
Adaptive Server
®
 Anywhere

SQL Reference Manual

Last modified: October 2002
Part Number: 38129-01-0802-01

Copyright © 1989–2002 Sybase, Inc. Portions copyright © 2001–2002 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Library, APT-Translator, ASEP, Backup Server, BayCam, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data
Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct
Connect Anywhere, DirectConnect, Distribution Director, Dynamo, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAY, ECMAP,
ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server,
Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion Server, First Impression, Formula One, Gateway Manager, GeoPoint, iAnywhere, iAnywhere Solutions,
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intellidex,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, MainframeConnect, Maintenance
Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet, ML Query, MobiCATS, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket PowerBuilder,
PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft,
Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Relational Beans, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, S.W.I.F.T. Message Format Libraries,
SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere,
SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT, SQL Server/DBM, SQL SMART,
SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase
SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare,
Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise
Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are
trademarks of Sybase, Inc. or its subsidiaries.

All other trademarks are property of their respective owners.

Last modified October 2002. Part number 38129-01-0802-01.

iii

Contents

About This Manual.. xi
SQL Anywhere Studio documentation.....................................xii
Documentation conventions.. xv
The Adaptive Server Anywhere sample database................ xviii
Finding out more and providing feedback...............................xix

PART ONE
SQL... 1

1 SQL Language Elements... 3
Keywords ..4
Identifiers...7
Strings ...9
Operators ..10
Expressions...15
Search conditions..24
Special values ...33
Variables ...38
Comments...47
NULL value ...48

2 SQL Data Types ... 51
Character data types...52
Numeric data types ...56
Money data types..63
Bit data type ..64
Date and time data types ..65
Binary data types ..72
Domains ..75
Java class data types..77
Data type conversions ..82
Java / SQL data type conversion ..84
Year 2000 compliance ..87

iv

3 SQL Functions... 93
Function types... 94
Alphabetical list of functions.. 104

4 SQL Statements... 199
Using the SQL statement reference 200
ALLOCATE DESCRIPTOR statement [ESQL] 203
ALTER DATABASE statement ... 205
ALTER DBSPACE statement ... 209
ALTER EVENT statement... 211
ALTER FUNCTION statement .. 213
ALTER PROCEDURE statement ... 214
ALTER PUBLICATION statement .. 216
ALTER REMOTE MESSAGE TYPE statement
[SQL Remote] ... 218
ALTER SERVER statement.. 220
ALTER SYNCHRONIZATION DEFINITION
statement (deprecated)... 222
ALTER SYNCHRONIZATION SITE statement
[MobiLink] (deprecated) .. 225
ALTER SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]... 227
ALTER SYNCHRONIZATION TEMPLATE
statement [MobiLink] (deprecated) 229
ALTER SYNCHRONIZATION USER statement
[MobiLink].. 231
ALTER TABLE statement ... 233
ALTER TRIGGER statement .. 240
ALTER VIEW statement ... 241
ALTER WRITEFILE statement ... 243
BACKUP statement .. 245
BEGIN statement .. 248
BEGIN TRANSACTION statement 251
CALL statement .. 254
CASE statement ... 256
CHECKPOINT statement.. 259
CLEAR statement [Interactive SQL] 260
CLOSE statement [ESQL] [SP]... 261
COMMENT statement... 263
COMMIT statement... 265
CONFIGURE statement [Interactive SQL]............................ 267
CONNECT statement [ESQL] [Interactive SQL]................... 268
CREATE COMPRESSED DATABASE statement 271
CREATE DATABASE statement .. 273
CREATE DBSPACE statement .. 278

v

CREATE DECRYPTED FILE statement...............................280
CREATE ENCRYPTED FILE statement...............................281
CREATE DOMAIN statement ...283
CREATE EVENT statement..285
CREATE EXISTING TABLE statement291
CREATE EXTERNLOGIN statement....................................294
CREATE FUNCTION statement ...296
CREATE INDEX statement...300
CREATE MESSAGE statement [T-SQL]304
CREATE PROCEDURE statement.......................................305
CREATE PROCEDURE statement [T-SQL].........................312
CREATE PUBLICATION statement......................................314
CREATE REMOTE MESSAGE TYPE statement
[SQL Remote] ...317
CREATE SCHEMA statement ..319
CREATE SERVER statement...321
CREATE STATISTICS statement...323
CREATE SUBSCRIPTION statement
[SQL Remote] ...324
CREATE SYNCHRONIZATION DEFINITION
statement [MobiLink] (deprecated)326
CREATE SYNCHRONIZATION SITE statement
[MobiLink] (deprecated) ..328
CREATE SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]...331
CREATE SYNCHRONIZATION TEMPLATE
statement [MobiLink] (deprecated)333
CREATE SYNCHRONIZATION USER statement
[MobiLink]..335
CREATE TABLE statement ..350
CREATE TRIGGER statement ...362
CREATE TRIGGER statement [SQL Remote]366
CREATE TRIGGER statement [T-SQL]369
CREATE VARIABLE statement ..370
CREATE VIEW statement ..371
CREATE WRITEFILE statement ..373
DEALLOCATE statement ...375
DEALLOCATE DESCRIPTOR statement [ESQL]376
Declaration section [ESQL]...377
DECLARE statement ..378
DECLARE CURSOR statement [ESQL] [SP]379
DECLARE CURSOR statement [T-SQL]..............................384
DECLARE LOCAL TEMPORARY TABLE
statement ..386
DELETE statement ...388
DELETE (positioned) statement [ESQL] [SP].......................390

vi

DESCRIBE statement [ESQL] .. 392
DISCONNECT statement [ESQL]
[Interactive SQL] ... 396
DROP statement... 397
DROP DATABASE statement... 399
DROP CONNECTION statement ... 400
DROP EXTERNLOGIN statement.. 401
DROP PUBLICATION statement.. 402
DROP REMOTE MESSAGE TYPE statement
[SQL Remote] ... 403
DROP SERVER statement ... 404
DROP STATEMENT statement [ESQL] 405
DROP STATISTICS statement... 406
DROP SUBSCRIPTION statement [SQL Remote]............... 407
DROP SYNCHRONIZATION DEFINITION
statement [MobiLink] (deprecated) 408
DROP SYNCHRONIZATION SITE statement
[MobiLink] (deprecated) .. 409
DROP SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]... 410
DROP SYNCHRONIZATION TEMPLATE
statement [MobiLink] (deprecated) 411
DROP SYNCHRONIZATION USER statement
[MobiLink].. 412
DROP VARIABLE statement .. 413
EXECUTE statement [ESQL].. 414
EXECUTE statement [SP] .. 416
EXECUTE statement [T-SQL]... 418
EXIT statement [Interactive SQL] ... 420
EXPLAIN statement [ESQL] ... 422
FETCH statement [ESQL] [SP]... 424
FOR statement.. 429
FORWARD TO statement... 431
FROM clause .. 433
GET DATA statement [ESQL]... 437
GET DESCRIPTOR statement [ESQL] 439
GET OPTION statement [ESQL] .. 441
GOTO statement [T-SQL] ... 442
GRANT statement... 443
GRANT CONSOLIDATE statement
[SQL Remote] ... 447
GRANT PUBLISH statement [SQL Remote] 449
GRANT REMOTE statement [SQL Remote] 450
GRANT REMOTE DBA statement [SQL Remote]................ 452
HELP statement [Interactive SQL].. 453
IF statement .. 454

vii

IF statement [T-SQL] ..456
INCLUDE statement [ESQL]...458
INPUT statement [Interactive SQL].......................................459
INSERT statement ..463
INSTALL statement...467
LEAVE statement..469
LOAD STATISTICS statement..471
LOAD TABLE statement ...472
LOCK TABLE statement ...479
LOOP statement ...481
MESSAGE statement ...483
OPEN statement [ESQL] [SP]...485
OUTPUT statement [Interactive SQL]...................................488
PARAMETERS statement [Interactive SQL]493
PASSTHROUGH statement [SQL Remote]494
PREPARE statement [ESQL] ...495
PREPARE TO COMMIT statement497
PRINT statement [T-SQL]...498
PUT statement [ESQL] ...499
RAISERROR statement [T-SQL] ..501
READ statement [Interactive SQL]503
READTEXT statement [T-SQL] ..504
RELEASE SAVEPOINT statement505
REMOTE RESET statement [SQL Remote].........................506
REMOVE statement..507
REORGANIZE TABLE statement ...508
RESIGNAL statement ...510
RESTORE DATABASE statement..511
RESUME statement ..513
RETURN statement ..514
REVOKE statement ..516
REVOKE CONSOLIDATE statement
[SQL Remote] ...518
REVOKE PUBLISH statement [SQL Remote]......................519
REVOKE REMOTE statement [SQL Remote]......................520
REVOKE REMOTE DBA statement
[SQL Remote] ...521
ROLLBACK statement ..522
ROLLBACK TO SAVEPOINT statement523
ROLLBACK TRIGGER statement...524
SAVEPOINT statement...525
SELECT statement ...526
SET statement ..531
SET statement [T-SQL]...533
SET CONNECTION statement [Interactive SQL]
[ESQL]...536

viii

SET DESCRIPTOR statement [ESQL]................................. 537
SET OPTION statement ... 539
SET OPTION statement [Interactive SQL] 542
SET REMOTE OPTION statement [SQL Remote] 543
SET SQLCA statement [ESQL] .. 545
SETUSER statement .. 546
SIGNAL statement .. 548
START DATABASE statement ... 549
START ENGINE statement [Interactive SQL]....................... 551
START JAVA statement ... 552
START LOGGING statement [Interactive SQL].................... 553
START SUBSCRIPTION statement
[SQL Remote] ... 554
START SYNCHRONIZATION DELETE
statement [MobiLink]... 556
STOP DATABASE statement ... 558
STOP ENGINE statement... 559
STOP JAVA statement ... 560
STOP LOGGING statement [Interactive SQL]...................... 561
STOP SUBSCRIPTION statement [SQL Remote] 562
STOP SYNCHRONIZATION DELETE statement
[MobiLink].. 563
SYNCHRONIZE SUBSCRIPTION statement
[SQL Remote] ... 564
SYSTEM statement [Interactive SQL] 565
TRIGGER EVENT statement.. 566
TRUNCATE TABLE statement ... 567
UNION operation .. 569
UNLOAD statement .. 571
UNLOAD TABLE statement.. 573
UPDATE statement... 575
UPDATE (positioned) statement [ESQL] [SP] 580
UPDATE statement [SQL Remote]....................................... 582
VALIDATE INDEX statement.. 585
VALIDATE TABLE statement ... 586
WAITFOR statement... 588
WHENEVER statement [ESQL].. 589
WHILE statement [T-SQL] .. 590
WRITETEXT statement [T-SQL]... 591

ix

PART TWO
System Objects.. 593

5 System Tables.. 595
DUMMY system table ...598
SYSARTICLE system table ..599
SYSARTICLECOL system table ...600
SYSATTRIBUTE system table..601
SYSATTRIBUTENAME system table602
SYSCAPABILITY system table...603
SYSCAPABILITYNAME system table604
SYSCOLLATION system table ...605
SYSCOLLATIONMAPPINGS system table606
SYSCOLPERM system table..607
SYSCOLSTAT system table ...608
SYSCOLUMN system table ..609
SYSDOMAIN system table ...611
SYSEVENT system table..612
SYSEVENTTYPE system table ..614
SYSEXTENT system table ...615
SYSEXTERNLOGINS system table616
SYSFILE system table ..617
SYSFKCOL system table..618
SYSFOREIGNKEY system table ..619
SYSGROUP system table ..621
SYSINDEX system table...622
SYSINFO system table ...624
SYSIXCOL system table...626
SYSJAR system table...627
SYSJARCOMPONENT system table628
SYSJAVACLASS system table...629
SYSLOGIN system table ..631
SYSOPTBLOCK system table ..632
SYSOPTION system table..633
SYSOPTJOINSTRATEGY system table...............................634
SYSOPTORDER system table ...635
SYSOPTQUANTIFIER system table636
SYSOPTREQUEST system table...637
SYSOPTREWRITE system table..638
SYSOPTSTAT system table ...639
SYSPROCEDURE system table...640
SYSPROCPARM system table...642
SYSPROCPERM system table...644
SYSPUBLICATION system table..645
SYSREMOTEOPTION system table646

x

SYSREMOTEOPTIONTYPE system table........................... 647
SYSREMOTETYPE system table... 648
SYSREMOTEUSER system table .. 649
SYSSCHEDULE system table.. 651
SYSSERVERS system table .. 653
SYSSQLSERVERTYPE system table 654
SYSSUBSCRIPTION system table 655
SYSSYNC system table.. 656
SYSTABLE system table .. 657
SYSTABLEPERM system table.. 660
SYSTRIGGER system table ... 662
SYSTYPEMAP system table .. 665
SYSUSERMESSAGES system table 666
SYSUSERPERM system table ... 667
SYSUSERTYPE system table .. 669
Other system tables .. 671

6 System Views .. 673
Introduction ... 674
Views for Transact-SQL Compatibility 679

7 System Procedures and Functions.............................. 683
System procedure overview.. 684
System and catalog stored procedures 685
System extended stored procedures 728
Adaptive Server Enterprise system and catalog
procedures .. 737

Index... 741

xi

About This Manual

This book provides a complete reference for the SQL language used by
Adaptive Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

While other manuals provide more motivation and context for how to carry
out particular tasks, this manual is the place to look for complete listings of
available SQL syntax and system objects.

This manual is for all users of Adaptive Server Anywhere. It includes
material of particular interest to users of MobiLink and SQL Remote. It is to
be used in conjunction with other manuals in the documentation set.

Subject

Audience

xii

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere Studio documentation set

The SQL Anywhere Studio documentation set consists of the following
books:

♦ Introducing SQL Anywhere Studio This book provides an overview
of the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

 ♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere database-
management system and introductory material on designing, building,
and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book
describes how to build and deploy database applications using the C,
C++, and Java programming languages. Users of tools such as Visual
Basic and PowerBuilder can use the programming interfaces provided
by those tools.

xiii

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ Adaptive Server Anywhere C2 Security Supplement Adaptive
Server Anywhere 7.0 was awarded a TCSEC (Trusted Computer System
Evaluation Criteria) C2 security rating from the U.S. Government. This
book may be of interest to those who wish to run the current version of
Adaptive Server Anywhere in a manner equivalent to the C2-certified
environment. The book does not include the security features added to
the product since certification.

♦ MobiLink Synchronization User’s Guide This book describes all
aspects of the MobiLink data synchronization system for mobile
computing, which enables sharing of data between a single Oracle,
Sybase, Microsoft or IBM database and many Adaptive Server
Anywhere or UltraLite databases.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ UltraLite User’s Guide This book describes how to build database
applications for small devices such as handheld organizers using the
UltraLite deployment technology for Adaptive Server Anywhere
databases.

♦ UltraLite User’s Guide for PenRight! MobileBuilder This book is for
users of the PenRight! MobileBuilder development tool. It describes
how to use UltraLite technology in the MobileBuilder programming
environment.

♦ SQL Anywhere Studio Help This book is provided online only. It
includes the context-sensitive help for Sybase Central, Interactive SQL,
and other graphical tools.

In addition to this documentation set, SQL Modeler and InfoMaker include
their own online documentation.

Documentation formats

SQL Anywhere Studio provides documentation in the following formats:

xiv

♦ Online books The online books include the complete SQL Anywhere
Studio documentation, including both the printed books and the context-
sensitive help for SQL Anywhere tools. The online books are updated
with each maintenance release of the product, and are the most complete
and up-to-date source of documentation.

To access the online books on Windows operating systems, choose
Start➤Programs➤Sybase SQL Anywhere 8➤Online Books. You can
navigate the online books using the HTML Help table of contents,
index, and search facility in the left pane, and using the links and menus
in the right pane.

To access the online books on UNIX operating systems, run the
following command at a command prompt:

dbbooks

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in the pdf_docs directory.
You can choose to install them when running the setup program.

♦ Printed books The following books are included in the
SQL Anywhere Studio box:

♦ Introducing SQL Anywhere Studio.

♦ Adaptive Server Anywhere Getting Started.

♦ SQL Anywhere Studio Quick Reference. This book is available only
in printed form.

The complete set of books is available as the SQL Anywhere
Documentation set from Sybase sales or from e-Shop, the Sybase online
store, at http://e-shop.sybase.com/cgi-bin/eshop.storefront/.

xv

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions

The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords are shown like the words ALTER
TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the words owner and table-name in the
following example.

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element
of the list followed by an ellipsis (three dots), like column-constraint in
the following example:

ADD column-definition [column-constraint, …]

One or more list elements are allowed. If more than one is specified,
they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-name is optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square
brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces.

[QUOTES { ON | OFF }]

xvi

If the QUOTES option is chosen, one of ON or OFF must be provided.
The brackets and braces should not be typed.

♦ One or more options If you choose more than one, separate your
choices with commas.

{ CONNECT, DBA, RESOURCE }

Graphic icons

The following icons are used in this documentation:

xvii

Icon Meaning

A client application.

A database server, such as Sybase Adaptive Server
Anywhere or Adaptive Server Enterprise.

An UltraLite application and database server. In
UltraLite, the database server and the application are
part of the same process.

A database. In some high-level diagrams, the icon
may be used to represent both the database and the
database server that manages it.

Replication or synchronization middleware. These
assist in sharing data among databases. Examples are
the MobiLink Synchronization Server, SQL Remote
Message Agent, and the Replication Agent (Log
Transfer Manager) for use with Replication Server.

A Sybase Replication Server.

API
A programming interface.

xviii

The Adaptive Server Anywhere sample database
Many of the examples throughout the documentation use the Adaptive
Server Anywhere sample database.

The sample database is held in a file named asademo.db, and is located in
your SQL Anywhere directory.

The sample database represents a small company. It contains internal
information about the company (employees, departments, and finances) as
well as product information and sales information (sales orders, customers,
and contacts). All information in the database is fictional.

The following figure shows the tables in the sample database and how they
relate to each other.

id = id

id = prod_id

code = fin_code_id

emp_id = sales_rep

id = cust_id

code = code

dept_id = dept_id
emp_id = dept_head_id

contact
id <pk> integer
last_name char(15)
first_name char(15)
title char(2)
street char(30)
city char(20)
state char(2)
zip char(5)
phone char(10)
fax char(10)

customer
id <pk> integer
fname char(15)
lname char(20)
address char(35)
city char(20)
state char(2)
zip char(10)
phone char(12)
company_name char(35)

sales_order
id <pk> integer
cust_id <fk> integer
order_date date
fin_code_id <fk> char(2)
region char(7)
sales_rep <fk> integer

fin_code
code <pk> char(2)
type char(10)
description char(50)

fin_data
year <pk> char(4)
quarter <pk> char(2)
code <pk,fk> char(2)
amount numeric(9)

product
id <pk> integer
name char(15)
description char(30)
size char(18)
color char(6)
quantity integer
unit_price numeric(15,2)

sales_order_items
id <pk,fk> integer
line_id <pk> smallint
prod_id <fk> integer
quantity integer
ship_date date

employee
emp_id <pk> integer
manager_id integer
emp_fname char(20)
emp_lname char(20)
dept_id <fk> integer
street char(40)
city char(20)
state char(4)
zip_code char(9)
phone char(10)
status char(1)
ss_number char(11)
salary numeric(20,3)
start_date date
termination_date date
birth_date date
bene_health_ins char(1)
bene_life_ins char(1)
bene_day_care char(1)
sex char(1)

department
dept_id <pk> integer
dept_name char(40)
dept_head_id <fk> integer

asademo.db

xix

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on the forums.sybase.com news server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on
the newsgroup service when they have time available. They offer their
help on a volunteer basis and may not be available on a regular basis to
provide solutions and information. Their ability to help is based on their
workload.

xx

1

P A R T O N E

SQL

This part describes the Adaptive Server Anywhere SQL language, including
data types, functions and statements.

2

3

C H A P T E R 1

SQL Language Elements

This chapter describes the elements and conventions of the SQL language.

Topic Page

Keywords 4

Identifiers 7

Strings 9

Operators 10

Expressions 15

Search conditions 24

Special values 33

Variables 38

Comments 47

NULL value 48

About this chapter

Contents

Keywords

4

Keywords
Each SQL statement contains one or more keywords. SQL is case insensitive
to keywords, but throughout these manuals, keywords are indicated in upper
case.

For example, in the following statement, SELECT and FROM are keywords:

SELECT *
FROM employee

The following statements are equivalent to the one above:

Select *
From employee

select * from employee

sELECT * FRoM employee

Some keywords cannot be used as identifiers without surrounding them in
double quotes. These are called reserved words. Other keywords, such
as DBA, do not require double quotes, and are not reserved words.

Reserved words

Some keywords in SQL are also reserved words. To use a reserved word in
a SQL statement as an identifier, you must enclose it in double quotes.
Many, but not all, of the keywords that appear in SQL statements are
reserved words. For example, you must use the following syntax to retrieve
the contents of a table named SELECT.

SELECT *
FROM "SELECT"

Because SQL is not case sensitive with respect to keywords, each of the
following words may appear in upper case, lower case, or any combination
of the two. All strings that differ only in capitalization from one of the
following words are reserved words.

If you are using Embedded SQL, you can use the database library function
SQL_needs_quotes to determine whether a string requires quotation marks.
A string requires quotes if it is a reserved word or if it contains a character
not ordinarily allowed in an identifier.

The SQL keywords in Adaptive Server Anywhere are as follows:

Chapter 1 SQL Language Elements

5

Reserved word Reserved word Reserved word Reserved word

add all alter and

any as asc backup

begin between bigint binary

bit bottom break by

call capability cascade case

cast char char_convert character

check checkpoint close comment

commit connect constraint contains

continue convert create cross

cube current cursor date

dbspace deallocate dec decimal

declare default delete deleting

desc distinct do double

drop dynamic else elseif

encrypted end endif escape

exception exec execute existing

exists externlogin fetch first

float for foreign forward

from full goto grant

group having holdlock identified

if in index inner

inout insensitive insert inserting

install instead int integer

integrated into iq is

isolation join key left

like lock login long

match membership message mode

modify natural new no

noholdlock not notify null

Keywords

6

Reserved word Reserved word Reserved word Reserved word

numeric of off on

open option options or

order others out outer

over passthrough precision prepare

primary print privileges proc

procedure publication raiserror readtext

real reference references release

remote remove rename reorganize

resource restore restrict return

revoke right rollback rollup

save savepoint schedule scroll

select sensitive session set

setuser share smallint some

sqlcode sqlstate start stop

subtrans subtransaction synchronize syntax_error

table temporary then time

timestamp tinyint to top

tran trigger truncate tsequal

union unique unknown unsigned

update updating user using

validate values varbinary varchar

variable varying view wait

waitfor when where while

with with_lparen work writetext

Chapter 1 SQL Language Elements

7

Identifiers
Identifiers are names of objects in the database, such as user IDs, tables, and
columns.

Identifiers need to be enclosed in double quotes or square brackets if any of
the following conditions are true:

♦ The identifier contains spaces.

♦ The first character of the identifier is not an alphabetic character (as
defined below).

♦ The identifier contains a reserved word.

♦ The identifier contains characters other than alphabetic characters and
digits.

Alphabetic characters include the alphabet, as well as the underscore
character (_), at sign (@), number sign (#), and dollar sign ($). The database
collation sequence dictates which characters are considered alphabetic or
digit characters.

If the QUOTED_IDENTIFIER database option is set to OFF, double quotes
are used to delimit SQL strings and cannot be used for identifiers. However,
you can always use square brackets to delimit identifiers, regardless of the
setting of QUOTED_IDENTIFIER.

The default setting for the QUOTED_IDENTIFIER option is to OFF for
Open Client and JDBC connections; otherwise the default is ON.

You can represent a quotation mark inside an identifier by following it with
another quotation mark.

Identifiers have a maximum length of 128 bytes.

The following are all valid identifiers.

Surname

"Surname"

[Surname]

SomeBigName

"Client Number"

"With one double quotation "" mark"

$ For a complete list of the reserved words, see "Reserved words" on
page 4.

Function

Description

Examples

See also

Identifiers

8

$ For information about the QUOTED_IDENTIFIER option, see
"QUOTED_IDENTIFIER option" on page 594 of the book ASA Database
Administration Guide.

Chapter 1 SQL Language Elements

9

Strings
Strings are of the following types:

♦ literal strings

♦ expressions with CHAR or VARCHAR data types.

An expression with a CHAR data type may be a built-in or user-defined
function, or one of the many other kinds of expressions available.

$ For more information on expressions, see "Expressions" on page 15.

A literal string is any sequence of characters enclosed in apostrophes (’single
quotes’). A SQL variable of character data type can hold a string. The
following is a simple example of a literal string:

’This is a string.’

You represent special character in strings by escape sequences, as follows:

♦ To represent an apostrophe inside a string, use two apostrophes in a row.
For example,

’John’’s database’

♦ To represent a new line character, use a backslash followed by n (\n).
For example,

’First line:\nSecond line:’

♦ To represent a backslash character, use two backslashes in a row (\\).
For example,

’c:\\temp’

♦ Hexadecimal escape sequences can be used for any character, printable
or not. A hexadecimal escape sequence is a backslash followed by an x
followed by two hexadecimal digits (for example, \x6d represents the
letter m). For example,

’\x00\x01\x02\x03’

For compatibility with Adaptive Server Enterprise, you can set the
QUOTED_IDENTIFIER database option to OFF. With this setting, you can
also use double quotes to mark the beginning and end of strings. The option
is set to ON by default.

$ For information about the QUOTED_IDENTIFIER option, see
"QUOTED_IDENTIFIER option" on page 594 of the book ASA Database
Administration Guide.

Special characters
in strings

Compatibility

Operators

10

Operators
This section describes arithmetic, string, and bit-wise operators. For
information on comparison operators, see the section "Search conditions" on
page 24.

The normal precedence of operations applies. Expressions in parentheses are
evaluated first, then multiplication and division before addition and
subtraction. String concatenation happens after addition and subtraction.

$ For more information, see "Operator precedence" on page 13.

Comparison operators

The syntax for comparison conditions is as follows:

expression compare expression

where compare is a comparison operator. The following comparison
operators are available:

operator description

 = Equal to

> Greater than

< Less than

>= Greater than or equal to

 <= Less than or equal to

 != Not equal to

 <> Not equal to

!> Not greater than

 !< Not less than

Case sensitivity
All string comparisons are case insensitive unless the database was
created as case sensitive.

♦ Trailing blanks Any trailing blanks in character data are ignored for
comparison purposes by Adaptive Server Enterprise. The behavior of
Adaptive Server Anywhere when comparing strings is controlled the –b
command-line switch that is set when creating the database.

Compatibility

Chapter 1 SQL Language Elements

11

$ For more information about blank padding, see "Initialization
utility options" on page 467 of the book ASA Database Administration
Guide.

♦ Case sensitivity By default, Adaptive Server Anywhere databases are
created as case insensitive, while Adaptive Server Enterprise databases
are created as case sensitive. Comparisons are carried out with the same
attention to case as the database they are operating on. You can control
the case sensitivity of Adaptive Server Anywhere databases with the -c
command line switch when you create the database.

$ For more information about case sensitivity for string comparisons,
see "Initialization utility options" on page 467 of the book ASA
Database Administration Guide.

Logical operators

Search conditions can be combined using AND, OR, and NOT.

Conditions are combined using AND as follows:

condition1 AND condition2

The combined condition is TRUE if both conditions are TRUE, FALSE if
either condition is FALSE, and UNKNOWN otherwise.

Conditions are combined using OR as follows:

condition1 OR condition2

The combined condition is TRUE if either condition is TRUE, FALSE if
both conditions are FALSE, and UNKNOWN otherwise.

The syntax for the NOT operator is as follows:

NOT condition

The NOT condition is TRUE if condition is FALSE, FALSE if condition
is TRUE, and UNKNOWN if condition is UNKNOWN.

The IS operator provides a means to test a logical value. The syntax for the
IS operator is as follows:

expression IS [NOT] truth-value

The condition is TRUE if the expression evaluates to the supplied truth-
value, which must be one of TRUE, FALSE, UNKNOWN, or NULL.
Otherwise, the value is FALSE.

$ For more information, see "Three-valued logic" on page 31.

Operators

12

♦ The logical operators are compatible between Adaptive Server
Anywhere and Adaptive Server Enterprise.

Arithmetic operators

expression + expression Addition. If either expression is the NULL
value, the result is NULL.

expression – expression Subtraction. If either expression is the NULL
value, the result is NULL.

–expression Negation. If the expression is the NULL value, the result
is NULL.

expression * expression Multiplication. If either expression is NULL,
the result is NULL.

expression / expression Division. If either expression is NULL or if the
second expression is 0, the result is NULL.

expression % expression Modulo finds the integer remainder after a
division involving two whole numbers. For example, 21 % 11 = 10 because
21 divided by 11 equals 1 with a remainder of 10.

♦ Modulo The % operator can be used in Adaptive Server Anywhere
only if the PERCENT_AS_COMMENT option is set to OFF. The
default value is ON.

String operators

expression || expression String concatenation (two vertical bars). If
either string is NULL, it is treated as the empty string for concatenation.

expression + expression Alternative string concatenation. When using
the + concatenation operator, you must ensure the operands are explicitly set
to character data types rather than relying on implicit data conversion.

For example, the following query returns the integer value 579:

SELECT 123 + 456

whereas the following query returns the character string 123456:

SELECT ’123’ + ’456’

You can use the CAST or CONVERT function to explicitly convert data
types.

Compatibility

Compatibility

Chapter 1 SQL Language Elements

13

♦ The || concatenation operator is not supported by Adaptive Server
Enterprise.

♦ SQL/92 The || operator is the SQL/92 string concatenation operator.

♦ Sybase The + operator is supported by Adaptive Server Enterprise.

Bitwise operators

The following operators can be used on integer data types, in both Adaptive
Server Anywhere and Adaptive Server Enterprise.

Operator Description

& bitwise and

| bitwise or

^ bitwise exclusive or

~ bitwise not

The bitwise operators &, | and ~ are not interchangeable with the logical
operators AND, OR, and NOT.

For example, the following statement selects rows in which the correct bits
are set.

SELECT *
FROM tableA
WHERE (options & 0x0101) <> 0

Join operators

The Transact-SQL outer join operators *= and =* are supported in Adaptive
Server Anywhere, in addition to the SQL/92 join syntax that uses a table
expression in the FROM clause.

Operator precedence

The precedence of operators in expressions is as follows. The operators at the
top of the list are evaluated before those at the bottom of the list.

1 unary operators (operators that require a single operand)

2 .’ (the Java reference operator)

Compatibility

Standards and
compatibility

Example

Operators

14

3 &, | , ^, ~

4 *, /, %

5 +, -

6 ||

7 not

8 and

9 or

When you use more than one operator in an expression, it is recommended
that you make the order of operation explicit using parentheses rather than
relying on an identical operator precedence between Adaptive Server
Enterprise and Adaptive Server Anywhere.

Chapter 1 SQL Language Elements

15

Expressions
expression:

 case-expression
| constant
| [correlation-name.]column-name [java-ref]
| - expression
| expression operator expression
| (expression)
| function-name (expression, ...)
| if-expression
| [java-package-name.] java-class-name java-ref
| special value
| (subquery)
| variable-name [java-ref]

case-expression:
CASE expression
WHEN expression
THEN expression,...
[ELSE expression]
END

alternative form of case-expression:
CASE
WHEN search-condition
THEN expression,...
[ELSE expression]
END

constant:
 integer | number | string | host-variable

special-value:
 CURRENT { DATE | TIME | TIMESTAMP }
| NULL
| SQLCODE
| SQLSTATE
| USER

if-expression:
IF condition
THEN expression
[ELSE expression]
ENDIF

java-ref:
 .field-name [java-ref]
| >> field-name [java-ref]
| .method-name ([expression,...]) [java-ref]
| >> method-name ([expression,...]) [java-ref]

Syntax

Parameters

Expressions

16

operator:
{ + | - | * | / | || | % }

Anywhere.

Must be connected to the database.

None.

"Constants in expressions" on page 16
"Special values" on page 33
"Column names in expressions" on page 16
"SQL Functions" on page 93
"Subqueries in expressions" on page 17
"Search conditions" on page 24
"SQL Data Types" on page 51
"Variables" on page 38
"CASE expressions" on page 18

Expressions are formed from several different kinds of elements. These are
discussed in the following sections.

$ For information on functions, see "SQL Functions" on page 93. For
information on variables, see "Variables" on page 38.

♦ The IF condition is not supported in Adaptive Server Enterprise.

♦ Java expressions are not currently supported in Adaptive Server
Enterprise.

♦ For other differences, see the separate descriptions of each class of
expression, in the following sections.

Constants in expressions

Constants are numbers or string literals. String constants are enclosed in
apostrophes (’single quotes’). An apostrophe is represented inside a string by
two apostrophes in a row.

Column names in expressions

A column name is an identifier preceded by an optional correlation name. (A
correlation name is usually a table name. For more information on
correlation names, see "FROM clause" on page 433.) If a column name has
characters other than letters, digits and underscore, it must be surrounded by
quotation marks (""). For example, the following are valid column names:

employee.name

Usage

Authorization

Side effects

See also

Description

Standards and
compatibility

Chapter 1 SQL Language Elements

17

address

"date hired"

"salary"."date paid"

$ For more information on identifiers, see "Identifiers" on page 7.

Subqueries in expressions

A subquery is a SELECT statement that is nested inside another SELECT,
INSERT, UPDATE, or DELETE statement, or another subquery.

The SELECT statement must be enclosed in parentheses, and must contain
one and only one select list item. When used as an expression, a subquery is
generally allowed to return only one value.

A subquery can be used anywhere that a column name can be used.
For example, a subquery can be used in the select list of another SELECT
statement.

$ For other uses of subqueries, see "Subqueries in search conditions" on
page 25.

IF expressions

The syntax of the IF expression is as follows:

IF condition
THEN expression1
[ELSE expression2]
ENDIF

This expression returns the following:

♦ If condition is TRUE, the IF expression returns expression1.

♦ If condition is FALSE, the IF expression returns expression2.

♦ If condition is FALSE, and there is no expression2, the IF expression
returns NULL.

♦ If condition is UNKNOWN, the IF expression returns NULL.

$ For more information about TRUE, FALSE and UNKNOWN
conditions, see "NULL value" on page 48, and "Search conditions" on
page 24.

Expressions

18

IF statement is different from IF expression
Do not confuse the syntax of the IF expression with that of the IF
statement.

$ For information on the IF statement, see "IF statement" on page 454.

CASE expressions

The CASE expression provides conditional SQL expressions. Case
expressions can be used anywhere an expression can be used.

The syntax of the CASE expression is as follows:

CASE expression
WHEN expression
THEN expression, ...
[ELSE expression]
END

If the expression following the CASE statement is equal to the expression
following the WHEN statement, then the expression following the THEN
statement is returned. Otherwise the expression following the ELSE
statement is returned, if it exists.

For example, the following code uses a case expression as the second clause
in a SELECT statement.

SELECT id,
(CASE name

WHEN ’Tee Shirt’ then ’Shirt’
WHEN ’Sweatshirt’ then ’Shirt’
WHEN ’Baseball Cap’ then ’Hat’
ELSE ’Unknown’

END) as Type
FROM "DBA".Product

An alternative syntax is as follows:

CASE
WHEN search-condition
THEN expression, ...
[ELSE expression]
END

If the search-condition following the WHEN statement is satisfied, the
expression following the THEN statement is returned. Otherwise the
expression following the ELSE statement is returned, if it exists.

Chapter 1 SQL Language Elements

19

For example, the following statement uses a case expression as the third
clause of a SELECT statement to associate a string with a search-condition.

SELECT id, name,
(CASE

WHEN name=’Tee Shirt’ then ’Sale’
WHEN quantity >= 50 then ’Big Sale’
ELSE ’Regular price’

END) as Type
FROM "DBA".Product

The NULLIF function provides a way to write some CASE statements in
short form. The syntax for NULLIF is as follows:

NULLIF (expression-1, expression-2)

NULLIF compares the values of the two expressions. If the first expression
equals the second expression, NULLIF returns NULL. If the first expression
does not equal the second expression, NULLIF returns the first expression.

CASE statement is different from CASE expression
Do not confuse the syntax of the CASE expression with that of the CASE
statement.

$ For information on the CASE statement, see "CASE statement" on
page 256.

Java expressions

The following kinds of Java expressions can be used as SQL expressions:

♦ Java fields Any field of an installed Java class can be invoked
wherever an expression is required. The data type of the expression is
converted from the Java field data type according to the table in "Java to
SQL data type conversion" on page 84. Both instance fields and class
fields can be used as expressions.

♦ Java methods Any method of an installed Java class can be invoked
wherever an expression is required. The data type of the expression is
converted from the return type of the Java method according to the table
in "Java to SQL data type conversion" on page 84. Both instance fields
and class fields can be used as expressions.

♦ Java objects The NEW operator is an extension to the SQL language
that allows it to better assimilate Java syntax.

NULLIF function
for abbreviated
CASE expressions

Expressions

20

The NEW SQL operator performs the same operation as the new
keyword in Java code: invoke a constructor method of a Java class. The
data type of the NEW expression is a Java class, specifically the Java
class that is being constructed.

The following expression invokes the constructor method of the String
class, a member of the java.lang package.

NEW java.lang.String(’This argument is optional’)

This expression returns a reference to the newly-created String object,
which can be passed to a variable or column of type java.lang.String.

The method constructor that is being invoked determines the number
and type of arguments.

The class whose constructor method is invoked must first be installed to
the database.

$ For more information on class and instance fields and methods, see "A
Java seminar" on page 59 of the book ASA Programming Guide.

When referencing a Java field or method from within Java code, you use the
dot (.) operator. For example, to invoke the getConnection method of
the DriverManager class you use the following:

conn = DriverManager.getConnection(temp.toString() ,
_props)

There are two ways of referencing Java fields or methods from within SQL
statements. You can use either the dot operator or the >> operator.

The dot operator has the advantage that it looks like Java code, but has the
disadvantage that in SQL the dot is also used to indicate the owner, table,
and column hierarchy, so this could be confusing to read.

Using the dot operator, a name method of an object named Employee is
invoked from SQL as follows:

select Employee.name ...

The same expression could refer to a name column of an Employee table.

The >> operator is unambiguous, but does not look like what Java
programmers may expect.

Referencing fields
and methods

Chapter 1 SQL Language Elements

21

Compatibility of expressions

The following tables describe the compatibility of expressions and constants
between Adaptive Server Enterprise and Adaptive Server Anywhere. These
tables are a guide only, and a marking of Both may not mean that the
expression performs in an identical manner for all purposes under all
circumstances. For detailed descriptions, you should refer to the Adaptive
Server Enterprise documentation and the Adaptive Server Anywhere
documentation on the individual expression.

