by
D, H, M, or S (for days, hours, minutes and
seconds). For example, -t 10m specifies that the
server should be shut down in 10 minutes or when
current synchronizations complete, whichever is
sooner. D, H, M, and S are not case sensitive.

-w Waits for the server to shut down before
continuing.

Server-name If the MobiLink synchronization server is started using the
-zs option, it must be shut down specifying the server name.

$ For more information, see "-zs option" on page 405

By default (if none of -w, -f, -h or -t are specified), dbmlstop does a soft
shutdown. This means that it stops accepting new connections and exits
when the current synchronizations are complete.

Syntax

Parameters

Description

MobiLink client database extraction utility

614

MobiLink client database extraction utility
Creates an Adaptive Server Anywhere client database using another
Adaptive Server Anywhere database (called the reference database) as a
template.

mlxtract [additional-options] directory site-name

Option Description

-ac "keyword=value; ..." Connect to the database specified in the connect string to do
the reload.

-al database Log file name for this new database.

-an database Creates a database file with the same settings as the
database being unloaded and automatically reloads it.

-c "keyword=value; ..." Supply database connection parameters.

-id Extract schema definition and data.

-it Extract schema definition and triggers.

-j count Iteration count for view-creation statements.

-l level Perform all extraction operations at specified isolation level.

-o file Output messages to file.

-p character Escape character.

-q Operate quietly: do not print messages or show windows.

-r file Specify name of generated reload Interactive SQL command
file (default "reload.SQL").

-s7 Use Adaptive Server Anywhere version 7 syntax for
creating synchronization definitions.

-u Unordered data.

-v Verbose messages.

-x Use external table loads.

-xh Exclude procedure hooks.

-xf Exclude foreign keys.

Syntax

Chapter 23 Utilities

615

Option Description

-xp Exclude stored procedures.

-xv Exclude views.

-y Overwrite command file without confirmation.

directory The directory to which the files are written. This option is
not needed if you use -an or -ac.

site-name Specify which client database to generate.

mlxtract is the MobiLink extraction utility for Adaptive Server Anywhere
client databases. It is run against an Adaptive Server Anywhere reference
database and creates a new client database or a command file for an Adaptive
Server Anywhere client database, depending on the chosen options.

The command line extraction utility creates a command file and a set of
associated data files. The command file can be run against a newly initialized
Adaptive Server Anywhere database to create the database objects and load
the data for the client database.

By default, the command file is named reload.SQL.

Reload the data to an existing database (-ac) You can combine the
operation of unloading a database and reloading the results into an existing
database using this option.

For example, the following command (which should be entered all on one
line) loads a copy of the data for the field_user subscriber into an existing
database file named newdemo.db:

mlxtract -c "uid=DBA;pwd=SQL;dbf=asademo.db" -ac
"uid=DBA;pwd=SQL;dbf=newdemo.db" field_user

If you use this option, no copy of the data is created on disk, so you do not
specify an unload directory on the command line. This provides greater
security for your data, but at some cost for performance.

Reload the data to a new database (-an) You can combine the
operations of unloading a database, creating a new database, and loading the
data using this option.

For example, the following command (which should be entered all on one
line) creates a new database file named asacopy.db and copies the schema
and data for the field_user subscriber of asademo.db into it:

mlxtract -c "uid=DBA;pwd=SQL;dbf=asademo.db" -an
asacopy.db field_user

Description

Options

MobiLink client database extraction utility

616

If you use this option, no copy of the data is created on disk, so you do not
specify an unload directory on the command line. This provides greater
security for your data, but at some cost for performance.

Connection parameters (-c) A set of connection parameters, in a string.

♦ mlxtract connection parameters The user ID should have DBA
authority to ensure that the user has permissions on all the tables in the
database.

For example, the following statement (which should be typed on one
line) extracts a database for MobiLink user ID joe_remote from the
asademo database running on the sample_server server, connecting as
user ID DBA with password SQL. The data is unloaded into the
c:\unload directory.

mlxtract -c "eng=sample_server;dbn=sademo;
uid=DBA;pwd=SQL" c:\extract joe_remote

Extract both schema definition and data (-id) By default, only the
schema is extracted. Such a database can be initialized with data upon the
first connection to a MobiLink synchronization server. This option provides
the option of extracting the initial set of data from the reference database.

Extract both schema definition and triggers (-it) By default, only the
schema and synchronization definition are extracted. Triggers are not
extracted. This option provides causes triggers present in the reference
database to be extracted also.

Iteration count for views (-j) If there are nested views in the
consolidated database, this option specifies the maximum number of
iterations to use when extracting the views.

Perform extraction at a specified isolation level (-l) The default
setting is an isolation level of zero. If you are extracting a database from an
active server, you should run it at isolation level 3 to ensure that data in the
extracted database is consistent with data on the server. Increasing the
isolation level may result in large numbers of locks being used by the
extraction utility, and may restrict database use by other users.

Output messages to file (-o) Outputs the messages from the extraction
process to a file for later review.

Escape character (-p) The default escape character (\) can be replaced by
another character using this option.

Operate quietly (-q) Display no messages except errors.

Chapter 23 Utilities

617

Reload filename (-r) The default name for the reload command file is
reload.SQL in the current directory You can specify a different file name
with this option.

Use ASA v7 syntax (-s7) This option is useful when you are using an
Adaptive Server Anywhere version 8 consolidated database along with
Adaptive Server Anywhere version 7 remote databases. For example, create
a version 8 consolidated database, extract the remote databases using the -s7
switch, and deploy the reload.sql files to the remote.

Output the data unordered (-u) By default the data in each table is
ordered by primary key. Unloads are quicker with the -u option, but loading
the data into the client database is slower.

Verbose mode (-v) The name of the table being unloaded and the number
of rows unloaded are displayed. The SELECT statement used is also
displayed.

Use external loads (-x) In the reload script, the default is to use the
LOAD TABLE statement to load the data into the database. If you choose to
use external loads, the Interactive SQL INPUT statement is used instead. The
LOAD TABLE statement is faster than INPUT.

INPUT takes the path of the data files relative to the client, while LOAD
TABLE takes the path relative to the server.

Exclude foreign key definitions (-xf) You can use this if the client
database contains a subset of the consolidated database schema, and some
foreign key references are not present in the client database.

Exclude stored procedure (-xp) Do not extract stored procedures from
the database.

Exclude views (-xv) Do not extract views from the database.

Operate without confirming actions (-y) Without this option, you are
prompted to confirm the replacement of an existing command file.

"Extracting remote databases" on page 149See also

MobiLink user authentication utility

618

MobiLink user authentication utility
Registers MobiLink users at the consolidated database. For Adaptive Server
Anywhere remotes, the users must have previously been created at the
remote databases with the CREATE SYNCHRONIZATION USER
statement.

dbmluser [options] -c "connection-string"
{ -f file | -u user [-p password] }

Option Description

-c "keyword=value;…" Supply database connection parameters. The
connection string must give the utility
permission to connect to the consolidated
database using an ODBC data source. This
parameter is required.

-d Deletes the user name specified by -f or -u.

-dl Display messages in the window or on the
command line and also in the log file, if
specified.

-f filename Read the user names and passwords from the
specified file. The file should be a text file
containing one user name and password pair on
each line, separated by white space. You must
specify either -f or -u.

-o filename Log output messages to file.

-os size Limit size of output file. The size is the
maximum file size for logging output messages,
specified in bytes. Use the suffix k or m to
specify units of kilobytes or megabytes,
respectively. By default, there is no size limit.
The minimum size limit is 10 kb.

Syntax

Chapter 23 Utilities

619

Option Description

-ot filename Truncate the log file and then append output
messages to it. The default is to send output to
the screen.

-p password Password to associate with the user. This option
can only be used with -u.

-pc collation-id Supply database collation ID for character set
translation of the user name and password. This
should be one of the Adaptive Server Anywhere
collation labels such as those listed in
"Initialization utility options" on page 467 of the
book ASA Database Administration Guide. For
machines using single-byte character sets the
default is 1252LATIN1. For machines using
multi-byte character sets, the default is 932JPN.

-q Run in minimized window.

-u ml_username Specify user name to add (or delete, if used with
-d). Only one user can be specified on a single
command line. You must specify either -f or -u.
This option is used with -p if passwords are
being used. You must specify either -f or -u.

Given a user/password pair, the dbmluser utility first attempts to add the
user. If the user has already been added to the consolidated database, it
attempts to update the password for that user.

There are alternative ways to register user names in the consolidated
database:

♦ Use Sybase Central.

♦ Specify the -zu+ command line option with dbmlsrv8. In this case, any
existing MobiLink users that have not been added to the consolidated
database are added when they first synchronize.

The MobiLink user must already exist in a remote database. To add users at
the remote, you have the following options:

♦ For Adaptive Server Anywhere remotes, set the name with CREATE
SYNCHRONIZATION USER and synchronize with that user name.

♦ For UltraLite remotes, you can either use the user_name field of the
ul_synch_info structure; or in Java, use the SetUserName() method of
the ULSynchInfo class before synchronizing.

"Authenticating MobiLink Users" on page 251

Description

See also

Certificate reader utility

620

Certificate reader utility
Use the readcert utility to display values within a certificate and validate the
chain of certificates.

readcert certificate-name

The certificate you specify can be elliptic-curve or RSA.

When synchronization occurs through an ECC_TLS or RSA_TLS
synchronization stream, the MobiLink synchronization server sends its
certificate to the client, as well as the certificate of the entity that signed it,
and so on up to a self-signed root. The client checks that the chain is valid
and that it trusts the root certificate in the chain.

This utility scans an X509 authentication certificate and displays the field
values. It then checks that the chain of certificates is valid. A validation error
is reported if any of the certificates in the chain have expired, are in the
wrong order, or are missing.

"Transport-Layer Security" on page 283

Syntax

Description

See also

Chapter 23 Utilities

621

Certificate generation utility
Use the gencert utility to create a new elliptic-curve or RSA certificate, or to
sign a pre-generated certificate request.

$ For more information about security of MobiLink synchronization, see
"Transport-Layer Security" on page 283.

gencert [-c | -s] [-r] [-q]

Option Description

-c Generate a certificate authority certificate.

-q request-file Sign a pre-generated certificate request.

-r Generate a self-signed root certificate.

-s Generate a server identity certificate.

This utility creates a new X509 certificate. When first started, it prompts
whether you want to generate an elliptic-curve or RSA certificate.

If you are generating an elliptic-curve certificate, gencert generates an
elliptic-curve key pair. If you are generating an RSA certificate, it prompts
for a key size between 512 and 2028, and then creates a certificate using
RSA.

The gencert utility then requests values for the distinguished fields. These
fields include the country, state or province, locality, organization,
organizational unit, and common name, the serial number, and an expiry
date. It then requests the file name of a certificate that is to sign the new
certificate.

If no certificate name is supplied, the new certificate becomes a root
certificate. If a certificate file name is supplied, gencert reads and validates
the certificate chain and requests the name of the file that contains the
signer’s private key. It then requests the password for that private key.

Then the utility requests the password that is to protect the new private key.

This utility writes three different types of files. One file contains only the
new certificate. Another contains only the encrypted private key, and a third
file contains both the certificate and the encrypted private key.

Syntax

Description

Certificate generation utility

622

Often, not all three files are needed. For example, if the certificate is to be a
certificate authority, used to sign other certificates, the file that contains only
the certificates is distributed as a trusted root certificate to clients. The file
containing the encrypted private key is stored securely. In this case, security
is improved by storing the private key and the certificate separately, so the
third file is not generated.

If, instead, the certificate is to identify a server, the encrypted private key
should be stored with the certificate, so the utility writes only the file that
contains both pieces of information.

If the signing certificate is not a root certificate, but is instead part of a chain,
gencert reads and validates the entire chain before issuing the new
certificate.

When generating a server identity certificate, the entire chain is always
saved. Otherwise, saving the entire chain is optional.

When signing a pre-generated certificate request, gencert only prompts for a
serial number, expiry date, the certificate and private key of the signer, and
an output file for the signed certificate.

Gencert can sign any request that is generated by the Certicom reqtool utility
or any other third party application that generates certificate requests in the
appropriate format, such as the Microsoft IIS Web server or the Netscape
iPlanet Web server. Following is an example of a certificate that is in the
appropriate format:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBqjCCARMCAQAwajELMAkGA1UEBhMCVVMxDTALBgNVBAgTBHRlc3QxDTALBgNV
BAcTBHRlc3QxDTALBgNVBAoTBHRlc3QxDTALBgNVBAsTBHRlc3QxHzAdBgNVBAMT
Fm12YW5kZXJwLXBjLnN5YmFzZS5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJ
AoGBAKaD6al5MDIGYNGO1ctjAeFl6VSVgwvPlg1z1OEMILjyAW51zDMJolKFaZxc
PtGs0AlKbJH/1EHUeJ4kp7zGuyV4OipEwqRB9NSxzza6mSKewsulR735CY8X07Z/
agfajNGRiYEC39/SD3+bCN7NkDn250xJ6FPHYxbfcf/1EUTNAgMBAAGgADANBgkq
hkiG9w0BAQQFAAOBgQAvgnKRtSVLEUFIQUvf/abo959UBf+ZDoZzUCxlvnkUjBrA
G/zVDu2A3rqazsrl7ihP0nRWnr+iFj+vK5ZP2Lg6jiFAzBxC/3w3fWYYJ6ImvodX
coYD3EuoXxWcKfiRq6AAB8SlJcdjntz8HuLmXmWm2tNXVUIcXuEZ0OErANOPXQ==
-----END NEW CERTIFICATE REQUEST-----

-c Generate a certificate authority certificate. A certificate authority can be
used to sign other certificates. By default, generated certificates cannot be
used as certificate authorities.

-q Sign a pre-generated certificate request. You can specify either an
elliptic-curve or an RSA certificate to be signed.

-r Generate a root certificate. A root certificate is signed only by itself. The
default is to prompt for the name of a file that contains the certificate that is
to sign the new, generated certificate.

Options

Chapter 23 Utilities

623

-s Generate a server identity certificate, used to identify a MobiLink
synchronization server, rather than a client. A server identity certificate
cannot be a certificate authority, so this option is incompatible with the -c
option. The default is to generate a client certificate.

"Transport-Layer Security" on page 283

The following example signs a certificate request called certreq.txt.

c:\>gencert -s -q certreq.txt
Certificate Generation Tool
Serial Number: 01
Certificate valid for how many years: 10
Enter file path of signer’s certificate: rsaroot.crt
Enter file path of signer’s private key: rsaroot.key
Enter password for signer’s private key: test
Enter file path to save certificate: testcert.crt
Save entire chain (y/n): y

See also

Example

Certificate generation utility

624

625

C H A P T E R 2 4

Data Type Conversions

This chapter provides information about the conversion of data types must
take place when a MobiLink synchronization server communicates with a
consolidated database that was not made with Adaptive Server Anywhere.
The following tables identify these mappings.

If you are writing synchronization scripts in .NET languages or in Java, you
may need to know how to map SQL data types to Java and .NET data types.
For more information, see "SQL-.NET data types" on page 195 and "SQL-
Java data types" on page 171.

Topic Page

Sybase Adaptive Server Enterprise 626

IBM DB2 627

Oracle 629

Microsoft SQL Server 630

Note
Only supported data types are presented in this chapter.

About this chapter

Contents

Sybase Adaptive Server Enterprise

626

Sybase Adaptive Server Enterprise
The following table identifies how MobiLink data types are mapped to
Adaptive Server Enterprise data types.

MobiLink data type Sybase ASE data type

bit bit

tinyint tinyint

smallint smallint

int int

integer integer

decimal [defaults p=30, s=6] numeric(30,6)

numeric [defaults p=30 s=6] numeric(30,6)

float real

real real

double float

smallmoney numeric(10,4)

money numeric(19,4)

date datetime

time datetime

timestamp datetime

smalldatetime datetime

datetime datetime

char(n) varchar(n)

character(n) varchar(n)

varchar(n) varchar(n)

character varying(n) varchar(n)

long varchar text

text text

binary(n) binary(n)

long binary image

image image

bigint numeric(20,0)

Chapter 24 Data Type Conversions

627

IBM DB2
The following table identifies how MobiLink data types are mapped to
IBM DB2 data types.

MobiLink data type IBM DB2 data type

bit smallint

tinyint smallint

smallint smallint

int int

integer int

bigint decimal(20,0)

char(1–254) varchar(n)

char(255–4000) varchar(n)

char(4001–32767) long varchar

character(1–254) varchar(n)

character(255–4000) varchar(n)

character(4001–32767) long varchar

varchar(1–4000) varchar(n)

varchar(4001–32767) long varchar

character varying(1–4000) varchar(n)

character varying(4001–32767) long varchar or CLOB(n)

long varchar long varchar or CLOB(n)

text long varchar

binary(1–4000) varchar for bit data or BLOB(n)

binary(4001–32767) long varchar for bit data or BLOB(n)

long binary long varchar for bit data or BLOB(n)

image long varchar for bit data or BLOB(n)

decimal [defaults p=30, s=6] decimal(30,6)

numeric [defaults p=30 s=6] decimal(30,6)

real real

float float

double float

IBM DB2

628

MobiLink data type IBM DB2 data type

smallmoney decimal(10,4)

money decimal(19,4)

date date

time time

smalldatetime timestamp

datetime timestamp

timestamp timestamp

Chapter 24 Data Type Conversions

629

Oracle
The following table identifies how MobiLink data types are mapped to
Oracle data types.

MobiLink data type Oracle data type

bit number(1,0)

tinyint number(3,0)

smallint number(5,0)

int number(11,0)

bigint number(20,0)

decimal(prec, scale) number(prec, scale)

numeric(prec, scale) number(prec, scale)

float float

real real

smallmoney numeric(13,4)

money number(19,4)

date date

time date

timestamp date

smalldatetime date

datetime date

char(n) if (n > 255) long else varchar(n), or CLOB(n)

varchar(n) if (n > 2000) long else varchar(n), or CLOB(n)

long varchar long or CLOB(n)

binary(n) if (n > 255) long raw else raw(n), or BLOB(n)

varbinary(n) if (n > 255) long raw else raw(n), or BLOB(n)

long binary long raw

For Oracle LONG data types to synchronize properly, you must check the
Oracle Force Retrieval of Long Columns ODBC option in the ODBC data
source configuration dialog.

Microsoft SQL Server

630

Microsoft SQL Server
The following table identifies how MobiLink data types are mapped to
Microsoft SQL Server data types.

MobiLink data type Microsoft SQL Server data type

bit bit

tinyint tinyint

smallint smallint

int int

bigint numeric(20,0)

decimal [defaults p=30, s=6] decimal(prec, scale)

numeric [defaults p=30 s=6] numeric(prec, scale)

float if (prec) float(prec) else float

real real

smallmoney smallmoney

money money

date datetime

time datetime

timestamp datetime

smalldatetime datetime

datetime datetime

char(n) if (length > 255) text else varchar(length)

character(n) varchar(n)

varchar(n) if (length > 255) text else varchar(length)

long varchar text

binary(n) if (length > 255) image else
binary(length)

long binary image

double float

631

C H A P T E R 2 5

MobiLink Communication Error Messages

This chapter lists MobiLink client/server communication errors, as well as
their probable causes.

The error messages are written to the MobiLink synchronization server
message log and the MobiLink Adaptive Server Anywhere client message
log. The error codes are returned to UltraLite clients in the ss_error_code
member of the stream_error parameter.

Topic Page

Communication error messages sorted by code 632

Communication error messages sorted by message 636

Communication error messages sorted by constant 640

Communication error descriptions 644

About this chapter

Contents

Communication error messages sorted by code

632

Communication error messages sorted by code

Error code Error message

0 "No error or unknown error" on page 652

1 "Invalid parameter ’%1!s!’" on page 653

2 "Parameter value ’%1!s!’ is not an unsigned integer" on
page 654

3 "Parameter value ’%1!s!’ is not an unsigned integer value or
range. A range has the form NNN-NNN" on page 654

4 "Parameter value ’%1!s!’ is not a valid boolean value. The value
must be 0 or 1" on page 653

5 "Parameter value ’%1!s!’ is not a valid hexadecimal value" on
page 653

6 "Unable to allocate %1!s! bytes" on page 652

7 "Unable to parse the parameter string ’%1!s!’" on page 655

8 "Unable to read %1!s! bytes" on page 655

9 "Unable to write %1!s! bytes" on page 680

10 "An end write failed" on page 646

11 "An end read failed" on page 645

12 "Feature not implemented" on page 652

13 "The operation would cause blocking" on page 680

14 "Unable to generate a random number" on page 646

15 "Unable to initialize the random number generator" on page 651

16 "Unable to seed the random number generator" on page 670

17 "Unable to create a random number object" on page 645

18 "An error occurred during shutdown" on page 671

19 "Unable to dequeue from the connection queue" on page 645

20 "Invalid root certificate" on page 662

21 "Unrecognized organization ’%1!s!’" on page 658

22 "Invalid certificate chain length (%1!s!)" on page 657

23 "Certificate error (4023)" on page 661

24 "Server certificate not trusted" on page 661

25 "Unable to duplicate security context" on page 663

CHAPTER 25 MobiLink Communication Error Messages

633

Error code Error message

26 "Unable to attach the network layer to the security layer" on
page 666

27 "Internal error 4027" on page 667

28 "Internal error 4028" on page 657

29 "Internal error 4029" on page 657

30 "Internal error 4030" on page 663

31 "Internal error 4031" on page 666

32 "Internal error 4032" on page 666

33 "Unable to open certificate file ’%1!s!’" on page 660

34 "Unable to read certificates" on page 665

35 "Unable to read the private key" on page 665

36 "Unable to set the private key" on page 667

37 "Unable to fetch a certificate expiry date" on page 660

38 "Unable to copy a certificate" on page 663

39 "Unable to add a certificate to a certificate chain" on page 656

40 "Unable to find the trusted certificate file ’%1!s!’" on page 669

41 "Error reading from the trusted certificate file ’%1!s!’" on
page 670

42 "No trusted certificates found" on page 659

43 "Unable to allocate a certificate" on page 662

44 "Unable to import a certificate" on page 664

45 "Internal initialization error 4045" on page 668

46 "Internal initialization error 4046" on page 668

47 "Unable to set the protocol side (%1!s!)" on page 667

48 "Unable to add a trusted certificate" on page 656

49 "Unable to create a private key object" on page 662

50 "A certificate has expired" on page 660

51 "Unrecognized organization unit ’%1!s!’" on page 659

52 "Unrecognized common name ’%1!s!’" on page 658

53 "Handshake error" on page 664

54 "Unsupported HTTP version: %1!s!" on page 651

55 "Internal initialization error 4055" on page 668

Communication error messages sorted by code

634

Error code Error message

56 "Internal initialization error 4056" on page 669

57 "The host name ’%1!s!’ could not be found" on page 676

58 "Unable to get host by address" on page 674

59 "Unable to determine localhost" on page 677

60 "Unable to create a TCP/IP socket" on page 673

61 "Unable to create a UDP socket" on page 674

62 "Unable to bind a socket to port %1!s!" on page 671

63 "Unable to cleanup the socket layer" on page 672

64 "Unable to close a socket" on page 672

65 "Unable to connect a socket" on page 672

66 "Unable to get a socket’s local name" on page 675

67 "Unable to get socket option number %1!s!" on page 675

68 "Unable to set socket option number %1!s!" on page 678

69 "Unable to listen on a socket. The backlog is %1!s!" on
page 676

70 "Unable to shutdown a socket" on page 679

71 "Unable to select a socket status" on page 678

72 "Unable to initialize the sockets layer" on page 679

73 "Invalid port number %1!s!. The value must be between zero
and 65535" on page 677

74 "Unable to load the network interface library" on page 651

75 "ActiveSync synchronization cannot be initiated by an
application" on page 644

76 "ActiveSync provider has not been installed" on page 644

77 "The content type ’%1!s!’ is unknown" on page 648

78 "Client id is not available for us in HTTP header" on page 648

79 "The HTTP buffer size specified is out of the valid range" on
page 647

80 "Extra data found in the HTTP body. %1!s!" on page 649

81 "Failed to read encoded CR LF" on page 648

82 "Failed to read CR LF" on page 649

83 "Timed out while waiting for the next HTTP request in this
synchronization" on page 650

CHAPTER 25 MobiLink Communication Error Messages

635

Error code Error message

84 "Failed to read encoded chunk length" on page 647

85 "An unexpected character was read while parsing the chunk
length. %1!s!" on page 647

86 "An error status was returned: ’%1!s!’" on page 646

87 "Unknown transfer encoding: ’%1!s!’" on page 650

88 "Unable to parse cookie: ’%1!s!’" on page 650

89 "Expected data from remote but current request is not a POST"
on page 649

Communication error messages sorted by message

636

Communication error messages sorted by
message

Error code Error message

50 "A certificate has expired" on page 660

76 "ActiveSync provider has not been installed" on page 644

75 "ActiveSync synchronization cannot be initiated by an
application" on page 644

11 "An end read failed" on page 645

10 "An end write failed" on page 646

18 "An error occurred during shutdown" on page 671

86 "An error status was returned: ’%1!s!’" on page 646

85 "An unexpected character was read while parsing the chunk
length. %1!s!" on page 647

23 "Certificate error (4023)" on page 661

78 "Client id is not available for us in HTTP header" on page 648

41 "Error reading from the trusted certificate file ’%1!s!’" on
page 670

89 "Expected data from remote but current request is not a POST"
on page 649

80 "Extra data found in the HTTP body. %1!s!" on page 649

82 "Failed to read CR LF" on page 649

81 "Failed to read encoded CR LF" on page 648

84 "Failed to read encoded chunk length" on page 647

12 "Feature not implemented" on page 652

53 "Handshake error" on page 664

27 "Internal error 4027" on page 667

28 "Internal error 4028" on page 657

29 "Internal error 4029" on page 657

30 "Internal error 4030" on page 663

31 "Internal error 4031" on page 666

32 "Internal error 4032" on page 666

45 "Internal initialization error 4045" on page 668

CHAPTER 25 MobiLink Communication Error Messages

637

Error code Error message

46 "Internal initialization error 4046" on page 668

55 "Internal initialization error 4055" on page 668

56 "Internal initialization error 4056" on page 669

22 "Invalid certificate chain length (%1!s!)" on page 657

1 "Invalid parameter ’%1!s!’" on page 653

73 "Invalid port number %1!s!. The value must be between zero
and 65535" on page 677

20 "Invalid root certificate" on page 662

0 "No error or unknown error" on page 652

42 "No trusted certificates found" on page 659

4 "Parameter value ’%1!s!’ is not a valid boolean value. The value
must be 0 or 1" on page 653

5 "Parameter value ’%1!s!’ is not a valid hexadecimal value" on
page 653

2 "Parameter value ’%1!s!’ is not an unsigned integer" on
page 654

3 "Parameter value ’%1!s!’ is not an unsigned integer value or
range. A range has the form NNN-NNN" on page 654

24 "Server certificate not trusted" on page 661

79 "The HTTP buffer size specified is out of the valid range" on
page 647

77 "The content type ’%1!s!’ is unknown" on page 648

57 "The host name ’%1!s!’ could not be found" on page 676

13 "The operation would cause blocking" on page 680

83 "Timed out while waiting for the next HTTP request in this
synchronization" on page 650

39 "Unable to add a certificate to a certificate chain" on page 656

48 "Unable to add a trusted certificate" on page 656

6 "Unable to allocate %1!s! bytes" on page 652

43 "Unable to allocate a certificate" on page 662

26 "Unable to attach the network layer to the security layer" on
page 666

62 "Unable to bind a socket to port %1!s!" on page 671

63 "Unable to cleanup the socket layer" on page 672

Communication error messages sorted by message

638

Error code Error message

64 "Unable to close a socket" on page 672

65 "Unable to connect a socket" on page 672

38 "Unable to copy a certificate" on page 663

60 "Unable to create a TCP/IP socket" on page 673

61 "Unable to create a UDP socket" on page 674

49 "Unable to create a private key object" on page 662

17 "Unable to create a random number object" on page 645

19 "Unable to dequeue from the connection queue" on page 645

59 "Unable to determine localhost" on page 677

25 "Unable to duplicate security context" on page 663

37 "Unable to fetch a certificate expiry date" on page 660

40 "Unable to find the trusted certificate file ’%1!s!’" on page 669

14 "Unable to generate a random number" on page 646

66 "Unable to get a socket’s local name" on page 675

58 "Unable to get host by address" on page 674

67 "Unable to get socket option number %1!s!" on page 675

44 "Unable to import a certificate" on page 664

15 "Unable to initialize the random number generator" on page 651

72 "Unable to initialize the sockets layer" on page 679

69 "Unable to listen on a socket. The backlog is %1!s!" on
page 676

74 "Unable to load the network interface library" on page 651

33 "Unable to open certificate file ’%1!s!’" on page 660

88 "Unable to parse cookie: ’%1!s!’" on page 650

7 "Unable to parse the parameter string ’%1!s!’" on page 655

8 "Unable to read %1!s! bytes" on page 655

34 "Unable to read certificates" on page 665

35 "Unable to read the private key" on page 665

16 "Unable to seed the random number generator" on page 670

71 "Unable to select a socket status" on page 678

68 "Unable to set socket option number %1!s!" on page 678

36 "Unable to set the private key" on page 667

CHAPTER 25 MobiLink Communication Error Messages

639

Error code Error message

47 "Unable to set the protocol side (%1!s!)" on page 667

70 "Unable to shutdown a socket" on page 679

9 "Unable to write %1!s! bytes" on page 680

87 "Unknown transfer encoding: ’%1!s!’" on page 650

52 "Unrecognized common name ’%1!s!’" on page 658

21 "Unrecognized organization ’%1!s!’" on page 658

51 "Unrecognized organization unit ’%1!s!’" on page 659

54 "Unsupported HTTP version: %1!s!" on page 651

Communication error messages sorted by constant

640

Communication error messages sorted by
constant

Constant Error message

ACTSYNC NOT INSTALLED "ActiveSync provider has not been installed" on page 644

ACTSYNC NO PORT "ActiveSync synchronization cannot be initiated by an
application" on page 644

CREATE RANDOM OBJECT "Unable to create a random number object" on page 645

DEQUEUING CONNECTION "Unable to dequeue from the connection queue" on
page 645

END READ "An end read failed" on page 645

END WRITE "An end write failed" on page 646

GENERATE RANDOM "Unable to generate a random number" on page 646

HTTP BAD STATUS CODE "An error status was returned: ’%1!s!’" on page 646

HTTP BUFFER SIZE OUT OF RANGE "The HTTP buffer size specified is out of the valid range"
on page 647

HTTP CHUNK LEN BAD CHARACTER "An unexpected character was read while parsing the
chunk length. %1!s!" on page 647

HTTP CHUNK LEN ENCODED MISSING "Failed to read encoded chunk length" on page 647

HTTP CLIENT ID NOT SET "Client id is not available for us in HTTP header" on
page 648

HTTP CONTENT TYPE NOT SPECIFIED "The content type ’%1!s!’ is unknown" on page 648

HTTP CRLF ENCODED MISSING "Failed to read encoded CR LF" on page 648

HTTP CRLF MISSING "Failed to read CR LF" on page 649

HTTP EXPECTED POST "Expected data from remote but current request is not a
POST" on page 649

HTTP EXTRA DATA END READ "Extra data found in the HTTP body. %1!s!" on page 649

HTTP NO CONTD CONNECTION "Timed out while waiting for the next HTTP request in
this synchronization" on page 650

HTTP UNABLE TO PARSE COOKIE "Unable to parse cookie: ’%1!s!’" on page 650

HTTP UNKNOWN TRANSFER
ENCODING

"Unknown transfer encoding: ’%1!s!’" on page 650

HTTP VERSION "Unsupported HTTP version: %1!s!" on page 651

INIT RANDOM "Unable to initialize the random number generator" on
page 651

CHAPTER 25 MobiLink Communication Error Messages

641

Constant Error message

LOAD NETWORK LIBRARY "Unable to load the network interface library" on
page 651

MEMORY ALLOCATION "Unable to allocate %1!s! bytes" on page 652

NONE "No error or unknown error" on page 652

NOT IMPLEMENTED "Feature not implemented" on page 652

PARAMETER "Invalid parameter ’%1!s!’" on page 653

PARAMETER NOT BOOLEAN "Parameter value ’%1!s!’ is not a valid boolean value. The
value must be 0 or 1" on page 653

PARAMETER NOT HEX "Parameter value ’%1!s!’ is not a valid hexadecimal
value" on page 653

PARAMETER NOT UINT32 "Parameter value ’%1!s!’ is not an unsigned integer" on
page 654

PARAMETER NOT UINT32 RANGE "Parameter value ’%1!s!’ is not an unsigned integer value
or range. A range has the form NNN-NNN" on page 654

PARSE "Unable to parse the parameter string ’%1!s!’" on
page 655

READ "Unable to read %1!s! bytes" on page 655

SECURE ADD CERTIFICATE "Unable to add a certificate to a certificate chain" on
page 656

SECURE ADD TRUSTED CERTIFICATE "Unable to add a trusted certificate" on page 656

SECURE CERTIFICATE CHAIN FUNC "Internal error 4028" on page 657

SECURE CERTIFICATE CHAIN LENGTH "Invalid certificate chain length (%1!s!)" on page 657

SECURE CERTIFICATE CHAIN REF "Internal error 4029" on page 657

SECURE CERTIFICATE COMMON NAME "Unrecognized common name ’%1!s!’" on page 658

SECURE CERTIFICATE COMPANY
NAME

"Unrecognized organization ’%1!s!’" on page 658

SECURE CERTIFICATE COMPANY UNIT "Unrecognized organization unit ’%1!s!’" on page 659

SECURE CERTIFICATE COUNT "No trusted certificates found" on page 659

SECURE CERTIFICATE EXPIRED "A certificate has expired" on page 660

SECURE CERTIFICATE EXPIRY DATE "Unable to fetch a certificate expiry date" on page 660

SECURE CERTIFICATE FILE NOT FOUND "Unable to open certificate file ’%1!s!’" on page 660

SECURE CERTIFICATE NOT TRUSTED "Server certificate not trusted" on page 661

SECURE CERTIFICATE REF "Certificate error (4023)" on page 661

SECURE CERTIFICATE ROOT "Invalid root certificate" on page 662

Communication error messages sorted by constant

642

Constant Error message

SECURE CREATE CERTIFICATE "Unable to allocate a certificate" on page 662

SECURE CREATE PRIVATE KEY OBJECT "Unable to create a private key object" on page 662

SECURE DUPLICATE CONTEXT "Unable to duplicate security context" on page 663

SECURE ENABLE NON BLOCKING "Internal error 4030" on page 663

SECURE EXPORT CERTIFICATE "Unable to copy a certificate" on page 663

SECURE HANDSHAKE "Handshake error" on page 664

SECURE IMPORT CERTIFICATE "Unable to import a certificate" on page 664

SECURE READ CERTIFICATE "Unable to read certificates" on page 665

SECURE READ PRIVATE KEY "Unable to read the private key" on page 665

SECURE SET CHAIN NUMBER "Internal error 4032" on page 666

SECURE SET CIPHER SUITES "Internal error 4031" on page 666

SECURE SET IO "Unable to attach the network layer to the security layer"
on page 666

SECURE SET IO SEMANTICS "Internal error 4027" on page 667

SECURE SET PRIVATE KEY "Unable to set the private key" on page 667

SECURE SET PROTOCOL SIDE "Unable to set the protocol side (%1!s!)" on page 667

SECURE SET RANDOM FUNC "Internal initialization error 4046" on page 668

SECURE SET RANDOM REF "Internal initialization error 4045" on page 668

SECURE SET READ FUNC "Internal initialization error 4055" on page 668

SECURE SET WRITE FUNC "Internal initialization error 4056" on page 669

SECURE TRUSTED CERTIFICATE FILE
NOT FOUND

"Unable to find the trusted certificate file ’%1!s!’" on
page 669

SECURE TRUSTED CERTIFICATE READ "Error reading from the trusted certificate file ’%1!s!’" on
page 670

SEED RANDOM "Unable to seed the random number generator" on
page 670

SHUTTING DOWN "An error occurred during shutdown" on page 671

SOCKET BIND "Unable to bind a socket to port %1!s!" on page 671

SOCKET CLEANUP "Unable to cleanup the socket layer" on page 672

SOCKET CLOSE "Unable to close a socket" on page 672

SOCKET CONNECT "Unable to connect a socket" on page 672

SOCKET CREATE TCPIP "Unable to create a TCP/IP socket" on page 673

SOCKET CREATE UDP "Unable to create a UDP socket" on page 674

CHAPTER 25 MobiLink Communication Error Messages

643

Constant Error message

SOCKET GET HOST BY ADDR "Unable to get host by address" on page 674

SOCKET GET NAME "Unable to get a socket’s local name" on page 675

SOCKET GET OPTION "Unable to get socket option number %1!s!" on page 675

SOCKET HOST NAME NOT FOUND "The host name ’%1!s!’ could not be found" on page 676

SOCKET LISTEN "Unable to listen on a socket. The backlog is %1!s!" on
page 676

SOCKET LOCALHOST NAME NOT
FOUND

"Unable to determine localhost" on page 677

SOCKET PORT OUT OF RANGE "Invalid port number %1!s!. The value must be between
zero and 65535" on page 677

SOCKET SELECT "Unable to select a socket status" on page 678

SOCKET SET OPTION "Unable to set socket option number %1!s!" on page 678

SOCKET SHUTDOWN "Unable to shutdown a socket" on page 679

SOCKET STARTUP "Unable to initialize the sockets layer" on page 679

WOULD BLOCK "The operation would cause blocking" on page 680

WRITE "Unable to write %1!s! bytes" on page 680

Communication error descriptions

644

Communication error descriptions
This section provides a full listing of error messages and descriptions.

Errors with an ODBC state marked "handled by ODBC driver" are not
returned to ODBC applications, as the ODBC driver carries out the required
actions.

ActiveSync provider has not been installed

Item Value

Error code 76

Constant ACTSYNC_NOT_INSTALLED (Java)
STREAM_ERROR_ACTSYNC_NOT_INSTALLED (C/C++)
ulStreamErrorActsyncNotInstalled (Visual Basic)

The ActiveSync provider has not been installed. Run dbasinst to install it
(see documentation for details).

ActiveSync synchronization cannot be initiated by an application

Item Value

Error code 75

Constant ACTSYNC_NO_PORT (Java)
STREAM_ERROR_ACTSYNC_NO_PORT (C/C++)
ulStreamErrorActsyncNoPort (Visual Basic)

ActiveSync synchronization can only be initiated by ActiveSync itself, either
by placing the device in its cradle or by selecting "Synchronize" from the
ActiveSync Manager. To initiate a synchronization from an application, use
the TCP/IP socket synchronization stream.

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

645

Unable to create a random number object

Item Value

Error code 17

Constant CREATE_RANDOM_OBJECT (Java)
STREAM_ERROR_CREATE_RANDOM_OBJECT (C/C++)
ulStreamErrorCreateRandomObject (Visual Basic)

The secure network layer could not create a random-number-generating
object. Free up system resources, reconnect and retry the operation.

Unable to dequeue from the connection queue

Item Value

Error code 19

Constant DEQUEUING_CONNECTION (Java)
STREAM_ERROR_DEQUEUING_CONNECTION (C/C++)
ulStreamErrorDequeuingConnection (Visual Basic)

The MobiLink synchronization server encountered an error while attempting
to get a queued connection (synchronization) request. Free up system
resources. If the problem persists, restart the MobiLink synchronization
server.

An end read failed

Item Value

Error code 11

Constant END_READ (Java)
STREAM_ERROR_END_READ (C/C++)
ulStreamErrorEndRead (Visual Basic)

Unable to finish a sequence of reads from the network.

See also: WRITE

Probable cause

Probable cause

Probable cause

Communication error descriptions

646

An end write failed

Item Value

Error code 10

Constant END_WRITE (Java)
STREAM_ERROR_END_WRITE (C/C++)
ulStreamErrorEndWrite (Visual Basic)

Unable to finish a sequence of writes to the network.

See also: WRITE

Unable to generate a random number

Item Value

Error code 14

Constant GENERATE_RANDOM (Java)
STREAM_ERROR_GENERATE_RANDOM (C/C++)
ulStreamErrorGenerateRandom (Visual Basic)

The secure network layer requires a random number but was unable to
generate one. Free up system resources, reconnect and retry the operation.

An error status was returned: ’%1!s!’

Item Value

Error code 86

Constant HTTP_BAD_STATUS_CODE (Java)
STREAM_ERROR_HTTP_BAD_STATUS_CODE (C/C++)
ulStreamErrorHttpBadStatusCode (Visual Basic)

Parameter 1 The status line read.

Examine the status line to determine the cause of the failure.

Probable cause

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

647

The HTTP buffer size specified is out of the valid range

Item Value

Error code 79

Constant HTTP_BUFFER_SIZE_OUT_OF_RANGE (Java)
STREAM_ERROR_HTTP_BUFFER_SIZE_OUT_OF_RANGE (C/C++)
ulStreamErrorHttpBufferSizeOutOfRange (Visual Basic)

Fix the HTTP buffer size. A valid buffer size is positive and not overly large
for the host platform.

An unexpected character was read while parsing the chunk length.
%1!s!

Item Value

Error code 85

Constant HTTP_CHUNK_LEN_BAD_CHARACTER (Java)
STREAM_ERROR_HTTP_CHUNK_LEN_BAD_CHARACTER (C/C++)
ulStreamErrorHttpChunkLenBadCharacter (Visual Basic)

Parameter 1 The unexpected character.

Try using a fixed length HTTP body.

Failed to read encoded chunk length

Item Value

Error code 84

Constant HTTP_CHUNK_LEN_ENCODED_MISSING (Java)
STREAM_ERROR_HTTP_CHUNK_LEN_ENCODED_MISSING (C/C++)
ulStreamErrorHttpChunkLenEncodedMissing (Visual Basic)

Try using a fixed length HTTP body.

Probable cause

Probable cause

Probable cause

Communication error descriptions

648

Client id is not available for us in HTTP header

Item Value

Error code 78

Constant HTTP_CLIENT_ID_NOT_SET (Java)
STREAM_ERROR_HTTP_CLIENT_ID_NOT_SET (C/C++)
ulStreamErrorHttpClientIdNotSet (Visual Basic)

The client id was not passed into the HTTP client code. Contact technical
support for a fix.

The content type ’%1!s!’ is unknown

Item Value

Error code 77

Constant HTTP_CONTENT_TYPE_NOT_SPECIFIED (Java)
STREAM_ERROR_HTTP_CONTENT_TYPE_NOT_SPECIFIED (C/C++)
ulStreamErrorHttpContentTypeNotSpecified (Visual Basic)

Parameter 1 The context type.

An unknown content type was specified. Refer to the documentation and
change the content type to one of the supported types.

Failed to read encoded CR LF

Item Value

Error code 81

Constant HTTP_CRLF_ENCODED_MISSING (Java)
STREAM_ERROR_HTTP_CRLF_ENCODED_MISSING (C/C++)
ulStreamErrorHttpCrlfEncodedMissing (Visual Basic)

The proxy you are using may not be comapatable with MobiLink. Please
check your configuration.

Probable cause

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

649

Failed to read CR LF

Item Value

Error code 82

Constant HTTP_CRLF_MISSING (Java)
STREAM_ERROR_HTTP_CRLF_MISSING (C/C++)
ulStreamErrorHttpCrlfMissing (Visual Basic)

The proxy you are using may not be comapatable with MobiLink. Please
check your configuration.

Expected data from remote but current request is not a POST

Item Value

Error code 89

Constant HTTP_EXPECTED_POST (Java)
STREAM_ERROR_HTTP_EXPECTED_POST (C/C++)
ulStreamErrorHttpExpectedPost (Visual Basic)

The proxy you are using may not be comapatable with MobiLink. Please
check your configuration.

Extra data found in the HTTP body. %1!s!

Item Value

Error code 80

Constant HTTP_EXTRA_DATA_END_READ (Java)
STREAM_ERROR_HTTP_EXTRA_DATA_END_READ (C/C++)
ulStreamErrorHttpExtraDataEndRead (Visual Basic)

Parameter 1 First few characters in the extra data.

Extra data has been introduced into the HTTP body. This may have been
added by a proxy agent, try eliminating the proxy.

Probable cause

Probable cause

Probable cause

Communication error descriptions

650

Timed out while waiting for the next HTTP request in this
synchronization

Item Value

Error code 83

Constant HTTP_NO_CONTD_CONNECTION (Java)
STREAM_ERROR_HTTP_NO_CONTD_CONNECTION (C/C++)
ulStreamErrorHttpNoContdConnection (Visual Basic)

The server timed out while waiting for the next HTTP request from the
remote site. Determine why this request failed to reach the server or try a
persistent connection.

Unable to parse cookie: ’%1!s!’

Item Value

Error code 88

Constant HTTP_UNABLE_TO_PARSE_COOKIE (Java)
STREAM_ERROR_HTTP_UNABLE_TO_PARSE_COOKIE (C/C++)
ulStreamErrorHttpUnableToParseCookie (Visual Basic)

Parameter 1 The set cookie header.

Determine where the set cookie header is being corrupted.

Unknown transfer encoding: ’%1!s!’

Item Value

Error code 87

Constant HTTP_UNKNOWN_TRANSFER_ENCODING (Java)
STREAM_ERROR_HTTP_UNKNOWN_TRANSFER_ENCODING (C/C++)
ulStreamErrorHttpUnknownTransferEncoding (Visual Basic)

Parameter 1 The unknown encoding.

Determine how the unknown transfer encoding is getting generated.

Probable cause

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

651

Unsupported HTTP version: %1!s!

Item Value

Error code 54

Constant HTTP_VERSION (Java)
STREAM_ERROR_HTTP_VERSION (C/C++)
ulStreamErrorHttpVersion (Visual Basic)

Parameter 1 The requested HTTP version.

The requested HTTP version is unsupported. Consult the documentation and
specify a supported HTTP version. At the time of publication the supported
HTTP versions are 1.0 and 1.1.

Unable to initialize the random number generator

Item Value

Error code 15

Constant INIT_RANDOM (Java)
STREAM_ERROR_INIT_RANDOM (C/C++)
ulStreamErrorInitRandom (Visual Basic)

The secure network layer could not initialize its random number generator.
Free up system resources, reconnect and retry the operation.

Unable to load the network interface library

Item Value

Error code 74

Constant LOAD_NETWORK_LIBRARY (Java)
STREAM_ERROR_LOAD_NETWORK_LIBRARY (C/C++)
ulStreamErrorLoadNetworkLibrary (Visual Basic)

The network interface library could not be found and/or loaded.

1) The sockets layer is properly installed. The correct network interface
library (or DLL or shared object) must be present and accessible.

2) There are enough system resources available. Free up system resources if
they are running low.

Probable cause

Probable cause

Probable cause

Communication error descriptions

652

Unable to allocate %1!s! bytes

Item Value

Error code 6

Constant MEMORY_ALLOCATION (Java)
STREAM_ERROR_MEMORY_ALLOCATION (C/C++)
ulStreamErrorMemoryAllocation (Visual Basic)

Parameter 1 The number of bytes that was requested.

The network layer was unable to allocate the given number of bytes of
storage. Free up system memory and retry the operation. The technique used
to free up system memory depends on the operating system and how it is
configured. The simplest technique is to reduce the number of active
processes. Consult your operating system documentation for details.

No error or unknown error

Item Value

Error code 0

Constant NONE (Java)
STREAM_ERROR_NONE (C/C++)
ulStreamErrorNone (Visual Basic)

This code indicates there was either no network error, or an unknown
network error occurred.

Feature not implemented

Item Value

Error code 12

Constant NOT_IMPLEMENTED (Java)
STREAM_ERROR_NOT_IMPLEMENTED (C/C++)
ulStreamErrorNotImplemented (Visual Basic)

An unimplemented internal feature was requested. Please contact technical
support.

Probable cause

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

653

Invalid parameter ’%1!s!’