In the following table, expr represents an expression, and op represents an
operator.

Expression Supported by

constant Both

column name Both

variable name Both

function (expr) Both

- expr Both

expr op expr Both

(expr) Both

(subquery) Both

if-expression Adaptive Server Anywhere only

Constant Supported by

integer Both

number Both

’string’ Both

special-constant Both

host-variable Adaptive Server Anywhere

By default, Adaptive Server Enterprise and Adaptive Server Anywhere give
different meanings to delimited strings: that is, strings enclosed in
apostrophes (single quotes) and in quotation marks (double quotes).

Default
interpretation of
delimited strings

Expressions

22

Adaptive Server Anywhere employs the SQL/92 convention, that strings
enclosed in apostrophes are constant expressions, and strings enclosed in
quotation marks (double quotes) are delimited identifiers (names for database
objects). Adaptive Server Enterprise employs the convention that strings
enclosed in quotation marks are constants, while delimited identifiers are not
allowed by default and are treated as strings.

The quoted_identifier option

Both Adaptive Server Enterprise and Adaptive Server Anywhere provide a
quoted_identifier option that allows the interpretation of delimited strings to
be changed. By default, the quoted_identifier option is set to OFF in
Adaptive Server Enterprise, and to ON in Adaptive Server Anywhere.

You cannot use SQL reserved words as identifiers if the quoted_identifier
option is off.

$ For a complete list of reserved words, see "Reserved words" on page 4.

While the Transact-SQL SET statement is not supported for most Adaptive
Server Enterprise connection options, it is supported for the
quoted_identifier option.

The following statement in either Adaptive Server Anywhere or Adaptive
Server Enterprise changes the setting of the quoted_identifier option to ON:

SET quoted_identifier ON

With the quoted_identifier option set to ON, Adaptive Server Enterprise
allows table, view, and column names to be delimited by quotes. Other
object names cannot be delimited in Adaptive Server Enterprise.

The following statement in Adaptive Server Anywhere or Adaptive Server
Enterprise changes the setting of the quoted_identifier option to OFF:

SET quoted_identifier OFF

You can choose to use either the SQL/92 or the default Transact-SQL
convention in both Adaptive Server Enterprise and Adaptive Server
Anywhere as long as the quoted_identifier option is set to the same value in
each DBMS.

If you choose to operate with the quoted_identifier option ON (the default
Adaptive Server Anywhere setting), then the following statements involving
the SQL keyword user are valid for both DBMSs.

CREATE TABLE "user" (
col1 char(5)

) ;
INSERT "user" (col1)
VALUES (’abcde’) ;

Setting the option

Compatible
interpretation of
delimited strings

Examples

Chapter 1 SQL Language Elements

23

If you choose to operate with the quoted_identifier option off (the default
Adaptive Server Enterprise setting), then the following statements are valid
for both DBMSs.

SELECT *
FROM employee
WHERE emp_lname = "Chin"

Search conditions

24

Search conditions
To specify a search condition for a WHERE clause, a HAVING clause, a
CHECK clause, an ON phrase in a join, or an IF expression.

search-condition:
 expression compare expression
| expression compare { [ANY | SOME] | ALL } (subquery)
| expression IS [NOT] NULL
| expression [NOT] BETWEEN expression AND expression
| expression [NOT] LIKE expression [ESCAPE expression]
| expression [NOT] IN ({ expression
 | subquery
 | value-expr1 , value-expr2 [,value-expr3] ... })
| EXISTS (subquery)
| NOT condition
| search-condition AND search-condition
| search-condition OR search-condition
| (search-condition)
| (search-condition , estimate)
| search-condition IS [NOT] { TRUE | FALSE | UNKNOWN }
| trigger-operation

compare:
 = | > | < | >= | <= | <> | != | !< | !>

trigger-operation:
 INSERTING | DELETING
| UPDATING(column-name-string) | UPDATE(column-name)

Anywhere.

Must be connected to the database.

None.

"Expressions" on page 15

Search conditions are used to choose a subset of the rows from a table, or in
a control statement such as an IF statement to determine control of flow.

In SQL, every condition evaluates as one of TRUE, FALSE, or
UNKNOWN. This is called three-valued logic. The result of a comparison is
UNKNOWN if either value being compared is the NULL value. For tables
displaying how logical operators combine in three-valued logic, see the
section "Three-valued logic" on page 31.

Rows satisfy a search condition if and only if the result of the condition
is TRUE. Rows for which the condition is UNKNOWN or FALSE do not
satisfy the search condition. For more information about NULL, see "NULL
value" on page 48.

Function

Syntax

Parameters

Usage

Permissions

Side effects

See also

Description

Chapter 1 SQL Language Elements

25

Subqueries form an important class of expression that is used in many search
conditions. For information about using subqueries in search conditions, see
"Subqueries in search conditions" on page 25.

The different types of search condition are discussed in the following
sections.

Subqueries in search conditions

Subqueries that return exactly one column and either zero or one row can be
used in any SQL statement wherever a column name could be used,
including in the middle of an expression.

For example, expressions can be compared to subqueries in comparison
conditions (see "Comparison operators" on page 10) as long as the subquery
does not return more than one row. If the subquery (which must have one
column) returns one row, then the value of that row is compared to the
expression. If a subquery returns no rows, its value is NULL.

Subqueries that return exactly one column and any number of rows can be
used in IN conditions, ANY conditions, and ALL conditions. Subqueries that
return any number of columns and rows can be used in EXISTS conditions.
These conditions are discussed in the following sections.

ALL or ANY conditions

The syntax for ANY conditions is

expression compare ANY (subquery)

where compare is a comparison operator.

For example, an ANY condition with an equality operator,

expression = ANY (subquery)

is TRUE if expression is equal to any of the values in the result of the
subquery, and FALSE if the expression is not NULL and does not equal any
of the columns of the subquery. The ANY condition is UNKNOWN if
expression is the NULL value, unless the result of the subquery has no rows,
in which case the condition is always FALSE.

The keyword SOME can be used instead of ANY.

The syntax for ALL conditions is

expression compare ALL (subquery)

where compare is a comparison operator.

Search conditions

26

♦ ANY and ALL subqueries are compatible between Adaptive Server
Enterprise and Adaptive Server Anywhere. Only Adaptive Server
Anywhere supports SOME as a synonym for ANY.

BETWEEN conditions

The syntax for BETWEEN conditions is as follows:

expr [NOT] BETWEEN start-expr AND end-expr

The BETWEEN condition can evaluate as TRUE, FALSE, or UNKNOWN.
Without the NOT keyword, the condition evaluates as TRUE if expr is
between start-expr and end-expr. The NOT keyword reverses the meaning of
the condition but leaves UNKNOWN unchanged.

The BETWEEN conditions is equivalent to a combination of two
inequalities:

[NOT] (expr >= start-expr AND expr <= end-expr)

♦ The BETWEEN condition is compatible between Adaptive Server
Anywhere and Adaptive Server Enterprise.

LIKE conditions

The syntax for LIKE conditions is as follows:

expr [NOT] LIKE pattern [ESCAPE escape-expr]

The LIKE condition can evaluate as TRUE, FALSE, or UNKNOWN.

Without the NOT keyword, the condition evaluates as TRUE if expression
matches the pattern. If either expression or pattern is the NULL value, this
condition is UNKNOWN. The NOT keyword reverses the meaning of the
condition, but leaves UNKNOWN unchanged.

The pattern may contain any number of wildcards. The wildcards are:

Wildcard Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters

[] Any single character in the specified range or set

[^] Any single character not in the specified range or set

All other characters must match exactly.

Compatibility

Compatibility

Chapter 1 SQL Language Elements

27

For example, the search condition

... name LIKE ’a%b_’

is TRUE for any row where name starts with the letter a and has the letter b
as its second last character.

If an escape-expr is specified, it must evaluate to a single character. The
character can precede a percent, an underscore, a left square bracket, or
another escape character in the pattern to prevent the special character from
having its special meaning. When escaped in this manner, a percent will
match a percent, and an underscore will match an underscore.

All patterns of length 126 characters or less are supported. Patterns of length
greater than 254 characters are not supported. Some patterns of length
between 127 and 254 characters are supported, depending on the contents of
the pattern.

A set of characters to look for is specified by listing the characters inside
square brackets. For example, the following condition finds the strings smith
and smyth:

LIKE ’sm[iy]th’

A range of characters to look for is specified by giving the ends of the range
inside square brackets, separated by a hyphen. For example, the following
condition finds the strings bough and rough, but not tough:

LIKE ’[a-r]ough’

The range of characters [a-z] is interpreted as "greater than or equal to a, and
less than or equal to z", where the greater than and less than operations are
carried out within the collation of the database. For information on ordering
of characters within a collation, see "International Languages and Character
Sets" on page 249 of the book ASA Database Administration Guide.

The lower end of the range must precede the higher end of the range.
For example, a LIKE condition containing the expression [z-a] returns no
rows because no character matches the [z-a] range.

Unless the database is created as case sensitive, the range of characters is
case insensitive. For example, the following condition finds the strings
Bough, rough, and TOUGH:

LIKE ’[a-z]ough’

If the database is created as a case-sensitive database, the search condition is
case sensitive also. To perform a case insensitive search in a case sensitive
database, you must include upper and lower characters. For example, the
following condition finds the strings Bough, rough, and TOUGH:

LIKE ’[a-zA-Z][oO][uU][gG][hH]’

Searching for one
of a set of
characters

Searching for one
of a range of
characters

Search conditions

28

You can combine ranges and sets within a square bracket. For example, the
following condition finds the strings bough, rough, and tough:

... LIKE ’[a-rt]ough’

The bracket [a-mpqs-z] is interpreted as "exactly one character that is either
in the range a to m inclusive, or is p, or is q, or is in the range s to z
inclusive".

The caret character (^) is used to specify a range of characters that is
excluded from a search. For example, the following condition finds the string
tough, but not the strings rough, or bough:

... LIKE ’[^a-r]ough’

The caret negates the entire rest of the contents of the brackets. For example,
the bracket [^a-mpqs-z] is interpreted as "exactly one character that is not in
the range a to m inclusive, is not p, is not q, and is not in the range s to z
inclusive".

Any single character in square brackets means that character. For example,
[a] matches just the character a. [^] matches just the caret character, [%]
matches just the percent character (the percent character does not act as a
wildcard in this context), and [_] matches just the underscore character.
Also, [[] matches just the character [.

Other special cases are as follows:

♦ The expression [a-] matches either of the characters a or -.

♦ The expression [] is never matched and always returns no rows.

♦ The expressions [or [abp-q are ill-formed expressions, and give syntax
errors.

♦ You cannot use wildcards inside square brackets. The expression [a%b]
finds one of a, %, or b.

♦ You cannot use the caret character to negate ranges except as the first
character in the bracket. The expression [a^b] finds one of a, ^, or b.

When your search pattern includes trailing blanks, Adaptive Server
Anywhere matches the pattern only to values that contain blanks—it does not
blank-pad strings. For example, the search patterns '90 ', '90[]' and '90_'
match the value '90 ', but do not match the value '90', even if the value being
tested is in a char or varchar column that is three or more characters in width.

♦ The ESCAPE clause is supported by Adaptive Server Anywhere only.

Combining
searches for
ranges and sets

Searching for one
character not in a
range

Special cases of
ranges and sets

Search patterns
with trailing blanks

Compatibility

Chapter 1 SQL Language Elements

29

IN conditions

The syntax for IN conditions is as follows:

expression [NOT] IN { (subquery) | (expression) | (value-expr, ...) }

Without the NOT keyword, the IN conditions is TRUE if expression equals
any of the listed values, UNKNOWN if expression is the NULL value, and
FALSE otherwise. The arguments value-expr1, value-expr2, and value-expr3
are expressions that take on a single value, which may be a string, a number,
a date, or other SQL data type. The NOT keyword reverses the meaning of
the condition, but leaves UNKNOWN unchanged.

♦ IN conditions are compatible between Adaptive Server Enterprise and
Adaptive Server Anywhere.

EXISTS conditions

The syntax for EXISTS conditions is as follows:

EXISTS(subquery)

The EXISTS condition is TRUE if the subquery result contains at least one
row, and FALSE if the subquery result does not contain any rows. The
EXISTS condition cannot be UNKNOWN.

♦ The EXISTS condition is compatible between Adaptive Server
Enterprise and Adaptive Server Anywhere.

IS NULL conditions

The syntax for IS NULL conditions is as follows:

expression IS [NOT] NULL

Without the NOT keyword, the IS NULL condition is TRUE if the
expression is the NULL value, and FALSE otherwise. The NOT keyword
reverses the meaning of the condition.

♦ The IS NULL condition is compatible between Adaptive Server
Enterprise and Adaptive Server Anywhere.

Truth value conditions

The syntax for truth-value conditions is as follows:

IS [NOT] truth-value

Compatibility

Compatibility

Compatibility

Search conditions

30

Without the NOT keyword, the condition is TRUE if the condition evaluates
to the supplied truth-value, which must be one of TRUE, FALSE, or
UNKNOWN. Otherwise, the value is FALSE. The NOT keyword reverses
the meaning of the condition, but leaves UNKNOWN unchanged.

♦ Vendor extension. Adaptive Server Enterprise does not support truth-
valued conditions.

Trigger operation conditions

The syntax for trigger operation conditions is as follows:

trigger-operation:
 INSERTING | DELETING
| UPDATING(column-name-string) | UPDATE(column-name)

Trigger-operation conditions can be used only in triggers, to carry out actions
depending on the kind of action that caused the trigger to fire.

The argument for UPDATING is a quoted string (for example, UPDATING(
’mycolumn’)). The argument for UPDATE is an identifier (for example,
UPDATE(mycolumn)). The two versions are interoperable, and are
included for compatibility with SQL dialects of other vendors’ DBMS.

If you supply an UPDATING or UPDATE function, you must also supply a
REFERENCING clause in the CREATE TRIGGER statement to avoid
syntax errors.

The following trigger displays a message showing which action caused the
trigger to fire.

CREATE TRIGGER tr BEFORE INSERT, UPDATE, DELETE
ON sample_table
REFERENCING OLD AS t1old
FOR EACH ROW
BEGIN
 DECLARE msg varchar(255);
 SET msg = ’This trigger was fired by an ’;
 IF INSERTING THEN
 SET msg = msg || ’insert’
 ELSEIF DELETING THEN
 set msg = msg || ’delete’
 ELSEIF UPDATING THEN
 set msg = msg || ’update’
 END IF;
 MESSAGE msg TO CLIENT
END

Compatibility

Example

Chapter 1 SQL Language Elements

31

Three-valued logic

The following tables display how the AND, OR, NOT, and IS logical
operators of SQL work in three-valued logic.

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

TRUE FALSE UNKNOWN

FALSE TRUE UNKNOWN

IS TRUE FALSE UNKNOWN

TRUE TRUE FALSE FALSE

FALSE FALSE TRUE FALSE

UNKNOWN FALSE FALSE TRUE

Explicit selectivity estimates

Adaptive Server Anywhere uses statistical information to determine the most
efficient strategy for executing each statement. Adaptive Server Anywhere
automatically gathers and updates these statistics. These statistics are stored
permanently in the database in the system table SYSCOLSTAT. Statistics
gathered while processing one statement are available when searching for
efficient ways to execute subsequent statements.

Occasionally, the statistics may become inaccurate or relevant statistics may
be unavailable. This condition is most likely to arise when few queries have
been executed since a large amount of data was added, updated, or deleted.

In this situation, you may want to execute CREATE STATISTICS or DROP
STATISTICS.

AND operator

OR operator

NOT operator

IS operator

Search conditions

32

In unusual circumstances, however, these measures may prove ineffective. In
such cases, you can sometimes improve performance by supplying explicit
selectivity estimates.

For each table in a potential execution plan, the optimizer must estimate the
number of rows that will be part of the result set. If you know that a
condition has a success rate that differs from the optimizer’s estimate, you
can explicitly supply a user estimate in the search condition.

The estimate is a percentage. It can be a positive integer or can contain
fractional values.

Caution:
Whenever possible, avoid supplying explicit estimates in statements that
are to be used on an ongoing basis. Should the data change, the explicit
estimate may become inaccurate and may force the optimizer to select
poor plans.

You can disable user estimates by setting the database option
USER_ESTIMATES to OFF. The default value for USER_ESTIMATES is
OVERRIDE-MAGIC, which means that user-supplied selectivity estimates
are used only when the optimizer would use a MAGIC (default) selectivity
value for the condition. The optimizer uses MAGIC values as a last resort
when it is unable to accurately predict the selectivity of a predicate.

$ For more information about disabling user-defined selectivity
estimates, see "USER_ESTIMATES option" on page 606 of the book ASA
Database Administration Guide.

$ For more information about statistics, see "Optimizer estimates" on
page 315 of the book ASA SQL User’s Guide.

♦ The following query provides an estimate that one percent of the
ship_date values will be later than 2001/06/30:

SELECT ship_date
 FROM sales_order_items
WHERE (ship_date > ’2001/06/30’, 1)
ORDER BY ship_date DESC

♦ The following query estimates that half a percent of the rows will satisfy
the condition:

SELECT *
 FROM customer c, sales_order o
WHERE (c.id = o.cust_id, 0.5)

Fractional values enable more accurate user estimates for joins, particularly
for large tables.

♦ Adaptive Server Enterprise does not support explicit estimates.

Examples

Compatibility

Chapter 1 SQL Language Elements

33

Special values
Special values can be used in expressions, and as column defaults when
creating tables.

CURRENT DATABASE special value

CURRENT DATABASE returns the name of the current database.

STRING

"Expressions" on page 15

CURRENT DATE special value

CURRENT DATE returns the current year, month, and day.

DATE

"Expressions" on page 15
"TIME data type" on page 71

CURRENT PUBLISHER special value

CURRENT PUBLISHER returns a string that contains the publisher user ID
of the database for SQL Remote replications.

STRING

CURRENT PUBLISHER can be used as a default value in columns with
character data types.

"Expressions" on page 15
"SQL Remote Design for Adaptive Server Anywhere" on page 89 of the

book SQL Remote User’s Guide

CURRENT TIME special value

The current hour, minute, second and fraction of a second.

TIME

Function

Data type

See also

Function

Data type

See also

Function

Data type

See also

Function

Data type

Special values

34

The fraction of a second is stored to 6 decimal places. The accuracy of the
current time is limited by the accuracy of the system clock.

"Expressions" on page 15
"TIME data type" on page 71

CURRENT TIMESTAMP special value

Combines CURRENT DATE and CURRENT TIME to form a
TIMESTAMP value containing the year, month, day, hour, minute, second
and fraction of a second. Like CURRENT TIME, the system clock limits the
accuracy to a fraction of a second.

The fraction of a second is stored to 3 decimal places. The accuracy is
limited by the accuracy of the system clock.

TIMESTAMP

"Expressions" on page 15
"TIMESTAMP data type" on page 71

CURRENT USER special value

CURRENT USER returns a string that contains the user ID of the current
connection.

STRING

CURRENT USER can be used as a default value in columns with character
data types.

On UPDATE, columns with a default value of CURRENT USER are not
changed.

"Expressions" on page 15

CURRENT UTC TIMESTAMP special value

Combines CURRENT DATE and CURRENT TIME, adjusted by the server’s
time zone adjustment value, to form a Coordinated Universal Time (UTC)
TIMESTAMP value containing the year, month, day, hour, minute, second
and fraction of a second. This feature allows data to be entered with a
consistent time reference, regardless of the time zone in which the data was
entered.

Description

See also

Function

Data type

See also

Function

Data type

Description

See also

Function

Chapter 1 SQL Language Elements

35

TIMESTAMP

"TIMESTAMP data type" on page 71
"UTC TIMESTAMP special value" on page 37
"CURRENT TIMESTAMP special value" on page 34
"TRUNCATE_TIMESTAMP_VALUES option" on page 604 of the book

ASA Database Administration Guide

LAST USER special value

The name of the user who last modified the row.

String.

LAST USER can be used as a default value in columns with character data
types.

On INSERT, this constant has the same effect as CURRENT USER. On
UPDATE, if a column with a default value of LAST USER is not explicitly
modified, it is changed to the name of the current user.

When combined with the DEFAULT TIMESTAMP, a default value of
LAST USER can be used to record (in separate columns) both the user and
the date and time a row was last changed.

"CURRENT USER special value" on page 34
"CURRENT TIMESTAMP special value" on page 34
"CREATE TABLE statement" on page 350

SQLCODE special value

Current SQLCODE value.

String.

The SQLCODE value is set after each statement. You can check the
SQLCODE to see whether or not the statement succeeded.

"Expressions" on page 15
"Database Error Messages" on page 1 of the book ASA Errors Manual.

SQLSTATE special value

Current SQLSTATE value

STRING

Data type

See also

Function

Data type

Description

See also

Function

Data type

Description

See also

Function

Data type

Special values

36

The SQLSTATE value is set after each statement. You can check the
SQLSTATE to see whether or not the statement succeeded.

"Expressions" on page 15
"Database Error Messages" on page 1 of the book ASA Errors Manual

TIMESTAMP special value

TIMESTAMP indicates when each row in the table was last modified. When
a column is declared with DEFAULT TIMESTAMP, a default value is
provided for inserts, and the value is updated with the current date and time
whenever the row is updated.

TIMESTAMP

Columns declared with DEFAULT TIMESTAMP contain unique values so
that applications can detect near-simultaneous updates to the same row. If the
current timestamp value is the same as the last value, it is incremented by the
value of the DEFAULT_TIMESTAMP_INCREMENT option.

You can automatically truncate timestamp values in Adaptive Server
Anywhere based on the DEFAULT_TIMESTAMP_INCREMENT option.
This is useful for maintaining compatibility with other database software
which records less precise timestamp values.

The global variable @@dbts returns a TIMESTAMP value representing the
last value generated for a column using DEFAULT TIMESTAMP.

"TIMESTAMP data type" on page 71
"CURRENT UTC TIMESTAMP special value" on page 34
"DEFAULT_TIMESTAMP_INCREMENT option" on page 564 of the book

ASA Database Administration Guide
"TRUNCATE_TIMESTAMP_VALUES option" on page 604 of the book

ASA Database Administration Guide

USER special value

USER returns a string that contains the user ID of the current connection.

STRING

USER can be used as a default value in columns with character data types.

On UPDATE, columns with a default value of USER are not changed.

"Expressions" on page 15
"CURRENT USER special value" on page 34

Description

See also

Function

Data type

Description

See also

Function

Data type

Description

See also

Chapter 1 SQL Language Elements

37

"LAST USER special value" on page 35

UTC TIMESTAMP special value

UTC TIMESTAMP indicates the Coordinated Universal (UTC) time when
each row in the table was last modified.

TIMESTAMP

"TIMESTAMP data type" on page 71
"CURRENT UTC TIMESTAMP special value" on page 34
"TIMESTAMP special value" on page 36
"DEFAULT_TIMESTAMP_INCREMENT option" on page 564 of the book

ASA Database Administration Guide
"TRUNCATE_TIMESTAMP_VALUES option" on page 604 of the book

ASA Database Administration Guide

Function

Data type

See also

Variables

38

Variables
Adaptive Server Anywhere supports three levels of variables:

♦ Local variables These are defined inside a compound statement in a
procedure or batch using the DECLARE statement. They exist only
inside the compound statement.

♦ Connection-level variables These are defined with a CREATE
VARIABLE statement. They belong to the current connection, and
disappear when you disconnect from the database or when you use the
DROP VARIABLE statement.

♦ Global variables These are system-supplied variables that have
system-supplied values. All global variables have names beginning with
two @ signs. For example, the global variable @@version has a value
that is the current version number of the database server. Users cannot
define global variables.

Local and connection-level variables are declared by the user, and can be
used in procedures or in batches of SQL statements to hold information.
Global variables are system-supplied variables that provide system-supplied
values.

"TIMESTAMP data type" on page 71
"CREATE VARIABLE statement" on page 370

Local variables

Local variables are declared using the DECLARE statement, which can be
used only within a compound statement (that is, bracketed by the BEGIN and
END keywords). The variable is initially set as NULL. The value of the
variable can be set using the SET statement, or can be assigned using a
SELECT statement with an INTO clause.

The syntax of the DECLARE statement is as follows:

DECLARE variable-name data-type

Local variables can be passed as arguments to procedures, as long as the
procedure is called from within the compound statement.

♦ The following batch illustrates the use of local variables.

BEGIN
DECLARE local_var INT;
SET local_var = 10;
MESSAGE ’local_var = ’, local_var TO CLIENT;

END

See also

Examples

Chapter 1 SQL Language Elements

39

Running this batch from Interactive SQL gives the message local_var =
10 in the Interactive SQL Messages pane.

♦ The variable local_var does not exist outside the compound statement in
which it is declared. The following batch is invalid, and gives a column
not found error.

-- This batch is invalid.
BEGIN

DECLARE local_var INT;
SET local_var = 10;

END;
MESSAGE ’local_var = ’, local_var TO CLIENT;

♦ The following example illustrates the use of SELECT with an INTO
clause to set the value of a local variable:

BEGIN
DECLARE local_var INT;
SELECT 10 INTO local_var;
MESSAGE ’local_var = ’, local_var TO CLIENT;

END

Running this batch from Interactive SQL gives the message local_var =
10 on the server window.

♦ Names Adaptive Server Enterprise and Adaptive Server Anywhere
both support local variables. In Adaptive Server Enterprise, all variables
must be prefixed with an @ sign. In Adaptive Server Anywhere, the @
prefix is optional. To write compatible SQL, prefix all of your variables
with @.

♦ Scope The scope of local variables is different in Adaptive Server
Anywhere and Adaptive Server Enterprise. Adaptive Server Anywhere
supports the use of the DECLARE statement to declare local variables
within a batch. However, if the DECLARE is executed within a
compound statement, the scope is limited to the compound statement.

♦ Declaration Only one variable can be declared for each DECLARE
statement in Adaptive Server Anywhere. In Adaptive Server Enterprise,
more than one variable can be declared in a single statement.

$ For more information on batches and local variable scope, see
"Variables in Transact-SQL procedures" on page 411 of the book ASA SQL
User’s Guide.

Compatibility

Variables

40

Connection-level variables

Connection-level variables are declared with the CREATE VARIABLE
statement. Connection-level variables can be passed as parameters to
procedures.

The syntax for the CREATE VARIABLE statement is as follows:

CREATE VARIABLE variable-name data-type

When a variable is created, it is initially set to NULL. The value of
connection-level variables can be set in the same way as local variables,
using the SET statement or using a SELECT statement with an INTO clause.

Connection-level variables exist until the connection is terminated, or until
the variable is explicitly dropped using the DROP VARIABLE statement.
The following statement drops the variable con_var:

DROP VARIABLE con_var

♦ The following batch of SQL statements illustrates the use of connection-
level variables.

CREATE VARIABLE con_var INT;
SET con_var = 10;
MESSAGE ’con_var = ’, con_var TO CLIENT;

Running this batch from Interactive SQL gives the message con_var =
10 on the server window.

♦ Adaptive Server Enterprise does not support connection-level variables.

Global variables

Global variables have values set by the database server. For example, the
global variable @@version has a value that is the current version number of
the database server.

Global variables are distinguished from local and connection-level variables
by having two @ signs preceding their names. For example, @@error and
@@rowcount are global variables. Users cannot create global variables, and
cannot update the values of global variables directly.

Some global variables, such as @@identity, hold connection-specific
information, and so have connection-specific values. Other variables, such as
@@connections, have values that are common to all connections.

The special constants (for example, CURRENT DATE, CURRENT TIME,
USER, and SQLSTATE) are similar to global variables.

The following statement retrieves a value of the version global variable.

Example

Compatibility

Global variable and
special constants

Chapter 1 SQL Language Elements

41

SELECT @@version

In procedures and triggers, global variables can be selected into a variable
list. The following procedure returns the server version number in the ver
parameter.

CREATE PROCEDURE VersionProc (OUT ver
VARCHAR(100))

BEGIN
SELECT @@version
INTO ver;

END

In Embedded SQL, global variables can be selected into a host variable list.

The following table lists the global variables available in Adaptive Server
Anywhere

Variable name Meaning

@@dbts A value of type TIMESTAMP representing the last generated
value used for all columns defined with DEFAULT
TIMESTAMP.

@@error Commonly used to check the error status (succeeded or
failed) of the most recently executed statement. It contains 0
if the previous transaction succeeded; otherwise, it contains
the last error number generated by the system. A statement
such as if @@error != 0 return causes an exit if an error
occurs. Every SQL statement resets @@error, so the status
check must immediately follow the statement whose success
is in question.

@@fetch_status Contains status information resulting from the last fetch
statement. @@fetch_status may contain the following values

0 The fetch statement completed successfully.

-1 The fetch statement resulted in an error.

-2 There is no more data in the result set.

This feature is the same as @@sqlstatus, except that it returns
different values. It is for Microsoft SQL Server compatibility.

@@identity Last value inserted into any IDENTITY or DEFAULT
AUTOINCREMENT column by an INSERT or SELECT
INTO statement.

$ For a description, see "@@identity global variable" on
page 46.

@@isolation Current isolation level. @@isolation takes the value of the
active level.

List of global
variables

Variables

42

Variable name Meaning

@@procid Stored procedure ID of the currently executing procedure.

@@rowcount Number of rows affected by the last statement. The value of
@@rowcount should be checked immediately after the
statement.

Inserts, updates, and deletes set @@rowcount to the number
of rows affected.

With cursors, @@rowcount represents the cumulative
number of rows returned from the cursor result set to the
client, up to the last fetch request.

Unlike in Adaptive Server Enterprise, @@rowcount is not
reset to zero by any statement which does not affect rows,
such as an IF statement.

@@servername Name of the current database server.

@@sqlstatus Contains status information resulting from the last fetch
statement. @@sqlstatus may contain the following values

0 The fetch statement completed successfully.

1 The fetch statement resulted in an error.

2 There is no more data in the result set.

@@version Version number of the current version of Adaptive Server
Anywhere.

The following list includes all Adaptive Server Enterprise global variables
supported in Adaptive Server Anywhere. Adaptive Server Enterprise global
variables not supported by Adaptive Server Anywhere are not included in the
list. In contrast to the above table, this list includes all global variables that
return a value, including those for which the value is fixed at NULL, 1, -1,
or 0, and may not be meaningful.

Compatibility

Chapter 1 SQL Language Elements

43

Global variable Returns

@@char_convert Returns 0.

@@client_csname In Adaptive Server Enterprise, the client’s character set
name. Set to NULL if client character set has never been
initialized; otherwise, it contains the name of the most
recently used character set. Returns NULL in Adaptive
Server Anywhere.

@@client_csid In Adaptive Server Enterprise, the client’s character set ID.
Set to –1 if client character set has never been initialized;
otherwise, it contains the most recently used client character
set ID from syscharsets. Returns –1 in Adaptive Server
Anywhere.

@@connections The number of logins since the server was last started

@@cpu_busy In Adaptive Server Enterprise, the amount of time, in ticks,
that the CPU has spent doing Adaptive Server Enterprise
work since the last time Adaptive Server Enterprise was
started. In Adaptive Server Anywhere, returns 0.

@@error Commonly used to check the error status (succeeded or
failed) of the most recently executed statement. It contains 0
if the previous transaction succeeded; otherwise, it contains
the last error number generated by the system. A statement
such as

if @@error != 0 return

causes an exit if an error occurs. Every statement resets
@@error, including PRINT statements or IF tests, so the
status check must immediately follow the statement whose
success is in question.

@@identity Last value inserted into an IDENTITY column by an
INSERT or SELECT INTO statement.

$ For a description, see "@@identity global variable" on
page 46.

@@idle In Adaptive Server Enterprise, the amount of time, in ticks,
that Adaptive Server Enterprise has been idle since it was
last started. In Adaptive Server Anywhere, returns 0.

@@io_busy In Adaptive Server Enterprise, the amount of time, in ticks,
that Adaptive Server Enterprise has spent doing input and
output operations since it was last started. In Adaptive
Server Anywhere, returns 0.

@@isolation Current isolation level of the connection. In Adaptive Server
Enterprise, @@isolation takes the value of the active level

@@langid In Adaptive Server Enterprise, defines the local language ID
of the language currently in use. In Adaptive Server

Variables

44

Global variable Returns
Anywhere, returns 0.

@@language In Adaptive Server Enterprise, defines the name of the
language currently in use. In Adaptive Server Anywhere,
returns "English".

@@maxcharlen In Adaptive Server Enterprise, maximum length, in bytes, of
a character in Adaptive Server Enterprise’s default character
set. In Adaptive Server Anywhere, returns 1.

@@max_
connections

For the personal server, the maximum number of
simultaneous connections that can be made to the server,
which is 10.

For the network server, the maximum number of active
clients (not database connections, as each client can support
multiple connections).

For Adaptive Server Enterprise, the maximum number of
connections to the server.

@@ncharsize In Adaptive Server Enterprise, average length, in bytes, of a
national character. In Adaptive Server Anywhere, returns 1.

@@nestlevel In Adaptive Server Enterprise, nesting level of current
execution (initially 0). Each time a stored procedure or
trigger calls another stored procedure or trigger, the nesting
level is incremented. In Adaptive Server Anywhere, returns
–1.

@@pack_received In Adaptive Server Enterprise, number of input packets read
by Adaptive Server Enterprise since it was last started. In
Adaptive Server Anywhere, returns 0.

@@pack_sent In Adaptive Server Enterprise, number of output packets
written by Adaptive Server Enterprise since it was last
started. In Adaptive Server Anywhere, returns 0.

@@packet_errors In Adaptive Server Enterprise, number of errors that have
occurred while Adaptive Server Enterprise was sending and
receiving packets. In Adaptive Server Anywhere, returns 0.

@@procid Stored procedure ID of the currently executing procedure.

@@rowcount Number of rows affected by the last command. In Adaptive
Server Enterprise @@rowcount is set to zero by any
command which does not return rows, such as an IF
statement; in Adaptive Server Anywhere, such statements to
not reset @@rowcount. With cursors, @@rowcount
represents the cumulative number of rows returned from the
cursor result set to the client, up to the last fetch request.

@@servername Name of the local Adaptive Server Enterprise or Adaptive
Server Anywhere server.

Chapter 1 SQL Language Elements

45

Global variable Returns

@@spid In Adaptive Server Enterprise, server process ID number of
the current process. In Adaptive Server Anywhere, the
connection handle for the current connection. This is the
same value as that displayed by the sa_conn_info procedure.

@@sqlstatus Contains status information resulting from the last fetch
statement. @@sqlstatus may contain the following values

0 The fetch statement completed successfully.

1 The fetch statement resulted in an error.

2 There is no more data in the result set.

@@textsize Current value of the SET TEXTSIZE option, which specifies
the maximum length, in bytes, of text or image data to be
returned with a select statement. The default setting
is 32765, which is the largest bytestring that can be returned
using READTEXT. The value can be set using the SET
statement.

@@thresh_hysteresis In Adaptive Server Enterprise, change in free space required
to activate a threshold. In Adaptive Server Anywhere,
returns 0.

@@timeticks In Adaptive Server Enterprise, number of microseconds per
tick. The amount of time per tick is machine-dependent. In
Adaptive Server Anywhere, returns 0.

@@total_errors In Adaptive Server Enterprise, number of errors that have
occurred while Adaptive Server Enterprise was reading or
writing. In Adaptive Server Anywhere, returns 0.

@@total_read In Adaptive Server Enterprise, number of disk reads by
Adaptive Server Enterprise since it was last started. In
Adaptive Server Anywhere, returns 0.

@@total_write In Adaptive Server Enterprise, number of disk writes by
Adaptive Server Enterprise since it was last started. In
Adaptive Server Anywhere, returns 0.

@@tranchained Current transaction mode of the Transact-SQL program.
@@tranchained returns 0 for unchained or 1 for chained.

@@trancount Nesting level of transactions. Each BEGIN
TRANSACTION in a batch increments the transaction
count.

@@transtate In Adaptive Server Enterprise, current state of a transaction
after a statement executes. In Adaptive Server Anywhere,
returns –1.

@@version Information on the current version of Adaptive Server
Enterprise or Adaptive Server Anywhere.

Variables

46

@@identity global variable

The @@identity variable holds the most recent value inserted into an
IDENTITY column or a DEFAULT AUTOINCREMENT column, or zero if
the most recent insert was into a table that had no such column.

The value of @@identity is reset each time a row is inserted into a table. If a
statement inserts multiple rows, @@identity reflects the IDENTITY value
for the last row inserted. If the affected table does not contain an IDENTITY
column, @@ identity is set to 0.

The value of @@identity is not affected by the failure of an INSERT or
SELECT INTO statement, or the rollback of the transaction that contained it.
@@identity retains the last value inserted into an IDENTITY column, even
if the statement that inserted it fails to commit.

When an insert causes referential integrity actions or fires a trigger,
@@identity behaves like a stack. For example, if an insert into a table T1
(with an identity or autoincrement column) fires a trigger that inserts a row
into table T2 (also with an identity or autoincrement column), then the value
returned to the application or procedure which carried out the insert is the
value inserted into T1. Within the trigger, @@identity has the T1 value
before the insert into T2 and the T2 value after. The trigger can copy the
values to local variables if it needs to access both.

@@identity and
triggers

Chapter 1 SQL Language Elements

47

Comments
Comments are used to attach explanatory text to SQL statements or
statement blocks. The database server does not execute comments.

Several comment indicators are available in Adaptive Server Anywhere.

♦ -- (Double hyphen) The database server ignores any remaining
characters on the line. This is the SQL/92 comment indicator.

♦ // (Double slash) The double slash has the same meaning as the
double hyphen.

♦ /* ... */ (Slash-asterisk) Any characters between the two comment
markers are ignored. The two comment markers may be on the same or
different lines. Comments indicated in this style can be nested. This
style of commenting is also called C-style comments.

♦ % (Percent sign) The percent sign has the same meaning as the
double hyphen, if the PERCENT_AS_COMMENT option is set to ON.
It is recommended that % not be used as a comment indicator.

♦ The double-hyphen and the slash-asterisk comment styles are
compatible with Adaptive Server Enterprise.

♦ The following example illustrates the use of double-dash comments:

CREATE FUNCTION fullname (firstname CHAR(30),
lastname CHAR(30))

RETURNS CHAR(61)
-- fullname concatenates the firstname and lastname
-- arguments with a single space between.
BEGIN

DECLARE name CHAR(61);
SET name = firstname || ’ ’ || lastname;
RETURN (name);

END

♦ The following example illustrates the use of C-style comments:

/*
Lists the names and employee IDs of employees
who work in the sales department.

*/
CREATE VIEW SalesEmployee AS
SELECT emp_id, emp_lname, emp_fname
FROM "DBA".employee
WHERE dept_id = 200

Compatibility

Examples

NULL value

48

NULL value
To specify a value that is unknown or not applicable.

NULL

Anywhere.

Must be connected to the database.

None.

"Expressions" on page 15
"Search conditions" on page 24

The NULL value is a special value which is different from any valid value
for any data type. However, the NULL value is a legal value in any data
type. The NULL value is used to represent missing or inapplicable
information. Note that these are two separate and distinct cases where NULL
is used:

Situation Description

missing The field does have a value, but that value is unknown.

inapplicable The field does not apply for this particular row.

SQL allows columns to be created with the NOT NULL restriction. This
means that those particular columns cannot contain the NULL value.

The NULL value introduces the concept of three valued logic to SQL. The
NULL value compared using any comparison operator with any value
(including the NULL value) is "UNKNOWN." The only search condition
that returns TRUE is the IS NULL predicate. In SQL, rows are selected only
if the search condition in the WHERE clause evaluates to TRUE; rows that
evaluate to UNKNOWN or FALSE are not selected.

The IS [NOT] truth-value clause, where truth-value is one of TRUE,
FALSE or UNKNOWN can be used to select rows where the NULL value is
involved. See "Search conditions" on page 24 for a description of this clause.

In the following examples, the column Salary contains NULL.

Function

Syntax

Usage

Permissions

Side effects

See also

Description

Chapter 1 SQL Language Elements

49

Condition Truth value Selected?

Salary = NULL UNKNOWN NO

Salary <> NULL UNKNOWN NO

NOT (Salary = NULL) UNKNOWN NO

NOT (Salary <> NULL) UNKNOWN NO

Salary = 1000 UNKNOWN NO

Salary IS NULL TRUE YES

Salary IS NOT NULL FALSE NO

Salary = expression IS UNKNOWN TRUE YES

The same rules apply when comparing columns from two different tables.
Therefore, joining two tables together will not select rows where any of the
columns compared contain the NULL value.

NULL also has an interesting property when used in numeric expressions.
The result of any numeric expression involving the NULL value is NULL.
This means that if NULL is added to a number, the result is NULL—not a
number. If you want NULL to be treated as 0, you must use the ISNULL(
expression, 0) function (see "SQL Functions" on page 93).

Many common errors in formulating SQL queries are caused by the behavior
of NULL. You will have to be careful to avoid these problem areas. See
"Search conditions" on page 24 for a description of the effect of three-valued
logic when combining search conditions.

♦ SQL/92 Entry-level feature.

♦ Sybase In some contexts, Adaptive Server Enterprise treats NULL as
a value, whereas Adaptive Server Anywhere does not. For example,
rows of a column c1 that are NULL are not included in the results of a
query with the following WHERE clause in Adaptive Server Anywhere,
as the condition has a value of UNKNOWN:

WHERE NOT(C1 = NULL)

In Adaptive Server Enterprise, the condition is evaluated as TRUE, and
these rows are returned. You should use IS NULL rather than a
comparison operator for compatibility.

Unique indexes in Adaptive Server Anywhere can hold rows that hold
NULL and are otherwise identical. Adaptive Server Enterprise does not
permit such entries in unique indexes.

Standards and
compatibility

NULL value

50

If you use jConnect, the TDS_EMPTY_STRING_IS_NULL option
controls whether empty strings are returned as NULL strings or as a
string containing one blank character.

$ For more information, see "TDS_EMPTY_STRING_IS_NULL
option" on page 601 of the book ASA Database Administration Guide.

♦ The following INSERT statement inserts a NULL into the date_returned
column of the Borrowed_book table.

INSERT
INTO Borrowed_book
(date_borrowed, date_returned, book)
VALUES (CURRENT DATE, NULL, ’1234’)

Example

51

C H A P T E R 2

SQL Data Types

This chapter describes the data types supported by Adaptive Server
Anywhere.

Topic Page

Character data types 52

Numeric data types 56

Money data types 63

Bit data type 64

Date and time data types 65

Binary data types 72

Domains 75

Java class data types 77

Data type conversions 82

Java / SQL data type conversion 84

Year 2000 compliance 87

About this chapter

Contents

Character data types

52

Character data types
For storing strings of letters, numbers and symbols.

Adaptive Server Anywhere treats CHAR, VARCHAR, and LONG
VARCHAR columns all as the same type. Values up to 254 characters are
stored as short strings, with a preceding length byte. Any values that are
longer than 255 bytes are considered long strings. Characters after the 255th
byte are stored separately from the row containing the long string value.

There are several functions (see "SQL Functions" on page 93) that will
ignore the part of any string past the 255th character. They are soundex,
similar, and all of the date functions. Also, any arithmetic involving the
conversion of a long string to a number will work on only the first 255
characters. It would be extremely unusual to run in to one of these
limitations.

All other functions and all other operators work with the full length of long
strings.

Character data is placed in the database using the exact binary representation
that is passed from the application. This usually means that character data is
stored in the database with the binary representation of the current code
page. The code page is the character set representation used by IBM-
compatible personal computers. You can find documentation about code
pages in the documentation for your operating system.

Most code pages are the same for the first 128 characters. If you use special
characters from the top half of the code page (accented international
language characters), you must be careful with your databases. In particular,
if you copy the database to a machine that uses a different code page, those
special characters will be retrieved from the database using the original code
page representation. With the new code page, they will appear on the screen
to be the wrong characters.

This problem also appears if you have two clients using the same multi-user
server, but run with different code pages. Data inserted or updated by one
client may appear incorrect to the other.

This problem also shows up if a database is used across platforms.
PowerBuilder and many other Windows applications insert data into the
database in the standard ANSI character set. If non-Windows applications
attempt to use this data, they will not properly display or update the extended
characters.

This problem is quite complex. If any of your applications use the extended
characters in the upper half of the code page, make sure that all clients and
all machines using the database use the same or a compatible code page.

Function

Description

Character sets and
code pages

Chapter 2 SQL Data Types

53

Data type lengths of less than one are not allowed.

♦ The CHARACTER (n) alternative for CHAR is not supported in
Adaptive Server Enterprise.

♦ Adaptive Server Anywhere does not support the NCHAR and
NVARCHAR data types provided by Adaptive Server Enterprise.

CHAR data type [Character]

Character data of maximum length max-length bytes.

{ CHAR | CHARACTER } [(max-length)]

The default value of max-length is 1.

For strings up to 254 bytes in length, the storage requirement is the number
of bytes in the string plus one additional byte. For longer strings, there is
more overhead.

Strings of multi-byte characters can be held as the CHAR data type, but max-
length is in bytes, not characters.

max-length The maximum length in bytes of the string. The maximum
size allowed is 32767.

♦ SQL/92 Compatible with SQL/92.

♦ Sybase Compatible with Adaptive Server Enterprise. In Adaptive
Server Enterprise, the storage requirements for CHAR data types is
always max-length. The maximum max-length for Adaptive Server
Enterprise is 255.

♦ Other database systems In many other database-management
systems, unlike Adaptive Server Anywhere, CHAR data types result in
blank padding to the full length of the string. This means that they
require max-length bytes of storage, regardless of the length of the actual
string.

"CHARACTER VARYING data type" on page 53
"LONG VARCHAR data type" on page 54

CHARACTER VARYING data type [Character]

Same as CHAR.

{ VARCHAR | CHARACTER VARYING } [(max-length)]

Notes

Compatibility

Function

Syntax

Usage

Parameters

Standards and
compatibility

See also

Function

Syntax

Character data types

54

The default value of max-length is 1.

For strings up to 254 bytes in length, the storage requirements are the
number of bytes in the string plus one additional byte. For longer strings,
there is more overhead.

Strings of multi-byte characters can be held as the CHAR data type, but it is
important to note that max-length is in bytes, not characters.

max-length The maximum length of the string, in bytes. The maximum
size allowed is 32767.

♦ SQL/92 Compatible with SQL/92.

♦ Sybase Compatible with Adaptive Server Enterprise. The maximum
max-length for Adaptive Server Enterprise is 255.

"CHAR data type" on page 53
"LONG VARCHAR data type" on page 54

LONG VARCHAR data type [Character]

Arbitrary length character data.

LONG VARCHAR

Usage

Arbitrary length strings. The maximum size is limited by the maximum size
of the database file (currently 2 Gb).

In addition to the length of the string itself, there is some additional overhead
for storage.

♦ SQL/92 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

"CHAR data type" on page 53
"CHARACTER VARYING data type" on page 53

TEXT data type [Character]

This is a domain. It is implemented as a LONG VARCHAR allowing NULL.

TEXT

Usage

Arbitrary length strings. The usage is as for LONG VARCHAR.

Usage

Parameters

Standards and
compatibility

See also

Function

Syntax

Standards and
compatibility

See also

Function

Syntax

Chapter 2 SQL Data Types

55

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"LONG VARCHAR data type" on page 54

Standards and
compatibility

See also

Numeric data types

56

Numeric data types
For storing numerical data.

♦ The NUMERIC and DECIMAL data types, and the various kinds of
INTEGER data types, are sometimes called exact numeric data types, in
contrast to the approximate numeric data types FLOAT, DOUBLE, and
REAL.

The exact numeric data types are those for which precision and scale
values can be specified, while approximate numeric data types are stored
in a predefined manner. Only exact numeric data is guaranteed accurate
to the least significant digit specified after an arithmetic operation.

♦ Before release 5.5, hexadecimal constants longer than four bytes were
treated as string constants, and others were treated as integers. The new
default behavior is to treat them as binary type constants. To use the
historical behavior, set the TSQL_HEX_CONSTANTS database option
to OFF.

♦ Data type lengths and precision of less than one are not allowed.

♦ Only the NUMERIC data type with scale = 0 can be used for the
Transact-SQL identity column.

♦ You should avoid default precision and scale settings for NUMERIC
and DECIMAL data types, because these are different between Adaptive
Server Anywhere and Adaptive Server Enterprise. In Adaptive Server
Anywhere, the default precision is 30 and the default scale is 6. In
Adaptive Server Enterprise, the default precision is 18 and the default
scale is 0.

♦ The FLOAT (p) data type is a synonym for REAL or DOUBLE,
depending on the value of p. For Adaptive Server Enterprise, REAL is
used for p less than or equal to 15, and DOUBLE for p greater than 15.
For Adaptive Server Anywhere, the cutoff is platform-dependent, but on
all platforms the cutoff value is greater than 15.

$ For information about changing the defaults by setting database
options, see "PRECISION option" on page 591 of the book ASA Database
Administration Guide and "SCALE option" on page 598 of the book ASA
Database Administration Guide.

BIGINT data type [Numeric]

Integer requiring 8 bytes of storage.

Function

Notes

Compatibility

Function

Chapter 2 SQL Data Types

57

[UNSIGNED] BIGINT

The BIGINT data type is an exact numeric data type: its accuracy is
preserved after arithmetic operations.

A BIGINT value requires 8 bytes of storage.

The range for signed BIGINT values is –263 to 263 – 1, or
–9223372036854775808 to 9223372036854775807.

The range for unsigned BIGINT values is 0 to 264 – 1, or
0 to 18446744073709551615.

By default, the data type is signed.

♦ SQL/92 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

"INT or INTEGER data type" on page 59
"TINYINT data type" on page 61
"SMALLINT data type" on page 61

DECIMAL data type [Numeric]

A decimal number with precision total digits and with scale of the digits
after the decimal point.

{ DECIMAL | DEC } [(precision [, scale])]

The DECIMAL data type is an exact numeric data type; its accuracy is
preserved to the least significant digit after arithmetic operations.

The storage required for a decimal number can be estimated as

2 + int((before + 1)/2) + int((after + 1)/2)

The function int takes the integer portion of its argument, and before and
after are the number of significant digits before and after the decimal point.
The storage is based on the value being stored, not on the maximum
precision and scale allowed in the column.

precision An integer expression that specifies the number of digits in the
expression. The default setting is 30.

scale An integer expression that specifies the number of digits after the
decimal point. The default setting is 6.

Syntax

Usage

Standards and
compatibility

See also

Function

Syntax

Usage

Parameters

Numeric data types

58

The defaults can be changed by setting database options. For information,
see "PRECISION option" on page 591 of the book ASA Database
Administration Guide and "SCALE option" on page 598 of the book ASA
Database Administration Guide.

♦ SQL/92 Compatible with SQL/92.

♦ Sybase Compatible with Adaptive Server Enterprise.

"FLOAT data type" on page 58
"REAL data type" on page 61
"DOUBLE data type" on page 58

DOUBLE data type [Numeric]

A double-precision floating-point number.

DOUBLE [PRECISION]

The DOUBLE data type holds a double-precision floating point number. An
approximate numeric data type, it is subject to rounding errors after
arithmetic operations. The approximate nature of DOUBLE values means
that queries using equalities should generally be avoided when comparing
DOUBLE values.

DOUBLE values require 8 bytes of storage.

The value range is 2.22507385850721e–308 to 1.79769313486231e+308.
Values held as DOUBLE are accurate to 15 significant digits, but may be
subject to round-off error beyond the fifteenth digit.

♦ SQL/92 Compatible with SQL/92.

♦ Sybase Compatible with Adaptive Server Enterprise.

"FLOAT data type" on page 58
"REAL data type" on page 61
"DECIMAL data type" on page 57

FLOAT data type [Numeric]

A floating point number, which may be single or double precision.

FLOAT [(precision)]

Standards and
compatibility

See also

Function

Syntax

Usage

Standards and
compatibility

See also

Function

Syntax

Chapter 2 SQL Data Types

59

When a column is created using the FLOAT (precision) data type, columns
on all platforms are guaranteed to hold the values to at least the specified
minimum precision. In contrast, REAL and DOUBLE do not guarantee a
platform-independent minimum precision.

If precision is not supplied, the FLOAT data type is a single precision
floating point number, equivalent to the REAL data type, and requires
4 bytes of storage.

If precision is supplied, the FLOAT data type is either single or double
precision, depending on the value of precision specified. The cutoff between
REAL and DOUBLE is platform-dependent. Single precision FLOATs
require 4 bytes of storage, and double precision FLOATs require 8 bytes.

The FLOAT data type is an approximate numeric data type. It is subject to
round-off errors after arithmetic operations. The approximate nature of
FLOAT values means that queries using equalities should generally be
avoided when comparing FLOAT values.

precision An integer expression that specifies the number of places after
the decimal.

♦ SQL/92 Compatible with SQL/92.

♦ Sybase You can tune the behavior of the FLOAT data type for
compatibility with Adaptive Server Enterprise, using the
"FLOAT_AS_DOUBLE option" on page 569 of the book ASA Database
Administration Guide.

"DECIMAL data type" on page 57
"REAL data type" on page 61
"DOUBLE data type" on page 58

INT or INTEGER data type [Numeric]

Integer requiring 4 bytes of storage.

[UNSIGNED] { INT | INTEGER }

The INTEGER data type is an exact numeric data type; its accuracy is
preserved after arithmetic operations.

If you specify UNSIGNED, the integer can never be assigned a negative
number. By default, the data type is signed.

The range for signed integers is –231 to 231 – 1, or –2147483648
to 2147483647.

The range for unsigned integers is 0 to 232 – 1, or 0 to 4294967295.

Usage

Parameters

Standards and
compatibility

See also

Function

Syntax

Usage

Numeric data types

60

♦ SQL/92 Compatible with SQL/92. The UNSIGNED keyword is a
vendor extension.

♦ Sybase The signed data type is compatible with Adaptive Server
Enterprise. Adaptive Server Enterprise does not support the UNSIGNED
data type.

"BIGINT data type" on page 56
"TINYINT data type" on page 61
"SMALLINT data type" on page 61

NUMERIC data type [Numeric]

Same as DECIMAL.

NUMERIC [(precision [, scale])]

The NUMERIC data type is an exact numeric data type; its accuracy is
preserved to the least significant digit after arithmetic operations.

The number of bytes required to store a decimal number can be estimated as

2 + int((before+1)/2) + int((after+1)/2)

The function int takes the integer portion of its argument, and before and
after are the number of significant digits before and after the decimal point.
The storage is based on the value being stored, not on the maximum
precision and scale allowed in the column.

precision An integer expression that specifies the number of digits in the
expression. The default value is 30.

scale An integer expression that specifies the number of digits after the
decimal point. The default value is 6.

The defaults can be changed by setting database options. For information,
see "PRECISION option" on page 591 of the book ASA Database
Administration Guide and "SCALE option" on page 598 of the book ASA
Database Administration Guide.

♦ SQL/92 Compatible with SQL/92, if the SCALE option is set to zero.

♦ Sybase Compatible with Adaptive Server Enterprise.

"FLOAT data type" on page 58
"REAL data type" on page 61
"DOUBLE data type" on page 58

Standards and
compatibility

See also

Function

Syntax

Usage

Parameters

Standards and
compatibility

See also

Chapter 2 SQL Data Types

61

REAL data type [Numeric]

A single-precision floating-point number stored in 4 bytes.

REAL

The REAL data type is an approximate numeric data type; it is subject to
roundoff errors after arithmetic operations.

The range of values is 1.175495e-38 to 3.402823e+38. Values held as REAL
are accurate to 10 significant digits, but may be subject to round-off error
beyond the sixth digit.

The approximate nature of REAL values means that queries using equalities
should generally be avoided when comparing REAL values

♦ SQL/92 Compatible with SQL/92.

♦ Sybase Compatible with Adaptive Server Enterprise.

SMALLINT data type [Numeric]

Integer requiring 2 bytes of storage.

[UNSIGNED] SMALLINT

The SMALLINT data type is an exact numeric data type; its accuracy is
preserved after arithmetic operations. It requires 2 bytes of storage.

The range for signed SMALLINT values is –215 to 215 – 1, or
–32768 to 32767.

The range for unsigned SMALLINT values is 0 to 216 – 1, or 0 to 65535.

♦ SQL/92 Compatible with SQL/92. The UNSIGNED keyword is a
vendor extension.

♦ Sybase The signed data type is compatible with Adaptive Server
Enterprise. Adaptive Server Enterprise does not support the UNSIGNED
data type.

"INT or INTEGER data type" on page 59
"TINYINT data type" on page 61
"BIGINT data type" on page 56

TINYINT data type [Numeric]

Unsigned integer requiring 1 byte of storage.

Function

Syntax

Usage

Standards and
compatibility

Function

Syntax

Usage

Standards and
compatibility

See also

Function

Numeric data types

62

[UNSIGNED] TINYINT

The TINYINT data type is an exact numeric data type; its accuracy is
preserved after arithmetic operations.

You can explicitly specify TINYINT as UNSIGNED, but the UNSIGNED
modifier has no effect as the type is always unsigned.

The range for TINYINT values is 0 to 28 – 1, or 0 to 255.

In Embedded SQL, TINYINT columns should not be fetched into variables
defined as char or unsigned char, since the result is an attempt to convert the
value of the column to a string and then assign the first byte to the variable in
the program. Instead, TINYINT columns should be fetched into 2-byte or
4-byte integer columns. Also, to send a TINYINT value to a database from
an application written in C, the type of the C variable should be integer.

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"BIGINT data type" on page 56
"TINYINT data type" on page 61
"SMALLINT data type" on page 61

Syntax

Usage

Standards and
compatibility

See also

Chapter 2 SQL Data Types

63

Money data types
For storing monetary data.

MONEY data type [Money]

This data type is convenient for storing monetary data, and provides
compatibility with the Adaptive Server Enterprise MONEY data type.

MONEY

The MONEY data type is implemented as a domain, as NUMERIC(19,4),
allowing NULL.

♦ SQL/92 Vendor extension.

♦ Sybase Monetary data types in Adaptive Server Anywhere are
implemented as domains, and are primarily intended for compatibility
with Adaptive Server Enterprise.

"SMALLMONEY data type" on page 63

SMALLMONEY data type [Money]

This data type is convenient for storing monetary data that is not too large,
and provides compatibility with the Adaptive Server Enterprise
SMALLMONEY data type.

SMALLMONEY

The SMALLMONEY data type is implemented in Adaptive Server
Anywhere as a domain, as NUMERIC(10,4), allowing NULL.

♦ SQL/92 Vendor extension.

♦ Sybase Monetary data types in Adaptive Server Anywhere are
implemented as domains, and are primarily intended for compatibility
with Adaptive Server Enterprise.

"MONEY data type" on page 63

Function

Function

Syntax

Usage

Standards and
compatibility

See also

Function

Syntax

Usage

Standards and
compatibility

See also

Bit data type

64

Bit data type
For storing Boolean values.

BIT

By default, columns of BIT data type do not allow NULL. This behavior is
different from other data types. You can explicitly allow NULL if desired.

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Function

Syntax

Usage

Standards and
compatibility

Chapter 2 SQL Data Types

65

Date and time data types
For storing dates and times.

Sending dates and times to the database

Dates and times may be sent to the database in one of the following ways:

♦ Using any interface, as a string

♦ Using ODBC, as a TIMESTAMP structure

♦ Using Embedded SQL, as a SQLDATETIME structure

When a time is sent to the database as a string (for the TIME data type) or as
part of a string (for TIMESTAMP or DATE data types), the hours, minutes,
and seconds must be separated by colons in the format hh:mm:ss.sss, but can
appear anywhere in the string. The following are valid and unambiguous
strings for specifying times:

21:35 -- 24 hour clock if no am or pm specified

10:00pm -- pm specified, so interpreted as 12 hour clock

10:00 -- 10:00am in the absence of pm

10:23:32.234 -- seconds and fractions of a second
included

When a date is sent to the database as a string, conversion to a date is
automatic. The string can be supplied in one of two ways:

♦ As a string of format yyyy/mm/dd or yyyy-mm-dd, which is interpreted
unambiguously by the database

♦ As a string interpreted according to the DATE_ORDER database option

Transact-SQL compatibility of string-to-date/time conversions

There are some differences in behavior between Adaptive Server Anywhere
and Adaptive Server Enterprise, when converting strings to date and time
data types.

If a string containing only a time value (no date) is converted to a date/time
data type, Adaptive Server Enterprise uses a default date of January 1, 1900,
but Adaptive Server Anywhere uses the current date.

Function

Date and time data types

66

If the fraction portion of a time is less than 3 digits Adaptive Server
Enterprise interprets the value differently depending on whether it was
preceded by a period or a colon. If preceded by a colon, the value means
thousandths of a second. If preceded by a period, one digit means tenths, two
digits mean hundredths, and three digits mean thousandths. Adaptive Server
Anywhere interprets the value the same way, regardless of the separator.

Adaptive Server Enterprise converts the values below as shown. The second
line in each pair differs in the use of a colon rather than a period.

12:34:56.7 to 12:34:56.700
12:34:56:7 to 12:34:56.007

12.34.56.78 to 12:34:56.780
12.34.56:78 to 12:34:56.078

12:34:56.789 to 12:34:56.789
12:34:56:789 to 12:34:56.789

Adaptive Server Anywhere converts the milliseconds value in the manner
that Adaptive Server Enterprise does for values preceded by a period, in both
cases:

12:34:56.7 to 12:34:56.700
12:34:56:7 to 12:34:56.700

12.34.56.78 to 12:34:56.780
12.34.56:78 to 12:34:56.780

12:34:56.789 to 12:34:56.789
12:34:56:789 to 12:34:56.789

Retrieving dates and times from the database

Dates and times may be retrieved from the database in one of the following
ways:

♦ Using any interface, as a string

♦ Using ODBC, as a TIMESTAMP structure

♦ Using embedded SQL, as a SQLDATETIME structure

When a date or time is retrieved as a string, it is retrieved in the format
specified by the database options DATE_FORMAT, TIME_FORMAT and
TIMESTAMP_FORMAT. For descriptions of these options, see "SET
OPTION statement" on page 539.

$ For information on functions that deal with dates and times, see "Date
and time functions" on page 95. The following arithmetic operators are
allowed on dates:

Examples

Chapter 2 SQL Data Types

67

♦ timestamp + integer Add the specified number of days to a date or
timestamp.

♦ timestamp - integer Subtract the specified number of days from a
date or timestamp.

♦ date - date Compute the number of days between two dates or
timestamps.

♦ date + time Create a timestamp combining the given date and time.

Comparing dates and times in the database

By default, values stored as DATE do not have any hour or minute values,
and so comparison of dates is straightforward.

If you set the TRUNCATE_DATE_VALUES option to OFF, then the DATE
data type also contains a time, which introduces complications when
comparing dates. If the time is not specified when a date is entered into the
database, the time defaults to 0:00 or 12:00am (midnight). Any date
comparisons with this option setting compare the times as well as the date
itself. A database date value of ’1999-05-23 10:00’ is not equal to the
constant ’1999-05-23’. The DATEFORMAT function or one of the other date
functions can be used to compare parts of a date and time field. For example,

DATEFORMAT(invoice_date,’yyyy/mm/dd’) = ’1999/05/23’

If a database column requires only a date, client applications should ensure
that times are not specified when data is entered into the database. This way,
comparisons with date-only strings will work as expected.

If you wish to compare a date to a string as a string, you must use the
DATEFORMAT function or CAST function to convert the date to a string
before comparing.

Using unambiguous dates and times

Dates in the format yyyy/mm/dd or yyyy-mm-dd are always recognized
unambiguously as dates, regardless of the DATE_ORDER setting. Other
characters can be used as separators instead of "/" or "-"; for example, "?", a
space character, or ",". You should use this format in any context where
different users may be employing different DATE_ORDER settings.
For example, in stored procedures, use of the unambiguous date format
prevents misinterpretation of dates according to the user’s DATE_ORDER
setting.

Date and time data types

68

Also, a string of the form hh:mm:ss.sss is interpreted unambiguously as a
time.

For combinations of dates and times, any unambiguous date and any
unambiguous time yield an unambiguous date-time value. Also, the form

YYYY-MM-DD HH.MM.SS.SSS

is an unambiguous date-time value. Periods can be used in the time only in
combination with a date.

In other contexts, a more flexible date format can be used. Adaptive Server
Anywhere can interpret a wide range of strings as dates. The interpretation
depends on the setting of the database option DATE_ORDER. The
DATE_ORDER database option can have the value MDY, YMD, or DMY
(see "SET OPTION statement" on page 539). For example, the following
statement sets the DATE_ORDER option to DMY:

SET OPTION DATE_ORDER = ’DMY’ ;

The default DATE_ORDER setting is ’YMD’. The ODBC driver sets the
DATE_ORDER option to ’YMD’ whenever a connection is made. The value
can still be changed using the SET TEMPORARY OPTION statement.

The database option DATE_ORDER determines whether the string 10/11/12
is interpreted by the database as November 12, 2010; October 11, 2012; or
November 10, 2012. The year, month, and day of a date string should be
separated by some character (/, -, or space) and appear in the order specified
by the DATE_ORDER option.

The year can be supplied as either 2 or 4 digits. The value of the option
NEAREST_CENTURY affects the interpretation of 2-digit years: 2000 is
added to values less than NEAREST_CENTURY and 1900 is added to all
other values. The default value of this option is 50. Thus, by default, 50 is
interpreted as 1950 and 49 is interpreted 2049.

The month can be the name or number of the month. The hours and minutes
are separated by a colon, but can appear anywhere in the string.

♦ We recommend that you always specify the year using the four-digit
format.

$ For more information about Y2K compliance issues, see "Year
2000 compliance" on page 87.

♦ With an appropriate setting of DATE_ORDER, the following strings are
all valid dates:

99-05-23 21:35

99/5/23

1999/05/23

Notes

Chapter 2 SQL Data Types

69

May 23 1999

23-May-1999

Tuesday May 23, 1999 10:00pm

♦ If a string contains only a partial date specification, default values are
used to fill out the date. The following defaults are used:

♦ year This year

♦ month No default

♦ day 1 (useful for month fields; for example, May 1999 will be the
date 1999-05-01 00:00)

♦ hour, minute, second, fraction 0

DATE data type [Date and Time]

A calendar date, such as a year, month and day.

DATE

The year can be from the year 0001 to 9999. The minimum date in Adaptive
Server Anywhere is 0001-01-01 00:00:00.

For historical reasons, a DATE column can also contain an hour and minute
if the TRUNCATE_DATE_VALUES option is set to OFF. The
TIMESTAMP data type is recommended for anything with hours and
minutes.

The format in which DATE values are retrieved by applications is controlled
by the DATE_FORMAT setting. For example, a date value representing the
19th of July, 2003 may be returned to an application as 2003/07/19, as
Jul 19, 2003, or as one of a number of other possibilities.

The way in which a string is interpreted by the database server as a date is
controlled by the DATE_ORDER option. For example, depending on the
DATE_ORDER setting, a value of 02/05/2002 supplied by an application
for a DATE value may be interpreted in the database as the 2nd of May or
the 5th of February.

A DATE value requires 4 bytes of storage.

♦ SQL/92 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"DATE_FORMAT option" on page 562 of the book ASA Database
Administration Guide

Function

Syntax

Usage

Standards and
compatibility

See also

Date and time data types

70

"DATE_ORDER option" on page 564 of the book ASA Database
Administration Guide

"DATETIME data type" on page 70
"SMALLDATETIME data type" on page 70
"TIMESTAMP data type" on page 71
"TRUNCATE_DATE_VALUES option" on page 604 of the book ASA

Database Administration Guide

DATETIME data type [Date and Time]

A domain, implemented as TIMESTAMP.

DATETIME

DATETIME is provided primarily for compatibility with Adaptive Server
Enterprise.

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise. For an
exception, see "Transact-SQL compatibility of string-to-date/time
conversions" on page 65.

"DATE data type" on page 69
"SMALLDATETIME data type" on page 70
"TIMESTAMP data type" on page 71

SMALLDATETIME data type [Date and Time]

A domain, implemented as TIMESTAMP.

SMALLDATETIME

SMALLDATETIME is provided primarily for compatibility with Adaptive
Server Enterprise.

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise. For an
exception, see "Transact-SQL compatibility of string-to-date/time
conversions" on page 65.

"DATE data type" on page 69
"DATETIME data type" on page 70
"TIMESTAMP data type" on page 71

Function

Syntax

Usage

Standards and
compatibility

See also

Function

Syntax

Usage

Standards and
compatibility

See also

Chapter 2 SQL Data Types

71

TIME data type [Date and Time]

The time of day, containing hour, minute, second and fraction of a second.

TIME

The fraction is stored to 6 decimal places. A TIME value requires 8 bytes of
storage. (ODBC standards restrict TIME data type to an accuracy of seconds.
For this reason you should not use TIME data types in WHERE clause
comparisons that rely on a higher accuracy than seconds.)

♦ SQL/92 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"TIMESTAMP data type" on page 71

TIMESTAMP data type [Date and Time]

The point in time, containing year, month, day, hour, minute, second and
fraction of a second.

TIMESTAMP

The fraction is stored to 6 decimal places. A TIMESTAMP value requires
8 bytes of storage.

Although the range of possible dates for the TIMESTAMP data type is the
same as the DATE type (covering years 0001 to 9999), the useful range of
TIMESTAMP date types is from 1600-02-28 23:59:59 to 7911-01-01
00:00:00. Prior to, and after this range the time portion of the TIMESTAMP
may be incomplete.

♦ SQL/92 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

"TIME data type" on page 71

Function

Syntax

Usage

Standards and
compatibility

See also

Function

Syntax

Usage

Standards and
compatibility

See also

Binary data types

72

Binary data types
For storing binary data, including images and other information that is not
interpreted by the database.

BINARY data type [Binary]

Binary data of a specified maximum length (in bytes).

BINARY [(max-length)]

The default max-length is 1.

The maximum size allowed is 32767. The BINARY data type is identical to
the CHAR data type except when used in comparisons. BINARY values are
compared exactly while CHAR values are compared using the collation
sequence of the database.

max-length An integer expression that specifies the maximum length of
the expression.

♦ SQL/92 Vendor extension.

♦ Sybase Adaptive Server Enterprise supports max-length up to 255.

"LONG BINARY data type" on page 72
"VARBINARY data type" on page 73

LONG BINARY data type [BINARY]

Arbitrary length binary data.

LONG BINARY

The maximum size is limited by the maximum size of the database file.

$ For more information on limitations, see "Size and number limitations"
on page 636 of the book ASA Database Administration Guide.

♦ SQL/92 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"BINARY data type" on page 72
"VARBINARY data type" on page 73

Function

Function

Syntax

Usage

Parameters

Standards and
compatibility

See also

Function

Syntax

Usage

Standards and
compatibility

See also

Chapter 2 SQL Data Types

73

IMAGE data type [BINARY]

LONG BINARY data allowing NULL.

IMAGE

IMAGE is implemented in Adaptive Server Anywhere as a domain, as
LONG BINARY allowing NULL. It is provided primarily for compatibility
with Adaptive Server Enterprise.

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

UNIQUEIDENTIFIER data type [Binary]

Storage of UUID (also known as GUID) values.

UNIQUEIDENTIFIER

The UNIQUEIDENTIFIER data type is binary(16), and stores UUID
(Universally Unique Identifier) or GUID (Globally Unique Identifier) values.

UUIDs and GUIDs can be used to uniquely identify rows in a table. The
values are generated such that a value produced on one computer will not
match a UUID or GUID produced on another computer. They can be used as
keys in a replication environment.

♦ SQL/92 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"The NEWID default" on page 73 of the book ASA SQL User’s Guide
"NEWID function " on page 159
"UUIDTOSTR function " on page 193
"STRTOUUID function " on page 185

VARBINARY data type [BINARY]

Identical to BINARY.

VARBINARY [(max-length)]

Variable length binary strings. The default value for max-length is 1.

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Function

Syntax

Usage

Standards and
compatibility

Function

Syntax

Usage

Standards and
compatibility

See also

Function

Syntax

Usage

Standards and
compatibility

Binary data types

74

"BINARY data type" on page 72
"LONG BINARY data type" on page 72

See also

Chapter 2 SQL Data Types

75

Domains
Domains are aliases for built-in data types, including precision and scale
values where applicable, and optionally including DEFAULT values and
CHECK conditions. Some domains, such as the monetary data types, are pre-
defined in Adaptive Server Anywhere, but you can add more of your own.

Domains, also called user-defined data types, allow columns throughout a
database to be automatically defined on the same data type, with the same
NULL or NOT NULL condition, with the same DEFAULT setting, and with
the same CHECK condition. Domains encourage consistency throughout the
database and can eliminate some types of errors.

Domains are created using the CREATE DOMAIN statement For full
description of the syntax, see "CREATE DOMAIN statement" on page 283.

The following statement creates a data type named street_address, which is
a 35-character string.

CREATE DOMAIN street_address CHAR(35)

CREATE DATATYPE can be used as an alternative to CREATE DOMAIN,
but is not recommended because CREATE DOMAIN is the syntax used in
the draft SQL/3 standard.

Resource authority is required to create data types. Once a data type is
created, the user ID that executed the CREATE DOMAIN statement is the
owner of that data type. Any user can use the data type. Unlike with other
database objects, the owner name is never used to prefix the data type name.

The street_address data type may be used in exactly the same way as any
other data type when defining columns. For example, the following table
with two columns has the second column as a street_address column:

CREATE TABLE twocol (
id INT,
street street_address

)

Domains can be dropped by their owner or by the DBA, using the DROP
DOMAIN statement:

DROP DOMAIN street_address

This statement can be carried out only if the data type is not used in any table
in the database. If you attempt to drop a domain that is in use, the message
"Primary key for row in table ’SYSUSERTYPE’ is referenced in another
table" appears.

Function

Simple domains

Domains

76

Many of the attributes associated with columns, such as allowing NULL
values, having a DEFAULT value, and so on, can be built into a domain.
Any column that is defined on the data type automatically inherits the NULL
setting, CHECK condition, and DEFAULT values. This allows uniformity to
be built into columns with a similar meaning throughout a database.

For example, many primary key columns in the sample database are integer
columns holding ID numbers. The following statement creates a data type
that may be useful for such columns:

CREATE DOMAIN id INT
NOT NULL
DEFAULT AUTOINCREMENT
CHECK(@col > 0)

Any column created using the data type id is not allowed to hold NULLs,
defaults to an auto-incremented value, and must hold a positive number. Any
identifier could be used instead of col in the @col variable.

The attributes of the data type can be overridden if needed by explicitly
providing attributes for the column. A column created on data type id with
NULL values explicitly allowed does allow NULLs, regardless of the setting
in the id data type.

♦ Named constraints and defaults In Adaptive Server Anywhere,
domains are created with a base data type, and optionally a NULL or
NOT NULL condition, a default value, and a CHECK condition. Named
constraints and named defaults are not supported.

♦ Creating data types In Adaptive Server Anywhere, you can use the
sp_addtype system procedure to add a domain, or you can use the
CREATE DOMAIN statement. In Adaptive Server Enterprise, you must
use sp_addtype.

Constraints and
defaults with
domains

Compatibility

Chapter 2 SQL Data Types

77

Java class data types
Any public Java class that is installed into a database can be used as a SQL
data type. Java class data types provide abstract data types for use within the
database.

Java classes in the database fall into one of the following categories:

♦ Standard classes Standard Java classes are those that are part of the
Sun Microsystems Java Development Kit (JDK). A subset of the
standard class set is installed into all Java-enabled databases as built-in
classes.

♦ User-defined classes Users with DBA permission can install
compiled Java classes into a database.

Adaptive Server Anywhere supports JDK versions 1.1.8 and 1.3, but not all
standard Java classes from each version are supported. This is intentional.
Some classes are not supported for security reasons. Other classes are not
supported because they are applicable to user interface programming. Lastly,
only classes in packages that begin with the word java are considered to be
100% pure Java, so any packages that start with other words (such as sun or
javax) are unsupported.

When a Java class is listed as supported, it means all its methods have been
implemented within the Sybase VM. If a class is listed as partially
supported then some of its methods have not been implemented.

Even if a class is supported, not all of the methods of a supported Java class
are guaranteed to work. Methods of supported classes can fail if they depend
on classes that are not supported.

When a method fails because of an unsupported class, the usual error
condition is an unhandled exception: java.lang.UnsatisfiedLinkError for the
method which has not been implemented.

Supported Java packages

This section lists the packages of built-in classes available for use as SQL
data types in a Java-enabled database. For information about any classes
within the package that may be unsupported or partially supported, see
"Unsupported Java packages and classes" on page 78, and "Partially
supported packages and classes" on page 79.

Packages not listed here must be installed into your database before you can
use them as data types.