Item Value

Error code 1

Constant PARAMETER (Java)
STREAM_ERROR_PARAMETER (C/C++)
ulStreamErrorParameter (Visual Basic)

Parameter 1 The invalid parameter value.

Network parameters are of the form "name=value;[name2=value2[;...]]".
This code indicates an invalid parameter value. Consult the documentation
for the corresponding parameter name, and correct the parameter value.

Parameter value ’%1!s!’ is not a valid boolean value. The value
must be 0 or 1

Item Value

Error code 4

Constant PARAMETER_NOT_BOOLEAN (Java)
STREAM_ERROR_PARAMETER_NOT_BOOLEAN (C/C++)
ulStreamErrorParameterNotBoolean (Visual Basic)

Parameter 1 The invalid parameter value.

Network parameters are of the form "name=value;[name2=value2[;...]]". The
parameter value is not a boolean value. Locate the offending the parameter
specification and change the value of the parameter to either 0 (for off or
false) or 1 (for on or true).

Parameter value ’%1!s!’ is not a valid hexadecimal value

Item Value

Error code 5

Constant PARAMETER_NOT_HEX (Java)
STREAM_ERROR_PARAMETER_NOT_HEX (C/C++)
ulStreamErrorParameterNotHex (Visual Basic)

Parameter 1 The invalid parameter value.

Probable cause

Probable cause

Communication error descriptions

654

Network parameters are of the form "name=value;[name2=value2[;...]]". The
parameter value is not a hexadecimal (base 16) value. Locate the offending
the parameter specification and change the value of the parameter to a
hexadecimal value.

Parameter value ’%1!s!’ is not an unsigned integer

Item Value

Error code 2

Constant PARAMETER_NOT_UINT32 (Java)
STREAM_ERROR_PARAMETER_NOT_UINT32 (C/C++)
ulStreamErrorParameterNotUint32 (Visual Basic)

Parameter 1 The invalid parameter value.

Network parameters are of the form "name=value;[name2=value2[;...]]". The
parameter value is not an unsigned integer. Locate the offending parameter
specification and change the value of the parameter to an unsigned integer.

Parameter value ’%1!s!’ is not an unsigned integer value or range.
A range has the form NNN-NNN

Item Value

Error code 3

Constant PARAMETER_NOT_UINT32_RANGE (Java)
STREAM_ERROR_PARAMETER_NOT_UINT32_RANGE (C/C++)
ulStreamErrorParameterNotUint32Range (Visual Basic)

Parameter 1 The invalid parameter value.

Network parameters are of the form "name=value;[name2=value2[;...]]". The
parameter value is not an unsigned integer value or range. Locate the
offending the parameter specification and change the value of the parameter
to an unsigned integer or an unsigned range. An unsigned range has the
form: NNN-NNN.

Probable cause

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

655

Unable to parse the parameter string ’%1!s!’

Item Value

Error code 7

Constant PARSE (Java)
STREAM_ERROR_PARSE (C/C++)
ulStreamErrorParse (Visual Basic)

Parameter 1 The parameter string that could not be parsed.

Network parameters are of the form "name=value;[name2=value2[;...]]".
Optionally, the entire list of parameters may be enclosed in parentheses. The
given string does not follow this convention. Inspect the string, fix any
formatting problems, and retry the operation.

Unable to read %1!s! bytes

Item Value

Error code 8

Constant READ (Java)
STREAM_ERROR_READ (C/C++)
ulStreamErrorRead (Visual Basic)

Parameter 1 The number of bytes that could not be read.

Unable to read the given number of bytes from the network layer. Note that
reads may occur as part of any larger network operation. For example, some
network layers have sub-layers that perform several reads and writes as part
of a basic operation in the upper layer.

The cause of a read error is usually one of the following:

1) The network had a problem that caused the read to fail.

Reconnect and retry the operation.

2) The connection timed out.

Reconnect and retry the operation.

3) The other side of the connection cleanly terminated the connection.

Consult the client and/or server logs for errors that indicate why the
connection has been dropped.

Consult the output-log errors and fix the cause, then retry the operation.

Probable cause

Probable cause

Communication error descriptions

656

4) The process at the other side of the connection was aborted.

Consult the client and/or server output logs for errors that indicate why the
process was aborted.

If the process was shut down by other than normal means, there may not be
any errors in its output log.

Reconnect and retry the operation.

5) The system is low on resources, and cannot perform the read.

Free up system resources, reconnect and retry the operation. If subsequent
retry attempts fail, consult your network administrator.

Unable to add a certificate to a certificate chain

Item Value

Error code 39

Constant SECURE_ADD_CERTIFICATE (Java)
STREAM_ERROR_SECURE_ADD_CERTIFICATE (C/C++)
ulStreamErrorSecureAddCertificate (Visual Basic)

The secure network layer was unable to add a certificate to a certificate
chain. Free up system resources and retry the operation.

Unable to add a trusted certificate

Item Value

Error code 48

Constant SECURE_ADD_TRUSTED_CERTIFICATE (Java)
STREAM_ERROR_SECURE_ADD_TRUSTED_CERTIFICATE (C/C++)
ulStreamErrorSecureAddTrustedCertificate (Visual Basic)

The secure network layer was unable to add a trusted certificate to a
certificate chain. The most likely cause is a shortage of system resources.
Free up system resources and retry the operation.

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

657

Internal error 4028

Item Value

Error code 28

Constant SECURE_CERTIFICATE_CHAIN_FUNC (Java)
STREAM_ERROR_SECURE_CERTIFICATE_CHAIN_FUNC (C/C++)
ulStreamErrorSecureCertificateChainFunc (Visual Basic)

An internal error has occurred in the network layer. Please contact technical
support.

Invalid certificate chain length (%1!s!)

Item Value

Error code 22

Constant SECURE_CERTIFICATE_CHAIN_LENGTH (Java)
STREAM_ERROR_SECURE_CERTIFICATE_CHAIN_LENGTH (C/C++)
ulStreamErrorSecureCertificateChainLength (Visual Basic)

Parameter 1 The certificate chain length.

The certificate chain has the wrong length. This is an internal error that
should never occur.

Internal error 4029

Item Value

Error code 29

Constant SECURE_CERTIFICATE_CHAIN_REF (Java)
STREAM_ERROR_SECURE_CERTIFICATE_CHAIN_REF (C/C++)
ulStreamErrorSecureCertificateChainRef (Visual Basic)

An internal error has occurred in the network layer. Please contact technical
support.

Probable cause

Probable cause

Probable cause

Communication error descriptions

658

Unrecognized common name ’%1!s!’

Item Value

Error code 52

Constant SECURE_CERTIFICATE_COMMON_NAME (Java)
STREAM_ERROR_SECURE_CERTIFICATE_COMMON_NAME (C/C++)
ulStreamErrorSecureCertificateCommonName (Visual Basic)

Parameter 1 The common name.

The given common name is not in the certificate chain. Check the following:

1) The common name was properly entered.

2) The correct certificate file was specified.

3) The common name is in the certificate chain. You can verify this with the
readcert utility.

Unrecognized organization ’%1!s!’

Item Value

Error code 21

Constant SECURE_CERTIFICATE_COMPANY_NAME (Java)
STREAM_ERROR_SECURE_CERTIFICATE_COMPANY_NAME (C/C++)
ulStreamErrorSecureCertificateCompanyName (Visual Basic)

Parameter 1 The organization name.

The given organization name is not in the certificate chain. Check the
following:

1) The organization name was properly entered.

2) The correct certificate file was specified.

3) The organization name is in the certificate chain. You can verify this with
the readcert utility.

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

659

Unrecognized organization unit ’%1!s!’

Item Value

Error code 51

Constant SECURE_CERTIFICATE_COMPANY_UNIT (Java)
STREAM_ERROR_SECURE_CERTIFICATE_COMPANY_UNIT (C/C++)
ulStreamErrorSecureCertificateCompanyUnit (Visual Basic)

Parameter 1 The organization unit name.

The given organization unit is not in the certificate chain. Check the
following:

1) The in company name was properly entered.

2) The correct certificate file was specified.

3) The company name is in the certificate chain. You can verify this with the
readcert utility.

No trusted certificates found

Item Value

Error code 42

Constant SECURE_CERTIFICATE_COUNT (Java)
STREAM_ERROR_SECURE_CERTIFICATE_COUNT (C/C++)
ulStreamErrorSecureCertificateCount (Visual Basic)

The given file does not contain a certificate. Check the following:

1) The certificate file name was properly specified.

2) The certificate file contains one or more certificates.

3) The certificate file contains the correct certificate(s).

Probable cause

Probable cause

Communication error descriptions

660

A certificate has expired

Item Value

Error code 50

Constant SECURE_CERTIFICATE_EXPIRED (Java)
STREAM_ERROR_SECURE_CERTIFICATE_EXPIRED (C/C++)
ulStreamErrorSecureCertificateExpired (Visual Basic)

A certificate in the certificate chain has expired. Obtain a new certificate
with a later expiry date and retry the operation.

Unable to fetch a certificate expiry date

Item Value

Error code 37

Constant SECURE_CERTIFICATE_EXPIRY_DATE (Java)
STREAM_ERROR_SECURE_CERTIFICATE_EXPIRY_DATE (C/C++)
ulStreamErrorSecureCertificateExpiryDate (Visual Basic)

A certificate’s expiry date could not be read. Check the following:

1) The password was entered correctly.

2) The certificate file contains one or more certificates.

3) The certificate file contains the correct certificate(s).

4) The certificate file is undamaged.

Unable to open certificate file ’%1!s!’

Item Value

Error code 33

Constant SECURE_CERTIFICATE_FILE_NOT_FOUND (Java)
STREAM_ERROR_SECURE_CERTIFICATE_FILE_NOT_FOUND (C/C++)
ulStreamErrorSecureCertificateFileNotFound (Visual Basic)

Parameter 1 The certificate file name.

The certificate file could not be opened. Check the following:

1) The certificate file name was properly specified.

Probable cause

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

661

2) The certificate file exists.

3) The certificate file contains one or more certificates.

4) The certificate file contains the correct certificate(s).

5) The program attempting to open the certificate file has sufficient
privileges to read the file. This only applies to operating systems having user
and/or file permissions.

Server certificate not trusted

Item Value

Error code 24

Constant SECURE_CERTIFICATE_NOT_TRUSTED (Java)
STREAM_ERROR_SECURE_CERTIFICATE_NOT_TRUSTED (C/C++)
ulStreamErrorSecureCertificateNotTrusted (Visual Basic)

The server’s certificate was not signed by a trusted authority. Check the
following:

1) The certificate file name was properly specified.

2) The certificate file contains one or more certificates.

3) The certificate file contains the correct certificate(s).

4) The client’s list of trusted root certificates includes the server’s root
certificate.

Certificate error (4023)

Item Value

Error code 23

Constant SECURE_CERTIFICATE_REF (Java)
STREAM_ERROR_SECURE_CERTIFICATE_REF (C/C++)
ulStreamErrorSecureCertificateRef (Visual Basic)

This is an internal error in the secure network layer. This is an internal error
that should never occur.

Probable cause

Probable cause

Communication error descriptions

662

Invalid root certificate

Item Value

Error code 20

Constant SECURE_CERTIFICATE_ROOT (Java)
STREAM_ERROR_SECURE_CERTIFICATE_ROOT (C/C++)
ulStreamErrorSecureCertificateRoot (Visual Basic)

The root certificate in the chain is invalid. At the time of publication, this
error was defined but not used.

Unable to allocate a certificate

Item Value

Error code 43

Constant SECURE_CREATE_CERTIFICATE (Java)
STREAM_ERROR_SECURE_CREATE_CERTIFICATE (C/C++)
ulStreamErrorSecureCreateCertificate (Visual Basic)

The secure network layer was unable to allocate storage for a certificate. Free
up system resources and retry the operation.

Unable to create a private key object

Item Value

Error code 49

Constant SECURE_CREATE_PRIVATE_KEY_OBJECT (Java)
STREAM_ERROR_SECURE_CREATE_PRIVATE_KEY_OBJECT (C/C++)
ulStreamErrorSecureCreatePrivateKeyObject (Visual Basic)

The secure network layer was unable to create a private key object, prior to
loading the private key. The most likely cause is a shortage of system
resources. Free up system resources and retry the operation.

Probable cause

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

663

Unable to duplicate security context

Item Value

Error code 25

Constant SECURE_DUPLICATE_CONTEXT (Java)
STREAM_ERROR_SECURE_DUPLICATE_CONTEXT (C/C++)
ulStreamErrorSecureDuplicateContext (Visual Basic)

The secure network layer was unable to duplicate a security context.

Free up system resources and retry the operation.

Internal error 4030

Item Value

Error code 30

Constant SECURE_ENABLE_NON_BLOCKING (Java)
STREAM_ERROR_SECURE_ENABLE_NON_BLOCKING (C/C++)
ulStreamErrorSecureEnableNonBlocking (Visual Basic)

An internal error has occurred in the network layer. Please contact technical
support.

Unable to copy a certificate

Item Value

Error code 38

Constant SECURE_EXPORT_CERTIFICATE (Java)
STREAM_ERROR_SECURE_EXPORT_CERTIFICATE (C/C++)
ulStreamErrorSecureExportCertificate (Visual Basic)

The secure network layer was unable to copy a certificate. Free up system
resources and retry the operation.

Probable cause

Probable cause

Probable cause

Communication error descriptions

664

Handshake error

Item Value

Error code 53

Constant SECURE_HANDSHAKE (Java)
STREAM_ERROR_SECURE_HANDSHAKE (C/C++)
ulStreamErrorSecureHandshake (Visual Basic)

The secure handshake failed. Check the following:

1) On the client, the correct host machine and port number were specified.

2) On the server, the correct port number was specified.

3) The correct certificate file was specified, both on the client and on the
server.

Unable to import a certificate

Item Value

Error code 44

Constant SECURE_IMPORT_CERTIFICATE (Java)
STREAM_ERROR_SECURE_IMPORT_CERTIFICATE (C/C++)
ulStreamErrorSecureImportCertificate (Visual Basic)

The secure network layer was unable to import a certificate. Check the
following:

1) The certificate file name was properly specified.

2) The certificate file exists.

3) The certificate file contains one or more certificates.

4) The certificate file contains the correct certificate(s).

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

665

Unable to read certificates

Item Value

Error code 34

Constant SECURE_READ_CERTIFICATE (Java)
STREAM_ERROR_SECURE_READ_CERTIFICATE (C/C++)
ulStreamErrorSecureReadCertificate (Visual Basic)

The certificate file could not be read. Check the following:

1) The password was entered correctly.

2) The certificate file contains one or more certificates.

3) The certificate file contains the correct certificate(s).

4) The certificate file is undamaged.

Unable to read the private key

Item Value

Error code 35

Constant SECURE_READ_PRIVATE_KEY (Java)
STREAM_ERROR_SECURE_READ_PRIVATE_KEY (C/C++)
ulStreamErrorSecureReadPrivateKey (Visual Basic)

The private key could not be read from the certificate file. Check the
following:

1) The password was entered correctly.

2) The certificate file contains one or more certificates.

3) The certificate file contains the correct certificate(s).

4) The certificate file is undamaged.

Probable cause

Probable cause

Communication error descriptions

666

Internal error 4032

Item Value

Error code 32

Constant SECURE_SET_CHAIN_NUMBER (Java)
STREAM_ERROR_SECURE_SET_CHAIN_NUMBER (C/C++)
ulStreamErrorSecureSetChainNumber (Visual Basic)

An internal error has occurred in the network layer. Please contact technical
support.

Internal error 4031

Item Value

Error code 31

Constant SECURE_SET_CIPHER_SUITES (Java)
STREAM_ERROR_SECURE_SET_CIPHER_SUITES (C/C++)
ulStreamErrorSecureSetCipherSuites (Visual Basic)

An internal error has occurred in the network layer. Please contact technical
support.

Unable to attach the network layer to the security layer

Item Value

Error code 26

Constant SECURE_SET_IO (Java)
STREAM_ERROR_SECURE_SET_IO (C/C++)
ulStreamErrorSecureSetIo (Visual Basic)

The secure network layer was unable to attach to the network layer. Free up
system resources and retry the operation.

Probable cause

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

667

Internal error 4027

Item Value

Error code 27

Constant SECURE_SET_IO_SEMANTICS (Java)
STREAM_ERROR_SECURE_SET_IO_SEMANTICS (C/C++)
ulStreamErrorSecureSetIoSemantics (Visual Basic)

An internal error has occurred in the network layer. Please contact technical
support.

Unable to set the private key

Item Value

Error code 36

Constant SECURE_SET_PRIVATE_KEY (Java)
STREAM_ERROR_SECURE_SET_PRIVATE_KEY (C/C++)
ulStreamErrorSecureSetPrivateKey (Visual Basic)

The private key could not be used. Check the following:

1) The password was entered correctly.

2) The certificate file contains one or more certificates.

3) The certificate file contains the correct certificate(s).

4) The certificate file is undamaged.

Unable to set the protocol side (%1!s!)

Item Value

Error code 47

Constant SECURE_SET_PROTOCOL_SIDE (Java)
STREAM_ERROR_SECURE_SET_PROTOCOL_SIDE (C/C++)
ulStreamErrorSecureSetProtocolSide (Visual Basic)

Parameter 1 The server side being set. The value is 1 for server side, and 2 for client side.

The secure network layer was unable to establish the given protocol side.
This is an internal error that should never occur.

Probable cause

Probable cause

Probable cause

Communication error descriptions

668

Internal initialization error 4046

Item Value

Error code 46

Constant SECURE_SET_RANDOM_FUNC (Java)
STREAM_ERROR_SECURE_SET_RANDOM_FUNC (C/C++)
ulStreamErrorSecureSetRandomFunc (Visual Basic)

An internal error has occurred in the network layer. Please contact technical
support.

Internal initialization error 4045

Item Value

Error code 45

Constant SECURE_SET_RANDOM_REF (Java)
STREAM_ERROR_SECURE_SET_RANDOM_REF (C/C++)
ulStreamErrorSecureSetRandomRef (Visual Basic)

An internal error has occurred in the network layer. Please contact technical
support.

Internal initialization error 4055

Item Value

Error code 55

Constant SECURE_SET_READ_FUNC (Java)
STREAM_ERROR_SECURE_SET_READ_FUNC (C/C++)
ulStreamErrorSecureSetReadFunc (Visual Basic)

This initialization error is most likely due to a lack of system resources. Free
up system resources and retry the operation.

Probable cause

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

669

Internal initialization error 4056

Item Value

Error code 56

Constant SECURE_SET_WRITE_FUNC (Java)
STREAM_ERROR_SECURE_SET_WRITE_FUNC (C/C++)
ulStreamErrorSecureSetWriteFunc (Visual Basic)

This initialization error is most likely due to a lack of system resources. Free
up system resources and retry the operation.

Unable to find the trusted certificate file ’%1!s!’

Item Value

Error code 40

Constant SECURE_TRUSTED_CERTIFICATE_FILE_NOT_FOUND (Java)
STREAM_ERROR_SECURE_TRUSTED_CERTIFICATE_FILE_NOT_FOUND
(C/C++)
ulStreamErrorSecureTrustedCertificateFileNotFound (Visual Basic)

Parameter 1 The trusted certificate file name.

The certificate file could not be found. Check the following:

1) The certificate file name was properly specified.

2) The certificate file exists.

3) The certificate file contains one or more certificates.

4) The certificate file contains the correct certificate(s).

5) The program attempting to open the certificate file has sufficient
privileges to see the file. This only applies to operating systems having user
and/or file permissions.

Probable cause

Probable cause

Communication error descriptions

670

Error reading from the trusted certificate file ’%1!s!’

Item Value

Error code 41

Constant SECURE_TRUSTED_CERTIFICATE_READ (Java)
STREAM_ERROR_SECURE_TRUSTED_CERTIFICATE_READ (C/C++)
ulStreamErrorSecureTrustedCertificateRead (Visual Basic)

Parameter 1 The trusted certificate file name.

The secure network layer was unable to read the trusted certificate file.
Check the following:

1) The certificate file name was properly specified.

2) The certificate file exists.

3) The certificate file contains one or more certificates.

4) The certificate file contains the correct certificate(s).

5) The program attempting to open the certificate file has sufficient
privileges to see the file. This only applies to operating systems having user
and/or file permissions.

Unable to seed the random number generator

Item Value

Error code 16

Constant SEED_RANDOM (Java)
STREAM_ERROR_SEED_RANDOM (C/C++)
ulStreamErrorSeedRandom (Visual Basic)

The secure network layer could not seed its random number generator. Free
up system resources, reconnect and retry the operation.

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

671

An error occurred during shutdown

Item Value

Error code 18

Constant SHUTTING_DOWN (Java)
STREAM_ERROR_SHUTTING_DOWN (C/C++)
ulStreamErrorShuttingDown (Visual Basic)

The MobiLink synchronization server encountered an error in the network
layer during shutdown. It is possible that some network operations pending
at the time of shutdown were affected.

Unable to bind a socket to port %1!s!

Item Value

Error code 62

Constant SOCKET_BIND (Java)
STREAM_ERROR_SOCKET_BIND (C/C++)
ulStreamErrorSocketBind (Visual Basic)

Parameter 1 The port number.

The network layer was unable to bind a socket to the given port. Check the
following.

1) (Server only) Verify that the port isn’t already in use. If the port is in use,
either shut down the application listening on that port, or specify a different
port.

2) (Server only) Verify that there are no firewall restrictions on the use of the
port.

3) (Client only) If the client_port option was used, verify that the given port
isn’t already in use. If only one client port was specified, consider using a
range (eg. NNN-NNN). If a range was specified, consider making it a wider
range, or a different range.

4) (Client only) If the client_port option was used, verify that there are no
firewall restrictions on the use of the port.

Probable cause

Probable cause

Communication error descriptions

672

Unable to cleanup the socket layer

Item Value

Error code 63

Constant SOCKET_CLEANUP (Java)
STREAM_ERROR_SOCKET_CLEANUP (C/C++)
ulStreamErrorSocketCleanup (Visual Basic)

The network layer was unable to clean up the socket layer. This error should
only occur after all connections are finished, so no current connections
should be affected.

Unable to close a socket

Item Value

Error code 64

Constant SOCKET_CLOSE (Java)
STREAM_ERROR_SOCKET_CLOSE (C/C++)
ulStreamErrorSocketClose (Visual Basic)

The network layer was unable to close a socket. The network session may or
may not have terminated prematurely, due to pending writes that were not
flushed. Check the following:

1) See if the other side of the network connection had any errors.

2) The other side of the connection is running normally.

3) The machine is still connected to the network, and the network is
responsive.

Unable to connect a socket

Item Value

Error code 65

Constant SOCKET_CONNECT (Java)
STREAM_ERROR_SOCKET_CONNECT (C/C++)
ulStreamErrorSocketConnect (Visual Basic)

The network layer was unable to connect a socket. Check the following:

Probable cause

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

673

1) The machine is connected to the network.

2) The socket layer is properly initialized.

3) The correct host machine and port were specified.

4) The host server is running normally and listening on the correct port.

5) The host machine is listening for the proper socket type (TCP/IP vs.
UDP).

6) If the client_port option was used, verify that there are no firewall
restrictions on the use of the port.

7) If the device has a limit on the number of open sockets, verify that the
limit has not been reached.

8) There are enough system resources available. Free up system resources if
they are running low.

Unable to create a TCP/IP socket

Item Value

Error code 60

Constant SOCKET_CREATE_TCPIP (Java)
STREAM_ERROR_SOCKET_CREATE_TCPIP (C/C++)
ulStreamErrorSocketCreateTcpip (Visual Basic)

The network layer was unable to create a TCP/IP socket. Check the
following:

1) The machine is connected to the network.

2) The socket layer is properly initialized.

5) If the device has a limit on the number of open sockets, verify that the
limit has not been reached.

6) There are enough system resources available. Free up system resources if
they are running low.

Probable cause

Communication error descriptions

674

Unable to create a UDP socket

Item Value

Error code 61

Constant SOCKET_CREATE_UDP (Java)
STREAM_ERROR_SOCKET_CREATE_UDP (C/C++)
ulStreamErrorSocketCreateUdp (Visual Basic)

The network layer was unable to create a UDP socket. Check the following:

1) The machine is connected to the network.

2) The socket layer is properly initialized.

3) If the client_port option was used, verify that the given port isn’t already
in use. If only one client port was specified, consider using a range (eg.
NNN-NNN). If a range was specified, consider making it a wider range, or a
different range.

4) If the client_port option was used, verify that there are no firewall
restrictions on the use of the port.

5) If the device has a limit on the number of open sockets, verify that the
limit has not been reached.

6) There are enough system resources available. Free up system resources if
they are running low.

Unable to get host by address

Item Value

Error code 58

Constant SOCKET_GET_HOST_BY_ADDR (Java)
STREAM_ERROR_SOCKET_GET_HOST_BY_ADDR (C/C++)
ulStreamErrorSocketGetHostByAddr (Visual Basic)

The network layer was unable to get the name of a host using its IP address.
At the time of publication, this error was defined but not used.

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

675

Unable to get a socket’s local name

Item Value

Error code 66

Constant SOCKET_GET_NAME (Java)
STREAM_ERROR_SOCKET_GET_NAME (C/C++)
ulStreamErrorSocketGetName (Visual Basic)

The network layer was unable to determine a socket’s local name. In a
TCP/IP connection, each end of the connection has a socket exclusively
attached to a port. A socket’s local name includes this port number, which is
assigned by the network at connection time. Check the following:

1) The machine is still connected to the network, and the network is
responsive.

2) The other side of the connection is running normally.

3) There are enough system resources available. Free up system resources if
they are running low.

Unable to get socket option number %1!s!

Item Value

Error code 67

Constant SOCKET_GET_OPTION (Java)
STREAM_ERROR_SOCKET_GET_OPTION (C/C++)
ulStreamErrorSocketGetOption (Visual Basic)

Parameter 1 The socket option being retrieved.

The network layer was unable to get a socket option. This error may be the
first indication that a connection has been lost. Check the following:

1) The machine is still connected to the network, and the network is
responsive.

2) The other side of the connection is running normally.

3) There are enough system resources available. Free up system resources if
they are running low.

Probable cause

Probable cause

Communication error descriptions

676

The host name ’%1!s!’ could not be found

Item Value

Error code 57

Constant SOCKET_HOST_NAME_NOT_FOUND (Java)
STREAM_ERROR_SOCKET_HOST_NAME_NOT_FOUND (C/C++)
ulStreamErrorSocketHostNameNotFound (Visual Basic)

Parameter 1 The name of the host.

The given host name could not be found. Check the following:

1) The host name was correctly specified.

2) The host is accessible. Many systems include a "ping" utility that can be
used to verify access to a named host.

3) The Domain Name Server (DNS), or its equivalent, is available. If the
DNS is not available, try specifying the host’s IP number (eg.
NNN.NNN.NNN.NNN) instead of the host name.

4) The HOSTS file contains an entry that maps the host name to an IP
number.

Unable to listen on a socket. The backlog is %1!s!

Item Value

Error code 69

Constant SOCKET_LISTEN (Java)
STREAM_ERROR_SOCKET_LISTEN (C/C++)
ulStreamErrorSocketListen (Visual Basic)

Parameter 1 The requested listener backlog.

The server is unable to listen on a socket. The backlog refers to the
maximum number of queued connection requests that may be pending at any
given time. Check the following:

1) The machine is still connected to the network, and the network is
responsive.

2) There are no firewall or other restrictions preventing a socket listener from
running on the current machine.

3) The backlog setting is within the limit, if any, on the machine.

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

677

4) There are enough system resources available. Free up system resources if
they are running low.

Unable to determine localhost

Item Value

Error code 59

Constant SOCKET_LOCALHOST_NAME_NOT_FOUND (Java)
STREAM_ERROR_SOCKET_LOCALHOST_NAME_NOT_FOUND (C/C++)
ulStreamErrorSocketLocalhostNameNotFound (Visual Basic)

The network layer was unable to determine the IP address of "localhost".
Check the following:

1) The Domain Name Server (DNS), or its equivalent, is available. If the
DNS is not available, try explicitly specifying the localhost IP number
(usually 127.0.0.1) instead.

2) The HOSTS file contains an entry that maps the "localhost" name to an IP
number.

3) There are enough system resources available. Free up system resources if
they are running low.

Invalid port number %1!s!. The value must be between zero and
65535

Item Value

Error code 73

Constant SOCKET_PORT_OUT_OF_RANGE (Java)
STREAM_ERROR_SOCKET_PORT_OUT_OF_RANGE (C/C++)
ulStreamErrorSocketPortOutOfRange (Visual Basic)

Parameter 1 The port number.

An invalid port number was specified. The port number must be an integer
between zero and 65535.

Probable cause

Probable cause

Communication error descriptions

678

Unable to select a socket status

Item Value

Error code 71

Constant SOCKET_SELECT (Java)
STREAM_ERROR_SOCKET_SELECT (C/C++)
ulStreamErrorSocketSelect (Visual Basic)

The network layer encountered an error attempting to wait for a socket to be
ready for reading or writing. Check the following:

1) The machine is connected to the network, and the network is responsive.

2) The other side of the connection is running normally.

3) There are enough system resources available. Free up system resources if
they are running low.

Unable to set socket option number %1!s!

Item Value

Error code 68

Constant SOCKET_SET_OPTION (Java)
STREAM_ERROR_SOCKET_SET_OPTION (C/C++)
ulStreamErrorSocketSetOption (Visual Basic)

Parameter 1 The socket option being set.

The network layer was unable to set a socket option. This error may be the
first indication that a connection has been lost. Check the following:

1) The machine is still connected to the network, and the network is
responsive.

2) The other side of the connection is running normally.

3) There are enough system resources available. Free up system resources if
they are running low.

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

679

Unable to shutdown a socket

Item Value

Error code 70

Constant SOCKET_SHUTDOWN (Java)
STREAM_ERROR_SOCKET_SHUTDOWN (C/C++)
ulStreamErrorSocketShutdown (Visual Basic)

The network layer was unable to shut down a socket. Check the following:

1) The machine is connected to the network, and the network is responsive.

2) The other side of the connection is running normally.

3) There are enough system resources available. Free up system resources if
they are running low.

Unable to initialize the sockets layer

Item Value

Error code 72

Constant SOCKET_STARTUP (Java)
STREAM_ERROR_SOCKET_STARTUP (C/C++)
ulStreamErrorSocketStartup (Visual Basic)

The network layer was unable to initialize the socket layer. Check the
following:

1) The sockets layer is properly installed. The correct network interface
library must be present and accessible.

2) The machine is connected to the network, and the network is responsive.

3) There are enough system resources available. Free up system resources if
they are running low.

Probable cause

Probable cause

Communication error descriptions

680

The operation would cause blocking

Item Value

Error code 13

Constant WOULD_BLOCK (Java)
STREAM_ERROR_WOULD_BLOCK (C/C++)
ulStreamErrorWouldBlock (Visual Basic)

A requested operation would block where blocking is undesirable or
unexpected.

Unable to write %1!s! bytes

Item Value

Error code 9

Constant WRITE (Java)
STREAM_ERROR_WRITE (C/C++)
ulStreamErrorWrite (Visual Basic)

Parameter 1 The number of bytes that could not be written.

Unable to write the given number of bytes to the network layer. Note that
writes may occur as part of any larger network operation. For example, some
network layers have sub-layers that perform several reads and writes as part
of a basic operation in the upper layer.

The cause of a write error is usually one of the following:

1) The network had a problem that caused the write to fail.

Reconnect and retry the operation.

2) The connection timed out.

Reconnect and retry the operation.

3) The other side of the connection cleanly terminated the connection.

Consult the client and/or server logs for errors that indicate why the
connection has been dropped.

Consult the output-log errors and fix the cause, then retry the operation.

4) The process at the other side of the connection was aborted.

Consult the client and/or server output logs for errors that indicate why the
process was aborted.

Probable cause

Probable cause

CHAPTER 25 MobiLink Communication Error Messages

681

If the process was shut down by other than normal means, there may not be
any errors in its output log.

Reconnect and retry the operation.

5) The system is low on resources, and cannot perform the write.

Free up system resources, reconnect and retry the operation. If subsequent
retry attempts fail, consult your network administrator.

Communication error descriptions

682

683

C H A P T E R 2 6

MobiLink synchronization server Warning
Messages

This chapter lists MobiLink synchronization server warnings, as well as their
probable causes.

The warning messages are written to the MobiLink synchronization server
message log.

Topic Page

MobiLink synchronization server warning messages sorted by code 684

MobiLink synchronization server warning messages sorted by
message 688

MobiLink synchronization server warning descriptions 692

About this chapter

Contents

MobiLink synchronization server warning messages sorted by code

684

MobiLink synchronization server warning
messages sorted by code

Warning code Level Warning message

10001 1 "Maximum number of database connections set to
%1!lu! (must be at least the number of worker
threads plus one)" on page 696

10002 1 "If needed, ODBC cursors will be used, via the
Microsoft ODBC Cursor Library, to simulate
SQLSETPOS for inserts, updates, and deletes" on
page 694

10003 1 "ODBC Isolation level (%1!s!) is not supported" on
page 697

10004 1 "ODBC function %1!s! is not supported by the
driver" on page 697

10005 1 "ODBC statement option %1!s! has changed from
%2!s! (%3!lu!) to %4!s! (%5!lu!)" on page 698

10006 1 "ODBC statement option %1!s! has changed from
%2!lu! to %3!lu!" on page 697

10007 2 "Retrying the begin_connection transaction after
deadlock in the consolidated database" on page 698

10008 2 "Retry on deadlock set to FALSE. MobiLink
synchronization server is using an internal work-
around which requires this setting" on page 698

10009 2 "MobiLink table ’%1!s!’ is damaged" on page 696

10010 2 "No error-handling script is defined. The default
action code (%1!ld!) will decide error behavior" on
page 697

10011 2 "Unrecognized value (%1!ld!) in
ml_user.commit_state. The state information for this
user is probably corrupted" on page 705

10012 2 "The consolidated and remote databases disagree on
when the last synchronization took place. The
remote is being asked to send a new upload that
starts at the last known synchronization point" on
page 701

10013 4 "Expecting %1!ld! parameter(s) in cursor, but found
%2!ld!" on page 694

CHAPTER 26 MobiLink synchronization server Warning Messages

685

Warning code Level Warning message

10014 4 "Expecting at most %1!ld! parameter(s) in cursor,
but found %2!ld!" on page 694

10015 3 "Table ’%1!s!’ has at least one timestamp column.
Due to a timestamp precision mismatch, uploaded
timestamps can lose precision, defeating download
filtering" on page 700

10016 3 "Table ’%1!s!’ has at least one timestamp column.
Due to a timestamp precision mismatch,
downloaded timestamps can lose precision, resulting
in inconsistent data" on page 700

10017 3 "The consolidated and remote databases have
different timestamp precisions. Consolidated
database timestamps are precise to %1!d! digit(s) in
the fractional second while the remote database
timestamps are precise to %2!d! digit(s)" on
page 701

10018 3 "You may resolve the timestamp precision mismatch
by setting the
DEFAULT_TIMESTAMP_INCREMENT option
on the remote database to %1!d! and
TRUNCATE_TIMESTAMP_VALUES to ’On’" on
page 705

10019 3 "The remote database is not capable of matching the
timestamp precision of the consolidated database.
Your application, schema, and scripts must contain
logic that copes with the precision mismatch" on
page 702

10020 3 "The timestamp precision mismatch may affect
upload conflict detection. You can use the -zp option
to cause MobiLink synchronization server to use the
lowest timestamp precision for conflict detection
purposes" on page 702

10021 3 "The remote and consolidated databases have
different timestamp precisions, and a timestamp
value with a precision higher than the lower-
precision side was used for conflict detection
purposes. Consider using the -zp option" on
page 701

10022 3 "Publication ’%1!s!’ is not referenced by any table"
on page 698

MobiLink synchronization server warning messages sorted by code

686

Warning code Level Warning message

10023 3 "The upload will be rolled back and the
synchronization aborted. The next time this remote
synchronizes, it will ask what happened to the
previous upload" on page 703

10024 3 "Table ’%1!s!’ has no entry in the %2!s! table" on
page 700

10025 5 "Invalid character data encountered in upload --
substituting ’?’" on page 695

10026 5 "Invalid character data encountered in upload --
using NULL" on page 695

10027 5 "Invalid character data encountered in upload --
using empty string" on page 695

10028 5 "Multi-byte characters truncated on upload" on
page 696

10029 5 "Unable to convert character data for download --
substituting ’?’" on page 703

10030 5 "Unable to convert character data for download --
using NULL" on page 703

10031 5 "Unable to convert character data for download --
using empty string" on page 703

10032 2 "Unable to open the file to store the client
synchronization logs. The filename is ’%1!s!’" on
page 704

10033 2 "An error occurred reading the remote client’s
synchronization log" on page 693

10034 2 "Unable to write to the local file that contains
remote synchronization logs" on page 704

10035 2 "The remote client’s synchronization log ended
prematurely, and was probably truncated" on
page 701

10036 2 "Client synchronization logs will be shown in the
MobiLink synchronization server output file or the
console" on page 693

10037 5 "Ignoring updated row (new values)" on page 694

10038 5 "Ignoring updated row (old values)" on page 695

10039 2 "Error detected while using multi-row cursor --
retrying with single row cursor" on page 693

CHAPTER 26 MobiLink synchronization server Warning Messages

687

Warning code Level Warning message

10040 2 "%1!lu! row(s) were ignored in updating table
%2!s!" on page 692

10041 2 "The upload will be committed and the
synchronization aborted. The next time this remote
synchronizes, it will ask what happened to the
previous upload" on page 702

10042 1 "NT Performance Monitor data area failed to
initialize" on page 696

10043 4 "Unable to determine current timestamp" on
page 704

10044 5 "A row in table ’%1!s!’ could not be updated because
it no longer exists in the consolidated database" on
page 692

10045 2 "Retrying the upload after deadlock in the
consolidated database" on page 699

10046 2 "Retrying the upload. Working around a known
ODBC driver problem" on page 700

10047 4 "Cannot directly determine the name of the table
referenced by the cursor. The table name is required
for inserts, updates, and deletes when using the
Microsoft ODBC Cursor Library" on page 693

10048 2 "Retrying the begin_synchronization transaction
after deadlock in the consolidated database" on
page 699

10049 2 "Retrying the end_synchronization transaction after
deadlock in the consolidated database" on page 699

10050 4 "%1!s!" on page 692

10051 1 "Unrecognized ODBC driver ’%1!s!’. The
functionality and quality of ODBC drivers varies
greatly. This driver may lack functionality required
for successful synchronizations. Use at your own
risk" on page 704

MobiLink synchronization server warning messages sorted by message

688

MobiLink synchronization server warning
messages sorted by message

Warning code Level Warning message

10040 2 "%1!lu! row(s) were ignored in updating table
%2!s!" on page 692

10050 4 "%1!s!" on page 692

10044 5 "A row in table ’%1!s!’ could not be updated because
it no longer exists in the consolidated database" on
page 692

10033 2 "An error occurred reading the remote client’s
synchronization log" on page 693

10047 4 "Cannot directly determine the name of the table
referenced by the cursor. The table name is required
for inserts, updates, and deletes when using the
Microsoft ODBC Cursor Library" on page 693

10036 2 "Client synchronization logs will be shown in the
MobiLink synchronization server output file or the
console" on page 693

10039 2 "Error detected while using multi-row cursor --
retrying with single row cursor" on page 693

10013 4 "Expecting %1!ld! parameter(s) in cursor, but found
%2!ld!" on page 694

10014 4 "Expecting at most %1!ld! parameter(s) in cursor,
but found %2!ld!" on page 694

10002 1 "If needed, ODBC cursors will be used, via the
Microsoft ODBC Cursor Library, to simulate
SQLSETPOS for inserts, updates, and deletes" on
page 694

10037 5 "Ignoring updated row (new values)" on page 694

10038 5 "Ignoring updated row (old values)" on page 695

10025 5 "Invalid character data encountered in upload --
substituting ’?’" on page 695

10026 5 "Invalid character data encountered in upload --
using NULL" on page 695

10027 5 "Invalid character data encountered in upload --
using empty string" on page 695

CHAPTER 26 MobiLink synchronization server Warning Messages

689

Warning code Level Warning message

10001 1 "Maximum number of database connections set to
%1!lu! (must be at least the number of worker
threads plus one)" on page 696

10009 2 "MobiLink table ’%1!s!’ is damaged" on page 696

10028 5 "Multi-byte characters truncated on upload" on
page 696

10042 1 "NT Performance Monitor data area failed to
initialize" on page 696

10010 2 "No error-handling script is defined. The default
action code (%1!ld!) will decide error behavior" on
page 697

10003 1 "ODBC Isolation level (%1!s!) is not supported" on
page 697

10004 1 "ODBC function %1!s! is not supported by the
driver" on page 697

10006 1 "ODBC statement option %1!s! has changed from
%2!lu! to %3!lu!" on page 697

10005 1 "ODBC statement option %1!s! has changed from
%2!s! (%3!lu!) to %4!s! (%5!lu!)" on page 698

10022 3 "Publication ’%1!s!’ is not referenced by any table"
on page 698

10008 2 "Retry on deadlock set to FALSE. MobiLink
synchronization server is using an internal work-
around which requires this setting" on page 698

10007 2 "Retrying the begin_connection transaction after
deadlock in the consolidated database" on page 698

10048 2 "Retrying the begin_synchronization transaction
after deadlock in the consolidated database" on
page 699

10049 2 "Retrying the end_synchronization transaction after
deadlock in the consolidated database" on page 699

10045 2 "Retrying the upload after deadlock in the
consolidated database" on page 699

10046 2 "Retrying the upload. Working around a known
ODBC driver problem" on page 700

10016 3 "Table ’%1!s!’ has at least one timestamp column.
Due to a timestamp precision mismatch,
downloaded timestamps can lose precision, resulting
in inconsistent data" on page 700

MobiLink synchronization server warning messages sorted by message

690

Warning code Level Warning message

10015 3 "Table ’%1!s!’ has at least one timestamp column.
Due to a timestamp precision mismatch, uploaded
timestamps can lose precision, defeating download
filtering" on page 700

10024 3 "Table ’%1!s!’ has no entry in the %2!s! table" on
page 700

10012 2 "The consolidated and remote databases disagree on
when the last synchronization took place. The
remote is being asked to send a new upload that
starts at the last known synchronization point" on
page 701

10017 3 "The consolidated and remote databases have
different timestamp precisions. Consolidated
database timestamps are precise to %1!d! digit(s) in
the fractional second while the remote database
timestamps are precise to %2!d! digit(s)" on
page 701

10021 3 "The remote and consolidated databases have
different timestamp precisions, and a timestamp
value with a precision higher than the lower-
precision side was used for conflict detection
purposes. Consider using the -zp option" on
page 701

10035 2 "The remote client’s synchronization log ended
prematurely, and was probably truncated" on
page 701

10019 3 "The remote database is not capable of matching the
timestamp precision of the consolidated database.
Your application, schema, and scripts must contain
logic that copes with the precision mismatch" on
page 702

10020 3 "The timestamp precision mismatch may affect
upload conflict detection. You can use the -zp option
to cause MobiLink synchronization server to use the
lowest timestamp precision for conflict detection
purposes" on page 702

10041 2 "The upload will be committed and the
synchronization aborted. The next time this remote
synchronizes, it will ask what happened to the
previous upload" on page 702

CHAPTER 26 MobiLink synchronization server Warning Messages

691

Warning code Level Warning message

10023 3 "The upload will be rolled back and the
synchronization aborted. The next time this remote
synchronizes, it will ask what happened to the
previous upload" on page 703

10029 5 "Unable to convert character data for download --
substituting ’?’" on page 703

10030 5 "Unable to convert character data for download --
using NULL" on page 703

10031 5 "Unable to convert character data for download --
using empty string" on page 703

10043 4 "Unable to determine current timestamp" on
page 704

10032 2 "Unable to open the file to store the client
synchronization logs. The filename is ’%1!s!’" on
page 704

10034 2 "Unable to write to the local file that contains
remote synchronization logs" on page 704

10051 1 "Unrecognized ODBC driver ’%1!s!’. The
functionality and quality of ODBC drivers varies
greatly. This driver may lack functionality required
for successful synchronizations. Use at your own
risk" on page 704

10011 2 "Unrecognized value (%1!ld!) in
ml_user.commit_state. The state information for this
user is probably corrupted" on page 705

10018 3 "You may resolve the timestamp precision mismatch
by setting the
DEFAULT_TIMESTAMP_INCREMENT option
on the remote database to %1!d! and
TRUNCATE_TIMESTAMP_VALUES to ’On’" on
page 705

MobiLink synchronization server warning descriptions

692

MobiLink synchronization server warning
descriptions

This section provides a full listing of warning messages and descriptions.

Warnings with an ODBC state marked "handled by ODBC driver" are not
returned to ODBC applications, as the ODBC driver carries out the required
actions.

%1!lu! row(s) were ignored in updating table %2!s!

Item Value

Warning code 10040

Level 2

%1!s!

Item Value

Warning code 10050

Level 4

Parameter 1 A message from ODBC driver

Calling ODBC functions succeeded, but the ODBC driver could show a
warning message.

A row in table ’%1!s!’ could not be updated because it no longer
exists in the consolidated database

Item Value

Warning code 10044

Level 5

Parameter 1 Table name

Probable cause

CHAPTER 26 MobiLink synchronization server Warning Messages

693

An update statement failed because the table in the consolidated database
doesn’t have the row.

An error occurred reading the remote client’s synchronization log

Item Value

Warning code 10033

Level 2

Cannot directly determine the name of the table referenced by the
cursor. The table name is required for inserts, updates, and deletes
when using the Microsoft ODBC Cursor Library

Item Value

Warning code 10047

Level 4

Client synchronization logs will be shown in the MobiLink
synchronization server output file or the console

Item Value

Warning code 10036

Level 2

Error detected while using multi-row cursor -- retrying with single
row cursor

Item Value

Warning code 10039

Level 2

Probable cause

MobiLink synchronization server warning descriptions

694

Errors were detected when MobiLink synchronization server applied the
upload stream using multi-row cursors (bulk operation). It will roll back the
upload stream and retry the upload transaction using single-row cursors.

Expecting %1!ld! parameter(s) in cursor, but found %2!ld!

Item Value

Warning code 10013

Level 4

Expecting at most %1!ld! parameter(s) in cursor, but found %2!ld!

Item Value

Warning code 10014

Level 4

If needed, ODBC cursors will be used, via the Microsoft ODBC
Cursor Library, to simulate SQLSETPOS for inserts, updates, and
deletes

Item Value

Warning code 10002

Level 1

Ignoring updated row (new values)

Item Value

Warning code 10037

Level 5

Probable cause

CHAPTER 26 MobiLink synchronization server Warning Messages

695

Ignoring updated row (old values)

Item Value

Warning code 10038

Level 5

Invalid character data encountered in upload -- substituting ’?’

Item Value

Warning code 10025

Level 5

Invalid character data encountered in upload -- using NULL

Item Value

Warning code 10026

Level 5

Invalid character data encountered in upload -- using empty string

Item Value

Warning code 10027

Level 5

MobiLink synchronization server warning descriptions

696

Maximum number of database connections set to %1!lu! (must be
at least the number of worker threads plus one)

Item Value

Warning code 10001

Level 1

Parameter 1 Maximum number of connections given in the MobiLink
synchronization server command line

MobiLink synchronization server makes one connection for each worker
thread and an extra connection for main thread. Therefore, the maximum
number of connections must be at least the number of worker threads plus
one.

MobiLink table ’%1!s!’ is damaged

Item Value

Warning code 10009

Level 2

Multi-byte characters truncated on upload

Item Value

Warning code 10028

Level 5

NT Performance Monitor data area failed to initialize

Item Value

Warning code 10042

Level 1

Probable cause

CHAPTER 26 MobiLink synchronization server Warning Messages

697

No error-handling script is defined. The default action code (%1!ld!)
will decide error behavior

Item Value

Warning code 10010

Level 2

ODBC Isolation level (%1!s!) is not supported

Item Value

Warning code 10003

Level 1

Parameter 1 The required isolation level

ODBC function %1!s! is not supported by the driver

Item Value

Warning code 10004

Level 1

Parameter 1 ODBC function name

ODBC statement option %1!s! has changed from %2!lu! to %3!lu!