Function

Standard and user-
defined Java
classes

Not all standard
Java classes are
supported

Definition of
supported

Error condition
when not
supported

Java class data types

78

♦ java.beans

♦ java.io. The classes that govern file access are supported only on certain
Windows operating systems, and only if the JAVA_INPUT_OUTPUT
option is set to ON. See "JAVA_INPUT_OUTPUT option" on page 577
of the book ASA Database Administration Guide.

♦ java.lang

♦ java.lang.reflect

♦ java.lang.Thread

♦ java.math

♦ java.net

♦ java.net.PlainDatagramSocketImpl

♦ java.rmi

♦ java.rmi.dgc

♦ java.rmi.registry

♦ java.rmi.server

♦ java.security

♦ java.security.acl

♦ java.security.interfaces

♦ java.SQL. For details on support for JDBC 2.0 features, see "JDBC in
the database features" on page 132 of the book ASA Programming
Guide.

♦ java.text

♦ java.util

♦ java.util.zip

Unsupported Java packages and classes

Classes in the following packages are not supported in the Sybase VM:

♦ java.applet

♦ java.awt

♦ java.awt.datatransfer

♦ java.awt.event

♦ java.awt.image

Chapter 2 SQL Data Types

79

♦ All packages prefixed by sun. For example, sun.audio.

Partially supported packages and classes

The following classes are partially supported. They have some unsupported
native methods:

♦ java.lang.ClassLoader

♦ java.lang.Compiler

♦ java.lang.Runtime (exec/load/loadlibrary)

♦ java.io.File

♦ java.io.FileDescriptor

♦ java.io.FileInputStream

♦ java.io.FileOutputStream

♦ java.io.RandomAccessFile

♦ java.util.zip.Deflater

♦ java.util.zip.Inflater

User-defined Java classes

Users with DBA permissions can install Java classes into a database. Any
public class installed into the database becomes available as a data type.

The Java Development Kit (JDK) provides the tools necessary for preparing
classes for installation into a database.

v To prepare a class for installation, using the JDK:

1 Using a text editor, write a Java class, outside the database, and store it
as a Java source code file (typically with an extension of .java).

For example, you may create a file called MyFirstClass.java.

2 Using the javac compiler, compile the Java class to produce a Java class
file (with .class extension).

For example, to compile the file MyFirstClass.java, type the following at
a command prompt:

javac MyFirstClass.java

Preparing classes
using the JDK

Java class data types

80

Once you have a compiled Java class file, you can install it into the database.
You can do this conveniently using either Sybase Central or Interactive SQL.

v To install a class, using Sybase Central:

1 From Sybase Central, connect to the database as a user ID with DBA
permissions.

2 Open the Java Objects folder

3 Double-click Add Java Class. Follow the instructions in the wizard to
install the class.

v To install a class, using Interactive SQL:

1 From Interactive SQL, connect to the database as a user ID with DBA
permissions.

2 Enter the following command to install the class:

INSTALL JAVA NEW FROM FILE filename

$ For more information about installing classes, see the "INSTALL
statement" on page 467.

Case sensitivity of Java class data types

Java identifiers, including data types, are case sensitive: the Java int data
type cannot be written as INT. SQL identifiers, including data types, are case
insensitive. The int data type can also be written as Int or any other
combination of upper and lower case characters.

When a Java class is used as a SQL data type, the data type is always case
sensitive. This is an exception to the rule for SQL identifier case
insensitivity.

If you install a class named Demo, the following statements are not
equivalent:

CREATE TABLE t1 (
 id INT PRIMARY KEY
 demo_column Demo)

CREATE TABLE t1 (
 id INT PRIMARY KEY
 demo_column DEMO)

Installing a class

Example

Chapter 2 SQL Data Types

81

Using classes as data types

You can create a table with columns based on a Java class data type, just as
you can with any other data type. For example, if MyClass is a Java class
installed into the database, you can create a table using this class as follows:

CREATE TABLE mytable (
 id INT NOT NULL PRIMARY KEY,
 mycol MyClass)

In this statement, the MyClass data type is a SQL data type, but is case-
sensitive, as Java is a case-sensitive language.

You can insert a Java object into a table just as you would any other row,
using the INSERT statement. Because each row is a separate instance of the
class, you must use the NEW keyword to create an instance. For example,

INSERT INTO t2
VALUES (1, NEW MyClass())

In this case, MyClass() is a Java class name, not a SQL data type, and so
must be entered in the proper case.

In this example, MyClass() has no arguments, so each row is created using
the default constructor. In general, you would supply arguments to a class to
place distinct values in each row.

If you install a class, say MySubClass, which is a subclass of MyClass, you
can insert instances of MySubClass into a column of data type MyClass.

Creating tables
using Java class
data types

Inserting Java
objects

Using subclasses

Data type conversions

82

Data type conversions
Type conversions can happen automatically, or they can be explicitly
requested using the CAST or CONVERT function.

If a string is used in a numeric expression or as an argument to a function
that expects a numeric argument, the string is converted to a number.

If a number is used in a string expression or as a string function argument, it
is converted to a string before being used.

All date constants are specified as strings. The string is automatically
converted to a date before use.

There are certain cases where the automatic database conversions are not
appropriate.

’12/31/90’ + 5

’a’ > 0

The automatic data type conversion fails here. You can use the CAST or
CONVERT function to force type conversions. For information about the
CAST and CONVERT functions, see "Data type conversion functions" on
page 94.

The following functions can also be used to force type conversions (see
"SQL Functions" on page 93).

♦ DATE(value) Converts the expression into a date, and removes any
hours, minutes or seconds. Conversion errors may be reported.

♦ STRING(value) Equivalent to CAST(value AS LONG
VARCHAR).

$ For more information about the STRING function, see "STRING
function" on page 185.

♦ VALUE+0.0 Equivalent to CAST(value AS DECIMAL).

$ For more information about the CAST function, see "CAST function"
on page 109.

Conversion when using comparison operators

When a comparison (such as =) is performed between arguments with
different data types, one or both arguments must be converted so that the
comparison is done using one data type. Sometimes it is preferable for you to
explicitly convert the argument.

Chapter 2 SQL Data Types

83

Adaptive Server Anywhere uses the following rules to perform a
comparison:

1 If the data types of the arguments have a common super type, convert to
the common super type and compare. The super types are the final data
type in each of the following lists:

♦ BIT➤TINYINT➤UNSIGNED SMALLINT➤UNSIGNED
INTEGER➤UNSIGNED BIGINT➤NUMERIC

♦ SMALLINT➤INTEGER➤BIGINT➤NUMERIC

♦ REAL➤DOUBLE

♦ CHAR➤LONG VARCHAR

♦ BINARY➤LONG BINARY

♦ DATE➤TIMESTAMP

♦ TIME➤TIMESTAMP

For example, if the two arguments are of types BIT and TINYINT, they
are converted to NUMERIC.

2 If Rule 1 does not apply, and either data type has the type DATE or
TIMESTAMP, convert to TIMESTAMP and compare.

For example, if the two arguments are of type REAL and DATE, they
are both converted to TIMESTAMP.

3 If Rules 1 and 2 do not apply, and one argument has CHARACTER data
type and the other has BINARY data type, convert to BINARY and
compare.

4 If Rules 1 to 3 do not apply, and one argument has NUMERIC data type
and the other has FLOAT, convert to DOUBLE and compare.

5 If none of the rules apply, convert to NUMERIC and compare.

For example, if the two arguments have REAL and CHAR data types,
they are both converted to NUMERIC.

♦ You can override these rules by explicitly casting arguments to another
type. For example, if you want to compare a DATE and a CHAR as a
CHAR, then you need to explicitly cast the DATE to a CHAR.

♦ Rules 2 and 5 may lead to conversions that fail.

Notes

Java / SQL data type conversion

84

Java / SQL data type conversion
When a Java class field or method is invoked within a SQL statement, a Java
data type is returned by the Java object. This must be converted into a SQL
data type for use within the SQL statement, for example in comparisons.

Similarly, when a SQL value is assigned to a Java class field, or supplied as
an argument to a Java class method, the SQL value must be converted to a
Java data type.

Java to SQL and SQL to Java data type conversions are carried out according
to the JDBC standard. The conversions are described in the following tables.

Java to SQL data type conversion

Java type SQL type

String CHAR

String VARCHAR

String TEXT

java.math.BigDecimal NUMERIC

java.math.BigDecimal MONEY

java.math.BigDecimal SMALLMONEY

boolean BIT

byte TINYINT

Short SMALLINT

Int INTEGER

long INTEGER

float REAL

double DOUBLE

byte[] VARBINARY

byte[] IMAGE

java.SQL.Date DATE

java.SQL.Time TIME

java.SQL.Timestamp TIMESTAMP

Chapter 2 SQL Data Types

85

Java type SQL type

java.lang.Double DOUBLE

java.lang.Float REAL

java.lang.Integer INTEGER

java.lang.Long INTEGER

void this*

* The method returns the object itself

SQL to Java data type conversion

SQL type Java type

CHAR String

VARCHAR String

TEXT String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

MONEY java.math.BigDecimal

SMALLMONEY java.math.BigDecimal

BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

BINARY byte[]

VARBINARY byte[]

Java / SQL data type conversion

86

SQL type Java type

LONG VARBINARY byte[]

IMAGE byte[]

DATE java.SQL.Date

TIME java.SQL.Time

TIMESTAMP java.SQL.Timestamp

Chapter 2 SQL Data Types

87

Year 2000 compliance
The problem of handling dates, in particular year values in and beyond the
year 2000, was a significant issue for the computer industry.

This section examines the year 2000 compliance of Adaptive Server
Anywhere. It illustrates how date values are handled internally by Adaptive
Server Anywhere, and how Adaptive Server Anywhere handles ambiguous
date information, such as the conversion of a two digit year string value.

Users of Sybase Adaptive Server Anywhere and its predecessors can be
assured that dates are handled and stored internally in a manner not adversely
effected by the transition from the 20th century to the 21st century.

Consider the following measurements of Adaptive Server Anywhere year
2000 compliance:

♦ Adaptive Server Anywhere always returns correct values for any legal
arithmetic and logical operations on dates, regardless of whether the
calculated values span different centuries.

♦ At all times, the Adaptive Server Anywhere internal storage of dates
explicitly includes the century portion of a year value.

♦ The operation of Adaptive Server Anywhere is unaffected by any return
value, including the current date.

♦ Date values can always be output in full century format.

Many of the date–related topics summarized in this section are explained in
greater detail in other parts of the documentation.

How dates are stored

Dates containing year values are used internally and stored in Adaptive
Server Anywhere databases using either of the following data types:

Year 2000 compliance

88

Data type Contains Stored in Range of
possible
values

DATE Calendar date
(year, month, day)

4-bytes 0001-01-01 to
9999-12-31

TIMESTAMP Time stamp (year,
month, day, hour
minute, second,
and fraction of
second accurate to
6 decimal places)

8-bytes 0001-01-01 to
9999-12-31
(precision of the
time portion of
TIMESTAMP is
dropped prior to
1600-02-28
23:59:59 and
after 7911-01-01
00:00:00)

$ For more information on Adaptive Server Anywhere date and time data
types see "Date and time data types" on page 65.

Sending and retrieving date values

Date values are stored within Adaptive Server Anywhere as either a DATE
or TIMESTAMP data type, but they are passed to and retrieved from
Adaptive Server Anywhere using one of the following methods:

♦ As a string, using any Adaptive Server Anywhere programming
interface.

♦ As a TIMESTAMP structure, using ODBC.

♦ As a SQLDATETIME structure, using Embedded SQL.

A string containing a date value is considered unambiguous and is
automatically converted to a DATE or TIMESTAMP data type without
potential for misinterpretation if it is passed using the following format:
yyyy-mm-dd (the "-" dash separator is one of several characters that are
permitted).

Date formats other than yyyy-mm-dd can be used by setting the
DATE_FORMAT database option. For more information, see
"DATE_FORMAT option" on page 562 of the book ASA Database
Administration Guide.

For more information on unambiguous date formats, see "Using
unambiguous dates and times" on page 67.

For more
information

Chapter 2 SQL Data Types

89

For more information on the ODBC TIMESTAMP structure, see the
Microsoft Open Database Connectivity SDK, or "Sending dates and times to
the database" on page 65.

Used in the development of C programs, an embedded SQL
SQLDATETIME structure’s year value is a 16-bit signed integer.

For more information on the SQLDATETIME data type, see "Embedded
SQL data types" on page 177 of the book ASA Programming Guide.

Leap years

The year 2000 is a leap year, with an additional day in the month of
February. Adaptive Server Anywhere uses a globally accepted algorithm for
determining which years are leap years. Using this algorithm, a year is
considered a leap year if it is divisible by four, unless the year is a century
date (such as the year 1900), in which case it is a leap year only if it is
divisible by 400.

Adaptive Server Anywhere handles all leap years correctly. For example, the
following SQL statement results in a return value of "Tuesday":

SELECT DAYNAME(’2000-02-29’)

Adaptive Server Anywhere accepts February 29, 2000—a leap year—as a
date, and using this date determines the day of the week.

However, the following statement is rejected by Adaptive Server Anywhere:

SELECT DAYNAME(’2001-02-29’)

This statement results in an error (cannot convert '2001-02-29' to a date)
because February 29th does not exist in the year 2001.

Ambiguous string to date conversions

Adaptive Server Anywhere automatically converts a string into a date when a
date value is expected, even if the year is represented in the string by only
two digits.

If the century portion of a year value is omitted, the method of conversion is
determined by the NEAREST_CENTURY database option.

The NEAREST_CENTURY database option is a numeric value that acts as a
break point between 19YY date values and 20YY date values.

Two-digit years less than the NEAREST_CENTURY value are converted to
20yy, while years greater than or equal to the value are converted to 19yy.

Year 2000 compliance

90

If this option is not set, the default setting of 50 is assumed. Thus, two-digit
year strings are understood to refer to years between 1950 and 2049.

This NEAREST_CENTURY option was introduced in SQL Anywhere
Version 5.5. In version 5.5, the default setting was 0.

The following statement creates a table that can be used to illustrate the
conversion of ambiguous date information in Adaptive Server Anywhere.

CREATE TABLE T1 (C1 DATE);

The table T1 contains one column, C1, of the type DATE.

The following statement inserts a date value into the column C1. Adaptive
Server Anywhere automatically converts a string that contains an ambiguous
year value, one with two digits representing the year but nothing to indicate
the century.

INSERT INTO T1 VALUES(’00-01-01’);

By default, the NEAREST_CENTURY option is set to 50, thus Adaptive
Server Anywhere converts the above string into the date 2000-01-01. The
following statement verifies the result of this insert.

SELECT * FROM T1;

Changing the NEAREST_CENTURY option using the following statement
alters the conversion process.

SET OPTION NEAREST_CENTURY = 0;

When NEAREST_CENTURY option is set to 0, executing the previous
insert using the same statement will create a different date value:

INSERT INTO T1 VALUES(’00-01-01’);

The above statement now results in the insertion of the date 1900-01-01. Use
the following statement to verify the results.

SELECT * FROM T1;

Date to string conversions

Adaptive Server Anywhere provides several functions for converting
Adaptive Server Anywhere date and time values into a wide variety of
strings and other expressions. It is possible in converting a date value into a
string to reduce the year portion into a two-digit number representing the
year, thereby losing the century portion of the date.

Consider the following statement, which incorrectly converts a string
representing the date January 1, 2000 into a string representing the date
January 1, 1900 even though no database error occurs.

Ambiguous date
conversion
example

Wrong century
values

Chapter 2 SQL Data Types

91

SELECT DATEFORMAT (
DATEFORMAT(’2000-01-01’, ’Mmm dd/yy’),
’yyyy-Mmm-dd’)

AS Wrong_year;

Adaptive Server Anywhere automatically and correctly converts the
unambiguous date string 2000-01-01 into a date value. However, the
’Mmm dd/yy’ formatting of the inner, or nested, DATEFORMAT function
drops the century portion of the date when it is converted back to a string and
passed to the outer DATEFORMAT function.

Because the database option NEAREST_CENTURY in this case is set to 0,
the outer DATEFORMAT function converts the string representing a date
with a two-digit year value into a year between 1900 and 1999.

$ For more information on date and time functions, see "Date and time
functions" on page 95.

Year 2000 compliance

92

93

G C H A P T E R 3

SQL Functions

Functions are used to return information from the database. They are allowed
anywhere an expression is allowed.

NULL parameters
Unless otherwise stated, any function that receives NULL as a parameter
returns NULL.

The chapter includes a grouping of functions by type, followed by an
alphabetical list of functions.

About this chapter

Contents

Function types

94

Function types
This section groups the available function by type.

Aggregate functions

Aggregate functions summarize data over a group of rows from the database.
The groups are formed using the GROUP BY clause of the SELECT
statement. Aggregate functions are allowed only in the select list and in the
HAVING and ORDER BY clauses of a SELECT statement.

The following aggregate functions are available:

♦ "AVG function" on page 107

♦ "COUNT function" on page 117

♦ "LIST function" on page 149

♦ "MAX function" on page 154

♦ "MIN function" on page 154

♦ "SUM function" on page 187

Data type conversion functions

These functions are used to convert arguments from one data type to another,
or to test whether they can be converted.

♦ The Adaptive Server Anywhere cast function is not currently supported
by Adaptive Server Enterprise.

The following data type conversion functions are available:

♦ "CAST function" on page 109

♦ "CONVERT function" on page 114

♦ "HEXTOINT function" on page 141

♦ "INTTOHEX function" on page 145

♦ "ISDATE function" on page 145

♦ "ISNUMERIC function" on page 147

List of functions

Compatibility

List of functions

gChapter 3 SQL Functions

95

Date and time functions

Date and time functions perform operations on date and time data types or
return date or time information.

In this chapter, the term datetime is used to mean date or time or timestamp.
The specific data type DATETIME is indicated as DATETIME.

$ For more information on datetime data types, see "Date and time data
types" on page 65.

The following date and time functions are available:

♦ "DATE function" on page 120

♦ "DATEADD function" on page 120

♦ "DATEDIFF function" on page 121

♦ "DATEFORMAT function" on page 123

♦ "DATENAME function" on page 123

♦ "DATEPART function" on page 124

♦ "DATETIME function" on page 124

♦ "DAY function" on page 125

♦ "DAYNAME function" on page 125

♦ "DAYS function" on page 125

♦ "DOW function" on page 129

♦ "GETDATE function" on page 138

♦ "HOUR function" on page 141

♦ "HOURS function" on page 142

♦ "MINUTE function" on page 155

♦ "MINUTES function" on page 155

♦ "MONTH function" on page 157

♦ "MONTHNAME function" on page 157

♦ "MONTHS function" on page 158

♦ "NOW function" on page 161

♦ "QUARTER function" on page 168

♦ "SECOND function" on page 175

♦ "SECONDS function" on page 176

List of functions

Function types

96

♦ "TODAY function" on page 189

♦ "WEEKS function" on page 195

♦ "YEARS function" on page 196

♦ "YMD function" on page 197

Date parts

Many of the date functions use dates built from date parts. The following
table displays allowed values of date-parts.

Date Part Abbreviation Values

Year yy 1–9999

Quarter qq 1–4

Month mm 1–12

Week wk 1–54. Weeks begin on Sunday.

Day dd 1–31

Dayofyear dy 1–366

Weekday dw 1–7 (Sunday = 1, …, Saturday = 7)

Hour hh 0–23

Minute mi 0–59

Second ss 0–59

Millisecond ms 0–999

Calyearofweek cyr Integer. The year in which the week begins.
The week containing the first few days of the
year may have started in the previous year,
depending on the weekday on which the year
started. Years starting on Monday through
Thursday have no days that are part of the
previous year, but years starting on Friday
through Sunday start their first week on the
first Monday of the year.

Calweekofyear cwk 1–54. The week number within the year that
contains the specified date.

Caldayofweek cdw 1–7. (Sunday = 1, …, Saturday = 7)

gChapter 3 SQL Functions

97

Java and SQL user-defined functions

There are two mechanisms for creating user-defined functions in Adaptive
Server Anywhere. You can use the SQL language to write the function, or
you can use Java.

You can implement your own functions in SQL using the "CREATE
FUNCTION statement" on page 296. The RETURN statement inside the
CREATE FUNCTION statement determines the data type of the function.

Once a SQL user-defined function is created, it can be used anywhere a
built-in function of the same data type is used.

$ For more information on creating SQL functions, see "Using
Procedures, Triggers, and Batches" on page 507 of the book ASA SQL User’s
Guide.

Although SQL functions are useful, Java classes provide a more powerful
and flexible way of implementing user-defined functions, with the additional
advantage that they can be moved from the database server to a client
application if desired.

Any class method of an installed Java class can be used as a user-defined
function anywhere a built-in function of the same data type is used.

Instance methods are tied to particular instances of a class, and so have
different behavior from standard user-defined functions.

$ For more information on creating Java classes, and on class methods,
see "A Java seminar" on page 59 of the book ASA Programming Guide.

Miscellaneous functions

Miscellaneous functions perform operations on arithmetic, string or date/time
expressions, including the return values of other functions.

The following miscellaneous functions are available:

♦ "ARGN function" on page 105

♦ "COALESCE function" on page 112

♦ "ESTIMATE function" on page 130

♦ "ESTIMATE_SOURCE function" on page 131

♦ "EXPERIENCE_ESTIMATE function" on page 135

♦ "EXPLANATION function" on page 136

♦ "GET_IDENTITY function" on page 137

User-defined
functions in SQL

User-defined
functions in Java

List of functions

Function types

98

♦ "GRAPHICAL_PLAN function" on page 138

♦ "GRAPHICAL_ULPLAN function" on page 140

♦ "GREATER function" on page 141

♦ "IDENTITY function" on page 143

♦ "IFNULL function" on page 143

♦ "INDEX_ESTIMATE function" on page 144

♦ "ISNULL function" on page 146

♦ "LESSER function" on page 149

♦ "LONG_ULPLAN function" on page 152

♦ "NEWID function " on page 159

♦ "NULLIF function" on page 162

♦ "NUMBER function" on page 162

♦ "PLAN function" on page 165

♦ "REWRITE function" on page 172

♦ "SHORT_ULPLAN function" on page 177

♦ "SQLDIALECT function" on page 183

♦ "TRACEBACK function" on page 189

♦ "TRANSACTSQL function" on page 190

♦ "VAREXISTS function" on page 194

♦ "WATCOMSQL function" on page 194

Numeric functions

Numeric functions perform mathematical operations on numerical data types
or return numeric information.

The following numeric functions are available:

♦ "ABS function" on page 104

♦ "ACOS function" on page 104

♦ "ASIN function" on page 106

♦ "ATAN function" on page 106

♦ "ATN2 function" on page 106

List of functions

gChapter 3 SQL Functions

99

♦ "CEILING function" on page 110

♦ "COS function" on page 116

♦ "COT function" on page 117

♦ "DEGREES function" on page 128

♦ "EXP function" on page 135

♦ "FLOOR function" on page 137

♦ "LOG function" on page 151

♦ "LOG10 function" on page 152

♦ "MOD function" on page 156

♦ "PI function" on page 164

♦ "POWER function" on page 166

♦ "RADIANS function" on page 169

♦ "RAND function" on page 169

♦ "REMAINDER function" on page 170

♦ "ROUND function" on page 174

♦ "SIGN function" on page 177

♦ "SIN function" on page 179

♦ "SQRT function" on page 184

♦ "TAN function" on page 188

♦ "TRUNCATE function" on page 190

♦ "TRUNCNUM function" on page 191

String functions

String functions perform conversion, extraction or manipulation operations
on strings, or return information about strings.

When working in a multi-byte character set, check carefully whether the
function being used returns information concerning characters or bytes.

The following string functions are available:

♦ "ASCII function" on page 105

♦ "BYTE_LENGTH function" on page 108

♦ "BYTE_SUBSTR function" on page 108

List of functions

Function types

100

♦ "CHAR function" on page 110

♦ "CHARINDEX function" on page 111

♦ "CHAR_LENGTH function" on page 111

♦ "COMPARE function" on page 112

♦ "CSCONVERT function" on page 118

♦ "DIFFERENCE function" on page 129

♦ "INSERTSTR function" on page 144

♦ "LCASE function" on page 147

♦ "LEFT function" on page 148

♦ "LENGTH function" on page 148

♦ "LOCATE function" on page 150

♦ "LOWER function" on page 153

♦ "LTRIM function" on page 153

♦ "PATINDEX function" on page 164

♦ "REPEAT function" on page 170

♦ "REPLACE function" on page 171

♦ "REPLICATE function" on page 172

♦ "RIGHT function" on page 174

♦ "RTRIM function" on page 175

♦ "SIMILAR function" on page 178

♦ "SORTKEY function" on page 179

♦ "SOUNDEX function" on page 182

♦ "SPACE function" on page 183

♦ "STR function" on page 184

♦ "STRING function" on page 185

♦ "STRTOUUID function " on page 185

♦ "STUFF function" on page 186

♦ "SUBSTRING function" on page 186

♦ "TRIM function" on page 190

♦ "UCASE function" on page 192

gChapter 3 SQL Functions

101

♦ "UPPER function" on page 192

♦ "UUIDTOSTR function " on page 193

System functions

System functions return system information.

The following system functions are available:

♦ "CONNECTION_PROPERTY function" on page 113

♦ "DATALENGTH function" on page 119

♦ "DB_ID function" on page 127

♦ "DB_NAME function" on page 127

♦ "DB_PROPERTY function" on page 128

♦ "EVENT_CONDITION function" on page 132

♦ "EVENT_CONDITION_NAME function" on page 133

♦ "EVENT_PARAMETER function" on page 134

♦ "NEXT_CONNECTION function" on page 160

♦ "NEXT_DATABASE function" on page 161

♦ "PROPERTY function" on page 167

♦ "PROPERTY_DESCRIPTION function" on page 166

♦ "PROPERTY_NAME function" on page 167

♦ "PROPERTY_NUMBER function" on page 168

The following table displays the Adaptive Server Enterprise system functions
and their status in Adaptive Server Anywhere:

Function Status

Col_length Implemented

Col_name Implemented

Curunreservedpgs Not implemented

Data_pgs Not implemented

Datalength Implemented

Db_id Implemented

Db_name Implemented

List of functions

Compatibility

Function types

102

Function Status

Host_id Not implemented

Host_name Not implemented

Index_col Implemented

Lct_admin Not implemented

Object_id Implemented

Object_name Implemented

Proc_role Always returns 0

Reserved_pgs Not implemented

Rowcnt Not implemented

Show_role Always returns NULL

Suser_id Implemented

Suser_name Implemented

Tsequal Implemented

Used_pgs Not implemented

User_id Implemented

User_name Implemented

Valid_name Not implemented

Valid_user Not implemented

♦ Some of the system functions are implemented in Adaptive Server
Anywhere as stored procedures.

♦ The db_id, db_name, and datalength functions are implemented as built-
in functions.

The implemented system functions are described in the following table.

System function Description

Col_length(table-name, column-name) Returns the defined length of column

Col_name(table-id, column-id [,
database-id])

Returns the column name

Datalength(expression) Returns the length of the expression,
in bytes

Db_id([database-name]) Returns the database ID number

Db_name([database-id]) Returns the database name

Index_col (table-name, index-id, key_# [, Returns the name of the indexed

Notes

gChapter 3 SQL Functions

103

System function Description
userid]) column

Object_id (object-name) Returns the object ID

Object_name (object-id [, database-id]) Returns the object name

Suser_id([user-name]) Returns an integer user identification
number

Suser_name([user-id]) Returns the user ID (server user name
in Adaptive Server Enterprise)

Tsequal (timestamp, timestamp2) Compares timestamp values to
prevent update on a row that has been
modified since it was selected

User_id([user-name]) Returns an integer user identification
number. This does not return the
Adaptive Server Anywhere user ID

User_name([user-id]) Returns the user ID (user name in
Adaptive Server Enterprise)

Text and image functions

Text and image functions operate on text and image data types. Adaptive
Server Adaptive Server Anywhere supports only the textptr text and image
function.

♦ Adaptive Server Anywhere does not currently support the Adaptive
Server Enterprise textvalid function.

The following text and image function is available:

♦ "TEXTPTR function" on page 188

Compatibility

List of functions

Alphabetical list of functions

104

Alphabetical list of functions
Each function is listed, and the function type (numeric, character, and so on)
is indicated next to it.

$ For links to all functions of a given type, see "Function types" on
page 94.

ABS function [Numeric]

Returns the absolute value of a numeric expression.

ABS (numeric-expression)

numeric expression The number whose absolute value is to be returned.

The following statement returns the value 66.

SELECT ABS(-66)

♦ SQL/92 Vendor extension.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Compatible with Adaptive Server Enterprise.

ACOS function [Numeric]

Returns the arc-cosine, in radians, of a numeric expression.

ACOS (numeric-expression)

numeric-expression The cosine of the angle.

The following statement returns the value 1.023945.

SELECT ACOS(0.52)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"ASIN function" on page 106
"ATAN function" on page 106
"ATN2 function" on page 106
"COS function" on page 116

Function

Syntax

Parameters

Example

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

gChapter 3 SQL Functions

105

ARGN function [Miscellaneous]

Returns a selected argument from a list of arguments.

ARGN (integer-expression, expression [, ...])

integer expression The position of an argument within the list of
expressions.

expression An expression of any data type passed into the function. All
supplied expressions must be of the same data type.

The following statement returns the value 6.

SELECT ARGN(6, 1,2,3,4,5,6)

Using the value of the integer-expression as n, returns the nth argument
(starting at 1) from the remaining list of arguments. While the expressions
can be of any data type, they must all be of the same data type. The integer
expression must be from one to the number of expressions in the list or
NULL is returned. Multiple expressions are separated by a comma.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

ASCII function [String]

Returns the integer ASCII value of the first byte in a string-expression.

ASCII (string-expression)

string-expression The string.

The following statement returns the value 90.

SELECT ASCII(’Z’)

If the string is empty, then ASCII returns zero. Literal strings must be
enclosed in quotes.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

Alphabetical list of functions

106

ASIN function [Numeric]

Returns the arc-sine, in radians, of a number.

ASIN (numeric-expression)

numeric-expression The sine of the angle.

The following statement returns the value 0.546850.

SELECT ASIN(0.52)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"ACOS function" on page 104
"ATAN function" on page 106
"ATN2 function" on page 106
"SIN function" on page 179

ATAN function [Numeric]

Returns the arc-tangent, in radians, of a number.

ATAN (numeric-expression)

numeric-expression The tangent of the angle.

The following statement returns the value 0.479519.

SELECT ATAN(0.52)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"ACOS function" on page 104
"ASIN function" on page 106
"ATN2 function" on page 106
"TAN function" on page 188

ATN2 function [Numeric]

Returns the arc-tangent, in radians, of the ratio of two numbers.

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

gChapter 3 SQL Functions

107

{ ATN2 | ATAN2 } (numeric-expression1, numeric-expression2)

numeric-expression1 The numerator in the ratio whose arc tangent is
calculated.

numeric-expression2 The denominator in the ratio whose arc-tangent is
calculated.

The following statement returns the value 0.008666.

SELECT ATAN2(0.52, 060)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase ATN2 is compatible with Adaptive Server Enterprise.
ATAN2 is not supported by Adaptive Server Enterprise.

"ACOS function" on page 104
"ASIN function" on page 106
"ATAN function" on page 106
"TAN function" on page 188

AVG function [Aggregate]

Computes the average, for a set of rows, of a numeric-expression or of a set
unique values.

AVG (numeric-expression | DISTINCT column-name)

numeric-expression The value whose average is calculated over a set of
rows.

DISTINCT column-name Computes the average of the unique values in
column-name. This is of limited usefulness, but is included for completeness.

The following statement returns the value 49988.6.

SELECT AVG(salary) FROM employee

This average does not include rows where the numeric expression is the
NULL value. Returns the NULL value for a group containing no rows.

♦ SQL/92 SQL/92 compatible.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

"SUM function" on page 187

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

See also

Alphabetical list of functions

108

"COUNT function" on page 117

BYTE_LENGTH function [String]

Returns the number of bytes in a string.

BYTE_LENGTH (string-expression)

string-expression The string whose length is to be calculated.

The following statement returns the value 12.

SELECT BYTE_LENGTH(’Test Message’)

Trailing white space characters are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multi-byte character set, the BYTE_LENGTH value
differs from the number of characters returned by CHAR_LENGTH.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"CHAR_LENGTH function" on page 111
"DATALENGTH function" on page 119
"LENGTH function" on page 148

BYTE_SUBSTR function [String]

Returns a substring of a string. The substring is calculated using bytes, not
characters.

BYTE_SUBSTR (string-expression, start [, length])

string- expression The string from which the substring is taken.

start An integer expression indicating the start of the substring. A positive
integer starts from the beginning of the string, with the first character being
position 1. A negative integer specifies a substring starting from the end of
the string, the final character being at position -1.

length An integer expression indicating the length of the substring. A
positive length specifies the number of bytes to be taken starting at the start
position. A negative length specifies the number of bytes to be taken ending
at the start position.

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

gChapter 3 SQL Functions

109

The following statement returns the value age.

SELECT BYTE_SUBSTR(’Test Message’,-1,-3)

If length is specified, the substring is restricted to that number of bytes. Both
start and length can be either positive or negative. A negative starting
position specifies a number of bytes from the end of the string instead of the
beginning. A positive length specifies that the substring ends length bytes to
the right of the starting position, while a negative length specifies that the
substring ends length bytes to the left of the starting position and ends at the
start position. Using appropriate combinations of negative and positive
numbers, you can get a substring from either the beginning or end of the
string.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

"SUBSTRING function" on page 186

CAST function [Data type conversion]

Returns the value of an expression converted to a supplied data type.

CAST (expression AS data type)

expression The expression to be converted.

data type The target data type.

The following function ensures a string is used as a date:

CAST(’2000-10-31’ AS DATE)

The value of the expression 1 + 2 is calculated, and the result cast into a
single-character string.

CAST(1 + 2 AS CHAR)

You can use the CAST function to shorten strings:

CAST(Surname AS CHAR(10))

If you do not indicate a length for character string types, the database server
chooses an appropriate length. If neither precision nor scale is specified for a
DECIMAL conversion, the database server selects appropriate values.

♦ SQL/92 This function is SQL/92 compatible.

♦ SQL/99 Core feature.

Example

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

Alphabetical list of functions

110

♦ Sybase Not supported in Adaptive Server Enterprise.

"CONVERT function" on page 114

CEILING function [Numeric]

Returns the ceiling (smallest integer not less than) of a number.

CEILING (numeric-expression)

numeric expression The number whose ceiling is to be calculated.

The following statement returns the value 60.

SELECT CEILING(59.84567)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"FLOOR function" on page 137

CHAR function [String]

Returns the character with the ASCII value of a number.

CHAR (integer-expression)

integer expression The number to be converted to an ASCII character.
The number must be in the range 0 to 255, inclusive.

The following statement returns the value Y.

SELECT CHAR(89)

The character returned corresponds to the supplied numeric expression in the
current database character set, according to a binary sort order.

CHAR returns NULL for integer expressions with values greater than 255 or
less than zero.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

gChapter 3 SQL Functions

111

CHARINDEX function [String]

Returns the position of one string in another.

CHARINDEX (string-expression1, string-expression2)

string expression1 The string you are searching for.

string expression2 The string to be searched.

The statement

SELECT emp_lname, emp_fname
FROM employee
WHERE CHARINDEX(’K’, emp_lname) = 1

returns the following values:

emp_lname Emp_fname

Klobucher James

Kuo Felicia

Kelly Moira

The position of the first character in the string being searched is 1.

If the string being searched contains more than one instance of the other
string, then CHARINDEX returns the position of the first instance.

If the string being searched does not contain the other string, then
CHARINDEX returns 0.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"SUBSTRING function" on page 186

CHAR_LENGTH function [String]

Returns the number of characters in a string.

CHAR_LENGTH (string-expression)

string-expression The string whose length is to be calculated.

Trailing white space characters are included in the length returned.

The return value of a NULL string is NULL.

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

Usage

Alphabetical list of functions

112

If the string is in a multi-byte character set, the CHAR_LENGTH value
differs from the number of bytes returned by BYTE_LENGTH.

The following statement returns the value 8.

SELECT CHAR_LENGTH(’Chemical’)

♦ SQL/92 This function is SQL/92 compatible.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

"BYTE_LENGTH function" on page 108

COALESCE function [Miscellaneous]

Returns the first non-NULL expression from a list.

COALESCE (expression, expression [, ...])

expression Any expression.

The following statement returns the value 34.

SELECT COALESCE(NULL, 34, 13, 0)

♦ SQL/92 SQL/92.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

COMPARE function [String]

Allows you to directly compare two character strings based on alternate
collation rules.

COMPARE (string-expression-1, string-expression-2
 [, collation-name | , collation-id])

string-expression-1 The first string expression.

string-expression-2 The second string expression.

The string expression may only contain characters that are encoded in the
database’s character set.

collation-name A string or a character variable that specifies the name of
the sort order to use. For a list of valid collation names, see "SORTKEY
function" on page 179.

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

Function

Syntax

Parameters

gChapter 3 SQL Functions

113

collation-id A variable or integer constant that specifies the sort order to
use. You can only use a collation-id for built-in collations. For more
information, see "SORTKEY function" on page 179.

If you do not specify a collation name or id, the default is Default Unicode
multilingual.

The COMPARE function returns the following values, based on the collation
rules that you choose:

Value Meaning

1 string-expression-1 is greater than string-expression-2

0 string-expression-1 is equal to string-expression-2

-1 string-expression-1 is less than string-expression-2

The COMPARE function does not equate empty strings and strings
containing only spaces, even if the database has blank-padding enabled.
COMPARE uses the SORTKEY function to generate collation keys for
comparison. Therefore, an empty string, a string with one space, and a string
with two spaces will not compare equally.

If either string-expression-1 or string-expression-2 is null, the result is null.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"SORTKEY function" on page 179

CONNECTION_PROPERTY function [System]

Returns the value of a given connection property as a string.

CONNECTION_PROPERTY ({ integer-expression | string-expression }
 ... [, integer-expression])

integer expression In most cases it is more convenient to supply a string
expression as the first argument. If you do supply an integer-expression, it is
the connection property ID. You can determine this using the
PROPERTY_NUMBER function.

string-expression The connection property name. Either the property ID
or the property name must be specified.

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

Alphabetical list of functions

114

$ For a list of connection properties, see "Connection-level properties" on
page 618 of the book ASA Database Administration Guide.

integer-expression The connection ID of the current database
connection. The current connection is used if this argument is omitted.

The following statement returns the number of prepared statements being
maintained.

SELECT connection_property(’PrepStmt’)

The current connection is used if the second argument is omitted.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"Connection-level properties" on page 618 of the book ASA Database
Administration Guide

"PROPERTY_NUMBER function" on page 168

CONVERT function [Data type conversion]

Returns an expression converted to a supplied data type.