Item Value

Warning code 10006

Level 1

MobiLink synchronization server warning descriptions

698

ODBC statement option %1!s! has changed from %2!s! (%3!lu!) to
%4!s! (%5!lu!)

Item Value

Warning code 10005

Level 1

Publication ’%1!s!’ is not referenced by any table

Item Value

Warning code 10022

Level 3

Retry on deadlock set to FALSE. MobiLink synchronization server
is using an internal work-around which requires this setting

Item Value

Warning code 10008

Level 2

Retrying the begin_connection transaction after deadlock in the
consolidated database

Item Value

Warning code 10007

Level 2

CHAPTER 26 MobiLink synchronization server Warning Messages

699

Retrying the begin_synchronization transaction after deadlock in
the consolidated database

Item Value

Warning code 10048

Level 2

Deadlock occurred when MobiLink sever executed the
begin_synchronization script. It will rollback the transaction and retry this
script.

Retrying the end_synchronization transaction after deadlock in the
consolidated database

Item Value

Warning code 10049

Level 2

Deadlock occurred when MobiLink synchronization server executed the
end_synchronization script. It will rollback the transaction and retry this
script.

Retrying the upload after deadlock in the consolidated database

Item Value

Warning code 10045

Level 2

Deadlock occurred when MobiLink synchronization server was applying the
upload stream. It will rollback the transaction and retry this script.

Probable cause

Probable cause

Probable cause

MobiLink synchronization server warning descriptions

700

Retrying the upload. Working around a known ODBC driver
problem

Item Value

Warning code 10046

Level 2

Table ’%1!s!’ has at least one timestamp column. Due to a
timestamp precision mismatch, downloaded timestamps can lose
precision, resulting in inconsistent data

Item Value

Warning code 10016

Level 3

Table ’%1!s!’ has at least one timestamp column. Due to a
timestamp precision mismatch, uploaded timestamps can lose
precision, defeating download filtering

Item Value

Warning code 10015

Level 3

Table ’%1!s!’ has no entry in the %2!s! table

Item Value

Warning code 10024

Level 3

CHAPTER 26 MobiLink synchronization server Warning Messages

701

The consolidated and remote databases disagree on when the last
synchronization took place. The remote is being asked to send a
new upload that starts at the last known synchronization point

Item Value

Warning code 10012

Level 2

The consolidated and remote databases have different timestamp
precisions. Consolidated database timestamps are precise to %1!d!
digit(s) in the fractional second while the remote database
timestamps are precise to %2!d! digit(s)

Item Value

Warning code 10017

Level 3

The remote and consolidated databases have different timestamp
precisions, and a timestamp value with a precision higher than the
lower-precision side was used for conflict detection purposes.
Consider using the -zp option

Item Value

Warning code 10021

Level 3

The remote client’s synchronization log ended prematurely, and
was probably truncated

Item Value

Warning code 10035

Level 2

MobiLink synchronization server warning descriptions

702

The remote database is not capable of matching the timestamp
precision of the consolidated database. Your application, schema,
and scripts must contain logic that copes with the precision
mismatch

Item Value

Warning code 10019

Level 3

The timestamp precision mismatch may affect upload conflict
detection. You can use the -zp option to cause MobiLink
synchronization server to use the lowest timestamp precision for
conflict detection purposes

Item Value

Warning code 10020

Level 3

The upload will be committed and the synchronization aborted. The
next time this remote synchronizes, it will ask what happened to
the previous upload

Item Value

Warning code 10041

Level 2

CHAPTER 26 MobiLink synchronization server Warning Messages

703

The upload will be rolled back and the synchronization aborted.
The next time this remote synchronizes, it will ask what happened
to the previous upload

Item Value

Warning code 10023

Level 3

Unable to convert character data for download -- substituting ’?’

Item Value

Warning code 10029

Level 5

Unable to convert character data for download -- using NULL

Item Value

Warning code 10030

Level 5

Unable to convert character data for download -- using empty
string

Item Value

Warning code 10031

Level 5

MobiLink synchronization server warning descriptions

704

Unable to determine current timestamp

Item Value

Warning code 10043

Level 4

Unable to open the file to store the client synchronization logs. The
filename is ’%1!s!’

Item Value

Warning code 10032

Level 2

Unable to write to the local file that contains remote
synchronization logs

Item Value

Warning code 10034

Level 2

Unrecognized ODBC driver ’%1!s!’. The functionality and quality of
ODBC drivers varies greatly. This driver may lack functionality
required for successful synchronizations. Use at your own risk

Item Value

Warning code 10051

Level 1

Parameter 1 The file name of ODBC driver

CHAPTER 26 MobiLink synchronization server Warning Messages

705

Unrecognized value (%1!ld!) in ml_user.commit_state. The state
information for this user is probably corrupted

Item Value

Warning code 10011

Level 2

You may resolve the timestamp precision mismatch by setting the
DEFAULT_TIMESTAMP_INCREMENT option on the remote
database to %1!d! and TRUNCATE_TIMESTAMP_VALUES to ’On’

Item Value

Warning code 10018

Level 3

MobiLink synchronization server warning descriptions

706

707

A P P E N D I X A

ODBC Drivers

This appendix describes the ODBC drivers available for use with MobiLink.

Topic Page

ODBC drivers supported by MobiLink 708

About this
appendix
Contents

ODBC drivers supported by MobiLink

708

ODBC drivers supported by MobiLink
The following list shows ODBC drivers and databases used with each major
operating system at the time of publication of this document. For updated
information and complete functional specifications, see
http://www.sybase.com/detail?id=1011880. The Web page data may contain
driver information; exact version numbers, for example, are not present in
the table below. The web page overrides this table data and is to be
considered the most appropriate source for driver information.

MobiLink synchronization server can work with a variety of consolidated
databases and ODBC drivers as shown in the table below. Some drivers,
though compatible for use with MobiLink, may have functional restrictions
associated with their use.

Appendix A ODBC Drivers

709

Database ODBC Driver

Oracle 8i iAnywhere Solutions 8 - Oracle 8, 8i &
9i ODBC Driver
Merant DataDirect Connect ODBC
Driver for Oracle

Oracle 9i iAnywhere Solutions 8 - Oracle 8, 8i &
9i ODBC Driver
Oracle 9i ODBC Driver

Microsoft SQL Server
7, Microsoft SQL
Server 2000

Microsoft SQL Server ODBC Driver
Merant DataDirect SQL Server Wire
Protocol ODBC Driver

Sybase Adaptive
Server Enterprise 11.5
or later

iAnywhere Solutions 8 - Sybase ASE
ODBC Driver
Sybase ASE ODBC Driver
Merant DataDirect Sybase Wire Protocol
ODBC Driver
Merant DataDirect Connect ODBC
Driver for Sybase ASE
Merant Connect ODBC Driver for
Sybase ASE

IBM DB2 UDB 7.1,
7.2

IBM DB2 UDB 7.1 ODBC driver
IBM DB2 UDB 7.2 ODBC driver
Merant DataDirect DB2 Wire
Protocol ODBC Driver

Sybase Adaptive
Server Anywhere 8

Adaptive Server Anywhere 8.0 ODBC
Driver

ODBC drivers supported by MobiLink

710

711

C H A P T E R 2 7

Deploying MobiLink Applications

This chapter describes how to deploy the MobiLink server and MobiLink
clients in a production environment. It identifies the files required for
deployment.

Check your license agreement
Redistribution of files is subject to your license agreement. No statements
in this document override anything in your license agreement. Please
check your license agreement before considering deployment.

Topic Page

Deployment overview 712

Deploying the MobiLink server 713

Deploying Adaptive Server Anywhere MobiLink clients 714

Deploying UltraLite MobiLink clients 715

About this chapter

Contents

Deployment overview

712

Deployment overview
Deploying MobiLink applications involves the following activities:

♦ Deploy the MobiLink server into a production setting.

♦ Deploy any Adaptive Server Anywhere MobiLink clients.

♦ Deploy any UltraLite MobiLink clients.

This chapter describes the files you need to include in your application’s
install program for each of these items.

Chapter 27 Deploying MobiLink Applications

713

Deploying the MobiLink server
The simplest way to deploy a MobiLink synchronization server into a
production environment is to install a licensed copy of SQL Anywhere
Studio onto the production machine.

If you are redistributing MobiLink synchronization server in a separate
install program (subject to your license agreement) you need to include the
following files in your installation:

The files should be in the same directory, unless otherwise mentioned.

Description Windows UNIX

MobiLink
synchronization server

dblmsrv8.exe
dbmlsv8.dll
libunic.dll

dbmlsrv8
dbmlsv8.so

Language library dblgXX8.dll1 dblgXX8.so1

Windows Monitor
support

dbmlctr8.dll2

dbmlctr8.ini
dbmlctr8.h

N/A

Synchronization stream
libraries (deploy the ones
you use)

dbsock8.dll
dbhttp8.dll
dbhttps8.dll
dbrsa8.dll

dbsock8.so
dbhttp8.so
dbhttps8.so
dbrsa8.so

Security option
(separately licensable)

dbtls8.dll dbtls8.so

Script files (deploy the
ones for your
consolidated database)

%ASANY8%\MobiLink\
setup
%ASANY8%\MobiLink\
upgrade

%ASANY8%/MobiLin
k/setup
%ASANY8%/MobiLin
k/upgrade

1 XX is a two-letter identifier for the language in which informational and error messages are
displayed: EN, FR, DE, JA, ZH, and so on.
2 Your setup program must self-register this file.

Deploying Adaptive Server Anywhere MobiLink clients

714

Deploying Adaptive Server Anywhere MobiLink
clients

For Adaptive Server Anywhere clients, you need to deploy an Adaptive
Server Anywhere database server and the MobiLink client.

$ For information on deploying Adaptive Server Anywhere databases,
see "Deploying Databases and Applications" on page 373 of the book ASA
Programming Guide.

If you are redistributing MobiLink synchronization clients (subject to your
license agreement) you need to include the following files in your installation
in addition to those required for the Adaptive Server Anywhere database:

The files should be in the same directory, unless otherwise mentioned.

Description Windows UNIX

MobiLink
synchronization client

dbmlsync.exe
dbtool8.dll
dblgen8.dll

dbmlsync
dbtool8.so
dblgen8.so

Synchronization stream
libraries (deploy the ones
you use)

dbsock8.dll
dbhttp8.dll
dbhttps8.dll
dbrsa8.dll

dbsock8.so
dbhttp8.so
dbhttps8.so
dbrsa8.so

Security option
(separately licensable)

dbtls8.dll dbtls8.so

Chapter 27 Deploying MobiLink Applications

715

Deploying UltraLite MobiLink clients
For UltraLite clients, the UltraLite runtime library includes the required
synchronization stream functions. The UltraLite runtime library is either
compiled into your application or is provided as a ulrt8.dll for Windows CE
clients. Deployment is subject to your license agreement.

$ For information on deploying UltraLite applications , see "Deploying
UltraLite applications" on page 104 of the book UltraLite User’s Guide.

UltraLite clients developed with the UltraLite Component Suite do not
require the UltraLite runtime, as it is compiled into the application.

♦ For AppForge MobileVB applications you must deploy ulingot8.dll
(Windows CE) or ulingot8.prc (Palm Computing Platform), which can
be found in subdirectories of the UltraLite\UltraLiteForMobileVB
subdirectory of your SQL Anywhere installation.

♦ For eMbedded Visual Basic applications you must deploy uldo8.dll,
which can be found in subdirectories of the UltraLite\UltraLiteForActiveX
subdirectory of your SQL Anywhere installation.

♦ For Native UltraLite for Java applications, you must deploy jul8.jar and
jul8.dll, which can be found in subdirectories of the UltraLite\Native
UltraLite for Java subdirectory of your SQL Anywhere installation.

$ For more information, see the UltraLite Component Suite
documentation. Click Start ➤ Programs ➤ SQL Anywhere 8 ➤ UltraLite ➤
Online Books.

Deploying UltraLite MobiLink clients

716

717

Index

#
#hook_dict table

about, 160
dbmlsync, 592
unique primary keys, 98

.

.NET
about support in MobiLink, 187
MobiLink API reference, 203
MobiLink data types, 195
synchronization logic, 38
synchronization scripts for MobiLink, 187

.NET classes
instantiation for .NET synchronization logic, 194

.NET CLR
MobiLink options, 390

.NET MobiLink API
API reference, 203
benefits, 41

.NET synchronization logic
.NET class instantiations, 194
about, 38
API, 203
DBCommand, 206
DBConnection, 211
DBConnectionContext, 205
DBParameter, 211
DBParameterCollection, 213
DBRowReader, 216
InOutInteger, 205
methods, 196

sample, 200
ServerContext, 203
ServerException, 204
setup, 189
ShutdownCallback, 204
SQLType, 208
supported languages, 188

@
@EmployeeID variable

using with primary key pools, 101

@LastDownload timestamp variable, 86

A
-a option

MobiLink [dbmlsrv8], 383

-ac option
MobiLink [mlxtract], 614

ActiveSync
about, 143
class name for dbmlsync, 431
CREATE SYNCHRONIZATION USER

statement, 144
installing the MobiLink provider, 145, 610
MobiLink ActiveSync provider [dbasinst], 610
MobiLink remote databases, 144
registering applications, 146

ActiveSync provider installation utility [dbasinst]
syntax, 610

Adaptive Server Anywhere
as MobiLink clients, 21
as MobiLink consolidated databases, 14
version differences, 132

A–A

718

Adaptive Server Anywhere clients
dbmlsync, 410
MobiLink, 117

Adaptive Server Enterprise
as MobiLink consolidated databases, 14
conversion of data types in MobiLink

synchronization, 626
MobiLink synchronization, 81
StaticCursorLongColBuffLen, 81

add connection script wizard
using, 63

add service wizard
using, 277

add synchronized table wizard
using, 63

add synchronizing table script wizard
using, 64, 335

add user wizard
using, 257

add version wizard
using, 62, 335

adding
articles, 122
columns to remote MobiLink databases, 116
elliptic-curve and RSA certificates, 621
MobiLink .NET connection scripts, 588
MobiLink .NET table scripts, 589
MobiLink Java connection scripts, 589
MobiLink Java table scripts, 590
MobiLink SQL connection scripts, 586
MobiLink SQL table scripts, 587
MobiLink users to a remote database, 125
synchronization scripts with Sybase Central, 63
tables to remote MobiLink databases, 116
user names in MobiLink, 618

adding a script version, 62

adding and deleting scripts in your consolidated
database, 63

adding MobiLink users to a remote database, 125

adding synchronization scripts
using stored procedures, 64

-al option
MobiLink [mlxtract], 614

altering
articles, 122
publications, 122
synchronization subscriptions, 129

altering MobiLink subscriptions, 129

-an option
MobiLink [mlxtract], 614

Apache
configuring servlet Redirector for MobiLink, 273

API reference
MobiLink .NET API, 203
MobiLink Java API, 183

applications
deploying, 711
differentiating MobiLink scripts, 61

article creation wizard
using, 123

articles
adding, 122
altering, 122
creating, 119
MobiLink synchronization subscriptions, 128
removing, 122

assemblies
implementing in MobiLink, 191
locating in MobiLink .NET synchronization

logic, 189

auth_status synchronization parameter
about, 446

authenticate_user
about, 261
connection event, 446

authenticate_user_hashed
connection event, 450

authenticating
users in MobiLink, 618

automated script generation
MobiLink, 322

automatic synchronization script generation, 50

automating scripts
MobiLink synchronization, 50

B–C

719

B
-bc option

MobiLink [dbmlsrv8], 384

begin_connection
connection event, 452
example, 364

begin_download
connection event, 454
table event, 456

begin_download_deletes
table event, 458

begin_download_rows
table event, 460

begin_synchronization
connection event, 462
table event, 464

begin_upload
connection event, 466
table event, 468

begin_upload_deletes
table event, 470

begin_upload_rows
table event, 472

blob cache size
MobiLink performance, 222

BLOBs
downloaded from Adaptive Server Enterprise, 81

-bn option
MobiLink [dbmlsrv8], 384

bottlenecks
MobiLink performance, 224

buffering
MobiLink downloads, 221

C
-c option

MobiLink [dbmlsrv8], 384
MobiLink [dbmlsync], 413
MobiLink [dbmluser], 618

MobiLink [gencert], 621
MobiLink [mlxtract], 614

C#
MobiLink options, 390
support in MobiLink .NET, 188

C++
support in MobiLink .NET, 188

cascading deletes
during MobiLink synchronization, 35

Certicom
obtaining certificates, 307

certificate authorities, 298

certificate chains, 299

certificate generation utility [gencert]
syntax, 621

certificate reader utility [readcert]
syntax, 620

certificate stream parameter
HTTP synchronization, 399
HTTPS synchronization, 401
TCP/IP synchronization, 398

certificate_password stream parameter
HTTP synchronization, 399
HTTPS synchronization, 401
TCP/IP synchronization, 398

certificates
generating elliptic-curve, 621
generating RSA, 621
reading elliptic-curve, 620
reading RSA, 620
sample certificates for MobiLink, 293

chains of certificates
using, 290

CHAR data type
MobiLink and other DBMSs, 82

character sets
MobiLink synchronization, 42

C–C

720

character-set translation
by ODBC drivers, 44
during MobiLink synchronization under other

platforms, 44
during MobiLink synchronization under

Windows, 42

ciphers
MobiLink transport-layer security, 284

class names
ActiveSync, 431

CLASSPATH environment variable
MobiLink Java synchronization logic, 167

-classpath option
MobiLink [dbmlsrv8] -sl dnet, 390
MobiLink [dbmlsrv8] -sl java, 391

client database extraction utility [mlxtract]
syntax, 614

client event-hook procedures, 592

client_port, 397

client_port stream parameter
HTTP synchronization, 398

clients
Adaptive Server Anywhere as MobiLink, 21
Adaptive Server Anywhere MobiLink clients,

117
dbmlsync, 410
MobiLink synchronization, 21
UltraLite applications as MobiLink, 21

CLR
MobiLink options, 390

-cn option
MobiLink [dbmlsrv8], 385

collation sequences
MobiLink synchronization, 42

columns
adding to remote MobiLink databases, 116

command line
starting dbmlsrv8, 380
starting dbmlsync, 410

command line utilities
dbasinst command line syntax, 610
MobiLink certificate generator [gencert], 621

MobiLink client database extraction [mlxtract],
614

MobiLink stop utility [dbmlstop], 613
MobiLink synchronization, 609
MobiLink user authentication [dbmluser], 618
readcert syntax, 620

COMMIT statement
event-hook procedures, 592

commit_state column
about, 22

common language runtime
MobiLink options, 390

CommunicationAddress
about, 414

communications
specifying for MobiLink, 22

communications faults
MobiLink synchronization recovery, 32, 33

CommunicationType
about, 414

concurrency
MobiLink performance, 220
MobiLink synchronization, 140
MobiLink upload-stream processing, 34

configuring
Microsoft Web servers, 272
Netscape Web servers, 270
Redirectors (all versions), 268
servlet Redirector, 273
Tomcat, 273

configuring Adaptive Server Anywhere remote
databases for ActiveSync, 144

configuring MobiLink user properties, 126

conflict detection
cursor-based uploads, 106
MobiLink, 104
MobiLink statement-based uploads, 105

conflict resolution
Contact sample, 374
cursor-based uploads, 106
forcing in MobiLink, 107
MobiLink, 104
MobiLink conflict detection, 104

C–C

721

MobiLink statement-based uploads, 105
user-specific logic, 108

ConflictRetries synchronization option
about, 141, 414

conflicts
MobiLink, 104

connection parameters
priority order, 129

connection scripts
about, 58
adding .NET scripts, 588
adding Java scripts, 589
adding SQL scripts, 586
adding with Sybase Central, 63
defined, 55
deleting .NET scripts, 588
deleting Java scripts, 589
deleting SQL scripts, 586

consolidated databases
Adaptive Server Anywhere as MobiLink, 14
Adaptive Server Enterprise as MobiLink, 14
adding synchronization scripts to, 63
creating MobiLink, 13
databases other than Adaptive Server Anywhere,

80
DBMS dependencies, 80
IBM DB2 as MobiLink, 14
MobiLink, 12
MobiLink system tables, 15
MobiLink user names, 22
Oracle as MobiLink, 14
relating tables to MobiLink remote tables, 13
requirements for, 12
SQL Server as MobiLink, 14

constructors
MobiLink synchronization, 171, 195

Contact MobiLink sample
about, 365
building, 365
Contact table, 372
Customer table, 370
monitoring statistics, 375
Product table, 374
running, 366
SalesRep table, 370
tables, 367
users, 369

contd_timeout stream parameter
HTTP synchronization, 399
HTTPS synchronization, 401
synchronizing across firewalls, 266

contention
MobiLink performance, 220
MobiLink performance explanation, 225

conventions
documentation, xvii

conversion
of data types in MobiLink synchronization, 625
to Adaptive Server Enterprise data types in

MobiLink synchronization, 626
to IBM DB2 data types in MobiLink

synchronization, 627
to Microsoft SQL Server data types in MobiLink

synchronization, 630
to Oracle data types in MobiLink

synchronization, 629

-cp option
MobiLink [dbmlsrv8] -sl dnet, 390
MobiLink [dbmlsrv8] -sl java, 391

-cr option
MobiLink [dbmlsrv8], 385

create database wizard
using, 331

CREATE SYNCHRONIZATION SUBSCRIPTION
statement

ActiveSync, 144

CREATE SYNCHRONIZATION USER statement
ActiveSync, 144

creating
Adaptive Server Anywhere remote databases,

118
articles, 119
MobiLink client databases, 614
MobiLink consolidated databases, 13
MobiLink users in remote databases, 125
new certificates, 621
publications, 119
publications with column-wise partitioning, 120
publications with row-wise partitioning, 121
publications with whole tables, 119

creating a consolidated databases, 13

D–D

722

creating a remote database
Adaptive Server Anywhere clients, 118

creating MobiLink users, 125

creating the certificates, 301

cryptography
public key, 284

-ct option
MobiLink [dbmlsrv8], 385

cursor scripts
defined, 55
list, 55

cursor-based scripts
about, 66

cursor-based uploads
conflict detection, 106
performance, 221

custase.sql
location, 363

CustDB application
synchronization scripts, 363

CustDB database
DB2, 362

custdb.sqc
location, 363

custdb.sql
location, 363

custmss.sql
location, 363

customizing
MobiLink, 157

customizing a prototype remote database, 148

custora.sql
location, 363

D
-d option

MobiLink [dbasinst], 610
MobiLink [dbmlsrv8], 386

MobiLink [dbmlsync], 413
MobiLink [dbmluser], 618

daemon
running MobiLink as a, 275

data entry
synchronization techniques, 110

data sources
ODBC for MobiLink synchronization, 15

data types
conversion of in MobiLink synchronization, 625
conversion to Adaptive Server Enterprise in

MobiLink synchronization, 626
conversion to IBM DB2 in MobiLink

synchronization, 627
conversion to Microsoft SQL Server in MobiLink

synchronization, 630
conversion to Oracle in MobiLink

synchronization, 629
MobiLink .NET and SQL, 195
MobiLink Java and SQL, 171

database connections
MobiLink performance, 227

database extraction utility
MobiLink, 614

database schemas
relating consolidated tables to MobiLink remote

tables, 13

databases
MobiLink consolidated, 12
MobiLink synchronization requirements for

consolidated, 12
synchronizing with MobiLink, 9, 283

DB2
as MobiLink consolidated databases, 14
consolidated database, 362
conversion of data types in MobiLink

synchronization, 627
CustDB database, 362
maximum identifier length in IBM, 15
session-wide variables, 81

dbasdesk.dll
installing, 610

dbasdev.dll
installing, 610

D–D

723

dbasinst utility
installing the MobiLink provider for ActiveSync,

145
options, 610
syntax, 610

DBCommand
MobiLink .NET API, 206

DBConnection
MobiLink .NET API, 211

DBConnectionContext
MobiLink .NET API, 205
MobiLink Java API, 185

dbmlsrv8
automating script generation, 50
options, 380
reports error context in output log, 387
using, 18

dbmlstop utility
MobiLink, 19
options, 613
syntax, 613
using, 18

dbmlsync
event hooks, 592

dbmlsync utility
#hook_dict table, 592
ActiveSync usage, 143
changing passwords, 260
concurrency, 141
customizing MobiLink synchronization, 157
-d option, 141
example, 138
extended options, 414
multiple users, 139
options, 410
passwords, 259
permissions, 138
sp_hook_dbmlsync_abort hook, 593
sp_hook_dbmlsync_begin, 594
sp_hook_dbmlsync_delay, 595
sp_hook_dbmlsync_download_begin, 596
sp_hook_dbmlsync_download_com_error, 596
sp_hook_dbmlsync_download_end, 597
sp_hook_dbmlsync_download_fatal_sql_error,

598
sp_hook_dbmlsync_download_log_ri_violation,

599

sp_hook_dbmlsync_download_ri_violation, 600
sp_hook_dbmlsync_download_sql_error, 601
sp_hook_dbmlsync_download_table_begin, 602
sp_hook_dbmlsync_download_table_end, 602
sp_hook_dbmlsync_end, 603
sp_hook_dbmlsync_logscan_begin, 604
sp_hook_dbmlsync_logscan_end, 605
sp_hook_dbmlsync_upload_begin, 606
sp_hook_dbmlsync_upload_end, 607
syntax, 410
transaction logs, 140
using, 138
writing your own, 141

dbmluser utility
options, 618
syntax, 618
using, 259

DBMS-dependent scripts, 80

DBParameter
MobiLink .NET API, 211

DBParameterCollection
MobiLink .NET API, 213

DBRowReader
MobiLink .NET API, 216

dbtools.h
dbmlsync features, 141
synchronization, 141

DDL statements
remote MobiLink databases, 116

deadlocks
MobiLink upload-stream processing, 34

debugging
MobiLink connections, 282
MobiLink synchronization server log, 19
MobiLink synchronization using Java classes,

173

DECIMAL data type
MobiLink and Adaptive Server Enterprise, 82

default global autoincrement
declaring, 97

default_download_cursor
about, 77

D–D

724

default_upload_cursor
about, 77

deletes
stopping upload of using MobiLink, 156

deleting
articles, 122
MobiLink .NET connection scripts, 588
MobiLink .NET table scripts, 589
MobiLink Java connection scripts, 589
MobiLink Java table scripts, 590
MobiLink SQL connection scripts, 586
MobiLink SQL table scripts, 587
publications, 124

deleting rows
synchronization, 72
synchronization techniques, 111

deleting rows with the download_delete_cursor
script, 72

deploying
about, 711
Adaptive Server Anywhere MobiLink clients,

714
applications and databases, 711
MobiLink remote database sample, 148
MobiLink remote databases, 148
MobiLink synchronization server, 713
troubleshooting MobiLink deployment, 154
UltraLite applications, 715

deprecated features
MobiLink differences from version 7, 132

development tips
synchronization, 85

digital certificates, 287

direct inserts of scripts, 64

disjoint partitioning
defined, 91
synchronization, 91

-dl option
MobiLink [dbmlsrv8], 386
MobiLink [dbmlsync], 413
MobiLink [dbmluser], 618

DMLStartClass
Java user-defined start classes, 174

DMLStartClasses
MobiLink [dbmlsrv8] -sl java, 391

documentation
conventions, xvii
SQL Anywhere Studio, xiv

domain configuration files
about, 192

download acknowledgement
MobiLink performance, 221

download buffer
MobiLink performance, 221

download cache size
MobiLink performance, 222

download events
MobiLink synchronization, 444

download stream
defined, 24
events, 70
failed downloads, 112
MobiLink performance, 223
MobiLink transactions, 32

download_ cursor
timestamp-based synchronization, 87

download_cursor
about, 55
Contact sample, 372, 374
cursor event, 474
disjoint partitioning, 91
example, 364
example using a stored procedure call, 113
partitioning child tables, 94
partitioning with overlaps, 93
performance, 223
using a stored procedure call, 113

download_cursor table script
Contact sample, 371

download_delete_cursor
about, 55, 72
Contact sample, 371, 373, 374
cursor event, 477
disjoint partitioning, 91
example using a stored procedure call, 113
partitioning child tables, 94
partitioning with overlaps, 93

E–E

725

performance, 223
using a stored procedure call, 113

download_delete_cursor timestamp-based
synchronization, 87

download_statistics
connection event, 479
table event, 482

DownloadBufferSize
about, 414

downloading a result set from a stored procedure
call

synchronization techniques, 113

downloading rows
resolving MobiLink RI violations, 599
synchronization scripts, 70

DROP PUBLICATION statement
about, 124

DROP SYNCHRONIZATION SUBSCRIPTION
statement

about, 130

dropping
MobiLink subscriptions, 130
MobiLink users from a remote database, 127

dropping publications, 124

E
-e option

MobiLink [dbmlsrv8], 386
MobiLink [dbmlsync], 414

-eh option
MobiLink [dbmlsync], 423

-ek option
MobiLink [dbmlsync], 423

elliptic-curve certificates
generating, 621
reading, 620

encryption
MobiLink, 284

end_connection
connection event, 485

end_download
connection event, 487
table event, 489

end_download_deletes
table event, 491

end_download_rows
table event, 493

end_synchronization
connection event, 495
table event, 497

end_upload
connection event, 499
table event, 502

end_upload_deletes
table event, 504

end_upload_rows
table event, 506

enterprise root certificates, 300
creating, 301

-ep option
MobiLink [dbmlsync], 423

error handling
during MobiLink synchronization, 75

error logs
MobiLink server [dbmlsrv8], 386

ErrorLogSendLimit synchronization option
about, 414

errors
handling during MobiLink synchronization, 75
multiple, 76
recording, 75

-et option
MobiLink [dbmlsrv8], 387

-eu option
MobiLink [dbmlsync], 423

event hooks
#hook_dict table, 160
commits not allowed, 592
connections, 159
event arguments, 160
fatal errors, 159
ignoring errors, 162

F–F

726

MobiLink, 157
procedure owner, 159
rollbacks not allowed, 592
sp_hook_dbmlsync_abort, 593
sp_hook_dbmlsync_begin, 594
sp_hook_dbmlsync_delay, 595
sp_hook_dbmlsync_download_begin, 596
sp_hook_dbmlsync_download_com_error, 596
sp_hook_dbmlsync_download_fatal_SQL_error,

598
sp_hook_dbmlsync_download_log_ri_violation,

599
sp_hook_dbmlsync_download_ri_violation, 600
sp_hook_dbmlsync_download_sql_error, 601
sp_hook_dbmlsync_download_table_begin, 602
sp_hook_dbmlsync_download_table_end, 602
sp_hook_dbmlsync_end, 603
sp_hook_dbmlsync_logscan_begin, 604
sp_hook_dbmlsync_logscan_end, 605
sp_hook_dbmlsync_upload_begin, 606
sp_hook_dbmlsync_upload_end, 607
synchronization event hooks, 592
using, 159

event names
defined, 48

event-hooks
sp_hook_dbmlsync_begin, 596
sp_hook_dbmlsync_download_end, 597

events
about MobiLink synchronization, 436
Adaptive Server Anywhere client, 157
introduction to MobiLink events, 48
MobiLink, 25, 433
synchronization logic and, 48

events during download, 70

events during upload, 66

example scripts
generating, 51

example scripts for UltraLite, 77

example synchronization script generation, 51

example_download_cursor
about, 77

example_upload_cursor
about, 77
cursor event, 508

example_upload_delete
table event, 509

example_upload_insert
table event, 510

example_upload_update
table event, 511

examples
synchronization scripts, 77

extended options
configuring at remote databases, 126
dbmlsync, 414
MobiLink synchronization, 162
priority order, 129

extended options for performance tuning
MobiLink, 139

extracting
MobiLink client databases, 614

extracting remote databases, 149

extraction utility
MobiLink, 614

F
-f option

MobiLink [dbmlsrv8], 387
MobiLink [dbmlstop], 613
MobiLink [dbmluser], 618

failed downloads
synchronization techniques, 112

failover
Redirector, 264

fault recovery
MobiLink, 32

faults
MobiLink synchronization recovery, 32, 33

feedback
documentation, xxi
providing, xxi

FireTriggers synchronization option
about, 414

G–H

727

firewalls
configuring MobiLink clients, 266
configuring MobiLink synchronization server,

266
routing requests, 264

FOR UPDATE clause
SELECT statement, 68

forced conflict resolution
cursor-based uploads, 108
MobiLink, 107
MobiLink statement-based uploads, 107

forcing conflicts
cursor-based uploads, 108
MobiLink, 107
MobiLink statement-based uploads, 107

G
gencert utility

options, 621
syntax, 621

generating
elliptic-curve certificates, 621
RSA certificates, 621

generating example scripts, 51

generating scripts automatically, 50

getServerContext method
DBConnectionContext class, 186, 205

global assembly cache
implementing in MobiLink, 191

global autoincrement
algorithm, 99
declaring, 97
setting GLOBAL_DATABASE_ID, 98
using to generate unique values, 96

GLOBAL_DATABASE_ID option
setting in MobiLink, 98

globally signed certificates, 305

H
-h option

MobiLink [dbmlstop], 613

handle_error
connection event, 512
synchronization scripts, 75

handle_odbc_error
connection event, 515

handling deletes
synchronization techniques, 111

handling failed downloads
synchronization techniques, 112

handling multiple errors on a single SQL statement,
76

hooks
Adaptive Server Anywhere client, 157
sp_hook_dbmlsync_abort, 593
sp_hook_dbmlsync_begin, 594
sp_hook_dbmlsync_delay, 595
sp_hook_dbmlsync_download_begin, 596
sp_hook_dbmlsync_download_com_error, 596
sp_hook_dbmlsync_download_end, 597, 603
sp_hook_dbmlsync_download_fatal_sql_error,

598
sp_hook_dbmlsync_download_log_ri_violation,

599
sp_hook_dbmlsync_download_ri_violation, 600
sp_hook_dbmlsync_download_sql_error, 601
sp_hook_dbmlsync_download_table_begin, 602
sp_hook_dbmlsync_download_table_end, 602
sp_hook_dbmlsync_logscan_begin, 604
sp_hook_dbmlsync_logscan_end, 605
sp_hook_dbmlsync_upload_begin, 606
sp_hook_dbmlsync_upload_end, 607
synchronization event hooks, 592

host stream parameter
HTTP synchronization, 399
HTTPS synchronization, 401
synchronizing across firewalls, 266
TCP/IP synchronization, 397

how remote tables relate to consolidated tables, 13

HTTP
dbmlsrv8 -x command line option, 398
synchronization parameters, 397

I–J

728

HTTPS
dbmlsrv8 -x command line option, 400
synchronization parameters, 397

I
-i option

MobiLink [dbmlsync], 424

iaredirect.dll
configuring the ISAPI Redirector, 272
configuring the NSAPI Redirector, 270

IBM DB2
as MobiLink consolidated databases, 14
conversion of data types in MobiLink

synchronization, 627
maximum identifier length in, 15
session-wide variables, 81

icons
used in manuals, xviii

-id option
MobiLink [mlxtract], 614

identifiers
maximum length in IBM DB2, 15

IIS
configuring for ISAPI, 272

Increment synchronization option
about, 414

indexes
MobiLink performance, 223

initiating
MobiLink synchronization from UltraLite

applications, 21
synchronization, 138

initiating synchronization from an application, 141

InOutByteArray
MobiLink Java API, 183

InOutInteger
MobiLink Java API, 183

InOutString
MobiLink Java API, 183

inserting
scripts in MobiLink, 64

installing
MobiLink provider for ActiveSync, 145
servlets into EAServer, 273

introduction to synchronization scripts, 48

invoking transport-layer security, 293

iPlanet
configuring for the NSAPI Redirector, 270

-is option
MobiLink [dbmlsync], 424

ISAPI Redirector
configuring, 272

isolation level
MobiLink, 24

-it option
MobiLink [mlxtract], 614

J
-j option

MobiLink [mlxtract], 614

Java
MobiLink data types, 171
MobiLink Java API reference, 183
synchronization logic, 38
synchronization scripts for MobiLink, 165

Java classes
instantiation for Java synchronization logic, 170

Java MobiLink API
benefits, 40

Java synchronization logic
about, 38
API, 183
DBConnectionContext, 185
InOutByteArray, 183
InOutInteger, 183, 186
InOutString, 183
Java class instantiations, 170
methods, 172
sample, 177
ServerContext, 184
ServerException, 185

K–M

729

setup, 167, 261
ShutdownListener, 185
specifying in MobiLink server command line,

169

Java VM
MobiLink options, 391

Java vs. SQL synchronization logic
MobiLink performance, 223

Javadoc
MobiLink, 183

-jrepath option
MobiLink [dbmlsrv8] -sl dnet, 390
MobiLink [dbmlsrv8] -sl java, 391

K
-k option

MobiLink [dbasinst], 610
MobiLink [dbmlsync], 424

keep_alive stream parameter
HTTP synchronization, 399
HTTPS synchronization, 401
TCP/IP synchronization, 398

key pools
MobiLink synchronization application, 100

L
-l option

MobiLink [dbmlsync], 424
MobiLink [mlxtract], 614

last download timestamp
Contact sample, 372
maintaining, 372
modify_last_download_timestamp connection

event, 517
modify_next_last_download_timestamp

connection event, 519
script parameter, 60
timestamp-based synchronization, 86

library functions
ULSynchronize, 21

loading assemblies in MobiLink, 191

locking
MobiLink synchronization, 140

LockTables synchronization option
about, 141, 414

log files
MobiLink, 322, 342
MobiLink synchronization server, 19

logging
MobiLink performance, 222
MobiLink RI violations, 599
MobiLink synchronization server actions, 19

LONG data type
Oracle synchronization, 629

M
maintaining unique primary keys using global

autoincrement, 96

maintaining unique primary keys using key pools,
100

maintaining unique primary keys using UUIDs, 95

making a new self-signed certificate, 295

many-to-many relationships
partitioning, 92
synchronization, 92

Memory synchronization option
about, 414

Microsoft SQL Server
as MobiLink consolidated databases, 14
conversion of data types in MobiLink

synchronization, 630
stored procedure calls, 81

ML directive
Redirector, 268

ml_add_connection_script stored procedure
SQL syntax, 586

ml_add_dnet_connection_script stored procedure
SQL syntax, 588

ml_add_dnet_table_script stored procedure
SQL syntax, 589

M–M

730

ml_add_java_connection_script stored procedure
SQL syntax, 589

ml_add_java_table_script stored procedure
SQL syntax, 590

ml_add_table_script stored procedure
SQL syntax, 587

ML_CLIENT_TIMEOUT directive
Redirector, 268

ml_connection_script
MobiLink system table, 15

ml_script
MobiLink system table, 16

ml_script_version
MobiLink system table, 16

ml_scripts_modified
MobiLink system table, 16

ml_subscription
MobiLink system table, 16

ml_table
MobiLink system table, 17

ml_table_script
MobiLink system table, 17

ml_user
installing a remote database over an old one, 154
MobiLink system table, 17

ml_username
about, 22

-MLAutoLoadPath option
about, 191
MobiLink [dbmlsrv8] -sl dnet, 390

mlDomConfig.xml
about, 192

-MLDomConfigFile option
about, 191
MobiLink [dbmlsrv8] -sl dnet, 390

mlMonitorSettings
MobiLink Monitor settings, 240

MLStartClasses
.NET user-defined start classes, 197

-MLStartClasses
MobiLink [dbmlsrv8] -sl dnet, 390

mlxtract utility
options, 614
sp_hook_dbxtract_begin procedure, 98
syntax, 614
using, 149

-mn option
MobiLink [dbmlsync], 425

MobiLink
.NET synchronization logic, 187
a simple synchronization script, 49
Adaptive Server Anywhere clients, 117
architecture, 10
characteristics, 5
common terms used in MobiLink

synchronization, 7
complete event model, 436
configuring Web servers, 264
database connections, 227
deprecated features from version 7, 132
development tips, 85
events, 433
events during download, 70
features, 4
isolation level, 24
Java synchronization logic, 165
key factors, 224
logging RI violations, 599
ODBC drivers, 708
options for writing synchronization logic, 38
overview of event process, 436
performance, 219
process overview, 24
running, 275
sample application, 365
starting, 18
stopping, 613
stopping the MobiLink server, 19
synchronization logic, 48
synchronization techniques, 83, 360
transport-layer security, 284
Tutorial - Using Adaptive Server Anywhere, 315
Tutorial - Using an Oracle database, 347
Tutorial - Using MobiLink sample applications,

359
Tutorial - Using Sybase Central, 329

MobiLink .NET API reference, 203

MobiLink ActiveSync provider installation utility
[dbasinst]

syntax, 610

M–M

731

MobiLink certificate generation utility [gencert]
syntax, 621

MobiLink certificate reader utility [readcert]
syntax, 620

MobiLink client database extraction utility
[mlxtract]

syntax, 614

MobiLink clients
deploying, 714

MobiLink connections
debugging, 282

MobiLink consolidated databases
Adaptive Server Anywhere as, 14
Adaptive Server Enterprise as, 14
IBM DB2 as, 14
Oracle as, 14
SQL Server as, 14

MobiLink data types
.NET and SQL, 195
Java and SQL, 171

MobiLink download stream
defined, 24

MobiLink events
listed, 433

MobiLink Java API reference, 183

MobiLink Monitor
about, 232
Chart pane, 237
description of user interface, 235
Details Table pane, 236
Options, 240
Overview pane, 239
Properties, 240
restoring defaults, 240
saving data, 243
specifying watches, 244
starting, 233
statistical properties, 247
using, 235
viewing in MS Excel, 243
Watch Manager, 244

MobiLink performance
about, 219
estimate number of upload rows, 430
key factors, 224

MobiLink security
changing passwords, 260
choosing a user authentication mechanism, 254
custom user authentication, 261, 450
new users, 258
passwords, 257
user authentication, 251
user authentication architecture, 255
user authentication passwords, 259

MobiLink server
troubleshooting startup, 293

MobiLink stop utility [dbmlstop]
syntax, 613

MobiLink synchronization
Adaptive Server Anywhere clients, 117
writing .NET classes, 196
writing Java classes, 172

MobiLink synchronization client
automated script generation, 324
command line, 324
dbmlsync options, 410
using extended options, 324
using the verbosity option, 324

MobiLink synchronization logic
.NET and SQL data types, 195
data types for .NET and SQL, 195
data types for Java and SQL, 171
Java and SQL data types, 171

MobiLink synchronization scripts
constructing .NET classes, 195
constructing Java classes, 171
database transactions and .NET classes, 195
database transactions and Java classes, 171
debugging Java classes, 173
preserving database transactions, 171, 195
writing .NET classes, 196
writing Java classes, 172

MobiLink synchronization server
about, 18
deploying, 713
multiple instances, 268
options, 380
starting, 18
stopping, 18, 613
switches, 380
syntax, 380

N–O

732

MobiLink synchronization subscriptions
about, 128

MobiLink system tables
about, 15
creating in consolidated database, 13

MobiLink upload stream
defined, 24
processing, 34

MobiLink user authentication utility [dbmluser]
syntax, 618

MobiLink user creation wizard
using, 125

MobiLink user name, 22
script parameter, 60

MobiLink user names
about, 252
Contact sample, 369

MobiLink users
about, 252
adding to a remote database, 125
authenticating, 251
configuring properties at a remote database, 126
creating in remote databases, 125
dropping from a remote database, 127
passwords, 126

MobiLink utilities
MobiLink ActiveSync provider [dbasinst], 610
MobiLink certificate generator [gencert], 621
MobiLink certificate reader [readcert], 620
MobiLink client database extraction [mlxtract],

614
MobiLink stop utility [dbmlstop], 613
MobiLink user authentication [dbmluser], 618

modify_last_download_timestamp
connection event, 517

modify_next_last_download_timestamp
connection event, 519

modify_user
connection event, 521

monitoring
logging MobiLink RI violations, 599
synchronizations in MobiLink, 231

-mp option
MobiLink [dbmlsync], 425

multiple applications
differentiating MobiLink scripts, 61

N
-n option

MobiLink [dbasinst], 610
MobiLink [dbmlsync], 425

Netscape Web servers
configuring the NSAPI Redirector, 270

new users
MobiLink user authentication, 258

new_row_cursor
cursor event, 523
storing user name, 108

NewMobiLinkPwd synchronization option
about, 414

newsgroups
technical support, xxi

NSAPI Redirector
configuring, 270

NUMERIC data type
MobiLink and Adaptive Server Enterprise, 82

O
-o option

MobiLink [dbmlsrv8], 387
MobiLink [dbmlsync], 426
MobiLink [dbmluser], 618
MobiLink [mlxtract], 614

objects
MobiLink .NET API, 203
MobiLink Java API, 183

ODBC
multiple errors, 76

ODBC data sources
for MobiLink synchronization, 15

P–P

733

ODBC drivers
for use with MobiLink, 708
MobiLink character-set translation by, 44

OfflineDirectory synchronization option
about, 414

old_row_cursor
cursor event, 525
storing user name, 108

options
dbmlsrv8, 380
dbmlsync, 410
MobiLink ActiveSync provider [dbasinst], 610
MobiLink certificate generator [gencert], 621
MobiLink certificate reader [readcert], 620
MobiLink client [dbmlsync], 410
MobiLink client database extraction [mlxtract],

614
MobiLink server [dbmlsrv8], 380
MobiLink stop utility [dbmlstop], 613
MobiLink user authentication [dbmluser], 618
priority order for MobiLink extended options,

129

options for performance tuning
MobiLink, 139

options for writing synchronization logic, 38

-oq option
MobiLink [dbmlsrv8], 388

Oracle
as MobiLink consolidated databases, 14
conversion of data types in MobiLink

synchronization, 629
data types, 629
MobiLink tutorial, 347
ODBC configuration, 629
packages in MobiLink synchronization, 80
sequences in MobiLink synchronization, 81
synchronizing LONG data, 629

-os option
MobiLink [dbmlsrv8], 388
MobiLink [dbmlsync], 426
MobiLink [dbmluser], 618

-ot option
MobiLink [dbmlsrv8], 389
MobiLink [dbmlsync], 426
MobiLink [dbmluser], 618

overlaps
partitioning, 91

P
-p option

MobiLink [dbmlsync], 427
MobiLink [dbmluser], 618
MobiLink [mlxtract], 614

packages
session-wide information, 80

parameters
last download timestamp, 60
MobiLink primary keys, 60
MobiLink user name, 60
synchronization scripts, 60
table name, 60

partitioning
column-wise, 120
data among MobiLink remote databases, 155
defined, 91
disjoint, 91
row-wise, 121

partitioning rows
Contact sample, 370, 372

partitioning tables
example, 91

parts of the synchronization system, 10

passwords
changing for MobiLink, 260
MobiLink dbmluser utility, 618
MobiLink user authentication, 257, 259
MobiLink users, 126

-pc option
MobiLink [dbmluser], 618

performance
downloads, 223
MobiLink, 219
MobiLink upload stream processing, 35

performance tips
MobiLink, 220

Personal Web Manager
configuring, 272

Q–R

734

-pi option
MobiLink [dbmlsync], 427

pinging
MobiLink synchronization server, 427

port stream parameter
HTTP synchronization, 399
HTTPS synchronization, 401
synchronizing across firewalls, 266
TCP/IP synchronization, 397

-pp option
MobiLink [dbmlsync], 428

prepare_for_download
connection event, 527

preparing
remote databases for MobiLink, 149

primary key pools
example, 101
generating unique values using default global

autoincrement, 96
synchronization, 100

primary keys
MobiLink and Adaptive Server Enterprise, 82
Oracle sequences, 81
primary key pools, 101
uniqueness in synchronization, 95

priority order for extended options and connection
parameters, 129

priority synchronization
MobiLink performance, 223

private assemblies
implementing in MobiLink, 191

procedural language
role of in MobiLink synchronization, 31

protocols
HTTP synchronization, 398
HTTPS synchronization, 400
MobiLink synchronization, 10
TCP/IP synchronization, 397