CONVERT (data type, expression [, format-style])

data type The data type to which the expression will be converted.

expression The expression to be converted.

format-style For converting strings to date or time data types and vice
versa, the format-style is a style code number that describes the date format
string to be used. The values of the format-style argument have the following
meanings:

Without
century (yy)

With century
(yyyy)

Output

- 0 or 100 Mmm dd yyyy hh:nn:ss:sss AM (or PM)

1 101 mm/dd/yy[yy]

2 102 [yy]yy.mm.dd

3 103 dd/mm/yy[yy]

4 104 dd.mm.yy[yy]

5 105 dd-mm-yy[yy]

Example

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

gChapter 3 SQL Functions

115

Without
century (yy)

With century
(yyyy)

Output

6 106 dd Mmm yy[yy]

7 107 Mmm dd, yy[yy]

8 108 hh:nn:ss

- 9 or 109 Mmm dd yyyy hh:nn:ss:sssAM (or PM)

10 110 mm-dd-yy[yy]

11 111 [yy]yy/mm/dd

12 112 [yy]yymmdd

13 113 dd Mmm yyy hh:nn:ss:sss (24 hour clock,
Europe default + milliseconds, 4-digit year)

14 114 hh:nn:ss:sss (24 hour clock)

20 120 yyyy-mm-dd hh:nn:ss:sss (24-hour clock,
ODBC canonical, 4-digit year)

21 121 yyyy-mm-dd hh:nn:ss.sss (24 hour clock,
ODBC canonical with milliseconds, 4-digit
year)

If no format-style argument is provided, Style Code 0 is used.

$ For a description of the styles produced by each output symbol (such as
Mmm), see "DATE_FORMAT option" on page 562 of the book ASA
Database Administration Guide.

The following statements illustrate the use of format styles:

SELECT CONVERT(CHAR(20), order_date, 104)
FROM sales_order

order_date

16.03.2000

20.03.2000

23.03.2000

25.03.2000

...

SELECT CONVERT(CHAR(20), order_date, 7)
FROM sales_order

Example

Alphabetical list of functions

116

order_date

Mar 16, 00

Mar 20, 00

Mar 23, 00

Mar 25, 00

...

The following statement illustrates conversion to an integer, and returns the
value 5:

SELECT CONVERT(integer, 5.2)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"CAST function" on page 109

COS function [Numeric]

Returns the cosine of a number.

COS (numeric-expression)

numeric expression The angle, in radians.

The statement

SELECT COS(0.52)

returns the value 0.86781.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"ACOS function" on page 104
"COT function" on page 117
"SIN function" on page 179
"TAN function" on page 188

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

gChapter 3 SQL Functions

117

COT function [Numeric]

Returns the cotangent of a number.

COT (numeric-expression)

numeric-expression The angle, in radians.

The following statement returns the value 1.74653.

SELECT COT(0.52)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"COS function" on page 116
"SIN function" on page 179
"TAN function" on page 188

COUNT function [Aggregate]

Counts the number of rows in a group depending on the specified
parameters.

COUNT (* | expression | DISTINCT { expression | column-name })

* Returns the number of rows in each group.

expression Returns the number of rows in each group where the
expression is not the null value.

DISTINCT expression or column-name Returns the number of
different values in the expression, or the column with name column-name.
Rows where the value is the NULL value are not included in the count.

The following statement returns each unique city, and the number of rows
with that city value:

SELECT city , Count(*)
FROM employee
GROUP BY city

♦ SQL/92 SQL/92 compatible.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"AVG function" on page 107

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Alphabetical list of functions

118

"SUM function" on page 187

CSCONVERT function [STRING]

Converts strings between character sets.

CSCONVERT (string-expression, ’target-charset’
 [, ’source-charset’])

string-expression The string.

target-charset The destination character set. Target-charset can be one
of the following:

♦ os_charset The character set used by the operating system.

♦ db_charset The character set used by the database.

♦ any other supported character set label You can specify any of the
Adaptive Server Anywhere supported character set labels. For more
information, see "Character set labels" on page 265 of the book ASA
Database Administration Guide.

source-charset The character set used by the original string-expression.
The default is db_charset. Source-charset-name can be one of the following:

♦ os_charset The character set used by the operating system.

♦ db_charset The character set used by the database.

♦ any other supported character set label You can specify any of the
Adaptive Server Anywhere supported character set labels. For more
information, see "Character set labels" on page 265 of the book ASA
Database Administration Guide.

This fragment converts the mytext column from the Traditional Chinese
character set to the Simplified Chinese character set:

SELECT
 CSCONVERT (mytext, ’cp936’, ’cp950’)
 FROM mytable

This fragment converts the mytext column from the database character set to
the Simplified Chinese character set:

SELECT
 CSCONVERT (mytext, ’cp936’)
 FROM mytable

Function

Syntax

Parameters

Example 1

Example 2

gChapter 3 SQL Functions

119

If a filename is stored in the database, it is stored in the database’s character
set. If the server is going to read from or write to a file whose name is stored
in a database (eg. in an external stored procedure), the filename must be
explicitly converted to the operating system’s character set before the file can
be accessed. Filenames stored in the database and retrieved by the client are
converted automatically to the client’s character set, so explicit conversion is
not necessary.

This fragment converts the filename column from the database character set
to the operating system character set:

SELECT
 CSCONVERT (filename, ’os_charset’)
 FROM mytable

A table contains a list of filenames. An external stored procedure takes a
filename from this table as a parameter and reads information directly out of
that file. The following statement works when character set conversion is not
required:

SELECT
 MYFUNC(filename)
 FROM mytable

where mytable is a table that contains a filename column. However, if you
need to convert the filename to the character set of the operating system, you
would use the following statement.

SELECT
 MYFUNC(csconvert(filename, ’os_charset’))
 FROM mytable

♦ SQL/92 SQL/92 compatible.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.
"Starting a database server using character set translation" on page 291 of the

book ASA Database Administration Guide

DATALENGTH function [System]

Returns the length in bytes of the underlying storage for the result of an
expression.

DATALENGTH (expression)

expression The expression is usually a column name. If the expression is
a string constant, it must be enclosed in quotes.

Example 3

Example 4

Standards and
compatibility

See also

Function

Syntax

Parameters

Alphabetical list of functions

120

The return values of DATALENGTH are as follows:

Data type DATALENGTH

SMALLINT 2

INTEGER 4

DOUBLE 8

CHAR Length of the data

BINARY Length of the data

The following statement returns the value 27, the longest string in the
company_name column.

SELECT following MAX(DATALENGTH(company_name))
FROM customer

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

DATE function [Date and time]

Converts the expression into a date, and removes any hours, minutes or
seconds.

DATE (expression)

expression The value to be converted to date format. The expression is
usually a string.

The following statement returns the value 1999-01-02 as a date.

SELECT DATE(’1999-01-02 21:20:53’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

DATEADD function [Date and time]

Returns the date produced by adding a number of the date parts to a date.

DATEADD (date-part, numeric-expression, date-expression)

Usage

Example

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

Function

Syntax

gChapter 3 SQL Functions

121

date-part :
year | quarter | month | week | day | hour | minute | second |
millisecond

date-part The date-part to be added to the date..

$ For more information about date-parts, see "Date parts" on page 96.

numeric-expression The number of date-parts to be added to the date.
The numeric_expression can be any numeric type, but the value is truncated
to an integer.

date-expression The date to be modified.

The following statement returns the value: 1995-11-02 00:00:00.0.

SELECT dateadd(month, 102, ’1987/05/02’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

DATEDIFF function [Date and time]

Returns the interval between two dates.

DATEDIFF (date-part, date-expression1, date-expression2)

date-part :
year | quarter | month | week | day | hour | minute | second |
millisecond

date-part Specifies the date-part in which the interval is to be measured.

$ For more information about date-parts, see "Date parts" on page 96.

date-expression1 The starting date for the interval. This value is
subtracted from date-expression2 to return the number of date-parts between
the two arguments.

date-expression2 The ending date for the interval. Date-expression1 is
subtracted from this value to return the number of date-parts between the
two arguments.

The following statement returns 1:

SELECT datediff(hour, ’4:00AM’, ’5:50AM’)

The following statement returns 102:

SELECT datediff(month, ’1987/05/02’, ’1995/11/15’)

Parameters

Example

Standards and
compatibility

Function

Syntax

Parameters

Example

Alphabetical list of functions

122

The following statement returns 0:

SELECT datediff(day, ’00:00’, ’23:59’)

The following statement returns 4:

SELECT datediff(day, ’1999/07/19 00:00’, ’1999/07/23
23:59’)

The following statement returns 0:

SELECT datediff(month, ’1999/07/19’, ’1999/07/23’)

The following statement returns 1:

SELECT datediff(month, ’1999/07/19’, ’1999/08/23’)

This function calculates the number of date parts between two specified
dates. The result is a signed integer value equal to (date2 - date1), in date
parts.

DATEDIFF results are truncated, not rounded, when the result is not an even
multiple of the date part.

When you use day as the date part, DATEDIFF returns the number of
midnights between the two times specified, including the second date but not
the first.

When you use month as the date part, DATEDIFF returns the number of
first-of-the-months between two dates, including the second date but not the
first.

When you use week as the date part, DATEDIFF returns the number of
Sundays between the two dates, including the second date but not the first.

For the smaller time units there are overflow values:

♦ milliseconds 24 days

♦ seconds 68 years

♦ minutes 4083 years

♦ others No overflow limit

The function returns an overflow error if you exceed these limits.

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Usage

Standards and
compatibility

gChapter 3 SQL Functions

123

DATEFORMAT function [Date and time]

Returns a string representing a date-expression in the specified format.

DATEFORMAT (datetime-expression, string-expression)

datetime-expression The datetime to be converted.

string-expression The format of the converted date.

$ For information on date format descriptions, see "DATE_FORMAT
option" on page 562 of the book ASA Database Administration Guide.

The following statement returns the value Jan 01, 1989.

SELECT DATEFORMAT(’1989-01-01’, ’Mmm dd, yyyy’)

Any allowable date format can be used for the string-expression.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Year 2000 compliance
It is possible to use the DATEFORMAT function to produce a string with
the year value represented by only two digits. This can cause problems
with year 2000 compliance even though no error has occurred.

$ For more information on year 2000 compliance, please see "Year
2000 compliance" on page 87.

"DATE_FORMAT option" on page 562 of the book ASA Database
Administration Guide

DATENAME function [Date and time]

Returns the name of the specified part (such as the month "June") of a
datetime value, as a character string.

DATENAME (date-part, date-expression)

date-part The date-part to be named.

$ For a complete listing of allowed date-parts, see "Date parts" on
page 96.

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

Alphabetical list of functions

124

date-expression The date for which the date-part name is to be returned.
The date must contain the requested date-part.

The following statement returns the value May.

SELECT datename(month , ’1987/05/02’)

DATENAME returns a string, even if the result is numeric, such as 23 for
the day.

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

DATEPART function [Date and time]

Returns the value of part of a datetime value.

DATEPART (date-part, date-expression)

date-part The date-part to be returned.

$ For a complete listing of allowed date-parts, see "Date parts" on
page 96.

date-expression The date for which the part is to be returned. The date
must contain the date-part field.

The following statement returns the value 5.

SELECT datepart(month , ’1987/05/02’)

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

DATETIME function [Date and time]

Converts an expression into a timestamp.

DATETIME (expression)

expression The expression to be converted. It is generally a string.
Attempts to convert numerical values return an error.

The following statement returns a timestamp with value 1998-09-09
12:12:12.000.

Example

Usage

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

Function

Syntax

Parameters

Example

gChapter 3 SQL Functions

125

SELECT DATETIME(’1998-09-09 12:12:12.000’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

DAY function [Date and time]

Returns an integer from 1 to 31 corresponding to the day of the month of a
date.

DAY (date-expression)

date-expression The date.

The following statement returns the value 12.

SELECT DAY(’2001-09-12’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

DAYNAME function [Date and time]

Returns the name of the day of the week from the a date.

DAYNAME(date-expression)

date-expression The date.

The following statement returns the value Saturday.

SELECT DAYNAME (’1987/05/02’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

DAYS function [Date and time]

Given a single date, this function returns the number of days since
0000-02-29.

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

Function

Alphabetical list of functions

126

Given two dates, this function returns the integer number of days between
them. It is recommended that you use the "DATEDIFF function" on
page 121 instead for this purpose.

Given one date and an integer, it adds the integer number of days to the
specified date. It is recommended that you use the "DATEADD function" on
page 120 instead for this purpose.

Syntax 1 returns an integer. Syntax 2 returns a timestamp.

DAYS ignores hours, minutes, and seconds.

DAYS ([datetime-expression,] datetime-expression)

DAYS (datetime-expression, integer-expression)

datetime-expression A date and time.

integer-expression The number of days to be added to the datetime-
expression. If the integer-expression is negative, the appropriate number of
days is subtracted from the timestamp. If you supply an integer expression,
the datetime-expression must be explicitly cast as a date or timestamp.

$ For information on casting data types, see "CAST function" on
page 109.

The following statement returns the integer 729 889.

SELECT DAYS(’1998-07-13 06:07:12’)

The following statement returns the current Julian day.

SELECT DAYS(CURRENT DATE) + 1721119

The following statements return the integer value –366, indicating that the
second date is 366 days prior to the first. It is recommended that you use the
second example (DATEDIFF).

SELECT DAYS(’1998-07-13 06:07:12’,
 ’1997-07-12 10:07:12’)

SELECT DATEDIFF(day,
’1998-07-13 06:07:12’,
’1997-07-12 10:07:12’)

The following statements return the timestamp 1999-07-14 00:00:00.0. It is
recommended that you use the second example (DATEADD).

SELECT DAYS(CAST(’1998-07-13’ AS DATE), 366)

SELECT DATEADD(day, 366, ’1998-07-13’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Syntax 1

Syntax 2

Parameters

Example

Standards and
compatibility

gChapter 3 SQL Functions

127

♦ Sybase Not supported by Adaptive Server Enterprise.

DB_ID function [System]

Returns the database ID number.

DB_ID ([database-name])

database-name A string containing the database name. If no database-
name is supplied, the ID number of the current database is returned.

The following statement returns the value 0 if asademo is the only running
database:

SELECT DB_ID(’asademo’)

The following statement returns the value 0 if executed against the only
running database.

SELECT DB_ID()

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

DB_NAME function [System]

Returns the name of a database with a given ID number.

DB_NAME ([database-id])

database-id The ID of the database. The database-id must be a numeric
expression.

The statement returns the database name asademo, when executed against
the sample database as the sole database on the server.

SELECT DB_NAME(0)

If no database ID is supplied, the name of the current database is returned.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Function

Syntax

Parameters

Example

Standards and
compatibility

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

Alphabetical list of functions

128

DB_PROPERTY function [System]

Returns the value of the given property.

DB_PROPERTY ({ property_id | property_name }
 ... [, { database_id | database_name }])

property_id The database property ID.

property_name The database property name.

database_id The database ID number, as returned by DB_ID. Typically,
the database name is used.

database_name The name of the database, as returned by DB_NAME.

The following statement returns the page size of the current database, in
bytes.

SELECT DB_PROPERTY(’PAGESIZE’)

Returns a string. The current database is used if the second argument is
omitted.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"DB_ID function" on page 127
"DB_NAME function" on page 127
"Database-level properties" on page 630 of the book ASA Database

Administration Guide

DEGREES function [Numeric]

Converts a number from radians to degrees.

DEGREES (numeric-expression)

numeric-expression An angle in radians.

The following statement returns the value 29.793805.

SELECT DEGREES(0.52)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

gChapter 3 SQL Functions

129

DIFFERENCE function [String]

Returns the difference in the SOUNDEX values between the two string
expressions.

DIFFERENCE (string-expression-1, string-expression-2)

string-expression-1 The first SOUNDEX argument.

string-expression-2 The second SOUNDEX argument.

The following statement returns the value 3.

SELECT DIFFERENCE(’test’, ’chest’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"SOUNDEX function" on page 182

DOW function [Date and time]

Returns a number from 1 to 7 representing the day of the week of a date,
with Sunday=1, Monday=2, and so on.

DOW (date-expression)

date-expression The date.

The following statement returns the value 5.

SELECT DOW(’1998-07-09’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

ERRORMSG function [Miscellaneous]

Provides the error message for the current error, or for a specified
SQLSTATE or SQLCODE value.

ERRORMSG ([sqlstate | sqlcode])

sqlstate: string

sqlcode: integer

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

Function

Syntax

Alphabetical list of functions

130

sqlstate The SQLSTATE value for which the error message is to be
returned.

sqlcode The SQLCODE value for which the error message is to be
returned.

A string containing the error message. If no argument is supplied, the error
message for the current state is supplied. Any substitutions (such as table
names and column names) are made.

If an argument is supplied, the error message for the supplied SQLSTATE or
SQLCODE is returned, with no substitutions. Table names and column
names are supplied as placeholders (%1).

The following statement returns the error message for SQLCODE -813.

select errormsg(-813)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

"Error messages indexed by SQLSTATE" on page 24 of the book ASA
Errors Manual

"Error messages indexed by Adaptive Server Anywhere SQLCODE" on
page 2 of the book ASA Errors Manual

ESTIMATE function [Miscellaneous]

Provides selectivity estimates for the query optimizer, based on specified
parameters.

ESTIMATE (column-name [, value [, relation-string]])

column-name The column used in the estimate.

value The value to which the column is compared.

relation-string The comparison operator used for the comparison,
enclosed in single quotes; the default is ’=’.

The following statement returns the percentage of emp_id values estimated
to be greater than 200. The precise value depends on the actions you have
carried out on the database.

SELECT FIRST ESTIMATE(emp_id, 200, ’>’)
FROM employee

Parameters

Return value

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

gChapter 3 SQL Functions

131

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

"INDEX_ESTIMATE function" on page 144
"ESTIMATE_SOURCE function" on page 131

ESTIMATE_SOURCE function [Miscellaneous]

Provides the source for selectivity estimates used by the query optimizer.

ESTIMATE_SOURCE (column-name [, value [, relation-string]])

column-name The name of the column that is being investigated.

value The value to which the column is compared. This is optional.

relation-string The comparison operator used for the comparison,
enclosed in single quotes. The default is equality (=).

The source of the selectivity estimate can be one of the following:

♦ Statistics is used as the source when you have specified a value, and
there is a stored statistic available that estimates the average selectivity
of the value in the column. The statistic is available only when the
selectivity of the value is a significant enough number that it is stored in
the statistics. Currently, a value is deemed significant if it occurs in at
least 1% of the rows.

♦ Column is similar to Statistics, except that the selectivity of the value
occurs in less than 1% of the rows. In this case, the selectivity that is
used is the average of all values that have been stored in the statistics
that occur in less than 1% of rows.

♦ Guess is returned when there is no relevant index to use, and no
statistics have been collected for the column. In this case, built-in
guesses are used.

♦ Column-column is returned when the estimate that is used is the
selectivity of a join. In this case, the estimate is calculated as the number
of rows in the joined result set divided by the number of rows in the
Cartesian product of the two tables.

♦ Index is used as the source when there are no statistics available to
estimate the selectivity, but there is an index which can be probed to
estimate selectivity.

Standards and
compatibility

See also

Function

Syntax

Parameters

Return value

Alphabetical list of functions

132

♦ User is returned when there is a user supplied estimate, and the
USER_ESTIMATES database option is not set to DISABLED.

$ For more information, see "USER_ESTIMATES option" on
page 606 of the book ASA Database Administration Guide.

♦ Computed is returned when statistics are computed by the optimizer
based on other information. For example, Adaptive Server Anywhere
does not maintain statistics on multiple columns, so if you want an
estimate on a multiple column equation, such as x=5 and y=10, and
there are statistics on the columns x and y, then the optimizer creates an
estimate by multiplying the estimated selectivity for each column.

♦ Always is used when the test is by definition true. For example, if the
value is 1=1.

♦ Combined is used when the optimizer uses more than one of the
above sources, and combines them.

♦ Bounded can qualify one of the other sources. This indicates that
Adaptive Server Anywhere has placed an upper and/or lower bound on
the estimate. The optimizer does this to keep estimates within logical
bounds. For example, it ensures that an estimate is not greater than
100%, or that the selectivity is not less than one row.

The following statement returns the value Index, which means that the query
optimizer probed an index to estimate the selectivity.

SELECT FIRST ESTIMATE_SOURCE(emp_id, 200, ’>’)
FROM employee

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"ESTIMATE function" on page 130
"INDEX_ESTIMATE function" on page 144

EVENT_CONDITION function [System]

To specify when an event handler is triggered.

EVENT_CONDITION (condition-name)

condition-name The condition triggering the event. The possible values
are preset in the database, and are case insensitive. Each condition is valid
only for certain event types. The conditions and the events for which they are
valid are as follows:

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

gChapter 3 SQL Functions

133

Condition name Units Valid for... Comments

DBFreePercent n/a DBDiskSpace

DBFreeSpace Mb DBDiskSpace

DBSize Mb GrowDB

ErrorNumber n/a RAISERROR

IdleTime seconds ServerIdle

Interval seconds All Time since handler last
executed

LogFreePercent n/a LogDiskSpace

LogFreeSpace Mb LogDiskSpace

LogSize Mb GrowLog

RemainingValues integer GlobalAutoincrement The number of remaining
values

TempFreePercent n/a TempDiskSpace

TempFreeSpace Mb TempDiskSpace

TempSize Mb GrowTemp

The following event definition uses the event_condition function:

create event LogNotifier
type LogDiskSpace
where event_condition(’LogFreePercent’) < 50
handler
begin

message ’LogNotifier message’
end

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"CREATE EVENT statement" on page 285

EVENT_CONDITION_NAME function [System]

Can be used to list the possible parameters for EVENT_CONDITION.

EVENT_CONDITION_NAME (integer)

integer Must be greater than or equal to zero.

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Alphabetical list of functions

134

You can use EVENT_CONDITION_NAME to obtain a list of all
EVENT_CONDITION arguments by looping over integers until the function
returns NULL.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"CREATE EVENT statement" on page 285

EVENT_PARAMETER function [System]

Provides context information for event handlers.

EVENT_PARAMETER (context-name)

context-name:
 ’ConnectionID’
| ’User’
| ’EventName’
| ’Executions’
| ’NumActive’
| ’TableName’
| condition-name

context-name One of the preset strings. The strings are case insensitive,
and carry the following information:

♦ ConnectionId The connection ID, as returned by
connection_property(’id’)

♦ User The user ID for the user that caused the event to be triggered.

♦ EventName The name of the event that has been triggered.

♦ Executions The number of times the event handler has been executed.

♦ NumActive The number of active instances of an event handler. This
is useful if you want to limit an event handler so that only one instance
executes at any given time.

♦ TableName The name of the table, for use with RemainingValues.

In addition, you can access any of the valid condition-name arguments to the
EVENT_CONDITION function from the EVENT_PARAMETER function.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

Standards and
compatibility

gChapter 3 SQL Functions

135

"EVENT_CONDITION function" on page 132
"CREATE EVENT statement" on page 285

EXP function [Numeric]

Returns the exponential function, e to the power of a number.

EXP (numeric-expression)

numeric-expression The exponent.

The statement returns the value 3269017.372.

SELECT EXP(15)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

EXPERIENCE_ESTIMATE function [Miscellaneous]

This function is the same as the ESTIMATE function, except that it always
looks in the frequency table.

EXPERIENCE_ESTIMATE (column-name [, value [, relation-string]])

column-name The name of the column that is being investigated.

value The value to which the column is compared.

relation-string The comparison operator used for the comparison,
enclosed in single quotes; the default is ’=’.

The following statement returns NULL.

SELECT DISTINCT EXPERIENCE_ESTIMATE(emp_id, 200, ’>’)
FROM employee

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

"ESTIMATE function" on page 130

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Alphabetical list of functions

136

EXPLANATION function [Miscellaneous]

Returns the short plan optimization strategy of a SQL statement, as a string.

EXPLANATION (string-expression [cursor-type], [update-status])

string-expression The SQL statement, which is commonly a SELECT
statement but which may also be an UPDATE or DELETE.

cursor-type A string. Cursor-type can be asensitive (default),
insensitive, sensitive, or keyset-driven.

update-status A string parameter accepting one of the following values
indicating how the optimizer should treat the given cursor:

Value Description

READ-ONLY The cursor is read-only.

READ-WRITE
(default)

The cursor can be read or written to.

FOR UPDATE The cursor can be read or written to. This is exactly the
same as READ-WRITE.

The following statement passes a SELECT statement as a string parameter
and returns the plan for executing the query.

SELECT EXPLANATION(’SELECT * FROM department WHERE
dept_id > 100’)

This information can help you decide which indexes to add or how to
structure your database for better performance.

The following statement returns a string containing the short form of the
textual plan for an INSENSITIVE cursor over the query ’select * from
department where’.

SELECT EXPLANATION(’SELECT * FROM department WHERE
dept_id > 100’, ’insensitive’, ’read-only’)

In Interactive SQL, you can view the plan for any SQL statement on the Plan
tab in the Results pane.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"PLAN function" on page 165
"GRAPHICAL_PLAN function" on page 138
"GRAPHICAL_ULPLAN function" on page 140

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

gChapter 3 SQL Functions

137

"LONG_ULPLAN function" on page 152
"SHORT_ULPLAN function" on page 177

FLOOR function [Numeric]

Returns the floor of (largest integer not greater than) a number.

FLOOR (numeric-expression)

numeric- expression The number, usually a float.
Value FLOOR (Value)

123 123

123.45 123

–123.45 –124

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"CEILING function" on page 110

GET_IDENTITY function [Miscellaneous]

Allocates values to an autoincrement column. This is an alternative to using
autoincrement to generate numbers.

GET_IDENTITY ([owner.] table-name [, num_to_alloc],...)

num_to_allocate Default is 1.

The following statement makes three calls to the GET_IDENTITY function:

SELECT GET_IDENTITY(’T1’),
 GET_IDENTITY(’T2’,10),
 GET_IDENTITY(’T3’,5)

Using autoincrement or global autoincrement is still the most efficient way to
generate IDs, but this function is provided as an alternative. The function
assumes that the table has an autoincrement column defined. It returns the
next available value that would be generated for the table’s autoincrement
column, and reserves that value so that no other connection will use it by
default.

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Usage

Alphabetical list of functions

138

The function returns an error if the table is not found, and returns NULL if
the table has no autoincrement column. If there is more than one
autoincrement column, it uses the first one it finds.

If num_to_alloc is greater than 1, the function also reserves the remaining
values. The next allocation uses the current number plus the value of
num_to_alloc. This allows the application to execute get_identity less
frequently.

No COMMIT is required after executing get_identity, and so it can be called
using the same connection that is used to insert rows. If ID values are
required for several tables, they can be obtained using a single SELECT that
includes multiple calls to get_identity, as in the example.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"CREATE TABLE statement" on page 350
"ALTER TABLE statement" on page 233
"NUMBER function" on page 162

GETDATE function [Date and time]

Returns the current date and time.

GETDATE ()

The following statement returns the system date and time.

SELECT GETDATE()

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

GRAPHICAL_PLAN function [Miscellaneous]

Returns the plan optimization strategy of a SQL statement in XML format, as
a string.

GRAPHICAL_PLAN (string-expression [statistics-level],
 [cursor-type], [update-status])

string-expression The SQL statement, which is commonly a SELECT
statement but which may also be an UPDATE or DELETE.

Standards and
compatibility

See also

Function

Syntax

Example

Standards and
compatibility

Function

Syntax

Parameters

gChapter 3 SQL Functions

139

statistics-level An integer. Statistics-level can be one of the following
values:

Value Description

0 Include optimizer estimates only. (default)

1 Include actual summary statistics from execution.

2 Include detailed actual statistics.

cursor-type A string. Cursor-type can be asensitive (default),
insensitive, sensitive, or keyset-driven.

update-status A string parameter accepting one of the following values
indicating how the optimizer should treat the given cursor:

Value Description

READ-ONLY The cursor is read-only.

READ-WRITE
(default)

The cursor can be read or written to.

FOR UPDATE The cursor can be read or written to. This is exactly the
same as READ-WRITE.

The following Interactive SQL example passes a SELECT statement as a
string parameter and returns the plan for executing the query. It saves the
plan in the file plan.xml.

SELECT GRAPHICAL_PLAN(’SELECT * FROM department WHERE
dept_id > 100’);
OUTPUT TO plan.xml FORMAT FIXED

The following statement returns a string containing the graphical plan for a
keyset-driven, updateable cursor over the query ’SELECT * FROM
department WHERE’. It also causes the server to annotate the plan with
actual execution statistics, in addition to the estimated statistics that were
used by the optimizer.

SELECT GRAPHICAL_PLAN(’SELECT * FROM department WHERE
dept_id > 100’, 2, ’keyset-driven’, ’for update’)

In Interactive SQL, you can view the plan for any SQL statement on the Plan
tab in the Results pane.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"PLAN function" on page 165

Examples

Standards and
compatibility

See also

Alphabetical list of functions

140

"EXPLANATION function" on page 136
"GRAPHICAL_ULPLAN function" on page 140
"LONG_ULPLAN function" on page 152
"SHORT_ULPLAN function" on page 177

GRAPHICAL_ULPLAN function [Miscellaneous]

Returns the UltraLite plan optimization strategy of a SQL statement in XML
format, as a string. The UltraLite plan does not include statistics.

For some queries, the execution plan for UltraLite may differ from the plan
selected for Adaptive Server Anywhere.

GRAPHICAL_ULPLAN (string-expression)

string-expression The SQL statement, which is commonly a SELECT
statement but which may also be an UPDATE or DELETE.

The following Interactive SQL example passes a SELECT statement as a
string parameter and returns the plan for executing the query. It saves the
plan in the file plan.xml.

SELECT GRAPHICAL_ULPLAN(’select * from department where
dept_id > 100’);
OUTPUT TO ulplan.xml FORMAT FIXED

To display the plan, open the ulplan.xml file in Interactive SQL.

As an alternative, you can view the plan for any SQL statement on the
UltraLite Plan tab in Interactive SQL, choose File➤Save, and change the file
type to xml. To change the type of plan that is displayed, choose
Tools➤Options and open the Plan tab.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"PLAN function" on page 165
"EXPLANATION function" on page 136
"GRAPHICAL_PLAN function" on page 138
"LONG_ULPLAN function" on page 152
"SHORT_ULPLAN function" on page 177

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

gChapter 3 SQL Functions

141

GREATER function [Miscellaneous]

Returns the greater of two parameter values. If the parameters are equal, the
first is returned.

GREATER (expression1, expression2)

The following statement returns the value 10.

SELECT GREATER(10,5) FROM dummy

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"LESSER function" on page 149

HEXTOINT function [Data type conversion]

Returns the decimal integer equivalent of a hexadecimal string.

HEXTOINT (hexadecimal-string)

hexadecimal-string The string to be converted to an integer.

The following statement returns the value 420.

SELECT HEXTOINT (’1A4’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"INTTOHEX function" on page 145

HOUR function [Date and time]

Returns a number from 0 to 23 corresponding to the hour component of a
datetime.

HOUR (datetime-expression)

datetime-expression The datetime.

The following statement returns the value 21:

SELECT HOUR(’1998-07-09 21:12:13’)

Function

Syntax

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Alphabetical list of functions

142

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

HOURS function [Date and time]

Given two timestamps, this function returns the integer number of hours
between them. It is recommended that you use the "DATEDIFF function" on
page 121 instead for this purpose.

Given a single date, this function returns the number of hours since
0000-02-29 00:00:00.

Given one date and an integer, it adds the integer number of hours to the
specified timestamp. It is recommended that you use the "DATEADD
function" on page 120 instead for this purpose.

Syntax 1 returns an integer. Syntax 2 returns a timestamp.

HOURS ([datetime-expression,] datetime-expression)

HOURS (datetime-expression, integer-expression)

datetime-expression A date and time.

integer-expression The number of hours to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of
hours is subtracted from the datetime. If you supply an integer expression,
the datetime-expression must be explicitly cast as a datetime data type.

$ For information on casting data types, see "CAST function" on
page 109.

The following statements return the value 4, signifying that the second
timestamp is four hours after the first. It is recommended that you use the
second example (DATEDIFF).

SELECT HOURS(’1999-07-13 06:07:12’,
’1999-07-13 10:07:12’)

SELECT DATEDIFF(hour,
’1999-07-13 06:07:12’,
’1999-07-13 10:07:12’)

The following statement returns the value 17 517 342.

SELECT HOURS(’1998-07-13 06:07:12’)

The following statements return the datetime 1999-05-13 02:05:07.0. It is
recommended that you use the second example (DATEADD).

Standards and
compatibility

Function

Syntax 1

Syntax 2

Parameters

Example

gChapter 3 SQL Functions

143

SELECT HOURS(
CAST(’1999-05-12 21:05:07’ AS DATETIME), 5)

SELECT DATEADD(hour, 5, ’1999-05-12 21:05:07’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

IDENTITY function [Miscellaneous]

Generates integer values, starting at 1, for each successive row in a query. Its
implementation is identical to that of the NUMBER function.

IDENTITY (expression)

expression An expression. The expression is parsed, but is ignored during
the execution of the function.

The following statement returns a sequentially-numbered list of employees.

SELECT IDENTITY(10), emp_lname FROM employee

For a description of how to use the IDENTITY function, see the "NUMBER
function" on page 162.

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Offers similar behavior to that of Adaptive Server Enterprise.

"NUMBER function" on page 162

IFNULL function [Miscellaneous]

If the first expression is the NULL value, then the value of the second
expression is returned. If the first expression is not NULL, the value of the
third expression is returned. If the first expression is not NULL and there is
no third expression, NULL is returned.

IFNULL (expression-1, expression-2 [, expression-3])

expression-1 The expression to be evaluated. Its value determines
whether expression-2 or expression-3 is returned.

expression-2 The return value if expression-1 is NULL.

Standards and
compatibility

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

Alphabetical list of functions

144

expression-3 The return value if expression-1 is not NULL.

The following statement returns the value –66:

SELECT IFNULL(NULL, -66)

The following statement: returns NULL, because the first expression is not
NULL and there is no third expression:

SELECT IFNULL(-66, -66)

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

INDEX_ESTIMATE function [Miscellaneous]

This function is the same as the ESTIMATE function, except that it always
looks only in an index.

INDEX_ESTIMATE(column-name, number [, relation-string])

column-name The name of the column that is used in the estimate.

number If number is specified, the function returns as a REAL the
percentage estimate that the query optimizer uses.

relation-string The relation-string must be a comparison operator
enclosed in single quotes; the default is '='.

The following statement returns the value 81.304607.

SELECT FIRST ESTIMATE(emp_id, 200, ’>’)
FROM employee

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

"ESTIMATE function" on page 130
"ESTIMATE_SOURCE function" on page 131

INSERTSTR function [String]

Inserts a string into another string at a specified position.

INSERTSTR (integer-expression, string-expression-1, string-expression-2)

Example

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

gChapter 3 SQL Functions

145

integer expression The position after which the string is to be inserted.
Use zero to insert a string at the beginning.

string-expression-1 The string into which the other string is to be
inserted.

string-expression-2 The string to be inserted.

The following statement returns the value backoffice.

SELECT INSERTSTR(0, ’office ’, ’back’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

"STUFF function" on page 186

INTTOHEX function [Data type conversion]

Returns a string containing the hexadecimal equivalent of an integer.

INTTOHEX (integer-expression)

integer expression The integer to be converted to hexadecimal.

The following statement returns the value 9c:

SELECT INTTOHEX(156)

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"HEXTOINT function" on page 141

ISDATE function [Data type conversion]

Tests if a string argument can be converted to a date. If a conversion is
possible, the function returns 1; otherwise, 0 is returned. If the argument is
null, 0 is returned.

ISDATE (string)

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Alphabetical list of functions

146

The following example imports data from an external file, exports rows
which contain invalid values, and copies the remaining rows to a permanent
table.

create global temporary table MyData(
person varchar(100),
birth_date varchar(30),
height_in_cms varchar(10)

) on commit preserve rows;
load table MyData from ’exported.dat’;
unload

select *
from MyData
where isdate(birth_date)=0 or

isnumeric(height_in_cms)=0
to ’badrows.dat’;
insert into PermData

select person,birthdate,height_in_cms
from MyData
where isdate(birth_date)=1 and

isnumeric(height_in_cms)=1;
commit;
drop table MyData;

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

ISNULL function [Data type conversion]

Returns the first non-NULL expression in the parameter list.

ISNULL (expression, expression [, ...])

expression An expression to be tested against NULL.

At least two expressions must be passed into the function.

The following statement returns the value –66.

SELECT ISNULL(NULL ,-66, 55, 45, NULL, 16)

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise, except that
Adaptive Server Enterprise allows only two expressions.

"COALESCE function" on page 112

Example

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

gChapter 3 SQL Functions

147

ISNUMERIC function [Miscellaneous]

Tests if a string argument can be converted to a numeric. If a conversion is
possible, the function returns 1; otherwise, 0 is returned. If the argument is
null, 0 is returned.

ISNUMERIC (string)

The following example imports data from an external file, exports rows
which contain invalid values, and copies the remaining rows to a permanent
table.

create global temporary table MyData(
person varchar(100),
birth_date varchar(30),
height_in_cms varchar(10)

) on commit preserve rows;
load table MyData from ’exported.dat’;
unload

select *
from MyData
where isdate(birth_date)=0 or

isnumeric(height_in_cms)=0
to ’badrows.dat’;
insert into PermData

select person,birthdate,height_in_cms
from MyData
where isdate(birth_date)=1 and

isnumeric(height_in_cms)=1;
commit;
drop table MyData;

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

LCASE function [String]

Converts all characters in a string to lower case.

LCASE (string-expression)

string-expression The string to be converted to lower case.

The following statement returns the value lower case.

SELECT LCASE(’LOWER CasE’)

♦ SQL/92 Vendor extension.

Function

Syntax

Example

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

Alphabetical list of functions

148

♦ SQL/99 Vendor extension.

♦ Sybase LCASE is not supported in Adaptive Server Enterprise; you
can use LOWER to get the same functionality.

"LOWER function" on page 153
"UCASE function" on page 192
"UPPER function" on page 192

LEFT function [String]

Returns a number of characters from the beginning of a string.

LEFT (string-expression, integer-expression)

string-expression The string.

integer expression The number of characters to return.

The following statement returns the value choco.

SELECT LEFT(’chocolate’, 5)

If the string contains multi-byte characters, and the proper collation is being
used, the number of bytes returned may be greater than the specified number
of characters.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"RIGHT function" on page 174
"International Languages and Character Sets" on page 249 of the book ASA

Database Administration Guide

LENGTH function [String]

Returns the number of characters in the specified string.