-ps option
MobiLink [dbmlsrv8], 389

public key cryptography
about, 284

publication creation wizard
column-wise partitioning, 120
creating MobiLink publications, 119
row-wise partitioning, 121

publications
altering, 122
column-wise partitioning, 120
creating, 119
dropping, 124
row-wise partitioning, 121
simple, 119
using a WHERE clause, 121

publishing
selected columns, 120
selected rows, 121
tables, 119
whole tables, 119

publishing data, 119

publishing only some columns in a table, 120

publishing only some rows in a table, 121

publishing whole tables, 119

Q
-q option

MobiLink [dbmlsrv8], 389
MobiLink [dbmlstop], 613
MobiLink [dbmluser], 618
MobiLink [gencert], 621
MobiLink [mlxtract], 614
MobiLink client [dbmlsync], 428

R
-r option

MobiLink [dbmlsrv8], 389
MobiLink [dbmlsync], 429
MobiLink [gencert], 621
MobiLink [mlxtract], 614

-rd option
MobiLink [dbmlsrv8], 390

R–R

735

readcert utility
options, 620
syntax, 620

reading
elliptic-curve certificates, 620
RSA certificates, 620

recording errors during synchronization, 75

Redirector
about, 263
configuring (all versions), 268
configuring for servlet version, 273
configuring the ISAPI version for Microsoft Web

servers, 272
configuring the NSAPI version, 270
MobiLink requests, 264
specifying the location, 268

redirector.config
configuring, 268
location, 268

REDIRECTOR_HOST directive
Redirector, 268

REDIRECTOR_PORT directive
Redirector, 268

referential integrity
during MobiLink synchronization, 35
resolving MobiLink RI violations, 599

registering
applications with ActiveSync, 146

remote databases
creating Adaptive Server Anywhere clients, 118
deploying, 148
extracting, 149
SQL scripts, 149

remote DBA permissions
MobiLink synchronization, 138

remote MobiLink databases
schema changes, 116

removing
articles, 122

replication
MobiLink synchronization subscriptions, 128

report_error
connection event, 529
syntax, 75

report_odbc_error
connection event, 531

reporting errors during synchronization, 75

reqtool
how to use, 307

requests
routing, 264

requirements
MobiLink consolidated databases, 12

resolution
MobiLink conflict resolution, 104

resolve_conflict
Contact sample, 375
table event, 533

resolving
MobiLink conflicts, 104

return values
.NET synchronization, 196
Java synchronization, 172

reverse proxy
defined, 264

role of digital certificates, 288

ROLLBACK statement
event-hook procedures, 592

routing requests
MobiLink synchronization, 264

rows
partitioning, 91

RSA certificates
generating, 621
reading, 620

rsaserver.crt, 293

running .NET synchronization logic, 191

running outside the current session
MobiLink, 275

S–S

736

S
-s option

MobiLink [dbmlsrv8], 390
MobiLink [gencert], 621

-s7 option
MobiLink [mlxtract], 614

sample application
CustDB application, 361
MobiLink database schema, 361

sample database
CustDB application, 361
MobiLink database schema, 361

sample domain configuration file
about, 192

sample.crt, 293

samples
.NET synchronization logic, 200
Contact MobiLink sample, 365
Contact MobiLink sample Contact table, 372
Contact MobiLink sample Customer table, 370
Contact MobiLink sample errors, 375
Contact MobiLink sample Product table, 374
Contact MobiLink sample SalesRep table, 370
Contact MobiLink sample statistics, 375
Contact MobiLink sample tables, 367
Contact MobiLink sample users, 369
Java synchronization logic, 177
JavaAuthentication MobiLink sample, 261
MobiLink Contact sample, 148

scheduling
MobiLink synchronization, 162

schema changes
remote MobiLink databases, 116

schemas
relating consolidated tables to MobiLink remote

tables, 13

script parameters
about, 60

script types, 55

script versions
adding, 62
configuring at remote databases, 126
in MobiLink synchronization, 61

scripts
about MobiLink, 30
adding and deleting .NET connection scripts, 588
adding and deleting .NET table scripts, 589
adding and deleting Java connection scripts, 589
adding and deleting Java table scripts, 590
adding and deleting SQL connection scripts, 586
adding and deleting SQL table scripts, 587
adding to the consolidated database, 63
automating MobiLink synchronization, 50
MobiLink events, 433
MobiLink synchronization, 18
parameters, 60
supported DBMS scripting strategies, 80
versions, 61
writing scripts to download rows, 70
writing scripts to upload rows, 66

scripts and the synchronization process, 53

ScriptVersion synchronization option
about, 414

secure socket layer
with MobiLink synchronization, 284

secure socket layers
obtaining certificates, 307

security
changing passwords, 260
custom user authentication, 261
MobiLink, 284
MobiLink client architecture, 287
MobiLink custom user authentication, 446
MobiLink synchronization, 138
MobiLink user authentication, 251, 254
new MobiLink users, 258
user authentication passwords, 259

security stream parameter
HTTP synchronization, 399
TCP/IP synchronization, 398

security tips, 291

SELECT statement
FOR UPDATE clause, 68

self-signed certificates, 294
making, 295
using, 296

SendDownloadAck synchronization option
about, 414

S–S

737

SendTriggers synchronization option
about, 414

sequences
primary key uniqueness in MobiLink

synchronization, 81

server authentication
MobiLink, 291

server stored procedures
MobiLink, 586

ServerContext
MobiLink .NET API, 203
MobiLink Java API, 184

ServerException
MobiLink .NET API, 204
MobiLink Java API, 185

servers
about MobiLink synchronization, 18

service dependencies
MobiLink, 280

services
configuring, 277
dependencies, 280
removing, 277
running MobiLink, 275
running multiple, 280
Windows, 277

servlet Redirector
configuring, 273

servlets
installing, 273

session-wide variables
IBM DB2 in MobiLink synchronization, 81
Oracle packages, 80

setup
MobiLink .NET synchronization logic, 189
MobiLink Java synchronization logic, 167

shared assemblies
implementing in MobiLink, 191

ShutdownCallback
MobiLink .NET API, 204

ShutdownListener
MobiLink Java API, 185

signing
elliptic-curve and RSA certificates, 621

SiteScriptName synchronization option
about, 414

-sl dnet option
MobiLink [dbmlsrv8], 390
user-defined start classes, 197
using -MLAutoLoadPath, 191
using -MLDomConfigFile, 191

-sl java option
MobiLink [dbmlsrv8], 391
user-defined start classes, 174

SLEEP directive
Redirector, 268

snapshot synchronization
about, 88
Contact sample, 370
example, 89

sort order
characters and MobiLink synchronization, 42

sp_hook_dbmlsync_abort stored procedure
SQL syntax, 593

sp_hook_dbmlsync_begin stored procedure
SQL syntax, 594

sp_hook_dbmlsync_delay stored procedure
SQL syntax, 595

sp_hook_dbmlsync_download_begin stored
procedure

SQL syntax, 596

sp_hook_dbmlsync_download_com_error stored
procedure

SQL syntax, 596

sp_hook_dbmlsync_download_end stored procedure
SQL syntax, 597

sp_hook_dbmlsync_download_fatal_SQL_error
stored procedure

SQL syntax, 598

sp_hook_dbmlsync_download_log_ri_violation
stored procedure

SQL syntax, 599

S–S

738

sp_hook_dbmlsync_download_ri_violation stored
procedure

SQL syntax, 600

sp_hook_dbmlsync_download_sql_error stored
procedure

SQL syntax, 601

sp_hook_dbmlsync_download_table_begin stored
procedure

SQL syntax, 602

sp_hook_dbmlsync_download_table_end stored
procedure

SQL syntax, 602

sp_hook_dbmlsync_end stored procedure
SQL syntax, 603

sp_hook_dbmlsync_logscan_begin stored procedure
SQL syntax, 604

sp_hook_dbmlsync_logscan_end stored procedure
SQL syntax, 605

sp_hook_dbmlsync_upload_begin stored procedure
SQL syntax, 606

sp_hook_dbmlsync_upload_end stored procedure
SQL syntax, 607

sp_hook_dbxtract_begin procedure
unique primary keys, 98
using, 98

SQL Anywhere Studio
documentation, xiv

SQL Server
as MobiLink consolidated databases, 14

SQL synchronization logic
alternatives, 38
MobiLink, 48

SQL syntax
ml_add_connection_script stored procedure, 586
ml_add_dnet_connection_script stored

procedure, 588
ml_add_dnet_table_script stored procedure, 589
ml_add_java_connection_script stored

procedure, 589
ml_add_java_table_script stored procedure, 590
ml_add_table_script stored procedure, 587
MobiLink server [dbmlsrv8], 380
sp_hook_dbmlsync_abort stored procedure, 593

sp_hook_dbmlsync_begin stored procedure, 594
sp_hook_dbmlsync_delay stored procedure, 595
sp_hook_dbmlsync_download_begin stored

procedure, 596
sp_hook_dbmlsync_download_com_error stored

procedure, 596
sp_hook_dbmlsync_download_end stored

procedure, 597
sp_hook_dbmlsync_download_fatal_SQL_error

stored procedure, 598
sp_hook_dbmlsync_download_log_ri_violation

stored procedure, 599
sp_hook_dbmlsync_download_ri_violation

stored procedure, 600
sp_hook_dbmlsync_download_sql_error stored

procedure, 601
sp_hook_dbmlsync_download_table_begin

stored procedure, 602
sp_hook_dbmlsync_download_table_end stored

procedure, 602
sp_hook_dbmlsync_end stored procedure, 603
sp_hook_dbmlsync_logscan_begin stored

procedure, 604
sp_hook_dbmlsync_logscan_end stored

procedure, 605
sp_hook_dbmlsync_upload_begin stored

procedure, 606
sp_hook_dbmlsync_upload_end stored

procedure, 607

SQLType
MobiLink .NET API, 208

start classes
.NET synchronization logic, 197
DMLStartClasses option for Java, 391
Java synchronization logic, 174
MLStartClasses option for .NET, 390

starting
MobiLink synchronization from UltraLite

applications, 21
MobiLink synchronization server, 18

statement-based scripts
about, 66
list, 56

statement-based uploads
conflict detection, 105
performance, 221

StaticCursorLongColBuffLen
Adaptive Server Enterprise, 81

S–S

739

statistical properties
MobiLink, 247

stop
MobiLink synchronization server, 19

STOP SYNCHRONIZATION DELETE
using, 156

stop utility [dbmlstop]
syntax, 613

stopping
MobiLink, 613
MobiLink synchronization server, 18, 19
upload of deletes using MobiLink, 156

stored procedures
calling in MobiLink synchronization using

ODBC syntax, 81
ml_add_connection_script SQL syntax, 586
ml_add_dnet_connection_script SQL syntax, 588
ml_add_dnet_table_script SQL syntax, 589
ml_add_java_connection_script SQL syntax, 589
ml_add_java_table_script SQL syntax, 590
ml_add_table_script SQL syntax, 587
MobiLink, 585
MobiLink client procedures, 592
MobiLink server, 586
MobiLink stored procedure source code, 64
sp_hook_dbmlsync_abort SQL syntax, 593
sp_hook_dbmlsync_begin SQL syntax, 594
sp_hook_dbmlsync_delay SQL syntax, 595
sp_hook_dbmlsync_download_begin SQL

syntax, 596
sp_hook_dbmlsync_download_com_error SQL

syntax, 596
sp_hook_dbmlsync_download_end SQL syntax,

597
sp_hook_dbmlsync_download_fatal_SQL_error

SQL syntax, 598
sp_hook_dbmlsync_download_log_ri_violation,

599
sp_hook_dbmlsync_download_ri_violation, 600
sp_hook_dbmlsync_download_sql_error SQL

syntax, 601
sp_hook_dbmlsync_download_table_begin SQL

syntax, 602
sp_hook_dbmlsync_download_table_end SQL

syntax, 602
sp_hook_dbmlsync_end SQL syntax, 603
sp_hook_dbmlsync_logscan_begin SQL syntax,

604

sp_hook_dbmlsync_logscan_end SQL syntax,
605

sp_hook_dbmlsync_upload_begin SQL syntax,
606

sp_hook_dbmlsync_upload_end SQL syntax, 607
using to add or delete synchronization scripts, 64
using to download data, 113

storing user name during conflict resolution, 108

StreamCompression synchronization option
about, 414

subscribing MobiLink synchronization users, 128

subscriptions
MobiLink synchronization, 128

support
newsgroups, xxi

supported DBMS scripting strategies, 80

switches
MobiLink ActiveSync provider [dbasinst], 610
MobiLink certificate generator [gencert], 621
MobiLink certificate reader [readcert], 620
MobiLink client [dbmlsync], 410
MobiLink client database extraction [mlxtract],

614
MobiLink server [dbmlsrv8], 380
MobiLink user authentication [dbmluser], 618

switches:, 613

Sybase Adaptive Server Enterprise
conversion of data types in MobiLink

synchronization, 626

syncasa.sql
about, 13

syncase.sql
about, 13

syncase125.sql
about, 13

syncdb2.sql
about, 13

synchronization
about MobiLink, 9, 283
architecture of the MobiLink system, 10
changing passwords, 260
conflict resolution, 104
conversion of data types in MobiLink, 625

S–S

740

conversion to Adaptive Server Enterprise data
types in MobiLink, 626

conversion to IBM DB2 data types in MobiLink,
627

conversion to Microsoft SQL Server data types in
MobiLink, 630

conversion to Oracle data types in MobiLink, 629
custom user authentication, 261
customizing, 592
deleting rows, 72
downloading rows, 70
event hooks, 592
initiating, 138
many-to-many relationships, 92
MobiLink character sets, 42
MobiLink character-set translation under other

platforms, 44
MobiLink character-set translation under

Windows, 42
MobiLink fault recovery, 32
MobiLink performance, 35
MobiLink process overview, 24
MobiLink scripts, 18
MobiLink stored procedures, 586
MobiLink synchronization server authentication,

293
MobiLink system tables, 15
MobiLink transactions, 32
MobiLink tutorial, 315, 329, 347
MobiLink utilities, 609
ODBC data sources for MobiLink, 15
options for writing synchronization logic, 38
performance tips, 219
process, 53
running the MobiLink synchronization server,

275
snapshot, 89
techniques, 83
timestamps in MobiLink, 33
transactions, 592
transport-layer security with MobiLink, 284
using ActiveSync, 143
writing MobiLink scripts in .NET, 187
writing MobiLink scripts in Java, 165
writing scripts, 47

synchronization basics, 9

synchronization definitions
differences from version 7, 132
rewriting for version 8, 136
writing, 134

synchronization errors
handling MobiLink, 75
troubleshooting, 386

synchronization event hook sequence, 157

synchronization events
about MobiLink synchronization, 436
authenticate_user, 446
authenticate_user_hashed, 450
begin_connection, 452
begin_download, 454, 456
begin_download_deletes, 458
begin_download_rows, 460
begin_synchronization, 462, 464
begin_upload, 466, 468
begin_upload_deletes, 470
begin_upload_rows, 472
download_cursor, 474
download_delete_cursor, 477
download_statistics, 479, 482
end_connection, 485
end_download, 487, 489
end_download_deletes, 491
end_download_rows, 493
end_synchronization, 495, 497
end_upload, 499, 502
end_upload_deletes, 504
end_upload_rows, 506
example_upload_cursor, 508
example_upload_delete, 509
example_upload_insert, 510
example_upload_update, 511
handle_error, 512
handle_odbc_error, 515
MobiLink download, 444
MobiLink upload, 438
modify_last_download_timestamp, 517
modify_next_last_download_timestamp, 519
modify_user, 521
new_row_cursor, 523
old_row_cursor, 525
prepare_for_download, 527
report_error, 529
report_odbc_error, 531
resolve_conflict, 533
synchronization_statistics, 535, 537
time_statistics, 539, 541
upload_cursor, 543
upload_delete, 545
upload_fetch, 547
upload_insert, 549

S–S

741

upload_new_row_insert, 551
upload_old_row_insert, 553
upload_statistics, 554, 557
upload_update, 560

synchronization logic
MobiLink, 48
options for writing, 38

synchronization parameters
HTTP synchronization, 397
HTTPS synchronization, 397
TCP/IP synchronization, 397

synchronization scripts
.NET, 187
.NET methods, 196
about, 48
adding and deleting, 63
adding or deleting with stored procedures, 64
adding with Sybase Central, 63
automatic generation, 50
connection scripts, 55, 58
cursor scripts, 55
DBMS dependencies, 80
download_cursor, 71
example, 49
example generation, 51
examples, 77
execution during, 53
handle_error event, 75
implementing for .NET, 189
implementing for Java, 167
Java, 165
Java methods, 172
MobiLink events, 433
parameters, 60
report_error, 75
statement-based scripts, 55, 56
supported DBMS scripting strategies, 80
table scripts, 55, 58
testing, 78
types, 55
versions in MobiLink, 61
writing, 47
writing scripts to download rows, 70
writing scripts to upload rows, 66

synchronization server
about MobiLink, 18

synchronization subscriptions
altering, 129
dropping, 130
MobiLink, 128
options, 129

synchronization techniques
data entry, 110
deleting rows, 111
failed downloads, 112
MobiLink tutorial, 359
partitioning, 91
primary key pools, 100
snapshot-based synchronization, 88
stored procedures to download, 113
timestamp-based synchronization, 86
uploading rows, 66

synchronization upload stream
MobiLink processing, 34

synchronization users
adding to a remote database, 125
configuring properties at a remote database, 126
creating in remote databases, 125
dropping from a remote database, 127
multiple, 139

synchronization_statistics
connection event, 535
table event, 537

SynchronizationException
MobiLink .NET API, 205
MobiLink Java API, 186

synchronizing
databases with MobiLink, 283

syncmss.sql
about, 13

syncora.sql
about, 13
using, 351

syntax
MobiLink ActiveSync provider [dbasinst], 610
MobiLink certificate generator [gencert], 621
MobiLink certificate reader [readcert], 620
MobiLink client database extraction [mlxtract],

614
MobiLink scripts, 433
MobiLink stop utility [dbmlstop], 613
MobiLink stored procedures, 586

T–T

742

MobiLink synchronization utilities, 609
MobiLink user authentication [dbmluser], 618

system tables
creating in MobiLink consolidated database, 13
MobiLink synchronization, 15

T
-t option

MobiLink [dbmlsrv8], 392
MobiLink [dbmlstop], 613

table, 58

table scripts
about, 58
adding .NET scripts, 589
adding Java scripts, 590
adding SQL scripts, 587
adding with Sybase Central, 63
defined, 49, 55
deleting .NET scripts, 589
deleting Java scripts, 590
deleting SQL scripts, 587

TableOrder synchronization option
dbmlsync extended option, 414

tables
column-wise partitioning, 120
partitioning, 91
publishing, 119
relating consolidated tables to MobiLink remote

tables, 13
row-wise partitioning, 121

TCP/IP
dbmlsrv8 -x command line option, 397
synchronization parameters, 397

technical support
newsgroups, xxi

temporarily stopping synchronization of deletes, 156

testing
synchronization scripts, 78

testing script syntax, 78

time_statistics
connection event, 539
table event, 541

timestamp-based synchronization
about, 86
Contact sample, 370, 372
download_cursor script, 87
download_delete_cursor script, 87

tips
synchronization techniques, 85

Tomcat
configuring servlet Redirector for MobiLink, 273

transaction log
location for dbmlsync, 140

transactions
during MobiLink synchronization, 32, 33
in MobiLink synchronization scripts, 171, 195

translation
character-set by ODBC drivers, 44

translation between character sets
MobiLink synchronization under other platforms,

44
MobiLink synchronization under Windows, 42

transport-layer security
about, 283
invoking, 293
MobiLink, 284
MobiLink client architecture, 287
MobiLink security tips, 291
obtaining certificates, 307

troubleshooting
handling failed downloads, 112
MobiLink, 282
MobiLink deployment, 154
MobiLink security, 293
MobiLink synchronization server log, 19
synchronization errors, 386

-tt option
MobiLink [dbmlsrv8], 393

tutorials
MobiLink, 329
MobiLink sample applications, 359
MobiLink with Adaptive Server Anywhere

clients, 315
MobiLink with Oracle, 347
MobiLink with Sybase Central, 329

U–U

743

U
-u option

MobiLink [dbasinst], 610
MobiLink [dbmlsrv8], 393
MobiLink [dbmlsync], 429
MobiLink [dbmluser], 618
MobiLink [mlxtract], 614

-ud option
MobiLink [dbmlsrv8], 393

ULSynchronize library function, 21

UltraLite, 77
deploying, 715
MobiLink clients, 21

UltraLite applications
as MobiLink clients, 21

UltraLite clients
MobiLink, 21

unique primary keys
generating using global autoincrement, 96
generating using key pools, 100
generating using UUIDs, 95
MobiLink installations, 95

unknown_timeout stream parameter
HTTP synchronization, 400
HTTPS synchronization, 401

unkown_timeout stream parameter
synchronizing across firewalls, 266

upgrading applications
using multiple MobiLink script versions, 61

upload cache size
MobiLink performance, 221

upload events
about, 66
MobiLink synchronization, 438

upload stream
defined, 24
events, 66
MobiLink transactions, 32
processing of MobiLink, 34

upload_cursor
about, 55
conflict detection, 106
cursor event, 543

upload_delete
about, 56
Contact sample, 372, 373
table event, 545

upload_fetch
conflict detection, 105
Contact sample, 375
table event, 547

upload_insert
about, 56
Contact sample, 371, 373
table event, 549

upload_new_row_insert
about, 56
Contact sample, 375
table event, 551

upload_old_row_insert
about, 56
Contact sample, 375
table event, 553

upload_statistics
connection event, 554
table event, 557

upload_update
about, 56
conflict detection, 105
Contact sample, 371, 373, 374
table event, 560

uploading rows
MobiLink performance, 223
writing scripts, 66

-urc option
MobiLink [dbmlsync], 430

url_suffix stream parameter
HTTP synchronization, 400
HTTPS synchronization, 402
synchronizing across firewalls, 266

user authentication
changing passwords, 260
choosing a mechanism in MobiLink, 254
custom mechanism, 261

V–V

744

Java synchronization logic, 261
MobiLink architecture, 255
MobiLink passwords, 257
MobiLink security, 251
new users, 258
passwords, 259

user authentication utility [dbmluser]
syntax, 618

user names
MobiLink, 252
MobiLink client names, 22
MobiLink user authentication utility [dbmluser],

618

user-defined start classes
MobiLink .NET, 197
MobiLink Java, 174

users
about MobiLink, 252

user-specific conflict resolution, 108

Using a global certificate as a server certificate, 308

using a globally-signed certificate as an enterprise
certificate, 311

using a self-signed certificate, 296

using ActiveSync synchronization, 143

using stored procedures to add or delete
synchronization scripts, 64

using the signed certificates, 303

utilities
MobiLink ActiveSync provider [dbasinst], 610
MobiLink certificate generator [gencert], 621
MobiLink certificate reader [readcert], 620
MobiLink client database extraction [mlxtract],

614
MobiLink stop utility [dbmlstop], 613
MobiLink synchronization, 609
MobiLink user authentication [dbmluser], 618

UUIDs
MobiLink synchronization application, 95

V
-v option

MobiLink [dbasinst], 610
MobiLink [dbmlsrv8], 393
MobiLink [dbmlsync], 430
MobiLink [dbmlsync] performance, 222
MobiLink [mlxtract], 614

-v+ option
MobiLink [dbmlsrv8], 393
MobiLink [dbmlsync], 430

-vc option
MobiLink [dbmlsrv8], 393
MobiLink [dbmlsync], 430

Verbose
Upload about, 414

Verbose synchronization option
about, 414

VerboseHooks
about, 414

VerboseMin
about, 414

VerboseOptions
about, 414

VerboseRowCounts
about, 414

VerboseValues
about, 414

verbosity option
MobiLink, 322
MobiLink [dbmlsync], 430

verifying certificate fields, 310

verifying fields in certificate chains, 311

version stream parameter
HTTP synchronization, 400
HTTPS synchronization, 402

versions
adding script versions, 62
of MobiLink synchronization scripts, 61

-vh option
MobiLink [dbmlsrv8], 393

W–X

745

Visual Basic
support in MobiLink .NET, 188

-vn option
MobiLink [dbmlsrv8], 393
MobiLink [dbmlsync], 430

-vo option
MobiLink [dbmlsync], 430

-vp option
MobiLink [dbmlsync], 430

-vr option
MobiLink [dbmlsrv8], 393
MobiLink [dbmlsync], 430

-vs option
MobiLink [dbmlsrv8], 393
MobiLink [dbmlsync], 430

-vt option
MobiLink [dbmlsrv8], 393

-vu option
MobiLink [dbmlsrv8], 393
MobiLink [dbmlsync], 430

W
-w option

MobiLink [dbmlsrv8], 394
MobiLink [dbmlstop], 613

-wc option
MobiLink [dbmlsync], 431

Web servers
configuring, 264
configuring for synchronization, 268
configuring ISAPI Microsoft for synchronization,

272
configuring NSAPI Netscape for

synchronization, 270
MobiLink clients and, 266

WHERE clause
publications, 121

wizards
add connection script, 63
add service, 277
add synchronized table, 63
add synchronizing table script, 64, 335

add user, 257
add version, 62, 335
article creation, 123
create database, 331
MobiLink user creation, 125
publication creation, 119

worker threads
MobiLink, 225
MobiLink performance, 220

writing
.NET synchronization logic, 187
Java synchronization logic, 165

writing download_cursor scripts, 71

writing scripts to download rows, 70

writing scripts to handle errors, 75

writing scripts to upload rows, 66

writing SQL synchronization scripts, 47

writing synchronization scripts
supported DBMS scripting strategies, 80

writing upload_cursor scripts, 68

writing upload_delete scripts, 67

writing upload_fetch scripts, 67

writing upload_insert scripts, 67

writing upload_update scripts, 67

-wu option
MobiLink [dbmlsrv8], 395

X
-x option

MobiLink [dbmlsrv8], 396
MobiLink [dbmlsrv8] -sl dnet, 390
MobiLink [dbmlsrv8] -sl java, 391
MobiLink [dbmlsync], 431
MobiLink [mlxtract], 614

X509 certificates
generating, 621
reading, 620

-xf option
MobiLink [mlxtract], 614

Y–Z

746

-xh option
MobiLink [mlxtract], 614

-xp option
MobiLink [mlxtract], 614

Xusage.txt
location, 390, 391

Y
-y option

MobiLink [mlxtract], 614

Z
-za option

MobiLink [dbmlsrv8], 402

-zac option
MobiLink [dbmlsrv8], 403

-zd option
MobiLink [dbmlsrv8], 403

-ze option
MobiLink [dbmlsrv8], 403

-zec option
MobiLink [dbmlsrv8], 404

-zp option
MobiLink [dbmlsrv8], 404

-zs option
MobiLink [dbmlsrv8], 405

-zt option
MobiLink [dbmlsrv8], 405

-zu option
MobiLink [dbmlsrv8], 405

-zw option
MobiLink [dbmlsrv8], 405

-zwd option
MobiLink [dbmlsrv8], 406

-zwe option
MobiLink [dbmlsrv8], 407

	MobiLink Synchronization User's Guide
	About This Manual
	SQL Anywhere Studio documentation
	The SQL Anywhere Studio documentation set
	Documentation formats

	Documentation conventions
	Syntax conventions
	Graphic icons

	The sample database

	1. Introducing MobiLink Synchronization
	The MobiLink synchronization process
	MobiLink features
	MobiLink synchronization characteristics

	MobiLink terminology

	2. Synchronization Basics
	Parts of the synchronization system
	The consolidated database
	Consolidated database server requirements
	How remote tables relate to consolidated tables
	Creating a consolidated database
	MobiLink system tables

	The MobiLink synchronization server
	Running the MobiLink synchronization server
	Stopping the MobiLink synchronization server
	Logging MobiLink synchronization server actions

	MobiLink clients
	Adaptive Server Anywhere clients
	UltraLite clients
	Specifying the communications protocol for clients
	The MobiLink user

	The synchronization process
	MobiLink events
	Procedural language
	Built-in automation and communications fault recovery
	Transactions in the synchronization process
	How synchronization failure is handled
	How the upload stream is processed
	Referential integrity and synchronization

	Options for writing synchronization logic
	Character set considerations
	Character-set translation during synchronization: Windows
	Character set translation during synchronization: non-Windows
	Controlling ODBC driver character-set translation

	Security

	3. Writing Synchronization Scripts
	Introduction to synchronization scripts
	A simple synchronization script
	Generating scripts automatically
	Generating example scripts

	Scripts and the synchronization process
	Script types
	Cursor scripts
	Statement-based scripts
	Connection scripts
	Table scripts

	Script parameters
	Script versions
	Adding a script version

	Adding and deleting scripts in your consolidated database
	Adding or deleting scripts with Sybase Central
	Adding or deleting scripts with stored procedures
	Direct inserts of scripts

	Writing scripts to upload rows
	Writing upload_insert scripts
	Writing upload_update scripts
	Writing upload_delete scripts
	Writing upload_fetch scripts
	Writing upload_cursor scripts

	Writing scripts to download rows
	Writing download_cursor scripts
	Writing download_delete_cursor scripts

	Writing scripts to handle errors
	Reporting errors
	Handling multiple errors on a single SQL statement

	Example scripts for UltraLite
	Testing script syntax
	DBMS-dependent scripts
	Supported DBMS scripting strategies

	4. Synchronization Techniques
	Introduction
	Development tips
	Timestamp-based synchronization
	Snapshot synchronization
	Partitioning rows among remote databases
	Disjoint partitioning
	Partitioning with overlaps
	Partitioning child tables

	Maintaining unique primary keys
	Maintaining unique primary keys using UUIDs
	Maintaining unique primary keys using global autoincrement
	Maintaining unique primary keys using key pools
	A primary key pool example

	Handling conflicts
	How conflicts are detected
	Forced conflict resolution
	Storing the user name

	Data entry
	Handling deletes
	Handling failed downloads
	Downloading a result set from a stored procedure call
	Schema changes in remote databases
	Adding tables to remote databases
	Changing table definitions in remote databases

	5. Adaptive Server Anywhere Clients
	Creating a remote database
	Publishing data
	Publishing only some columns in a table
	Publishing only some rows in a table
	Altering existing publications
	Dropping publications

	Creating MobiLink users
	Adding MobiLink users to a remote database
	Configuring MobiLink user properties
	Dropping MobiLink users

	Subscribing MobiLink synchronization users
	Priority order for extended options and connection parameters
	Altering MobiLink subscriptions
	Dropping MobiLink subscriptions

	Differences from version 7
	Writing synchronization definitions
	Rewriting synchronization definitions for version 8

	Initiating synchronization
	Multiple MobiLink synchronization users
	Tuning synchronization
	Transaction log files
	Concurrency during synchronization
	Initiating synchronization from an application

	Using ActiveSync synchronization
	Configuring Adaptive Server Anywhere remote databases for ActiveSync
	Installing the MobiLink provider for ActiveSync
	Registering Adaptive Server Anywhere clients for ActiveSync

	Deploying remote databases
	Customizing a prototype remote database
	Extracting remote databases
	Troubleshooting deployment

	Partitioning data between remote databases
	Temporarily stopping synchronization of deletes
	Customizing the client synchronization process
	Synchronization event hook sequence
	Using event-hook procedures
	Scheduling synchronization

	6. Writing Synchronization Scripts in Java
	Introduction
	Setting up Java synchronization logic
	Running Java synchronization logic
	Writing Java synchronization logic
	Class instances
	Transactions
	SQL-Java data types
	Constructors
	Methods
	Debugging Java classes
	User-defined start classes

	Sample: Java synchronization logic
	Introduction
	Create your Java synchronization script

	MobiLink Java API Reference
	InOutInteger interface
	InOutString interface
	InOutByteArray interface
	ServerContext interface
	ServerException class
	ShutdownListener interface
	DBConnectionContext interface
	SynchronizationException class

	7. Writing Synchronization Scripts in .NET
	Introduction
	Setting up .NET synchronization logic
	Running .NET synchronization logic
	Loading assemblies
	Printing information from .NET

	Writing .NET synchronization logic
	Class instances
	Transactions
	SQL-.NET data types
	Constructors
	Methods
	User-defined start classes

	.NET synchronization example
	MobiLink .NET API Reference
	ServerContext interface
	ServerException class
	ShutdownCallback delegate
	DBConnectionContext interface
	SynchronizationException class
	DBCommand interface
	SQLType enumeration
	DBConnection interface
	DBParameter class
	DBParameterCollection class
	DBRowReader interface

	8. MobiLink Performance
	Performance tips
	Key factors influencing MobiLink performance
	Tuning MobiLink for performance

	Monitoring MobiLink performance

	9. MobiLink Monitor
	Introduction
	Starting the MobiLink Monitor
	Using the MobiLink Monitor
	Details Table pane
	Chart pane
	Overview pane
	Options
	Session Properties

	Saving Monitor data
	Customizing your statistics

	10. Authenticating MobiLink Users
	About MobiLink users
	Choosing a user authentication mechanism
	User authentication architecture
	Providing initial passwords for users
	Synchronizations from new users
	Prompting end users to enter passwords
	Changing passwords
	Custom user authentication mechanisms

	11. Synchronizing Through a Web Server
	Introduction
	Configuring MobiLink clients and servers for the Redirector
	Configuring MobiLink clients
	Configuring the MobiLink synchronization server

	Configuring the Redirector (all versions)
	Copy redirector.config to the Web server
	Set up the Redirector configuration file

	Configuring NSAPI Redirector for Netscape Web servers
	Configuring ISAPI Redirector for Microsoft Web servers
	Configuring the servlet Redirector

	12. Running MobiLink Outside the Current Session
	Running the UNIX MobiLink server as a daemon
	Running the Windows MobiLink server as a service
	Adding, modifying, and removing services
	Running more than one service at a time

	Troubleshooting MobiLink server startup
	Ensure that network communication software is running
	Debugging network communications startup problems

	13. Transport-Layer Security
	About transport-layer security
	About public-key cryptography
	Client architecture
	The role of digital certificates
	Using chains of certificates
	Server authentication
	Security tips

	Invoking transport-layer security
	Self-signed certificates

	Certificate authorities
	Certificate chains
	Enterprise root certificates
	Globally signed certificates
	Verifying certificate fields

	MobiLink Tutorials
	14. Tutorial: Synchronizing Adaptive Server Anywhere Databases
	Introduction
	Lesson 2: Running the MobiLink synchronization server
	Lesson 3: Running the MobiLink synchronization client
	Tutorial cleanup
	Summary
	Further reading

	15. Tutorial: Writing SQL Scripts Using Sybase Central
	Introduction
	Lesson 1: Creating your databases
	Lesson 2: Creating scripts for your synchronization
	Lesson 3: Running the MobiLink synchronization server
	Lesson 4: Running the MobiLink synchronization client
	Lesson 5: Monitoring your MobiLink synchronization using log files
	Tutorial cleanup
	Further reading

	16. Tutorial: Using MobiLink with an Oracle 8i Consolidated Database
	Introduction
	Lesson 1: Create your databases
	SQL files
	ODBC data sources
	MobiLink system tables
	Databases

	Lesson 2: Starting the MobiLink synchronization server
	Lesson 3: Running the MobiLink synchronization client
	Summary
	Further reading

	17. Using MobiLink Sample Applications
	Introduction
	The CustDB sample
	The CustDB sample database
	Application logic source code
	Synchronization logic source code

	The Contact sample
	Building the Contact sample
	Running the Contact sample
	Tables in the Contact databases
	Users in the Contact sample
	Synchronizing sales representatives in the Contact sample
	Synchronizing customers in the Contact sample
	Synchronizing contacts in the Contact sample
	Synchronizing products in the Contact sample
	Monitoring statistics and errors in the Contact sample

	18. MobiLink Synchronization Server Options
	MobiLink synchronization server
	dbmlsrv8 options

	19. MobiLink Synchronization Client
	MobiLink synchronization client
	dbmlsync options
	-c option
	-d option
	-dl option
	-e extended options
	-eh option
	-ep option
	-eu option
	-i option
	-is option
	-k option
	-l option
	-mn option
	-mp option
	-n option
	-o option
	-p option
	-pi option
	-pp option
	-q option
	-r option
	-u option
	-urc option
	-v option
	-wc option
	-x option

	20. Synchronization Events
	Overview of MobiLink events
	Events during upload
	Events during download

	authenticate_user connection event
	authenticate_user_hashed connection event
	begin_connection connection event
	begin_download connection event
	begin_download table event
	begin_download_deletes table event
	begin_download_rows table event
	begin_synchronization connection event
	begin_synchronization table event
	begin_upload connection event
	begin_upload table event
	begin_upload_deletes table event
	begin_upload_rows table event
	download_cursor cursor event
	download_delete_cursor cursor event
	download_statistics connection event
	download_statistics table event
	end_connection connection event
	end_download connection event
	end_download table event
	end_download_deletes table event
	end_download_rows table event
	end_synchronization connection event
	end_synchronization table event
	end_upload connection event
	end_upload table event
	end_upload_deletes table event
	end_upload_rows table event
	example_upload_cursor table event
	example_upload_delete table event
	example_upload_insert table event
	example_upload_update table event
	handle_error connection event
	handle_odbc_error connection event
	modify_last_download_timestamp connection event
	modify_next_last_download_timestamp connection event
	modify_user connection event
	new_row_cursor cursor event
	old_row_cursor cursor event
	prepare_for_download connection event
	report_error connection event
	report_odbc_error connection event
	resolve_conflict table event
	synchronization_statistics connection event
	synchronization_statistics table event
	time_statistics connection event
	time_statistics table event
	upload_cursor cursor event
	upload_delete table event
	upload_fetch table event
	upload_insert table event
	upload_new_row_insert table event
	upload_old_row_insert table event
	upload_statistics connection event
	upload_statistics table event
	upload_update table event

	21. MobiLink SQL Statements
	ALTER PUBLICATION statement
	ALTER SYNCHRONIZATION DEFINITION statement (deprecated)
	ALTER SYNCHRONIZATION SITE statement (deprecated)
	ALTER SYNCHRONIZATION SUBSCRIPTION statement
	ALTER SYNCHRONIZATION TEMPLATE statement (deprecated)
	ALTER SYNCHRONIZATION USER statement
	CREATE PUBLICATION statement
	CREATE SYNCHRONIZATION DEFINITION statement (deprecated)
	CREATE SYNCHRONIZATION SITE statement (deprecated)
	CREATE SYNCHRONIZATION SUBSCRIPTION statement
	CREATE SYNCHRONIZATION TEMPLATE statement (deprecated)
	CREATE SYNCHRONIZATION USER statement
	DROP PUBLICATION statement
	DROP SYNCHRONIZATION DEFINITION statement (deprecated)
	DROP SYNCHRONIZATION SITE statement (deprecated)
	DROP SYNCHRONIZATION SUBSCRIPTION statement
	DROP SYNCHRONIZATION TEMPLATE statement (deprecated)
	DROP SYNCHRONIZATION USER statement [MobiLink]
	START SYNCHRONIZATION DELETE statement
	STOP SYNCHRONIZATION DELETE statement

	22. Stored Procedures
	Stored procedures to add or delete scripts
	ml_add_connection_script
	ml_add_table_script
	ml_add_dnet_connection_script
	ml_add_dnet_table_script
	ml_add_java_connection_script
	ml_add_java_table_script

	Client event-hook procedures
	sp_hook_dbmlsync_abort
	sp_hook_dbmlsync_begin
	sp_hook_dbmlsync_delay
	sp_hook_dbmlsync_download_begin
	sp_hook_dbmlsync_download_com_error
	sp_hook_dbmlsync_download_end
	sp_hook_dbmlsync_download_fatal_sql_error
	sp_hook_dbmlsync_download_log_ri_violation
	sp_hook_dbmlsync_download_ri_violation
	sp_hook_dbmlsync_download_sql_error
	sp_hook_dbmlsync_download_table_begin
	sp_hook_dbmlsync_download_table_end
	sp_hook_dbmlsync_end
	sp_hook_dbmlsync_logscan_begin
	sp_hook_dbmlsync_logscan_end
	sp_hook_dbmlsync_upload_begin
	sp_hook_dbmlsync_upload_end

	23. Utilities
	ActiveSync provider installation utility
	MobiLink stop utility
	MobiLink client database extraction utility
	MobiLink user authentication utility
	Certificate reader utility
	Certificate generation utility

	24. Data Type Conversions
	Sybase Adaptive Server Enterprise
	IBM DB2
	Oracle
	Microsoft SQL Server

	25. MobiLink Communication Error Messages
	Communication error messages sorted by code
	Communication error messages sorted by message
	Communication error messages sorted by constant
	Communication error descriptions
	ActiveSync provider has not been installed
	ActiveSync synchronization cannot be initiated by an application
	Unable to create a random number object
	Unable to dequeue from the connection queue
	An end read failed
	An end write failed
	Unable to generate a random number
	An error status was returned: '%1!s!'
	The HTTP buffer size specified is out of the valid range
	An unexpected character was read while parsing the chunk length. %1!s!
	Failed to read encoded chunk length
	Client id is not available for us in HTTP header
	The content type '%1!s!' is unknown
	Failed to read encoded CR LF
	Failed to read CR LF
	Expected data from remote but current request is not a POST
	Extra data found in the HTTP body. %1!s!
	Timed out while waiting for the next HTTP request in this synchronization
	Unable to parse cookie: '%1!s!'
	Unknown transfer encoding: '%1!s!'
	Unsupported HTTP version: %1!s!
	Unable to initialize the random number generator
	Unable to load the network interface library
	Unable to allocate %1!s! bytes
	No error or unknown error
	Feature not implemented
	Invalid parameter '%1!s!'
	Parameter value '%1!s!' is not a valid boolean value. The value must be 0 or 1
	Parameter value '%1!s!' is not a valid hexadecimal value
	Parameter value '%1!s!' is not an unsigned integer
	Parameter value '%1!s!' is not an unsigned integer value or range. A range has the form NNN-NNN
	Unable to parse the parameter string '%1!s!'
	Unable to read %1!s! bytes
	Unable to add a certificate to a certificate chain
	Unable to add a trusted certificate
	Internal error 4028
	Invalid certificate chain length (%1!s!)
	Internal error 4029
	Unrecognized common name '%1!s!'
	Unrecognized organization '%1!s!'
	Unrecognized organization unit '%1!s!'
	No trusted certificates found
	A certificate has expired
	Unable to fetch a certificate expiry date
	Unable to open certificate file '%1!s!'
	Server certificate not trusted
	Certificate error (4023)
	Invalid root certificate
	Unable to allocate a certificate
	Unable to create a private key object
	Unable to duplicate security context
	Internal error 4030
	Unable to copy a certificate
	Handshake error
	Unable to import a certificate
	Unable to read certificates
	Unable to read the private key
	Internal error 4032
	Internal error 4031
	Unable to attach the network layer to the security layer
	Internal error 4027
	Unable to set the private key
	Unable to set the protocol side (%1!s!)
	Internal initialization error 4046
	Internal initialization error 4045
	Internal initialization error 4055
	Internal initialization error 4056
	Unable to find the trusted certificate file '%1!s!'
	Error reading from the trusted certificate file '%1!s!'
	Unable to seed the random number generator
	An error occurred during shutdown
	Unable to bind a socket to port %1!s!
	Unable to cleanup the socket layer
	Unable to close a socket
	Unable to connect a socket
	Unable to create a TCP/IP socket
	Unable to create a UDP socket
	Unable to get host by address
	Unable to get a socket's local name
	Unable to get socket option number %1!s!
	The host name '%1!s!' could not be found
	Unable to listen on a socket. The backlog is %1!s!
	Unable to determine localhost
	Invalid port number %1!s!. The value must be between zero and 65535
	Unable to select a socket status
	Unable to set socket option number %1!s!
	Unable to shutdown a socket
	Unable to initialize the sockets layer
	The operation would cause blocking
	Unable to write %1!s! bytes

	26. MobiLink synchronization server Warning Messages
	MobiLink synchronization server warning messages sorted by code
	MobiLink synchronization server warning messages sorted by message
	MobiLink synchronization server warning descriptions
	%1!lu! row(s) were ignored in updating table %2!s!
	%1!s!
	A row in table '%1!s!' could not be updated because it no longer exists in the consolidated database
	An error occurred reading the remote client's synchronization log
	Cannot directly determine the name of the table referenced by the cursor. The table name is required for in...
	Client synchronization logs will be shown in the MobiLink synchronization server output file or the console
	Error detected while using multi-row cursor -- retrying with single row cursor
	Expecting %1!ld! parameter(s) in cursor, but found %2!ld!
	Expecting at most %1!ld! parameter(s) in cursor, but found %2!ld!
	If needed, ODBC cursors will be used, via the Microsoft ODBC Cursor Library, to simulate SQLSETPOS for inse...
	Ignoring updated row (new values)
	Ignoring updated row (old values)
	Invalid character data encountered in upload -- substituting '?'
	Invalid character data encountered in upload -- using NULL
	Invalid character data encountered in upload -- using empty string
	Maximum number of database connections set to %1!lu! (must be at least the number of worker threads plus one)
	MobiLink table '%1!s!' is damaged
	Multi-byte characters truncated on upload
	NT Performance Monitor data area failed to initialize
	No error-handling script is defined. The default action code (%1!ld!) will decide error behavior
	ODBC Isolation level (%1!s!) is not supported
	ODBC function %1!s! is not supported by the driver
	ODBC statement option %1!s! has changed from %2!lu! to %3!lu!
	ODBC statement option %1!s! has changed from %2!s! (%3!lu!) to %4!s! (%5!lu!)
	Publication '%1!s!' is not referenced by any table
	Retry on deadlock set to FALSE. MobiLink synchronization server is using an internal work-around which requ...
	Retrying the begin_connection transaction after deadlock in the consolidated database
	Retrying the begin_synchronization transaction after deadlock in the consolidated database
	Retrying the end_synchronization transaction after deadlock in the consolidated database
	Retrying the upload after deadlock in the consolidated database
	Retrying the upload. Working around a known ODBC driver problem
	Table '%1!s!' has at least one timestamp column. Due to a timestamp precision mismatch, downloaded timestam...
	Table '%1!s!' has at least one timestamp column. Due to a timestamp precision mismatch, uploaded timestamps...
	Table '%1!s!' has no entry in the %2!s! table
	The consolidated and remote databases disagree on when the last synchronization took place. The remote is b...
	The consolidated and remote databases have different timestamp precisions. Consolidated database timestamps...
	The remote and consolidated databases have different timestamp precisions, and a timestamp value with a pre...
	The remote client's synchronization log ended prematurely, and was probably truncated
	The remote database is not capable of matching the timestamp precision of the consolidated database. Your a...
	The timestamp precision mismatch may affect upload conflict detection. You can use the -zp option to cause ...
	The upload will be committed and the synchronization aborted. The next time this remote synchronizes, it wi...
	The upload will be rolled back and the synchronization aborted. The next time this remote synchronizes, it ...
	Unable to convert character data for download -- substituting '?'
	Unable to convert character data for download -- using NULL
	Unable to convert character data for download -- using empty string
	Unable to determine current timestamp
	Unable to open the file to store the client synchronization logs. The filename is '%1!s!'
	Unable to write to the local file that contains remote synchronization logs
	Unrecognized ODBC driver '%1!s!'. The functionality and quality of ODBC drivers varies greatly. This driver...
	Unrecognized value (%1!ld!) in ml_user.commit_state. The state information for this user is probably corrupted
	You may resolve the timestamp precision mismatch by setting the DEFAULT_TIMESTAMP_INCREMENT option on the r...

	APPENDIX A: ODBC Drivers
	ODBC drivers supported by MobiLink

	27. Deploying MobiLink Applications
	Deployment overview
	Deploying the MobiLink server
	Deploying Adaptive Server Anywhere MobiLink clients
	Deploying UltraLite MobiLink clients

	Index