LENGTH (string-expression)

string-expression The string.

The following statement returns the value 9.

SELECT LENGTH(’chocolate’)

See also

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

gChapter 3 SQL Functions

149

If the string contains multi-byte characters, and the proper collation is being
used, LENGTH returns the number of characters, not the number of bytes. If
string is of BINARY data type, the LENGTH function behaves as
BYTE_LENGTH.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"BYTE_LENGTH function" on page 108
"International Languages and Character Sets" on page 249 of the book ASA

Database Administration Guide

LESSER function [Miscellaneous]

Returns the lesser of two parameter values. If the parameters are equal, the
first is returned.

LESSER (expression1, expression2)

The following statement returns the value 5.

SELECT LESSER(10,5) FROM dummy

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"GREATER function" on page 141

LIST function [Aggregate]

Returns a comma-separated list of values

LIST ({ string-expression | DISTINCT column-name } [, delimiter-string])

string-expression A string, usually a column name. For each row, the
expression’s value is added to the comma-separated result.

DISTINCT column-name The name of a column that you are using in the
query. For each unique value of that column, the value is added to the
comma-separated result.

Usage

Standards and
compatibility

See also

Function

Syntax

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Alphabetical list of functions

150

delimiter-string This optional argument specifies a delimiter string for the
list items. The default setting is a comma. If a value of NULL, or an empty
string is supplied, there is no delimiter. The delimiter-string should be a
constant.

The following statement returns the value 48 Kennedy Court, 54 School
Street.

SELECT LIST(street) FROM employee
WHERE emp_fname = ’Thomas’

NULL values are not added to the list. List(X) returns the concatenation
(with delimiters) of all the non-NULL values of X for each row in the group.
If there does not exist at least one row in the group with a definite X-value,
then LIST(X) returns the empty string.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

LOCATE function [String]

Returns the position of one string within another.

LOCATE (string-expression-1, string-expression-2 [, integer-expression])

string-expression-1 The string to be searched.

string-expression-2 The string to be searched for. This string is limited
to 255 bytes.

integer-expression The character position in the string to begin the
search. The first character is position 1. If the starting offset is negative, the
locate function returns the last matching string offset rather than the first. A
negative offset indicates how much of the end of the string is to be excluded
from the search. The number of bytes excluded is calculated as (-1 * offset)
-1.

The following statement returns the value 8.

SELECT LOCATE('office party this week – rsvp as soon as
possible', 'party', 2)

The following statement:

Example

Usage

Standards and
compatibility

Function

Syntax

Parameters

Example

gChapter 3 SQL Functions

151

BEGIN
declare str long varchar;
declare pos int;
set str = ’c:\test\functions\locate.sql’;
set pos = locate(str, ’\’, -1);
select str, pos,

substr(str, 1, pos -1) as path,
substr(str, pos +1) as filename;

END

returns the following output:

str pos path filename
c:\test\functions\locate.sql 18 c:\test\functions locate.sql

If integer-expression is specified, the search starts at that offset into the
string.

The first string can be a long string (longer than 255 bytes), but the second is
limited to 255 bytes. If a long string is given as the second argument, the
function returns a NULL value. If the string is not found, 0 is returned.
Searching for a zero-length string will return 1. If any of the arguments are
NULL, the result is NULL.

If multi-byte characters are used, with the appropriate collation, then the
starting position and the return value may be different from the byte
positions.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

LOG function [Numeric]

Returns the natural logarithm of a number.

LOG (numeric-expression)

numeric-expression The number.

The following statement returns the value 3.912023.

SELECT LOG(50)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"LOG10 function" on page 152

Usage

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Alphabetical list of functions

152

LOG10 function [Numeric]

Returns the base 10 logarithm of a number.

LOG10 (numeric-expression)

numeric-expression The number.

The following statement returns the value 1.698970.

SELECT LOG10(50)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"LOG function" on page 151

LONG_ULPLAN function [Miscellaneous]

Returns a long description of the UltraLite plan optimization strategy of a
SQL statement, as a string. The description is the same as that returned by
the PLAN function.

For some queries, the execution plan for UltraLite may differ from the plan
selected for Adaptive Server Anywhere.

LONG_ULPLAN (string-expression)

string-expression The SQL statement, which is commonly a SELECT
statement but which may also be an UPDATE or DELETE.

The following statement passes a SELECT statement as a string parameter
and returns the plan for executing the query.

SELECT LONG_ULPLAN(’select * from department where
dept_id > 100’)

This information can help with decisions about indexes to add or how to
structure your database for better performance.

In Interactive SQL, you can view the plan for any SQL statement on the
UltraLite Plan tab in the Results pane.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"PLAN function" on page 165

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

gChapter 3 SQL Functions

153

"EXPLANATION function" on page 136
"GRAPHICAL_PLAN function" on page 138
"GRAPHICAL_ULPLAN function" on page 140
"SHORT_ULPLAN function" on page 177

LOWER function [String]

Converts all characters in a string to lower case.

LOWER (string-expression)

string-expression The string to be converted.

The following statement returns the value lower case.

SELECT LOWER(’LOWER CasE’)

♦ SQL/92 SQL/92 compatible.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

"LCASE function" on page 147
"UCASE function" on page 192
"UPPER function" on page 192

LTRIM function [String]

Trims leading blanks from a string.

LTRIM (string-expression)

string-expression The string to be trimmed.

The following statement returns the value Test Message with all leading
blanks removed.

SELECT LTRIM(’ Test Message’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"RTRIM function" on page 175
"TRIM function" on page 190

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Alphabetical list of functions

154

MAX function [Aggregate]

Returns the maximum expression value found in each group of rows.

MAX (expression
| DISTINCT column name)

expression The expression for which the maximum value is to be
calculated. This is commonly a column name.

DISTINCT column-name Returns the same as MAX(expression), and is
included for completeness.

The following statement returns the value 138948.000, representing the
maximum salary in the employee table.

SELECT MAX(salary)
FROM employee

Rows where expression is NULL are ignored. Returns NULL for a group
containing no rows.

♦ SQL/92 SQL/92 compatible.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

"MIN function" on page 154

MIN function [Aggregate]

Returns the minimum expression value found in each group of rows.

MIN (expression
| DISTINCT column name)

expression The expression for which the minimum value is to be
calculated. This is commonly a column name.

DISTINCT column-name Returns the same as MIN(expression), and is
included for completeness.

The following statement returns the value 24903.000, representing the
minimum salary in the employee table.

SELECT MIN(salary)
FROM employee

Rows where expression is NULL are ignored. Returns NULL for a group
containing no rows.

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Usage

gChapter 3 SQL Functions

155

♦ SQL/92 SQL/92 compatible.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

"MAX function" on page 154

MINUTE function [Date and time]

Returns a number from 0 to 59 corresponding to the minute component of a
datetime value.

MINUTE (datetime-expression)

datetime-expression The datetime value.

The following statement returns the value 22.

SELECT MINUTE(’1998-07-13 12:22:34’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

MINUTES function [Date and time]

Given two timestamps, this function returns the integer number of minutes
between them. It is recommended that you use the "DATEDIFF function" on
page 121 instead for this purpose.

Given a single date, this function returns the number of minutes since
0000-02-29 00:00:00.

Given one date and an integer, it adds the integer number of minutes to the
specified timestamp. Instead, please use the "DATEADD function" on
page 120.

Syntax 1 returns an integer. Syntax 2 returns a timestamp.

MINUTES ([datetime-expression,] datetime-expression)

MINUTES (datetime-expression, integer-expression)

datetime-expression A date and time.

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

Function

Syntax 1

Syntax 2

Parameters

Alphabetical list of functions

156

integer-expression The number of minutes to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of
minutes is subtracted from the datetime value. If you supply an integer
expression, the datetime-expression must be explicitly cast as a datetime data
type.

$ For information on casting data types, see "CAST function" on
page 109.

The following statements return the value 240, signifying that the second
timestamp is 240 seconds after the first. It is recommended that you use the
second example (DATEDIFF).

SELECT MINUTES(’1999-07-13 06:07:12’,
’1999-07-13 10:07:12’)

SELECT DATEDIFF(minute,
’1999-07-13 06:07:12’,
’1999-07-13 10:07:12’)

The following statement returns the value 1 051 040 527.

SELECT MINUTES(’1998-07-13 06:07:12’)

The following statements return the timestamp 1999-05-12 21:10:07.0. It is
recommended that you use the second example (DATEADD).

SELECT MINUTES(CAST(’1999-05-12 21:05:07’
AS DATETIME), 5)

SELECT DATEADD(minute, 5, ’1999-05-12 21:05:07’)

Since this function returns an integer, overflow may occur when syntax 1 is
used with timestamps greater than or equal to 4083-03-23 02:08:00.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

MOD function [Numeric]

Returns the remainder when one whole number is divided by another.

MOD (dividend, divisor)

dividend The dividend, or numerator of the division.

divisor The divisor, or denominator of the division.

The following statement returns the value 2.

Example

Usage

Standards and
compatibility

Function

Syntax

Parameters

Example

gChapter 3 SQL Functions

157

SELECT MOD(5, 3)

Division involving a negative dividend will give a negative or zero result.
The sign of the divisor has no effect.

♦ SQL/92 Vendor extension.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Not supported in Adaptive Server Enterprise. The % operator
is used as a modulo operator in Adaptive Server Enterprise.

"REMAINDER function" on page 170

MONTH function [Date and time]

Returns a number from 1 to 12 corresponding to the month of the given date.

MONTH (date-expression)

date-expression A datetime value.

The following statement returns the value 7.

SELECT MONTH(’1998-07-13’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

MONTHNAME function [Date and time]

Returns the name of the month from a date.

MONTHNAME (date-expression)

date-expression The datetime value.

The following statement returns the value September.

SELECT MONTHNAME(’1998-09-05’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

Alphabetical list of functions

158

MONTHS function [Date and time]

Given two dates, this function returns the integer number of months between
them. It is recommended that you use the "DATEDIFF function" on
page 121 instead for this purpose.

Given a single date, this function returns the number of months since 0000-
02.

Given one date and an integer, it adds the integer number of months to the
specified date. It is recommended that you use the "DATEADD function" on
page 120 instead for this purpose.

Syntax 1 returns an integer. Syntax 2 returns a timestamp.

MONTHS ([datetime-expression,] datetime-expression)

MONTHS (datetime-expression, integer-expression)

datetime-expression A date and time.

integer-expression The number of months to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of
months is subtracted from the datetime value. If you supply an integer
expression, the datetime-expression must be explicitly cast as a datetime data
type.

$ For information on casting data types, see "CAST function" on
page 109.

The following statements return the value 2, signifying that the second date
is two months after the first. It is recommended that you use the second
example (DATEDIFF).

SELECT MONTHS(’1999-07-13 06:07:12’,
’1999-09-13 10:07:12’)

SELECT DATEDIFF(month,
’1999-07-13 06:07:12’,
’1999-09-13 10:07:12’)

The following statement returns the value 23 982.

SELECT MONTHS(’1998-07-13 06:07:12’)

The following statements return the timestamp 1999-10-12 21:05:07.0. It is
recommended that you use the second example (DATEADD).

SELECT MONTHS(CAST(’1999-05-12 21:05:07’
AS DATETIME), 5)

SELECT DATEADD(month, 5, ’1999-05-12 21:05:07’)

Function

Syntax 1

Syntax 2

Parameters

Example

gChapter 3 SQL Functions

159

The value of MONTHS is calculated from the number of first days of the
month between the two dates.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

NEWID function [Miscellaneous]

Generates a UUID (Universally Unique Identifier) value. A UUID is the
same as a GUID (Globally Unique Identifier).

NEWID()

There are no parameters associated with NEWID().

The following statement creates a table mytab with two columns. Column pk
has a unique identifier data type, and assigns the newid() function as the
default value. Column c1 has an integer data type.

CREATE TABLE mytab(
 pk uniqueidentifier primary key default newid(),
 c1 int)

If you execute the following statement,

SELECT newid()

the unique identifier is returned as a string. For example, the value might be
0xd3749fe09cf446e399913bc6434f1f08. You can convert this string into a
readable format using the UUIDTOSTR() function.

The NEWID() function generates a unique identifier value. It can be used in
a DEFAULT clause for a column.

UUIDs can be used to uniquely identify rows in a table. The values are
generated such that a value produced on one computer will not match that
produced on another. Hence they can also be used as keys in replication and
synchronization environments.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"The NEWID default" on page 73 of the book ASA SQL User’s Guide
"STRTOUUID function " on page 185
"UUIDTOSTR function " on page 193

Usage

Standards and
compatibility

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

See also

Alphabetical list of functions

160

"UNIQUEIDENTIFIER data type [Binary]" on page 73

NEXT_CONNECTION function [System]

Returns an identifying number for a connection.

NEXT_CONNECTION ([connection-id] [, database-id])

connection-id An integer, usually returned from a previous call to
NEXT_CONNECTION. If connection-id is NULL, NEXT_CONNECTION
returns the first connection ID.

database-id An integer representing one of the databases on the current
server. If you supply no database-id, the current database is used. If you
supply NULL, then NEXT_CONNECTION returns the next connection
regardless of database.

The following statement returns an identifier for the first connection on the
current database. The identifier is an integer value like 569851433.

SELECT NEXT_CONNECTION(NULL)

The following statement returns a value like 1661140050.

SELECT NEXT_CONNECTION(569851433)

The following call returns the connection after connection-id on the current
database.

NEXT_CONNECTION(connection-id)

The following call returns the connection after connection-id (regardless of
database).

NEXT_CONNECTION(connection-id, NULL)

The following call returns the connection after connection-id on the specified
database.

NEXT_CONNECTION(connection-id, database-id)

The following call returns the first connection (regardless of database).

NEXT_CONNECTION(NULL, NULL)

The following call returns the first connection on the specified database.

NEXT_CONNECTION(NULL, database-id)

NEXT_CONNECTION can be used to enumerate the connections to a
database. To get the first connection pass NULL; to get each subsequent
connection, pass the previous return value. The function returns NULL when
there are no more connections.

Function

Syntax

Parameters

Example

Usage

gChapter 3 SQL Functions

161

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

NEXT_DATABASE function [System]

Returns an identifying number for a database.

NEXT_DATABASE ({ NULL | database-id })

database-id An integer that specifies the ID number of the database.

The following statement returns the value 0, the first database value.

SELECT NEXT_DATABASE(NULL)

The following statement returns NULL, indicating that there are no more
databases on the server.

SELECT NEXT_DATABASE(0)

NEXT_DATABASE can be used to enumerate the databases running on a
database server. To get the first database pass NULL; to get each subsequent
database, pass the previous return value. The function returns NULL when
there are no more databases.

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

NOW function [Date and time]

Returns the current date and time. This is the historical syntax for
CURRENT TIMESTAMP.

NOW (*)

The following statement returns the current date and time.

SELECT NOW(*)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Standards and
compatibility

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

Function

Syntax

Example

Standards and
compatibility

Alphabetical list of functions

162

NULLIF function [Miscellaneous]

To provide an abbreviated CASE expression by comparing expressions.

NULLIF (expression-1, expression-2)

expression-1 An expression to be compared.

expression-2 An expression to be compared.

The following statement returns the value a:

SELECT NULLIF(’a’, ’b’)

The following statement returns NULL.

SELECT NULLIF(’a’, ’a’)

NULLIF compares the values of the two expressions.

If the first expression equals the second expression, NULLIF returns NULL.

If the first expression does not equal the second expression, or if the second
expression is NULL, NULLIF returns the first expression.

The NULLIF function provides a short way to write some CASE
expressions.

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

"CASE expressions" on page 18

NUMBER function [Miscellaneous]

Generates numbers starting at 1 for each successive row in the results of the
query. NUMBER is primarily intended for use in select lists.

NUMBER (*)

The following statement returns a sequentially-numbered list of departments.

SELECT NUMBER(*), dept_name
FROM department
WHERE dept_id > 5
ORDER BY dept_name

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

See also

Function

Syntax

Example

gChapter 3 SQL Functions

163

You can use NUMBER(*) in a select list to provide a sequential numbering
of the rows in the result set. NUMBER(*) returns the value of the ANSI row
number of each result row. This means that NUMBER can return positive or
negative values, depending on how the application scrolls through the result
set. For insensitive cursors, the value of NUMBER(*) will always be positive
because the entire result set is materialized at OPEN.

In addition, the row number may be subject to change for some cursor types.
The value is fixed for insensitive cursors and scroll cursors. If there are
concurrent updates, it may change for dynamic and sensitive cursors.

A syntax error is generated if you use NUMBER in a DELETE statement,
WHERE clause, HAVING clause, ORDER BY clause, subquery, query
involving aggregation, any constraint, GROUP BY, DISTINCT, a query
containing UNION ALL, or a derived table.

NUMBER(*) can be used in a view (subject to the above restrictions), but
the view column corresponding to the expression involving NUMBER(*)
can be referenced at most once in the query or outer view, and the view
cannot participate as a null-supplying table in a left outer join or full outer
join.

In Embedded SQL, care should be exercised when using a cursor that
references a query containing a NUMBER(*) function. In particular, this
function returns negative numbers when a database cursor is positioned using
relative to the end of the cursor (an absolute position with a negative offset).

You can use NUMBER in the right hand side of an assignment in the SET
clause of an UPDATE statement. For example, SET x = NUMBER(*).

NUMBER can also be used to generate primary keys when using the
INSERT from SELECT statement (see "INSERT statement" on page 463),
although using AUTOINCREMENT is a preferred mechanism for generating
sequential primary keys.

$ For information on AUTOINCREMENT, see "CREATE TABLE
statement" on page 350.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Behavior changes
The behavior of the NUMBER function has changed in version 8. For
more information, see "Adaptive Server Anywhere behavior
changes" on page 68 of the book What’s New in SQL Anywhere
Studio.

♦ Sybase Not supported by Adaptive Server Enterprise.

Usage

Standards and
compatibility

Alphabetical list of functions

164

PATINDEX function [String]

Returns an integer representing the starting position of the first occurrence of
a pattern in a string.

PATINDEX (’%pattern%’, string_expression)

pattern The pattern to be searched for. If the leading percent wildcard is
omitted, PATINDEX returns one (1) if the pattern occurs at the beginning of
the string, and zero if not.

The pattern uses the same wildcards as the LIKE comparison. These are as
follows:

Wildcard Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters

[] Any single character in the specified range or set

[^] Any single character not in the specified range or set

string-expression The string to be searched for the pattern.

The following statement returns the value 2.

SELECT PATINDEX(’%hoco%’, ’chocolate’)

The following statement returns the value 11.

SELECT PATINDEX (’%4_5_’, ’0a1A 2a3A 4a5A’)

PATINDEX returns the starting position of the first occurrence of the
pattern. If the pattern is not found, it returns zero (0).

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise, except that the
USING clause is not supported.

"LIKE conditions" on page 26
"LOCATE function" on page 150

PI function [Numeric]

Returns the numeric value PI.

PI (*)

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

See also

Function

Syntax

gChapter 3 SQL Functions

165

The following statement returns the value 3.141592653...

SELECT PI(*)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase The PI() function is supported in Adaptive Server Enterprise,
but PI(*) is not.

PLAN function [Miscellaneous]

Returns the long plan optimization strategy of a SQL statement, as a string.

PLAN (string-expression, [cursor-type], [update-status])

string-expression The SQL statement, which is commonly a SELECT
statement but which may also be an UPDATE or DELETE.

cursor-type A string. Cursor-type can be asensitive (default),
insensitive, sensitive, or keyset-driven.

update-status A string parameter accepting one of the following values
indicating how the optimizer should treat the given cursor:

Value Description

READ-ONLY The cursor is read-only.

READ-WRITE
(default)

The cursor can be read or written to.

FOR UPDATE The cursor can be read or written to. This is exactly the
same as READ-WRITE.

The following statement passes a SELECT statement as a string parameter
and returns the plan for executing the query.

SELECT PLAN(’SELECT * FROM department WHERE dept_id >
100’)

This information can help with decisions about indexes to add or how to
structure your database for better performance.

The following statement returns a string containing the textual plan for an
INSENSITIVE cursor over the query ’select * from department where’.

SELECT PLAN(’SELECT * FROM department WHERE dept_id >
100’, ’insensitive’, ’read-only’)

Example

Standards and
compatibility

Function

Syntax

Parameters

Example

Alphabetical list of functions

166

In Interactive SQL, you can view the plan for any SQL statement on the Plan
tab in the Results pane.

♦ SQL/92 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"EXPLANATION function" on page 136
"GRAPHICAL_PLAN function" on page 138
"GRAPHICAL_ULPLAN function" on page 140
"LONG_ULPLAN function" on page 152
"SHORT_ULPLAN function" on page 177

POWER function [Numeric]

Calculates one number raised to the power of another.

POWER (numeric-expression-1, numeric-expression-2)

numeric-expression-1 The base.

numeric-expression-2 The exponent.

The following statement returns the value 64.

SELECT Power(2, 6)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

PROPERTY_DESCRIPTION function [System]

Returns a description of a property.

PROPERTY_DESCRIPTION ({ property-id | property-name })

property-id An integer that is the property-number of the database
property. This number can be determined from the PROPERTY_NUMBER
function. The property-id is commonly used when looping through a set of
properties.

property-name A string giving the name of the database property.

The following statement returns the description Number of index insertions.

SELECT PROPERTY_DESCRIPTION(’IndAdd’)

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

Function

Syntax

Parameters

Example

gChapter 3 SQL Functions

167

Each property has both a number and a name, but the number is subject to
change between releases, and should not be used as a reliable identifier for a
given property.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"Database Performance and Connection Properties" on page 609 of the book
ASA Database Administration Guide

PROPERTY function [System]

Returns the value of the specified server-level property as a string.

PROPERTY ({ property-id | property-name })

property-id An integer that is the property-number of the server-level
property. This number can be determined from the PROPERTY_NUMBER
function. The property-id is commonly used when looping through a set of
properties.

property-name A string giving the name of the database property.

The following statement returns the name of the current database server:

SELECT PROPERTY(’Name’)

Each property has both a number and a name, but the number is subject to
change between releases, and should not be used as a reliable identifier for a
given property.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"Server-level properties" on page 625 of the book ASA Database
Administration Guide

PROPERTY_NAME function [System]

Returns the name of the property with the supplied property-number.

PROPERTY_NAME (property-id)

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

See also

Function

Syntax

Alphabetical list of functions

168

property-id The property number of the database property.

The following statement returns the property associated with property
number 126. The actual property to which this refers changes from release to
release.

SELECT PROPERTY_NAME(126)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"Database properties" on page 618 of the book ASA Database Administration
Guide

PROPERTY_NUMBER function [System]

Returns the property number of the property with the supplied property-
name.

PROPERTY_NUMBER (property-name)

property-name A property name.

The following statement returns an integer value. The actual value changes
from release to release.

SELECT PROPERTY_NUMBER(’PAGESIZE’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"Database properties" on page 618 of the book ASA Database Administration
Guide

QUARTER function [Date and time]

Returns a number indicating the quarter of the year from the supplied date
expression.

QUARTER(date-expression)

date- expression The date.

The following statement returns the value 2.

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

gChapter 3 SQL Functions

169

SELECT QUARTER (’1987/05/02’)

The quarters are as follows:

Quarter Period (inclusive)

1 January 1 to March 31

2 April 1 to June 30

3 July 1 to September 30

4 October 1 to December 31

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

RADIANS function [Numeric]

Converts a number from degrees to radians.

RADIANS (numeric-expression)

numeric-expression A number, in degrees. This angle is converted to
radians.

The following statement returns a value of approximately 0.5236.

SELECT RADIANS(30)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

RAND function [Numeric]

Returns a random number in the interval 0 to 1, with an optional seed.

RAND ([integer-expression])

integer expression The optional seed used to create a random number.
This argument allows you to create repeatable random number sequences.

The following statement returns a value of approximately 0.0554504.

SELECT RAND(4)

Usage

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

Function

Syntax

Parameters

Example

Alphabetical list of functions

170

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

REMAINDER function [Numeric]

Returns the remainder when one whole number is divided by another.

REMAINDER (dividend, divisor)

dividend The dividend, or numerator of the division.

divisor The divisor, or denominator of the division.

The following statement returns the value 2.

SELECT REMAINDER(5, 3)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise. The % (modulo)
operator and the division operator can be used to produce a remainder.

"MOD function" on page 156

REPEAT function [String]

Concatenates a string a specified number of times.

REPEAT (string-expression, integer-expression)

string-expression The string to be repeated.

integer-expression The number of times the string is to be repeated. If
integer-expression is negative, an empty string is returned.

The following statement returns the value repeatrepeatrepeat.

SELECT REPEAT(’repeat’, 3)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise, but
REPLICATE provides the same capabilities.

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

gChapter 3 SQL Functions

171

"REPLICATE function" on page 172

REPLACE function [String]

Replaces all occurrences of a substring with another substring.

REPLACE (original-string, search-string, replace-string)

If any argument is NULL, the function returns NULL.

original-string The string to be searched. This can be any length.

search-string The string to be searched for and replaced with replace-
string. This string is limited to 255 bytes. If search-string is an empty string,
the original string is returned unchanged.

replace-string The replacement string, which replaces search-string. This
can be any length. If replacement-string is an empty string, all occurrences
of search-string are deleted.

The following statement returns the value xx.def.xx.ghi.

SELECT REPLACE(’abc.def.abc.ghi’, ’abc’, ’xx’)

The following statement generates a result set containing ALTER
PROCEDURE statements which, when executed, would repair stored
procedures that reference a table that has been renamed. (To be useful, the
table name would need to be unique.)

SELECT REPLACE(
replace(proc_defn,’OldTableName’,’NewTableName’),
’create procedure’,
’alter procedure’)

FROM SYS.SYSPROCEDURE
WHERE proc_defn LIKE ’%OldTableName%’

Use a separator other than the comma for the LIST function:

SELECT REPLACE(list(table_id), ’,’, ’--’)
FROM SYS.SYSTABLE
WHERE table_id <= 5

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"SUBSTRING function" on page 186

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Alphabetical list of functions

172

REPLICATE function [String]

Concatenates a string a specified number of times.

REPLICATE (string-expression, integer-expression)

string-expression The string to be repeated.

integer-expression The number of times the string is to be repeated.

The following statement returns the value repeatrepeatrepeat.

SELECT REPLICATE(’repeat’, 3)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"REPEAT function" on page 170

REWRITE function [Miscellaneous]

Returns a rewritten SELECT, UPDATE, or DELETE statement.

REWRITE (select-statement [, ’ANSI’])

In the following example, two rewrite optimizations are performed on a
query. The first is the unnesting of the subquery into a join between the
employee and sales_order tables. The second optimization simplifies the
query by eliminating the primary key - foreign key join between employee
and sales_order. Part of this rewrite optimization is to replace the join
predicate e.emp_id=s.sales_rep with the predicate s.sales_rep IS NOT
NULL.

SELECT REWRITE(’SELECT s.id, s.order_date
 FROM sales_order s
 WHERE EXISTS(SELECT *
 FROM employee e
 WHERE e.emp_id = s.sales_rep)’) FROM dummy

The query returns a single column result set containing the rewritten query:

’SELECT s.id, s.order_date FROM sales_order s WHERE
s.sales_rep IS NOT NULL’

The next example of REWRITE uses the ANSI argument.

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Example

gChapter 3 SQL Functions

173

SELECT REWRITE(’SELECT DISTINCT s.id, s.order_date,
e.emp_fname, e.emp_id
 FROM sales_order s, employee e
 WHERE e.emp_id *= s.sales_rep’, ’ANSI’) FROM
dummy

The result is the ANSI equivalent of the statement. In this case, the Transact-
SQL outer join is converted to an ANSI outer join. The query returns a single
column result set:

’SELECT DISTINCT s.id, s.order_date, e.emp_id,
e.emp_fname FROM employee as e LEFT OUTER JOIN
sales_order as s ON e.emp_id = s.sales_rep’

You can use the REWRITE function without the ANSI argument to help
understand how the optimizer generated the access plan for a given query. In
particular, you can find how Adaptive Server Anywhere has rewritten the
conditions in the statement’s WHERE, ON, and HAVING clauses, and then
determine whether or not applicable indexes exist that can be exploited to
improve the request’s execution time.

The statement that is returned by REWRITE may not match the semantics of
the original statement. This is because several rewrite optimizations
introduce internal mechanisms that cannot be translated directly into SQL.
For example, the server’s use of row identifiers to perform duplicate
elimination cannot be translated into SQL.

The rewritten query from the REWRITE() function is not intended to be
executable. It is a tool for analysing performance issues by showing what
gets passed to the optimizer after the rewrite phase.

There are some rewrite optimizations that are not reflected in the output of
REWRITE. They include LIKE optimization, optimization for minimum or
maximum functions, upper/lower elimination, and predicate subsumption.

If ANSI is specified, REWRITE returns the ANSI equivalent to the
statement. In this case, only the following rewrite optimizations are applied:

♦ Transact-SQL outer joins are rewritten as ANSI SQL outer joins.

♦ Duplicate correlation names are eliminated.

♦ KEY and NATURAL joins are rewritten as ANSI SQL joins.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"Semantic query transformations" on page 349 of the book ASA SQL User’s
Guide

Usage

Standards and
compatibility

See also

Alphabetical list of functions

174

"EXTENDED_JOIN_SYNTAX option" on page 567 of the book ASA
Database Administration Guide

"Transact-SQL outer joins (*= or =*)" on page 245 of the book ASA SQL
User’s Guide

"Key joins" on page 259 of the book ASA SQL User’s Guide
"Natural joins" on page 255 of the book ASA SQL User’s Guide
"Duplicate correlation names in joins (star joins)" on page 250 of the book

ASA SQL User’s Guide

RIGHT function [String]

Returns the rightmost characters of a string.

RIGHT (string-expression, integer-expression)

string-expression The string to be left-truncated.

integer-expression The number of characters at the end of the string to
return.

The following statement returns the value olate.

SELECT RIGHT(’chocolate’, 5)

If the string contains multi-byte characters, and the proper collation is being
used, the number of bytes returned may be greater than the specified number
of characters.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"LEFT function" on page 148
"International Languages and Character Sets" on page 249 of the book ASA

Database Administration Guide

ROUND function [Numeric]

Rounds the numeric-expression to the specified integer-expression amount of
places after the decimal point.

ROUND (numeric-expression, integer-expression)

numeric-expression The number, passed into the function, to be
rounded..

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

gChapter 3 SQL Functions

175

integer-expression A positive integer specifies the number of significant
digits to the right of the decimal point at which to round. A negative
expression specifies the number of significant digits to the left of the decimal
point at which to round.

The following statement returns the value 123.200.

SELECT ROUND(123.234, 1)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"TRUNCNUM function" on page 191

RTRIM function [String]

Returns a string with trailing blanks removed.

RTRIM (string-expression)

string-expression The string to be trimmed.

The following statement returns the string Test Message, with all trailing
blanks removed.

SELECT RTRIM(’Test Message ’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"LTRIM function" on page 153

SECOND function [Date and time]

Returns a number from 0 to 59 corresponding to the second component of
the given datetime value.

SECOND (datetime-expression)

datetime-expression The datetime value.

The following statement returns the value 21.

SELECT SECOND(’1998-07-13:21:21:25’)

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Alphabetical list of functions

176

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

SECONDS function [Date and time]

Given two timestamps, this function returns the integer number of seconds
between them. It is recommended that you use the "DATEDIFF function" on
page 121 instead for this purpose.

Given a single date, this function returns the number of seconds since
0000-02-29 00:00:00.

Given one date and an integer, it adds the integer number of seconds to the
specified timestamp. It is recommended that you use the "DATEADD
function" on page 120 instead for this purpose.

Syntax 1 returns a bigint. Syntax 2 returns a timestamp.

SECONDS ([datetime-expression,] datetime-expression)

SECONDS (datetime-expression, integer-expression)

datetime-expression A date and time.

integer-expression The number of seconds to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of
minutes is subtracted from the datetime value. If you supply an integer
expression, the datetime-expression must be explicitly cast as a datetime data
type.

$ For information on casting data types, see "CAST function" on
page 109.

The following statements return the value 14 400, signifying that the second
timestamp is 14 400 seconds after the first.

SELECT SECONDS(’1999-07-13 06:07:12’,
’1999-07-13 10:07:12’)

SELECT DATEDIFF(second,
’1999-07-13 06:07:12’,
’1999-07-13 10:07:12’)

The following statement returns the value 63 062 431 632.

SELECT SECONDS(’1998-07-13 06:07:12’)

The following statements return the datetime 1999-05-12 21:05:12.0.

SELECT SECONDS(CAST(’1999-05-12 21:05:07’
AS TIMESTAMP), 5)

Standards and
compatibility

Function

Syntax 1

Syntax 2

Parameters

Example

gChapter 3 SQL Functions

177

SELECT DATEADD(second, ’1999-05-12 21:05:07’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

SHORT_ULPLAN function [Miscellaneous]

Returns a short description of the UltraLite plan optimization strategy of a
SQL statement, as a string. The description is the same as that returned by
the EXPLANATION function.

For some queries, the execution plan for UltraLite may differ from the plan
selected for Adaptive Server Anywhere.

SHORT_ULPLAN (string-expression)

string-expression The SQL statement, which is commonly a SELECT
statement but which may also be an UPDATE or DELETE.

The following statement passes a SELECT statement as a string parameter
and returns the plan for executing the query.

SELECT EXPLANATION(’select * from department where
dept_id > 100’)

This information can help with decisions about indexes to add or how to
structure your database for better performance.

In Interactive SQL, you can view the plan for any SQL statement on the
UltraLite Plan tab in the Results pane.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"PLAN function" on page 165
"EXPLANATION function" on page 136
"GRAPHICAL_PLAN function" on page 138
"GRAPHICAL_ULPLAN function" on page 140
"LONG_ULPLAN function" on page 152

SIGN function [Numeric]

Returns the sign of a number.

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Alphabetical list of functions

178

SIGN (numeric-expression)

numeric-expression The number for which the sign is to be returned.

The following statement returns the value -1

SELECT SIGN(-550)

For negative numbers, SIGN returns -1.

For zero, SIGN returns 0.

For positive numbers, SIGN returns 1.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

SIMILAR function [String]

Returns a number indicating the similarity between two strings.

SIMILAR (string-expression-1, string-expression-2)

string-expression-1 The first string to be compared.

string-expression-2 The second string to be compared.

The following statement returns the value 75.

SELECT SIMILAR(’toast’, ’coast’)

This signifies that the two values are 75% similar.

The function returns an integer between 0 and 100 representing the similarity
between the two strings. The result can be interpreted as the percentage of
characters matched between the two strings. A value of 100 indicates that the
two strings are identical.

This function can be used to correct a list of names (such as customers).
Some customers may have been added to the list more than once with
slightly different names. Join the table to itself and produce a report of all
similarities greater than 90 percent but less than 100 percent.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Syntax

Parameters

Example

Return value

Standards and
compatibility

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

gChapter 3 SQL Functions

179

SIN function [Numeric]

Returns the sine of a number.

SIN (numeric-expression)

numeric-expression The angle, in radians.

The following statement returns the value 0.496880.

SELECT SIN(0.52)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"ASIN function" on page 106
"COS function" on page 116
"COT function" on page 117
"TAN function" on page 188

SORTKEY function [String]

Generates values that can be used to sort character strings based on alternate
collation rules.

SORTKEY (string-expression [, collation-name | , collation-id])

string-expression The string expression may only contain characters that
are encoded in the database’s character set.

If string-expression is an empty string, SORTKEY returns a zero-length
binary value. If string-expression is null, SORTKEY returns a null value. An
empty string has a different sort order value than a null string from a
database column.

The maximum length of the string that SORTKEY can handle is 254 bytes.
Any longer part is ignored.

collation-name A string or a character variable that specifies the name of
the sort order to use.

collation-id A variable, integer constant, or string that specifies the ID
number of the sort order to use.

If you do not specify a collation, the default is Default Unicode multilingual.

Following are the valid values for collation-name and collation-id:

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Alphabetical list of functions

180

Description Collation
name

Collation ID

Default Unicode multilingual default 0

CP 850 Alternative: no accent altnoacc 39

CP 850 Alternative: lower case first altdict 45

CP 850 Western European: no case,
preference

altnocsp 46

CP 850 Scandinavian dictionary scandict 47

CP 850 Scandinavian: no case, preference scannocp 48

GB Pinyin gbpinyin n/a

Binary sort binary 50

Latin-1 English, French, German dictionary dict 51

Latin-1 English, French, German no case nocase 52

Latin-1 English, French, German no case,
preference

nocasep 53

Latin-1 English, French, German no accent noaccent 54

Latin-1 Spanish dictionary espdict 55

Latin-1 Spanish no case espnocs 56

Latin-1 Spanish no accent espnoac 57

ISO 8859-5 Russian dictionary rusdict 58

ISO 8859-5 Russian no case rusnocs 59

ISO 8859-5 Cyrillic dictionary cyrdict 63

ISO 8859-5 Cyrillic no case cyrnocs 64

ISO 8859-7 Greek dictionary elldict 65

ISO 8859-2 Hungarian dictionary hundict 69

ISO 8859-2 Hungarian no accents hunnoac 70

ISO 8859-2 Hungarian no case hunnocs 71

ISO 8859-5 Turkish dictionary turdict 72

ISO 8859-5 Turkish no accents turnoac 73

ISO 8859-5 Turkish no case turnocs 74

CP 874 (TIS 620) Royal Thai dictionary thaidict 257

ISO 14651 ordering standard 14651 258

Shift-JIS binary order sjisbin 259

gChapter 3 SQL Functions

181

Description Collation
name

Collation ID

Unicode UTF-8 binary sort utf8bin 260

EUC JIS binary order eucjisbin 261

GB2312 binary order gb2312bin 262

CP932 MS binary order cp932bin 263

Big5 binary order big5bin 264

EUC KSC binary order euckscbin 265

There are two types of collation tables: built-in and external. Built-in tables
are included in the dll, and external tables reside in separate files. You cannot
use a collation-id for external tables.

You can also define your own collation tables. To do this, create your own
collation table in a .ust file and copy it to the same folder as the pre-installed
.ust files, .../charsets/unicode/. You can use the file name as the collation-
name.

$ For more information about .ust files, see the Adaptive Server
Enterprise documentation.

The following statements return the sort key values in the sort order: Latin-1,
English, French, German dictionary.

SELECT SORTKEY(’coop’, ’dict’)

SORTKEY(’coop’, ’dict’)

0x08890997099709b30008000800080008

SELECT SORTKEY ('Cö-op', 51)

SORTKEY('Cö-op', 51)

0x08890997099709b30020004700020008000800080001fffd002d

The SORTKEY function generates values that can be used to order results
based on predefined sort order behavior. This allows you to work with
character sort order behaviors that are beyond the limitation of Adaptive
Server Anywhere collations. The returned value is a binary value that
contains coded sort order information for the input string is retained from the
SORTKEY function.

Example

Usage

Alphabetical list of functions

182

For example, you can store the values returned by SORTKEY in a column
with the source character string. When you want to retrieve the character data
in the desired order, the SELECT statement only needs to include an
ORDER BY clause on the columns that contain the results of running
SORTKEY.

The SORTKEY function guarantees that the values it returns for a given set
of sort order criteria work for the binary comparisons that are performed on
varbinary data types.

The input of SORTKEY can generate up to six bytes of sort order
information for each input character. The output of SORTKEY is of type
varbinary and has a maximum length of (254 * 6) bytes.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise, except that
Adaptive Server Enterprise does not allow the use of self-defined sort
orders.

"COMPARE function" on page 112
"Introduction to international languages and character sets" on page 250 of

the book ASA Database Administration Guide

SOUNDEX function [String]

Returns a number representing the sound of a string.

SOUNDEX (string-expression)

string-expression The string.

The following statement returns two numbers, representing the sound of each
name. The SOUNDEX value for each argument is 3827.

SELECT SOUNDEX(’Smith’), SOUNDEX(’Smythe’)

The SOUNDEX function value for a string is based on the first letter and the
next three consonants other than H, Y, and W. Doubled letters are counted as
one letter. For example,

SOUNDEX(’apples’)

is based on the letters A, P, L and S.

Multi-byte characters are ignored by the SOUNDEX function.

Although it is not perfect, SOUNDEX will normally return the same number
for words that sound similar and that start with the same letter.

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Usage

gChapter 3 SQL Functions

183

The SOUNDEX function works best with English words. It is less useful for
other languages.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise, except that
Adaptive Server Enterprise returns a CHAR(4) result and Adaptive
Server Anywhere returns an integer.

SPACE function [String]

Returns a specified number of spaces.

SPACE (integer-expression)

integer expression The number of spaces to return.

The following statement returns a string containing 10 spaces.

SELECT SPACE(10)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

SQLDIALECT function [Miscellaneous]

Returns either ’Watcom-SQL’ or ’Transact-SQL’, indicating the SQL dialect
of a statement.

SQLDIALECT (sql-statement-string)

The following statement returns the string Transact-SQL.

SELECT SQLDIALECT(’SELECT employeeName = emp_lname FROM
employee’) FROM dummy

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"TRANSACTSQL function" on page 190
"WATCOMSQL function" on page 194

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

Function

Syntax

Example

Standards and
compatibility

See also

Alphabetical list of functions

184

SQRT function [Numeric]

Returns the square root of a number.

SQRT (numeric-expression)

numeric-expression The number for which the square root is to be
calculated.

The following statement returns the value 3.

SELECT SQRT(9)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

STR function [String]

Returns the string equivalent of a number.

STR (numeric_expression [, length [, decimal]])

numeric-expression Any approximate numeric (float, real, or double
precision) expression.

length The number of characters to be returned (including the decimal
point, all digits to the right and left of the decimal point, and blanks). The
default is 10.

decimal The number of decimal digits to be returned. The default is 0.

The following statement returns a string of six spaces followed by 1235, for
a total of ten characters:

SELECT STR(1234.56)

The following statement returns the result 1234.6:

SELECT STR(1234.56, 6, 1)

If the integer portion of the number cannot fit in the length specified, then the
result is a string of the specified length containing all asterisks. For example,
the following statement returns ***

SELECT STR(1234.56, 3)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Function

Syntax

Parameters

Example

Standards and
compatibility

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

gChapter 3 SQL Functions

185

♦ Sybase Compatible with Adaptive Server Enterprise.

STRING function [String]

Concatenates one or more strings into one large string.

STRING (string-expression [, ...])

string-expression A string.

If only one argument is supplied, it is converted into a single expression. If
more than one argument is supplied, they are concatenated into a single
string.

The following statement returns the value testing123.

SELECT STRING(’testing’, NULL, 123)

Numeric or date parameters are converted to strings before concatenation.
The STRING function can also be used to convert any single expression to a
string by supplying that expression as the only parameter.

If all parameters are NULL, STRING returns NULL. If any parameters are
non-NULL, then any NULL parameters are treated as empty strings.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

STRTOUUID function [STRING]

Converts a string value to a unique identifier (UUID or GUID) value.

STRTOUUID(string-expression)

string-expression A string in the format
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

CREATE TABLE
 T (pk uniqueidentifier primary key, c1 int);
INSERT INTO T (pk, c1)
VALUES (STRTOUUID
 (’12345678-1234-5678-9012-123456789012’), 1);

Converts a string in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx where
x is a hexadecimal digit, to a unique identifier value. If the string is not a
valid UUID string, NULL is returned.

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

Function

Syntax

Parameters

Example

Usage

Alphabetical list of functions

186

This function is useful for inputting UUID values into an Adaptive Server
Anywhere database.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"UUIDTOSTR function " on page 193
"NEWID function " on page 159

STUFF function [String]

Deletes a number of characters from one string and replaces them with
another string.

STUFF (string-expression1, start, length, string-expression2)

string-expression1 The string to be modified by the STUFF function.

start The character position at which to begin deleting characters. The first
character in the string is position 1.

length The number of characters to delete.

string-expression2 The string to be inserted. To delete a portion of a
string using STUFF, use a replacement string of NULL.

The following statement returns the value chocolate pie.

SELECT STUFF(’chocolate cake’, 11, 4, ’pie’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"INSERTSTR function" on page 144

SUBSTRING function [String]

Returns a substring of a string.

{ SUBSTRING | SUBSTR }(string-expression, start [, length])

string-expression The string from which a substring is to be returned.

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

gChapter 3 SQL Functions

187

start The start position of the substring to return, in characters. A negative
starting position specifies a number of characters from the end of the string
instead of the beginning. The first character in the string is at position 1.

length The length of the substring to return, in characters. A positive
length specifies that the substring ends length characters to the right of the
starting position, while a negative length specifies that the substring ends
length characters to the left of the starting position.

The following statement returns back:

SELECT SUBSTRING(’back yard’,1 ,4)

The following statement returns yard:

SELECT SUBSTRING(’back yard’, -1 , -4)

If length is specified, the substring is restricted to that length. If no length is
specified, the remainder of the string is returned, starting at the start position.

Both start and length can be negative. Using appropriate combinations of
negative and positive numbers, you can get a substring from either the
beginning or end of the string.

If string-expression is of binary data type, the SUBSTRING function
behaves as BYTE_SUBSTR.

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase SUBSTRING is compatible with Adaptive Server Enterprise.
SUBSTR is not supported by Adaptive Server Enterprise.

"BYTE_SUBSTR function" on page 108

SUM function [Aggregate]

Returns the total of the specified expression for each group of rows.

SUM (expression | DISTINCT column-name)

expression The object to be summed. This is commonly a column name.

DISTINCT column-name This is of limited usefulness, but is included
for completeness.

The following statement returns the value 3749146.

SELECT SUM(salary)
FROM Employee

Example

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Alphabetical list of functions

188

Rows where the specified expression is NULL are not included.

Returns NULL for a group containing no rows.

♦ SQL/92 SQL/92 compatible.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

"COUNT function" on page 117
"AVG function" on page 107

TAN function [Numeric]

Returns the tangent of a number.

TAN (numeric-expression)

numeric-expression An angle, in radians.

The following statement returns the value 0.572561.

SELECT TAN(0.52)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"COS function" on page 116
"SIN function" on page 179

TEXTPTR function [Text & Image]

Returns the 16-byte binary pointer to the first page of the specified text
column.

TEXTPTR (column-name)

column-name The name of a text column.

Use TEXTPTR to locate the text column, copy, associated with au_id 486-
29-1786 in the author’s blurbs table.

The text pointer is put into a local variable @val and supplied as a parameter
to the readtext command, which returns 5 bytes, starting at the second byte
(offset of 1).

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

gChapter 3 SQL Functions

189

DECLARE @val VARBINARY(16)
SELECT @val = TEXTPTR(copy)
FROM blurbs
WHERE au_id = "486-29-1786"
READTEXT blurbs.copy @val 1 5

This function is included for Transact-SQL compatibility.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

TODAY function [Date and time]

Returns the current date. This is the historical syntax for CURRENT DATE.

TODAY (*)

The following statements return the current day according to the system
clock.

SELECT TODAY(*)

SELECT CURRENT DATE

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

TRACEBACK function [Miscellaneous]

Returns a string containing a traceback of the procedures and triggers that
were executing when the most recent exception (error) occurred.

TRACEBACK (*)

To use the traceback function, enter the following after an error occurs while
executing a procedure:

SELECT TRACEBACK (*)

This is useful for debugging procedures and triggers

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Usage

Standards and
compatibility

Function

Syntax

Example

Standards and
compatibility

Function

Syntax

Example

Usage

Standards and
compatibility

Alphabetical list of functions

190

TRANSACTSQL function [Miscellaneous]

Takes a Watcom-SQL statement and rewrites it in the Transact-SQL dialect.

TRANSACTSQL(sql-statement-string)

The following statement returns the string ’select EmployeeName =
empl_name from employee’.

SELECT TRANSACTSQL(’SELECT empl_name as EmployeeName
FROM employee’) FROM dummy

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"SQLDIALECT function" on page 183
"WATCOMSQL function" on page 194

TRIM function [String]

Removes leading and trailing blanks from a string.

TRIM (string-expression)

string-expression The string to be trimmed.

The following statement returns the value chocolate with no leading or
trailing blanks.

SELECT TRIM(’ chocolate ’)

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Not supported by Adaptive Server Enterprise.

"LTRIM function" on page 153
"RTRIM function" on page 175

TRUNCATE function [Numeric]

Truncates a number at a specified number of places after the decimal point.
Deprecated in favor of TRUNCNUM.

"TRUNCATE" (numeric-expression, integer-expression)

Function

Syntax

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

gChapter 3 SQL Functions

191

numeric-expression The number to be truncated.

integer-expression A positive integer specifies the number of significant
digits to the right of the decimal point at which to round. A negative
expression specifies the number of significant digits to the left of the decimal
point at which to round.

The following statement returns the value 600.

SELECT "TRUNCATE"(655, -2)

The following statement returns the value 655.340.

SELECT "TRUNCATE"(655.348, 2)

This function is the same as TRUNCNUM. Using TRUNCNUM is
recommended as it does not cause keyword conflicts.

The quotation marks are required because of a keyword conflict with the
TRUNCATE TABLE statement. You can only use TRUNCATE without the
quotation marks if the QUOTED_IDENTIFIER option is set to OFF.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

"QUOTED_IDENTIFIER option" on page 594 of the book ASA Database
Administration Guide

"TRUNCNUM function" on page 191

TRUNCNUM function [Numeric]

Truncates a number at a specified number of places after the decimal point.

TRUNCNUM (numeric-expression, integer-expression)

numeric-expression The number to be truncated.

integer-expression A positive integer specifies the number of significant
digits to the right of the decimal point at which to round. A negative
expression specifies the number of significant digits to the left of the decimal
point at which to round.

The following statement returns the value 600.

SELECT TRUNCNUM(655, -2)

The following statement: returns the value 655.340.

SELECT TRUNCNUM(655.348, 2)

Parameters

Example

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Alphabetical list of functions

192

This function is the same as TRUNCATE, but does not cause keyword
conflicts.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

"ROUND function" on page 174
"TRUNCATE function" on page 190

UCASE function [String]

Converts all characters in a string to upper case.

UCASE (string-expression)

string-expression The string to be converted to upper case.

The following statement returns the value CHOCOLATE.

SELECT UCASE(’ChocoLate’)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase UCASE is not supported by Adaptive Server Enterprise, but
UPPER provides the same feature in a compatible manner.

"UPPER function" on page 192
"LCASE function" on page 147

UPPER function [String]

Converts all characters in a string to upper case.

UPPER (string-expression)

string-expression The string to be converted to upper case.

The following statement returns the value CHOCOLATE.

SELECT UPPER(’ChocoLate’)

♦ SQL/92 This function is SQL/92 compatible.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Usage

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Parameters

Example

Standards and
compatibility

gChapter 3 SQL Functions

193

"UCASE function" on page 192
"LCASE function" on page 147
"LOWER function" on page 153

UUIDTOSTR function [STRING]

Converts a unique identifier value (UUID, also known as GUID) to a string
value.

UUIDTOSTR(uuid-expression)

uuid-expression A unique identifier value.

The following statement creates a table mytab with two columns. Column pk
has a unique identifier data type, and column c1 has an integer data type. It
then inserts two rows with the values 1 and 2 respectively into column c1.

CREATE TABLE mytab(
 pk uniqueidentifier primary key default newid(),
 c1 int)
INSERT INTO mytab(c1) values (1)
INSERT INTO mytab(c1) values (2)

Executing the following SELECT statement returns all of the data in the
newly created table.

SELECT *
FROM mytab

You will see a two-column, two-row table. The value displayed for column
pk will be binary values.

To convert the unique identifier values into a readable format, execute the
following command:

SELECT uuidtostr(pk),c1
FROM mytab

Converts a unique identifier to a string value in the format
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, where x is a hexadecimal digit. If the
binary value is not a valid uniqueidentifier, NULL is returned.

This function is useful if you want to view a UUID value.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.
"NEWID function " on page 159
"STRTOUUID function " on page 185

See also

Function

Syntax

Parameters

Example

Usage

Standards and
compatibility

See also

Alphabetical list of functions

194

VAREXISTS function [Miscellaneous]

Returns 1 if a user-defined variable has been created or declared with a given
name. Returns 0 if no such variable has been created.

VAREXISTS (variable-name-string)

variable-name-string The name to be tested, as a string.

The following IF statementc creates a variable with a name start_time if one
is not already created or declared. The variable can then be used safely.

IF VAREXISTS(’start_time’) = 0 THEN
 CREATE VARIABLE start_time TIMESTAMP;
END IF;
SET start_time = current timestamp;

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

"CREATE VARIABLE statement" on page 370
"DECLARE statement" on page 378
"IF statement" on page 454

WATCOMSQL function [Miscellaneous]

Takes a Transact-SQL statement and rewrites it in the Watcom-SQL dialect.
This can be useful when converting existing Adaptive Server Enterprise
stored procedures into Watcom SQL syntax.

WATCOMSQL(sql-statement-string)

The following statement returns the string ’select empl_name as
EmployeeName from employee’.

SELECT WATCOMSQL(’SELECT EmployeeName=empl_name FROM
employee’) FROM dummy

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

"SQLDIALECT function" on page 183
"TRANSACTSQL function" on page 190

Function

Syntax

Parameters

Example

Standards and
compatibility

See also

Function

Syntax

Example

Standards and
compatibility

See also

gChapter 3 SQL Functions

195

WEEKS function [Date and time]

Given two dates, this function returns the integer number of weeks between
them. It is recommended that you use the "DATEDIFF function" on
page 121 instead for this purpose.

Given a single date, this function returns the number of weeks since
0000-02-29.

Given one date and an integer, it adds the integer number of weeks to the
specified date. It is recommended that you use the "DATEADD function" on
page 120 instead for this purpose.

Syntax 1 returns an integer. Syntax 2 returns a timestamp.

WEEKS ([datetime-expression,] datetime-expression)

WEEKS (datetime-expression, integer-expression)

datetime-expression A date and time.

integer-expression The number of weeks to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of
weeks is subtracted from the datetime value. If you supply an integer
expression, the datetime-expression must be explicitly cast as a datetime data
type.

$ For information on casting data types, see "CAST function" on
page 109.

The following statements return the value 8, signifying that the second date
is eight weeks after the first. It is recommended that you use the second form
(DATEDIFF).

SELECT WEEKS(’1999-07-13 06:07:12’,
’1999-09-13 10:07:12’)

SELECT DATEDIFF(week,
’1999-07-13 06:07:12’,
’1999-09-13 10:07:12’)

The following statement returns the value 104 270.

SELECT WEEKS(’1998-07-13 06:07:12’)

The following statements return the timestamp 1999-06-16 21:05:07.0. It is
recommended that you use the second form (DATEADD).

SELECT WEEKS(CAST(’1999-05-12 21:05:07’
AS TIMESTAMP), 5)

SELECT DATEADD(week, ’1999-05-12 21:05:07’)

Function

Syntax 1

Syntax 2

Parameters

Example

Alphabetical list of functions

196

The difference of two dates in weeks is the number of Sundays between the
two dates.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

YEARS function [Date and time]

Given two dates, this function returns the integer number of years between
them. It is recommended that you use the "DATEDIFF function" on
page 121 instead for this purpose.

Given one date, it returns the year. It is recommended that you use the
"DATEPART function" on page 124 instead for this purpose.

Given one date and an integer, it adds the integer number of years to the
specified date. It is recommended that you use the "DATEADD function" on
page 120 instead for this purpose.

Syntax 1 returns an integer. Syntax 2 returns a timestamp.

YEARS ([datetime-expression,] datetime-expression)

YEARS (datetime-expression, integer-expression)

datetime-expression A date and time.

integer-expression The number of years to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of years
is subtracted from the datetime value. If you supply an integer expression,
the datetime-expression must be explicitly cast as a datetime data type.

$ For information on casting data types, see "CAST function" on
page 109.

The following statements both return –4

SELECT YEARS(’1998-07-13 06:07:12’,
 ’1994-03-13 08:07:13’)

SELECT DATEDIFF(year,
’1998-07-13 06:07:12’,
’1994-03-13 08:07:13’)

The following statements return 1998.

SELECT YEARS(’1998-07-13 06:07:12’)

SELECT DATEPART(year, ’1998-07-13 06:07:12’)

Usage

Standards and
compatibility

Function

Syntax 1

Syntax 2

Parameters

Example

gChapter 3 SQL Functions

197

The following statements return the given date advanced 300 years.

SELECT YEARS(
CAST(’1998-07-13 06:07:12’ AS TIMESTAMP),
300)

SELECT DATEADD(year, 300,
’1998-07-13 06:07:12’)

The value of YEARS is calculated from the number of first days of the year
between the two dates.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

YMD function [Date and time]

Returns a date value corresponding to the given year, month, and day of the
month. Values are small integers from -32768 to 32767.

YMD (integer-expression, integer-expression, integer-expression)

integer expression The year.

integer expression The number of the month. If the month is outside the
range 1–12, the year is adjusted accordingly.

integer expression The day number. The day is allowed to be any
integer, the date is adjusted accordingly.

The following statement returns the value 1998-06-12.

SELECT YMD(1998, 06, 12)

If the values are outside their normal range, the date will adjust accordingly.
For example, the following statement returns the value 2000-03-01.

SELECT YMD(1999, 15, 1)

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise

Usage

Standards and
compatibility

Function

Syntax

Parameters

Example

Standards and
compatibility

Alphabetical list of functions

198

199

C H A P T E R 4

SQL Statements

This chapter presents detailed descriptions of the SQL statements that are
available to users of Adaptive Server Anywhere, including some that can
only be used from embedded SQL or Interactive SQL.

The chapter includes an alphabetical list of SQL statements.

About this chapter

Contents

Using the SQL statement reference

200

Using the SQL statement reference
This section describes some conventions used in documenting the SQL
statements.

Common elements in SQL syntax

This section lists language elements that are found in the syntax of many
SQL statements.

$ For more information on the elements described here, see "Identifiers"
on page 7, "SQL Data Types" on page 51, "Search conditions" on page 24,
"Expressions" on page 15, or "Strings" on page 9.

♦ column-name An identifier that represents the name of a column.

♦ condition An expression that evaluates to TRUE, FALSE, or
UNKNOWN.

♦ connection-name A string representing the name of an active
connection.

♦ data-type A storage data type.

♦ expression An expression.

♦ filename A string containing a filename.

♦ hostvar A C language variable, declared as a host variable preceded
by a colon. See "Using host variables" on page 181 of the book ASA
Programming Guide for more information.

♦ indicator-variable A second host variable of type short int
immediately following a normal host variable. It must also be preceded
by a colon. Indicator variables are used to pass NULL values to and
from the database.

♦ number Any sequence of digits followed by an optional decimal part
and preceded by an optional negative sign. Optionally, the number can
be followed by an E and then an exponent. For example,

42

-4.038

.001

3.4e10

1e-10

Chapter 4 SQL Statements

201

♦ owner An identifier representing the user ID who owns a database
object.

♦ role-name An identifier representing the role name of a foreign key.

♦ savepoint-name An identifier that represents the name of a savepoint.

♦ search-condition A condition that evaluates to TRUE, FALSE, or
UNKNOWN.

♦ special-value One of the special values described in "Special values"
on page 33.

♦ statement-label An identifier that represents the label of a loop or
compound statement.

♦ table-list A list of table names, which may include correlation names.

$ For more information, see "FROM clause" on page 433.

♦ table-name An identifier that represents the name of a table.

♦ userid An identifier representing a user name.

♦ variable-name An identifier that represents a variable name.

Syntax conventions

The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords are shown like the words ALTER
TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the words owner and table-name in the
following example.

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element
of the list followed by an ellipsis (three dots), like column-constraint in
the following example:

ADD column-definition [column-constraint, …]

One or more list elements are allowed. If more than one is specified,
they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

Using the SQL statement reference

202

These square brackets indicate that the savepoint-name is optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square
brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces.

[QUOTES { ON | OFF }]

If the QUOTES option is chosen, one of ON or OFF must be provided.
The brackets and braces should not be typed.

♦ One or more options If you choose more than one, separate your
choices with commas.

{ CONNECT, DBA, RESOURCE }

Statement applicability indicators

Some statement titles are followed by an indicator in square brackets that
indicate where the statement can be used. These indicators are as follows:

♦ [ESQL] The statement is for use in Embedded SQL.

♦ [Interactive SQL] The statement can be used only in Interactive SQL.

♦ [SP] The statement is for use in stored procedures, triggers, or batches.

♦ [T-SQL] The statement is implemented for compatibility with
Adaptive Server Enterprise. In some cases, the statement cannot be used
in stored procedures that are not in Transact-SQL format. In other cases,
an alternative statement closer to the SQL/92 standard is recommended
unless Transact-SQL compatibility is an issue.

♦ [MobiLink] The statement is for use only in MobiLink clients.

♦ [SQL Remote] The statement can be used only in SQL Remote.

If two sets of brackets are used, the statement can be used in both
environments. For example, [ESQL][SP] means a statement can be used in
both embedded SQL and stored procedures.

Chapter 4 SQL Statements

203

ALLOCATE DESCRIPTOR statement [ESQL]
Use this statement to allocate space for a SQL descriptor area (SQLDA).

ALLOCATE DESCRIPTOR descriptor-name
[WITH MAX { integer | hostvar }]

descriptor-name : string

WITH MAX clause Allows you to specify the number of variables within
the descriptor area. The default size is one. You must still call fill_sqlda to
allocate space for the actual data items before doing a fetch or any statement
that accesses the data within a descriptor area.

Allocates space for a descriptor area (SQLDA). You must declare the
following in your C code prior to using this statement:

struct sqlda * descriptor_name

None.

None.

"DEALLOCATE DESCRIPTOR statement [ESQL]" on page 376
"The SQL descriptor area (SQLDA)" on page 206 of the book ASA

Programming Guide

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

The following sample program includes an example of ALLOCATE
DESCRIPTOR statement usage.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

EXEC SQL INCLUDE SQLCA;

#include <sqldef.h>

EXEC SQL BEGIN DECLARE SECTION;
int x;
short type;
int numcols;
char string[100];
a_SQL_statement_number stmt = 0;
EXEC SQL END DECLARE SECTION;

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

ALLOCATE DESCRIPTOR statement [ESQL]

204

int main(int argc, char * argv[]){
struct sqlda * sqlda1;

if(!db_init(&sqlca)) {
return 1;

}
db_string_connect(&sqlca,
"UID=DBA;PWD=SQL;DBF=d:\\DB Files\\sample.db");
EXEC SQL ALLOCATE DESCRIPTOR sqlda1 WITH MAX 25;
EXEC SQL PREPARE :stmt FROM

’SELECT * FROM employee’;
EXEC SQL DECLARE curs CURSOR FOR :stmt;
EXEC SQL OPEN curs;

EXEC SQL DESCRIBE :stmt into sqlda1;
EXEC SQL GET DESCRIPTOR sqlda1 :numcols=COUNT;
// how many columns?
if(numcols > 25) {

// reallocate if necessary
EXEC SQL DEALLOCATE DESCRIPTOR sqlda1;
EXEC SQL ALLOCATE DESCRIPTOR sqlda1

WITH MAX :numcols;
EXEC SQL DESCRIBE :stmt into sqlda1;

}

type = DT_STRING; // change the type to string
EXEC SQL SET DESCRIPTOR sqlda1 VALUE 2 TYPE = :type;
fill_sqlda(sqlda1);

// allocate space for the variables
EXEC SQL FETCH ABSOLUTE 1 curs

USING DESCRIPTOR sqlda1;
EXEC SQL GET DESCRIPTOR sqlda1

VALUE 2 :string = DATA;

printf("name = %s", string);

EXEC SQL DEALLOCATE DESCRIPTOR sqlda1;
EXEC SQL CLOSE curs;
EXEC SQL DROP STATEMENT :stmt;

db_string_disconnect(&sqlca, "");
db_fini(&sqlca);

return 0;
}

Chapter 4 SQL Statements

205

ALTER DATABASE statement
Use this statement to upgrade a database created with previous versions of
the software; or to add Java or JConnect support to any database.

ALTER DATABASE
[UPGRADE [JAVA { ON | OFF | JDK { ’1.1.8’ | ’1.3’ } }]
 [JCONNECT { ON | OFF }]
| REMOVE JAVA]

ALTER DATABASE
{ CALIBRATE [SERVER]
 | CALIBRATE DBSPACE dbspace-name
 | CALIBRATE TEMPORARY DBSPACE
 | RESTORE DEFAULT CALIBRATION
}

ALTER DATABASE dbfile
MODIFY [TRANSACTION] LOG
{ { OFF | ON } { log-name | log-name MIRROR mirror-name | MIRROR
mirror-name } }
[KEY key [ALGORITHM algorithm]]

JAVA clause Controls support for Java in the upgraded database.

♦ Specify JAVA ON to enable support for Java in the database by adding
entries for the default Sybase runtime Java classes to the system tables.
The default classes are the JDK 1.3 classes.

♦ Specify JAVA OFF to prevent addition of Java support. Setting JAVA
OFF does not remove Java support from a database.

♦ Specify JAVA JDK ’1.1.8’ or JAVA JDK ’1.3’ to explicitly install
support for the named version of the JDK. You can upgrade your
database to a higher version of JDK, but you cannot downgrade.

For JDK 1.1.8 the classes are held java\1.1\classes.zip under your
SQL Anywhere directory. For JDK 1.3, they are held in java\1.3\rt.jar.

The default behavior is JAVA OFF.

If you add Java in the database, you must restart the database before it can be
used.

Java in the database is a separately licensable component. For more
information, see "Introduction to Java in the Database" on page 49 of the
book ASA Programming Guide.

Description

Syntax 1

Syntax 2

Syntax 3

Parameters

ALTER DATABASE statement

206

JCONNECT clause If you wish to use the Sybase jConnect JDBC driver
to access system catalog information, you need to specify JCONNECT ON.
If you wish to exclude the jConnect system objects, specify JCONNECT
OFF. You can still use JDBC, as long as you do not access system catalog
information. The default is to include jConnect support (JCONNECT ON).

Setting JCONNECT OFF does not remove jConnect support from a
database.

REMOVE JAVA clause Removes Java in the database from a database.
The operation leaves the database as if it were created with JAVA OFF. Java
in the database must not be in use when the statement is issued. You must
remove all Java classes from the database before executing this statement.
The statement does not remove stored procedures and triggers that reference
Java objects, and the presence of these objects does not trigger an error in the
ALTER DATABASE statement.

Syntax 1 You can use the ALTER DATABASE statement as an
alternative to the Upgrade utility to upgrade a database. After using ALTER
DATABASE UPGRADE, you should shut down the database. (The Upgrade
utility does this for you automatically.)

Backup before upgrading
As with any software, it is recommended that you make a backup of your
database before upgrading.

ALTER DATABASE can be used to upgrade databases created with earlier
versions of the software. This applies to maintenance releases as well, so you
can upgrade a database created with, for example, version 7.0.2 to 7.0.3
standards using the ALTER DATABASE statement in version 7.0.3 of the
software.

In general, changes in databases between minor versions are limited to
additional database options and minor system table changes.

When used to upgrade a database, ALTER DATABASE makes the
following changes:

♦ Upgrades the system tables to the current version.

♦ Adds any new database options.

♦ Drops and recreates all system stored procedures.

You can also use ALTER DATABASE to just add Java in the database or
jConnect features if the database was created with the current version of the
software.

Usage

Chapter 4 SQL Statements

207

$ For more information on adding Java support, see "Java-enabling a
database" on page 92 of the book ASA Programming Guide. For more
information on adding jConnect support to a Version 6 database, see
"Installing jConnect system objects into a database" on page 137 of the book
ASA Programming Guide.

Not all features made available
Features that require a physical reorganization of the database file are not
made available by ALTER DATABASE. Such features include index
enhancements and changes in data storage. To obtain the benefits of these
enhancements, you must unload and reload your database.

$ For more information, see "Rebuilding databases" on page 440 of
the book ASA SQL User’s Guide.

Syntax 2 You can also use ALTER DATABASE to perform recalibration
of the I/O cost model used by the optimizer. This updates the Disk Transfer
Time (DTT) model, which is a mathematical model of the disk I/O used by
the cost model.

In normal operation, the cost model uses a built-in default DTT model. This
default model was designed based on typical hardware and configuration. In
rare cases when you are using specialized hardware such as non-standard
disk drives, and when you are having performance problems, it may be
useful to overwrite the default model with one based on your particular
setup. However, it is generally recommended to leave the default in place.

When you recalibrate the I/O cost model, the server is unavailable for other
use. In addition, it is essential that all other activities on the computer are
idle. Recalibrating the server is an expensive operation and may take some
time to complete.

When you use the CALIBRATE [SERVER] argument, all dbspaces are
calibrated except for the temporary dbspace. Use CALIBRATE
TEMPORARY DBSPACE to calibrate it. Use CALIBRATE DBSPACE
dbspace-name to calibrate a single dbspace. Use RESTORE DEFAULT
CALIBRATION to restore the default DTT model.

Syntax 3 You can use the ALTER DATABASE statement to change the
transaction log and mirror names associated with a database file. These
changes are the same as those made by the Transaction Log (dblog) utility.
You can execute this statement while connected to the utility database or
another database, depending on the setting of the -gu option. If you are
changing the transaction or mirror log of an encrypted database, you must
specify a key and the encryption algorithm.

Must have DBA authority, and must be the only connection to the database.Permissions

ALTER DATABASE statement

208

For REMOVE JAVA, Java in the database must not be in use when the
statement is issued.

Not supported on Windows CE.

Java in the database is a separately licensable component.

Automatic commit

"CREATE DATABASE statement" on page 273
"The Upgrade utility" on page 521 of the book ASA Database Administration

Guide
"CREATE STATISTICS statement" on page 323
"The Transaction Log utility" on page 507 of the book ASA Database

Administration Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

The following example upgrades a database to enable Java operations.

ALTER DATABASE UPGRADE
JAVA ON

The following example sets the transaction log filename associated with
asademo.db to newdemo.log.

ALTER DATABASE ’asademo.db’
MODIFY LOG ON ’newdemo.log’

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

209

ALTER DBSPACE statement
Use this statement to pre-allocate space for a dbspace or for the transaction
log, or when a database file is renamed or moved.

ALTER DBSPACE { dbspace-name | TRANSLOG }
 { ADD number [PAGES | KB | MB | GB | TB]
 | RENAME filename-string }

TRANSLOG You supply the special dbspace name TRANSLOG to
pre-allocate disk space for the transaction log. Pre-allocation improves
performance if the transaction log is expected to grow quickly. You may
want to use this feature if, for example, you are handling many binary large
objects (BLOBs) such as bitmaps.

ADD clause An ALTER DBSPACE with the ADD clause pre-allocates
disk space for a dbspace. It extends the corresponding database file by the
specified size, in units of pages, kilobytes (KB), megabytes (MB), gigabytes
(GB), or terabytes (TB). If you do not specify a unit, PAGES is the default.
The page size of a database is fixed when the database is created.

If space is not pre-allocated, database files are extended by 256 kb at a time
when the space is needed. Pre-allocating space can improve performance for
loading large amounts of data and also serves to keep the database files more
contiguous within the file system.

RENAME clause If you rename or move a database file other than the
main file to a different directory or device, you can use ALTER DBSPACE
with the RENAME clause to ensure that Adaptive Server Anywhere finds the
new file when the database is started.

Using ALTER DBSPACE with RENAME on the main dbspace, SYSTEM,
has no effect.

Each database is held in one or more files. A dbspace is an additional file
with a logical name associated with each database file, and used to hold more
data than can be held in the main database file alone. ALTER DBSPACE
modifies the main dbspace (also called the root file) or an additional dbspace.
The dbspace names for a database are held in the SYSFILE system table.
The main database file has a dbspace name of SYSTEM.

When a multi-file database is started, the start line or ODBC data source
description tells Adaptive Server Anywhere where to find the main database
file. The main database file holds the system tables. Adaptive Server
Anywhere looks in these system tables to find the location of the other
dbspaces, and then opens each of the other dbspaces.

Must have DBA authority. Must be the only connection to the database.

Description

Syntax

Parameters

Usage

Permissions

ALTER DBSPACE statement

210

Automatic commit.

"CREATE DBSPACE statement" on page 278
"Working with databases" on page 29 of the book ASA SQL User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

The following example increases the size of the SYSTEM dbspace by 200
pages:

ALTER DBSPACE system
ADD 200

The following example increases the size of the SYSTEM dbspace by 400
megabytes:

ALTER DBSPACE system
ADD 400 MB

The following example changes the filename associated with the system_2
dbspace:

ALTER DBSPACE system_2
RENAME ’e:\db\dbspace2.db’

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

211

ALTER EVENT statement
Use this statement to change the definition of an event or its associated
handler for automating predefined actions. Also, to alter the definition of
scheduled actions.

ALTER EVENT event-name
[DELETE TYPE | TYPE event-type]
{ WHERE { trigger-condition | NULL }

| { ADD | MODIFY | DELETE } SCHEDULE schedule-spec
}
[ENABLE | DISABLE]
[[MODIFY] HANDLER compound-statement | DELETE HANDLER }

event-type :
 BackupEnd | "Connect"
| ConnectFailed | DatabaseStart
| DBDiskSpace | "Disconnect"
| GlobalAutoincrement | GrowDB
| GrowLog | GrowTemp
| LogDiskSpace | "RAISERROR"
| ServerIdle | TempDiskSpace

trigger-condition :
event_condition(condition-name) { = | < | > | != | <= | >= } value

schedule-spec :
[schedule-name]

{ START TIME start-time | BETWEEN start-time AND end-time }
[EVERY period { HOURS | MINUTES | SECONDS }]
[ON { (day-of-week, …) | (day-of-month, …) }]
[START DATE start-date]

event-name | schedule-name : identifier

day-of-week : string

value | period | day-of-month : integer

start-time | end-time : time

start-date : date

DELETE TYPE clause Removes an association of the event with an event
type.

ADD | MODIFY | DELETE SCHEDULE clause Changes the definition of
a schedule. Only one schedule can be altered in any one ALTER EVENT
statement.

WHERE clause The WHERE NULL option deletes a condition.

Description

Syntax

Parameters

ALTER EVENT statement

212

For descriptions of most of the parameters, see "CREATE EVENT
statement" on page 285.

This statement allows you to alter an event definition created with CREATE
EVENT. Possible uses include the following:

♦ You can use ALTER EVENT to change an event handler during
development.

♦ You may want to define and test an event handler without a trigger
condition or schedule during a development phase, and then add the
conditions for execution using ALTER EVENT once the event handler
is completed.

♦ You may want to disable an event handler temporarily by disabling the
event.

Must have DBA authority.

Automatic commit.

"BEGIN statement" on page 248
"CREATE EVENT statement" on page 285

Usage

Permissions

Side effects

See also

Chapter 4 SQL Statements

213

ALTER FUNCTION statement
Use this statement to modify a function. You must include the entire new
function in the ALTER FUNCTION statement.

ALTER FUNCTION [owner.]function-name
function-definition

function-definition:
CREATE FUNCTION syntax following the name

ALTER FUNCTION [owner.]function-name SET HIDDEN

Syntax 1 The ALTER FUNCTION statement is identical in syntax to the
CREATE FUNCTION statement except for the first word. Either version of
the CREATE FUNCTION statement can be altered.

Existing permissions on the function are maintained, and do not have to be
reassigned. If a DROP FUNCTION and CREATE FUNCTION were carried
out, execute permissions would have to be reassigned.

Syntax 2 You can use SET HIDDEN to scramble the definition of the
associated function and cause it to become unreadable. The function can be
unloaded and reloaded into other databases.

This setting is irreversible. If you will need the original source again, you
must maintain it outside the database.

If SET HIDDEN is used, debugging using the stored procedure debugger
will not show the function definition, nor will it be available through
procedure profiling.

Must be the owner of the function or be DBA.

Automatic commit.

"CREATE FUNCTION statement" on page 296
"Hiding the contents of procedures, functions, triggers and views" on

page 568 of the book ASA SQL User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Description

Syntax 1

Syntax 2

Usage

Permissions

Side effects

See also

Standards and
compatibility

ALTER PROCEDURE statement

214

ALTER PROCEDURE statement
Use this statement to modify a procedure, or to enable and disable a
procedure for replication with Sybase Replication Server. You must include
the entire new procedure in the ALTER PROCEDURE statement.

ALTER PROCEDURE [owner.]procedure-name
procedure-definition

procedure-definition:
CREATE PROCEDURE syntax following the name

ALTER PROCEDURE [owner.]procedure-name
REPLICATE { ON | OFF }

ALTER PROCEDURE [owner.]procedure-name SET HIDDEN

Syntax 1 The ALTER PROCEDURE statement is identical in syntax to
the CREATE PROCEDURE statement except for the first word. Either
version of the CREATE PROCEDURE statement can be altered.

Existing permissions on the procedure are maintained, and do not have to be
reassigned. If a DROP PROCEDURE and CREATE PROCEDURE were
carried out, execute permissions would have to be reassigned.

Syntax 2 If a procedure is to be replicated to other sites using Sybase
Replication Server, you must set REPLICATE ON for the procedure.

Syntax 2 of the ALTER PROCEDURE statement has the same effect as the
sp_setreplicate or sp_setrepproc ’table’ Adaptive Server Enterprise system
procedures.

Syntax 3 You can use SET HIDDEN to scramble the definition of the
associated procedure and cause it to become unreadable. The procedure can
be unloaded and reloaded into other databases.

This setting is irreversible. If you will need the original source again, you
must maintain it outside the database.

If SET HIDDEN is used, debugging using the stored procedure debugger
will not show the procedure definition, nor will it be available through
procedure profiling.

You cannot combine Syntax 2 with Syntax 1. You cannot combine Syntax 3
with either Syntax 1 or 2.

Must be the owner of the procedure or be DBA.

Automatic commit.

Description

Syntax 1

Syntax 2

Syntax 3

Usage

Permissions

Side effects

Chapter 4 SQL Statements

215

"CREATE PROCEDURE statement" on page 305
"Hiding the contents of procedures, functions, triggers and views" on

page 568 of the book ASA SQL User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also

Standards and
compatibility

ALTER PUBLICATION statement

216

ALTER PUBLICATION statement
Use this statement to alter a publication. In MobiLink, a publication
identifies synchronized data in a Adaptive Server Anywhere remote
database. In SQL Remote, publications identify replicated data in both
consolidated and remote databases.

ALTER PUBLICATION [owner.]publication-name alterpub-clause, ...

alterpub-clause:
 ADD TABLE article-description
| MODIFY TABLE article-description
| { DELETE | DROP } TABLE [owner.]table-name
| RENAME publication-name

owner, publication-name, table-name : identifier

article-description :
table-name [(column-name, …)]
[WHERE search-condition]
[SUBSCRIBE BY expression]

This statement is applicable only to MobiLink and SQL Remote.

The ALTER PUBLICATION statement alters a publication in the database.
The contribution to a publication from one table is called an article. Changes
can be made to a publication by adding, modifying, or deleting articles, or by
renaming the publication. If an article is modified, the entire specification of
the modified article must be entered.

You set options for a MobiLink publication with the ADD OPTION clause
in the ALTER SYNCHRONIZATION SUBSCRIPTION statement or
CREATE SYNCHRONIZATION SUBSCRIPTION statement.

Must have DBA authority, or be the owner of the publication. Requires
exclusive access to all tables referred to in the statement.

Automatic commit.

"CREATE PUBLICATION statement" on page 314
"DROP PUBLICATION statement" on page 402
"ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]"

on page 227
"CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]"

on page 331
"sp_add_article procedure" on page 387 of the book SQL Remote User’s

Guide
"sp_add_article_col procedure" on page 389 of the book SQL Remote User’s

Guide

Description

Syntax

Usage

Permissions

Side effects

See also

Chapter 4 SQL Statements

217

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

The following statement adds the customer table to the pub_contact
publication.

ALTER PUBLICATION pub_contact
ADD TABLE customer

Standards and
compatibility

Example

ALTER REMOTE MESSAGE TYPE statement [SQL Remote]

218

ALTER REMOTE MESSAGE TYPE statement
[SQL Remote]

Use this statement to change the publisher’s message system, or the
publisher’s address for a given message system, for a message type that has
been created.

ALTER REMOTE MESSAGE TYPE message-system
ADDRESS address

message-system: FILE | FTP | MAPI | SMTP | VIM

address: string

message-system One of the message systems supported by
SQL Remote. It must be one of the following values:

address A string containing a valid address for the specified message
system.

The statement changes the publisher’s address for a given message type.

The Message Agent sends outgoing messages from a database by one of the
supported message links. The extraction utility uses this address when
executing the GRANT CONSOLIDATE statement in the remote database.

The address is the publisher’s address under the specified message system. If
it is an e-mail system, the address string must be a valid e-mail address. If it
is a file-sharing system, the address string is a subdirectory of the directory
specified by the SQLREMOTE environment variable, or of the current
directory if that is not set. You can override this setting on the GRANT
CONSOLIDATE statement at the remote database.

Must have DBA authority.

Automatic commit.

"CREATE REMOTE MESSAGE TYPE statement [SQL Remote]" on
page 317

"sp_remote_type procedure" on page 430 of the book SQL Remote User’s
Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

The following statement changes the publisher’s address for the FILE
message link to new_addr.

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

219

CREATE REMOTE MESSAGE TYPE file
ADDRESS ’new_addr’

ALTER SERVER statement

220

ALTER SERVER statement
Use this statement to modify the attributes of a remote server.

ALTER SERVER server-name
[CLASS ’server-class’]
[USING ’connection-info’]
[CAPABILITY ’cap-name’ { ON | OFF }]

server-class :
 ASAJDBC | ASEJDBC
| ASAODBC | ASEODBC
| DB2ODBC | MSSODBC
| ORAODBC | ODBC

connection-info :
machine-name:port-number[/dbname] | data-source-name

CLASS clause The CLASS clause is specified to change the server class.

$ For more information on server classes and how to configure a server,
see "Server Classes for Remote Data Access" on page 487 of the book ASA
SQL User’s Guide.

USING clause The USING clause is specified to change the server
connection information. For information about connection-info, see
"CREATE SERVER statement" on page 321.

CAPABILITY clause The CAPABILITY clause turns a server capability
ON or OFF. Server capabilities are stored in the system table syscapability.
The names of these capabilities are stored in the system table
syscapabilityname. The syscapability table contains no entries for a remote
server until the first connection is made to that server. At the first connection,
Adaptive Server Anywhere interrogates the server about its capabilities and
then populates the syscapability table. For subsequent connections, the
server’s capabilities are obtained from this table.

In general, you do not need to alter a server’s capabilities. It may be
necessary to alter capabilities of a generic server of class ODBC.

The ALTER SERVER statement modifies the attributes of a server. These
changes do not take effect until the next connection to the remote server.

Must have RESOURCE authority.

Automatic commit.

"CREATE SERVER statement" on page 321
"DROP SERVER statement" on page 404

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Chapter 4 SQL Statements

221

"Server Classes for Remote Data Access" on page 487 of the book ASA SQL
User’s Guide

"Troubleshooting remote data access" on page 485 of the book ASA SQL
User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

The following example changes the server class of the Adaptive Server
named ase_prod so its connection to Adaptive Server Anywhere is
ODBC-based. Its Data Source Name is ase_prod.

ALTER SERVER ase_prod
CLASS ’ASEODBC’
USING ’ase_prod’

The following example changes a capability of server infodc.

ALTER SERVER infodc
CAPABILITY ’insert select’ OFF

Standards and
compatibility

Example

ALTER SYNCHRONIZATION DEFINITION statement (deprecated)

222

ALTER SYNCHRONIZATION DEFINITION
statement (deprecated)

This statement alters a MobiLink synchronization definition in an Adaptive
Server Anywhere remote database. This command is deprecated. In its place,
you should use ALTER PUBLICATION or ALTER SYNCHRONIZATION
SUBSCRIPTION.

ALTER SYNCHRONIZATION DEFINITION sync-def-name
[SITE sync-site-name,]
[TYPE sync-type,]
[ADDRESS network-parameters,]
[ADD OPTION parameter=value, …]
[MODIFY OPTION parameter=value, …]
[DELETE OPTION parameter, …

| DELETE ALL OPTION,]
[RENAME new-sync-def-name,]
[ADD TABLE article-description, …]
[MODIFY TABLE article-description, …]
[DELETE TABLE table-name, …]

network-parameters: string

article-description:
table-name [(column-name, ...)]

[WHERE search-condition]

value:
string | integer

SITE clause The name that uniquely identifies this remote database within
your MobiLink setup.

TYPE clause This clause specifies the method of synchronization. The
default value is TCP/IP. You may also choose to use HTTP or HTTPS.

ADDRESS clause This clause specifies the network parameters,
including location of the MobiLink synchronization server.

$ For a complete list of network parameters, see "CREATE
SYNCHRONIZATION USER statement [MobiLink]" on page 335.

ADD OPTION, MODIFY OPTION, DELETE OPTION AND DELETE ALL
OPTION clause These clauses allow you to add, modify, delete or delete
all options. You may specify only one parameter in each clause. You can
specify the clauses multiple times to affect more than one option.

The values for each option cannot contain the characters "=" or "," or ";".

Description

Syntax

Parameters

Chapter 4 SQL Statements

223

$ For a complete list of options, see "CREATE SYNCHRONIZATION
USER statement [MobiLink]" on page 335.

Enter options carefully
The database engine will accept any option that you enter without
checking for its validity. Therefore, if you misspell an option, the engine
will not detect the error and no error message will be given until you run
the dbmlsync command to perform synchronization.

RENAME clause Use this clause to rename your synchronization
definition.

ADD TABLE, MODIFY TABLE AND DELETE TABLE clause You have
previously specified, in your CREATE SYNCHRONIZATION
DEFINITION statement, the contents to be uploaded to the consolidated
database. Use these clauses to make changes to the specification.

Create synchronization definitions in Adaptive Server Anywhere version 7
databases that are to function as MobiLink clients. Each definition specifies
the site name that uniquely identifies that logical MobiLink client within the
MobiLink setup. In addition, each site specifies how to contact the MobiLink
synchronization server and which data in the remote database is to be
synchronized with the consolidated database.

Use the ALTER SYNCHRONIZATION DEFINITION statement to alter a
synchronization definition.

For example, if you wish to make changes to the options and set memory to
3 Mb, you can alter the synchronization definition as follows:

ALTER SYNCHRONIZATION DEFINITION mysharedtables
OPTION memory=’3m’

Must have DBA authority. Requires exclusive access to all tables referred to
in the statement.

Automatic commit

"ALTER PUBLICATION statement" on page 216
"ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]"

on page 227
"CREATE SYNCHRONIZATION DEFINITION statement [MobiLink]" on

page 326
"DROP SYNCHRONIZATION DEFINITION statement [MobiLink]" on

page 408

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Usage

Permissions

Side effects

See also

Standards and
compatibility

ALTER SYNCHRONIZATION DEFINITION statement (deprecated)

224

♦ Sybase Adaptive Server Anywhere version 7.0.

Alter the mysharedtables synchronization definition. Switch to a different
remote database and set different options. In addition, the table Books is also
uploaded to the consolidated database and only two columns of the People
table are uploaded to the consolidated database.

ALTER SYNCHRONIZATION DEFINITION mysharedtables
SITE ’new_sync_site’,
ADD OPTION verbose=’on’,
MODIFY OPTION memory=’3m’,
ADD TABLE Books,
MODIFY TABLE People(fname, lname);

Example

Chapter 4 SQL Statements

225

ALTER SYNCHRONIZATION SITE statement
[MobiLink] (deprecated)

This statement alters a site within a MobiLink reference database, to be used
when extracting Adaptive Server Anywhere remote databases with the
mlxtract utility. This command is deprecated. In its place, you should use
ALTER PUBLICATION or ALTER SYNCHRONIZATION
SUBSCRIPTION.

ALTER SYNCHRONIZATION SITE sync-site-name
[RENAME new-sync-site-name,]
[TYPE sync-type,]
[ADDRESS network-parameters,]
[ADD OPTION parameter=value, …]
[MODIFY OPTION parameter=value, …]
[DELETE OPTION parameter, …| DELETE ALL OPTION]

network-parameters: string

value: string | integer

SITE clause The name that uniquely identifies this remote database within
your MobiLink setup.

TYPE clause This clause specifies the method of synchronization. The
default value is tcpip. You may also choose to use http or https.

ADDRESS clause This clause specifies network parameters, including
the location of the MobiLink synchronization server.

$ For a complete list of network parameters, see "CREATE
SYNCHRONIZATION USER statement [MobiLink]" on page 335.

ADD OPTION, MODIFY OPTION, DELETE OPTION AND DELETE ALL
OPTION clause These clauses allow you to add, modify, delete or delete
all options. You may specify only one parameter in each clause.

The values for each option cannot contain the characters "=" or "," or ";".

$ For a complete list of options, see "CREATE SYNCHRONIZATION
USER statement [MobiLink]" on page 335.

Synchronization templates and synchronization sites are used only when
creating Adaptive Server Anywhere remote databases by means of extracting
them from an Adaptive Server Anywhere version 7 reference database.

Each remote database is created from a synchronization site, stored within
the reference database. Each synchronization site is based upon a single
synchronization template, although many sites can use a single template.

Description

Syntax

Parameters

Usage

ALTER SYNCHRONIZATION SITE statement [MobiLink] (deprecated)

226

Use the ALTER SYNCHRONIZATION SITE statement to modify the
properties of a synchronization site.

Must have DBA authority.

Automatic commit.

"ALTER PUBLICATION statement" on page 216
"ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]"

on page 227
"CREATE SYNCHRONIZATION SITE statement [MobiLink]" on

page 328
"DROP SYNCHRONIZATION SITE statement [MobiLink]" on page 409

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Anywhere version 7.0.

Deploy mytemplate to a different remote database and set different options
from the ones in the template.

ALTER SYNCHRONIZATION SITE USING mytemplate
SITE ’new_sync_site’,
ADD OPTION verbose=’on’
MODIFY OPTION memory=’3m’;

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

227

ALTER SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]

Use this statement in an Adaptive Server Anywhere remote database to alter
the properties of a subscription of a MobiLink user to a publication.

ALTER SYNCHRONIZATION SUBSCRIPTION
TO publication-name
[FOR ml_username, …]
[TYPE sync-type]
[ADDRESS network-parameters]
[ADD OPTION option=value, …]
[MODIFY OPTION option=value, …]
[DELETE { ALL OPTION | OPTION option=value, … }]

ml_username: identifier

network-parameters: string

sync-type: http | https | tcpip | ActiveSync

value: string | integer

TO clause Specify the name of a publication.

FOR clause Specify one more MobiLink user ids.

Omitting this clause alters a default subscription for the publication.
MobiLink users subscribed to this publication inherit these defaults, unless
their own settings override them. This feature is most useful when extracting
remote databases from a reference database.

TYPE clause This clause specifies the communication protocol to use for
synchronization. The default protocol is tcpip.

ADDRESS clause This clause specifies network parameters, including
the location of the MobiLink synchronization server.

$ For a complete list of network parameters, see "CREATE
SYNCHRONIZATION USER statement [MobiLink]" on page 335.

ADD OPTION, MODIFY OPTION, DELETE OPTION AND DELETE ALL
OPTION clause These clauses allow you to add, modify, delete or delete
all options. You may specify only one parameter in each clause.

The values for each option cannot contain the characters "=" or "," or ";".

$ For a complete list of options, see "CREATE SYNCHRONIZATION
USER statement [MobiLink]" on page 335.

Description

Syntax

Parameters

ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]

228

Use this statement to alter a synchronization subscription within a MobiLink
remote or reference database.

Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Automatic commit.

"CREATE PUBLICATION statement" on page 314
"CREATE SYNCHRONIZATION USER statement [MobiLink]" on

page 335

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Anywhere version 8.0.

Create a default subscription, which contains default subscription values, for
the sales publication (by omitting the FOR clause). Indicate the address of
the MobiLink synchronization server and specify that only the Certicom root
certificate is to be trusted.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
ADDRESS ’host=test.internal;port=2439;

security=ecc_tls’
OPTION memory=’2m’;

Subscribe MobiLink user ml_user1 to the sales publication. Set the memory
option to 3 Mb, rather than the value specified in the default publication.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ’ml_user1’
OPTION memory=’3m’;

Usage

Permissions

Side effects

See also

Standards and
compatibility

Examples

Chapter 4 SQL Statements

229

ALTER SYNCHRONIZATION TEMPLATE
statement [MobiLink] (deprecated)

This statement alters a template within a MobiLink reference database, and is
used when extracting Adaptive Server Anywhere remote databases with the
mlxtract command line utility. This command is deprecated. Please use
synchronization publications and subscriptions instead.

ALTER SYNCHRONIZATION TEMPLATE sync-template-name,
[TYPE sync-type,]
[ADDRESS network-parameters,]
[ADD OPTION parameter=value, …]
[MODIFY OPTION parameter=value, …]
[DELETE OPTION parameter, …| DELETE ALL OPTION,]
[RENAME new-sync-def-name,]
[ADD TABLE article-description, …]
[MODIFY TABLE article-description, …]
[DELETE TABLE table-name, …]

article-description:
table-name [(column-name, ...)]

[WHERE search-condition]

value:
string | integer

TYPE clause This clause specifies the method of synchronization. The
default value is tcpip. You may also choose to use http or https.

ADDRESS clause This clause specifies network parameters, including
the location of the MobiLink synchronization server.

$ For a complete list of network parameters, see "CREATE
SYNCHRONIZATION USER statement [MobiLink]" on page 335.

ADD OPTION, MODIFY OPTION, DELETE OPTION AND DELETE ALL
OPTION clause These clauses allow you to add, modify, delete or delete
all options. You may specify only one parameter in each clause.

The values for each option cannot contain the characters "=" or "," or ";".

$ For a complete list of options, see "CREATE SYNCHRONIZATION
USER statement [MobiLink]" on page 335.

RENAME clause Use this clause to rename your synchronization
definition.

Description

Syntax

Parameters

ALTER SYNCHRONIZATION TEMPLATE statement [MobiLink] (deprecated)

230

ADD TABLE, MODIFY TABLE AND DELETE TABLE clause You have
previously specified, in your CREATE SYNCHRONIZATION
DEFINITION statement, the contents to be uploaded to the consolidated
database. Use these clauses to make changes to the specification.

Synchronization templates and synchronization sites are used only when
creating Adaptive Server Anywhere remote databases by means of extracting
them from an Adaptive Server Anywhere version 7 reference database.

Each remote database is created from a synchronization site, stored within
the reference database. Each synchronization site is based upon a single
synchronization template, although many sites can use a single template.

Use the ALTER SYNCHRONIZATION TEMPLATE statement to modify
the properties of a synchronization template.

Must have DBA authority. Requires exclusive access to all tables referred to
in the statement.

Automatic commit

"ALTER PUBLICATION statement" on page 216
"ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]"

on page 227
"CREATE SYNCHRONIZATION TEMPLATE statement [MobiLink]" on

page 333
"DROP SYNCHRONIZATION TEMPLATE statement [MobiLink]" on

page 411

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Anywhere version 7.0.

Alter the mytemplate synchronization template. Set different options. Specify
that the table Books is also to be uploaded to the consolidated database. Only
the two named columns of the People table are to be uploaded to the
consolidated database.

ALTER SYNCHRONIZATION TEMPLATE mytemplate
ADD OPTION verbose=’on’,
MODIFY OPTION memory=’3m’,
ADD TABLE Books,
MODIFY TABLE (People(fname,lname));

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

231

ALTER SYNCHRONIZATION USER statement
[MobiLink]

Use this statement in an Adaptive Server Anywhere remote database to alter
the properties of a MobiLink user.

ALTER SYNCHRONIZATION USER ml_username
[TYPE sync-type]
[ADDRESS network-parameters]
[ADD OPTION option=value, …]
[MODIFY OPTION option=value, …]
[DELETE { ALL OPTION | OPTION option }]

ml_username: identifier

network-parameters: string

sync-type: http | https | tcpip | ActiveSync

value: string | integer

TYPE clause This clause specifies the communication protocol to use for
synchronization.

ADDRESS clause This clause specifies network parameters, including
the location of the MobiLink synchronization server.

$ For a complete list of network parameters, see "CREATE
SYNCHRONIZATION USER statement [MobiLink]" on page 335.

ADD OPTION, MODIFY OPTION, DELETE OPTION AND DELETE ALL
OPTION clause These clauses allow you to add, modify, delete or delete
all options. You may specify only one parameter in each clause.

$ For a complete list of options, see "CREATE SYNCHRONIZATION
USER statement [MobiLink]" on page 335.

Use this statement to alter the properties of a synchronization user within a
MobiLink remote database.

Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Automatic commit.

"ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]"
on page 227

"CREATE SYNCHRONIZATION USER statement [MobiLink]" on
page 335

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

ALTER SYNCHRONIZATION USER statement [MobiLink]

232

"CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]"
on page 331

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Anywhere version 8.0.

Standards and
compatibility

Chapter 4 SQL Statements

233

ALTER TABLE statement
Use this statement to modify a table definition or to enable a table to take
part in Replication Server replication.

ALTER TABLE [owner.]table-name altertable-clause

altertable-clause:
 ADD column-definition [column-constraint …]
| ADD table-constraint
| { ADD PCTFREE percent-free-space | PCTFREE DEFAULT }
| MODIFY column-definition
| MODIFY column-name DEFAULT default-value
| ALTER column-name SET DEFAULT default-value
| ALTER column-name DROP DEFAULT
| ALTER column-name SET COMPUTE (expression)
| ALTER column-name DROP COMPUTE
| MODIFY column-name [NOT] NULL
| MODIFY column-name CHECK NULL
| MODIFY column-name CHECK (condition)
| { DELETE | DROP } column-name
| { DELETE | DROP } CHECK
| { DELETE | DROP } UNIQUE (column-name, …)
| { DELETE | DROP } PRIMARY KEY
| { DELETE | DROP } FOREIGN KEY role-name
| RENAME new-table-name
| RENAME column-name TO new-column-name

column-definition :
 column-name data-type [NOT NULL] [DEFAULT default-value]

column-constraint :
{ UNIQUE
 | PRIMARY KEY
 | REFERENCES table-name
 [(column-name)] [actions] [CLUSTERED]}
 | CHECK (condition)
 | COMPUTE (expression)

Description

Syntax 1

ALTER TABLE statement

234

default-value :
 special-value
| string
| global variable
| [-] number
| (constant-expression)
| built-in-function(constant-expression)
| AUTOINCREMENT
| CURRENT DATABASE
| CURRENT REMOTE USER
| CURRENT UTC TIMESTAMP
| GLOBAL AUTOINCREMENT [(partition-size)]
| NULL
| TIMESTAMP
| UTC TIMESTAMP
| LAST USER

special-value:
 CURRENT { DATE | TIME | TIMESTAMP | UTC TIMESTAMP | USER |
PUBLISHER }
| USER

table-constraint :
 UNIQUE (column-name, …)
| PRIMARY KEY [CLUSTERED] (column-name, …)
| CHECK (condition)
| foreign-key-constraint

foreign-key-constraint :
 [NOT NULL] FOREIGN KEY [role-name] [(column-name, …)]
… REFERENCES table-name [(column-name, …)] [CLUSTERED]
… [actions] [CHECK ON COMMIT]

actions :
 [ON UPDATE action] [ON DELETE action]

action :
 CASCADE
| SET NULL
| SET DEFAULT
| RESTRICT

percent-free-space : integer

ALTER TABLE [owner.]table-name REPLICATE { ON | OFF }

ADD column-definition Add a new column to the table. To specify
NOT NULL, the table must be empty.

If the column has a default value, all rows of the new column are populated
with that default value.

Syntax 2

Parameters

Chapter 4 SQL Statements

235

NULL values
Adaptive Server Anywhere optimizes the creation of columns that are
allowed to contain NULL. The first column allowed to contain NULL
allocates room for eight such columns, and initializes all eight to be
NULL. (This requires no extra storage.) Thus, the next seven columns
added require no changes to the rows of the table.

Adding a ninth column then allocates room for another eight such
columns and modifies each row of the table to allocate the extra space.
Consequently, seven out of eight column additions run quickly.

ADD table-constraint Add a constraint to the table. See "CREATE
TABLE statement" on page 350 for a full explanation of table constraints.

If PRIMARY KEY is specified, the table must not already have a primary
key that was created by the CREATE TABLE statement or another
ALTER TABLE statement.

PCTFREE Specify the percentage of free space you want to reserve for
each table page. The free space is used if rows increase in size when the data
is updated. If there is no free space in a table page, every increase in the size
of a row on that page requires the row to be split across multiple table pages,
causing row fragmentation and possible performance degradation.

The value percent-free-space is an integer between 0 and 100. The former
specifies that no free space is to be left on each page—each page is to be
fully packed. A high value causes each row to be inserted into a page by
itself. If PCTFREE is not set, or if DEFAULT is specified, 200 bytes are
reserved in each page.

When PCTFREE is set, all subsequent inserts into table pages use the new
value, but rows that were already inserted are not affected. The value persists
until it is changed or the table is dropped.

The PCTFREE specification can be used for base, global temporary, or local
temporary tables. Except for local temporary tables, the value for PCTFREE
is stored in the SYSATTRIBUTE system table.

$ For more information, see "SYSATTRIBUTE system table" on
page 601.

MODIFY column-definition Change the length or data type of an existing
column in a table. If NOT NULL is specified, a NOT NULL constraint is
added to the named column. Otherwise, the NOT NULL constraint for the
column will not be changed. If necessary, the data in the modified column
will be converted to the new data type. If a conversion error occurs, the
operation will fail and the table will be left unchanged.

ALTER TABLE statement

236

You cannot modify a column to make it a computed column. Computed
columns can only be added or dropped.

Deleting an index, constraint, or key
If the column is contained in a uniqueness constraint, a foreign key, or a
primary key, then the constraint or key must be deleted before the column
can be modified. If a primary key is deleted, all foreign keys referencing
the table will also be deleted.

You cannot MODIFY a table or column constraint. To change a
constraint, you must DELETE the old constraint and ADD the new
constraint.

MODIFY column-name DEFAULT default-value Change the default
value of an existing column in a table. To remove a default value for a
column, specify DEFAULT NULL. Modifying a default value does not
change any existing values in the table.

ALTER column-name SET DEFAULT default-value Change the
default value of an existing column in a table. You can also use the MODIFY
clause for this task, but ALTER is SQL/92 compliant, and MODIFY is not.
Modifying a default value does not change any existing values in the table.

ALTER column-name DROP DEFAULT Remove the default value of
an existing column in a table. You can also use the MODIFY clause for this
task, but ALTER is SQL/92 compliant, and MODIFY is not. Dropping a
default does not change any existing values in the table.

ALTER column-name SET COMPUTE (expression) Change the
expression associated with a computed column. The values in the column are
recalculated when the statement is executed, and the statement fails if the
new expression is invalid.

ALTER column-name DROP COMPUTE Change a column from being a
computed column to being a non-computed column. This statement does not
change any existing values in the table.

MODIFY column-name [NOT] NULL Change the NOT NULL
constraint on the column to allow or disallow NULL values in the column.

MODIFY column-name CHECK NULL Delete the check constraint for
the column. This statement cannot be used on databases created before
version 5.0.

MODIFY column-name CHECK (condition) Replace the existing
CHECK condition for the column with the one specified. This statement
cannot be used on databases created before version 5.0.

Chapter 4 SQL Statements

237

DELETE column-name Delete the column from the table. If the column
is contained in any index, uniqueness constraint, foreign key, or primary key
then the index, constraint, or key must be deleted before the column can be
deleted. This does not delete CHECK constraints that refer to the column.

DELETE CHECK Delete all check constraints for the table. This includes
both table check constraints and column check constraints.

DELETE UNIQUE (column-name, …) Delete a uniqueness constraint for
this table. Any foreign keys referencing this uniqueness constraint (rather
than the primary key) will also be deleted.

DELETE PRIMARY KEY Delete the primary key constraint for this table.
All foreign keys referencing the primary key for this table will also be
deleted.

DELETE FOREIGN KEY role-name Delete the foreign key constraint for
this table with the given role name.

RENAME new-table-name Change the name of the table to
new-table-name. Note that any applications using the old table name must be
modified. Foreign keys that were automatically assigned the old table name
will not change names.

RENAME column-name TO new-column-name Change the name of
the column to the new-column-name. Note that any applications using the old
column name will need to be modified.

Syntax 1 The ALTER TABLE statement changes table attributes (column
definitions, constraints) in a table that was previously created. Note that the
syntax allows a list of alter clauses; however, only one table-constraint or
column-constraint can be added, modified or deleted in one ALTER TABLE
statement. A table cannot be both added and modified in the same statement.

You cannot use ALTER TABLE on a local temporary table.

ALTER TABLE is prevented whenever the statement affects a table that is
currently being used by another connection. ALTER TABLE can be
time-consuming, and the server will not process requests referencing the
table while the statement is being processed.

$ For more information on using the CLUSTERED option, see "Using
Clustered Indexes" on page 58 of the book ASA SQL User’s Guide.

Usage

ALTER TABLE statement

238

Before version 5.0, all table and column constraints were held in a single
table constraint. Consequently, for these databases individual constraints on
columns cannot be deleted using the MODIFY column-name CHECK NULL
clause or replaced using the MODIFY column-name CHECK (condition)
clause. To use these statements, the entire table constraint should be deleted
and the constraints added back using the MODIFY column-name CHECK
(condition) clause. At this point you can use MODIFY CHECK.

Syntax 2 When a table has REPLICATE ON, all changes to the table are
sent to Replication Server for replication. The replication definitions in
Replication Server are used to decide which table changes are sent to other
sites. The remainder of this section describes syntax 1.

Must be one of the following:

♦ The owner of the table.

♦ A user with DBA authority.

♦ A user granted ALTER permission on the table.

ALTER TABLE requires exclusive access to the table.

Global temporary tables cannot be altered unless all users that have
referenced the temporary table have disconnected.

Automatic commit.

The MODIFY and DELETE (DROP) options close all cursors for the current
connection.

A checkpoint is carried out at the beginning of the ALTER TABLE
operation.

Once you alter a column or table, any stored procedures, views or other items
that refer to the altered column no longer work.

"CREATE TABLE statement" on page 350
"DROP statement" on page 397
"SQL Data Types" on page 51
"Using computed columns with Java classes" on page 124 of the book ASA

Programming Guide
"Altering tables" on page 41 of the book ASA SQL User’s Guide
"Special values" on page 33

♦ SQL/92 Intermediate-level feature. MODIFY is not SQL/92
compliant.

♦ SQL/99 ADD COLUMN is a core feature. Other clauses are vendor
extensions or implementation of specific, named extensions to SQL/99.

♦ Sybase Some clauses are supported by Adaptive Server Enterprise.

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

239

The following example adds a new column to the employee table showing
which office they work in.

ALTER TABLE employee
ADD office CHAR(20) DEFAULT ’Boston’

The following example drops the office column from the employee table.

ALTER TABLE employee
DELETE office

The address column in the customer table can currently hold up to
35 characters. To allow it to hold up to 50 character, type the following.

ALTER TABLE customer
MODIFY address CHAR(50)

The following example adds a column to the customer table assigning each
customer a sales contact.

ALTER TABLE customer
ADD sales_contact INTEGER
REFERENCES employee (emp_id)

ON UPDATE CASCADE
ON DELETE SET NULL

This foreign key is constructed with cascading updates and is set null on
deletes. If an employee has their employee ID changed, the column is
updated to reflect this change. If an employee leaves the company and has
their employee ID deleted, the column is set to NULL.

Example

ALTER TRIGGER statement

240

ALTER TRIGGER statement
Use this statement to replace a trigger definition with a modified version.

You must include the entire new trigger definition in the ALTER TRIGGER
statement.

ALTER TRIGGER trigger-name trigger-definition

trigger-definition :
CREATE TRIGGER syntax following the trigger name

ALTER TRIGGER trigger-name ON [owner.] table-name SET HIDDEN

Syntax 1 The ALTER TRIGGER statement is identical in syntax to the
CREATE TRIGGER statement except for the first word. For information on
trigger-definition, see "CREATE TRIGGER statement" on page 362 and
"CREATE TRIGGER statement [T-SQL]" on page 369.

Either the Transact-SQL or Watcom-SQL form of the CREATE TRIGGER
syntax can be used.

Syntax 2 You can use SET HIDDEN to scramble the definition of the
associated trigger and cause it to become unreadable. The trigger can be
unloaded and reloaded into other databases.

This setting is irreversible. If you will need the original source again, you
must maintain it outside the database.

If SET HIDDEN is used, debugging using the stored procedure debugger
will not show the trigger definition, nor will it be available through
procedure profiling.

Must be the owner of the table on which the trigger is defined, or be DBA, or
have ALTER permissions on the table and have RESOURCE authority.

Automatic commit.

"CREATE TRIGGER statement" on page 362
"CREATE TRIGGER statement [T-SQL]" on page 369
"DROP statement" on page 397
"Hiding the contents of procedures, functions, triggers and views" on

page 568 of the book ASA SQL User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Description

Syntax 1

Syntax 2

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

241

ALTER VIEW statement
Use this statement to replace a view definition with a modified version. You
must include the entire new view definition in the ALTER VIEW statement.

ALTER VIEW
[owner.]view-name [(column-name, …)] AS select-without-order-by
[WITH CHECK OPTION]

ALTER VIEW
[owner.]view-name SET HIDDEN

Syntax 1 The ALTER VIEW statement is identical in syntax to the
CREATE VIEW statement except for the first word. The ALTER VIEW
statement replaces the entire contents of the CREATE VIEW statement with
the contents of the ALTER VIEW statement. Existing permissions on the
view are maintained, and do not have to be reassigned. If a DROP VIEW
followed by a CREATE VIEW is used, instead of ALTER VIEW,
permissions on the view would have to be reassigned.

Syntax 2 You can use SET HIDDEN to scramble the definition of the
associated view and cause it to become unreadable. The view can be
unloaded and reloaded into other databases.

This setting is irreversible. If you will need the original source again, you
must maintain it outside the database.

If SET HIDDEN is used, debugging using the stored procedure debugger
will not show the view definition, nor will it be available through procedure
profiling.

$ For information on the keywords and options, see "CREATE VIEW
statement" on page 371.

Must be owner of the view or have DBA authority.

Automatic commit.

All procedures and triggers are unloaded from memory, so that any
procedure or trigger that references the view reflects the new view definition.
The unloading and loading of procedures and triggers can have a
performance impact if you are regularly altering views.

"CREATE VIEW statement" on page 371
"DROP statement" on page 397
"Hiding the contents of procedures, functions, triggers and views" on

page 568 of the book ASA SQL User’s Guide

Description

Syntax 1

Syntax 2

Usage

Permissions

Side effects

See also

ALTER VIEW statement

242

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Standards and
compatibility

Chapter 4 SQL Statements

243

ALTER WRITEFILE statement
Use this statement to change the name of the read-only database file to which
a write file refers.

ALTER WRITEFILE write-file-name
REFERENCES db-file-name [KEY key]

write-file-name | db-file-name : string

The ALTER WRITEFILE statement changes the name of the read-only
database file to which the write file refers. If you move the database file from
one directory to another, you can use this statement to point the write file to
the new location.

The path name of the database file is relative to the database server’s current
directory at startup.

$ For information on escaping backslash characters in strings, see
"Strings" on page 9.

The permissions required to execute this statement are set on the server
command line, using the -gu option. The default setting is to require DBA
authority.

You need to specify a KEY value if you want to change the writefile for a
strongly encrypted database.

Not supported on Windows CE.

Automatic commit.

"CREATE WRITEFILE statement" on page 373
"The Write File utility" on page 530 of the book ASA Database

Administration Guide
"Working with write files" on page 224 of the book ASA Database

Administration Guide
"Using the utility database" on page 226 of the book ASA Database

Administration Guide
"Encryption Key connection parameter" on page 179 of the book ASA

Database Administration Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

The following statement changes the existing write file c:\readwrite.wrt to
point to the database file h:\readonly.db.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

ALTER WRITEFILE statement

244

ALTER WRITEFILE ’c:\\readwrite.wrt’
REFERENCES ’h:\\readonly.db’

Chapter 4 SQL Statements

245

BACKUP statement
Use this statement to back up a database and transaction log.

BACKUP DATABASE
DIRECTORY backup-directory
[WAIT BEFORE START]
[WAIT AFTER END]
[DBFILE ONLY]
[TRANSACTION LOG ONLY]
[TRANSACTION LOG RENAME [MATCH]]
[TRANSACTION LOG TRUNCATE]

backup-directory :string

BACKUP DATABASE TO archive-root
[ATTENDED { ON | OFF }]
[WITH COMMENT comment string]

archive-root : string

comment-string : string

backup-directory The target location on disk for those files, relative to
the server’s current directory at startup. If the directory does not already
exist, it is created. Specifying an empty string as a directory allows you to
rename or truncate the log without making a copy of it first.

WAIT BEFORE START clause This clause ensures that the backup copy
of the database does not contain any information required for recovery. In
particular, it ensures that the rollback log for each connection is empty.

If a backup is carried out using this clause, you can start the backup copy of
the database in read-only mode and validate it. By enabling validation of the
backup database, the customer can avoid making an additional copy of the
database.

WAIT AFTER END clause This clause may be used if the transaction log
is being renamed or truncated. It ensures that all transactions are completed
before the log is renamed or truncated. If this clause is used, the backup must
wait for other connections to commit or rollback any open transactions
before finishing.

MATCH keyword If you supply the MATCH keyword, the backup copy
of the transaction log is given a name of the form YYMMDDnn.log. This
enables the same statement to be executed several times without writing over
old data.

archive-root The file name or tape drive device name for the archive file.

Description

Syntax 1 (image
backup)

Syntax 2 (archive
backup)

Parameters

BACKUP statement

246

To back up to tape, you must specify the device name of the tape drive.
For example, on Windows NT or NetWare, the first tape drive is \\.\tape0.

The backslash (\) is an escape character in SQL strings, so each backslash
must be doubled. For more information on escape characters and strings, see
"Strings" on page 9.

WITH COMMENT Record a comment in the archive file and in the backup
history file.

ATTENDED The clause applies only when backing up to a tape device.
ATTENDED ON (the default) indicates that someone is available to monitor
the status of the tape drive and to place a new tape in the drive when needed.
A message is sent to the application that issued the BACKUP statement if the
tape drive requires intervention. The database server then waits for the drive
to become ready. This may happen, for example, when a new tape is
required.

If ATTENDED OFF is specified and a new tape is required or the drive is
not ready, no message is sent, and an error is given.

Each BACKUP operation, whether image or archive, updates a history file
called backup.syb. This file is stored in the same directory as the database
server executable.

The first syntax is an image backup and the second syntax is an archive
backup.

Syntax 1 An image backup creates copies of each of the database files, in
the same way as the Backup utility (dbbackup). In the case of the BACKUP
statement, however, the backup is made on the server, while the Backup
utility makes the backup from a client machine.

Optionally, only the database file(s) or transaction log can be saved. The log
may also be renamed or truncated after the backup has completed.

Alternatively, you can specify an empty string as a directory to rename or
truncate the log without copying it first. This is particularly useful in a
replication environment where space is a concern. You can use this feature
with an event handler on transaction log size to rename the log when it
reaches a given size, and with the DELETE_OLD_LOGS option to delete
the log when it is no longer needed.

To restore from an image backup, copy the saved files back to their original
locations and reapply transaction logs as described in the chapter "Backup
and Data Recovery" on page 299 of the book ASA Database Administration
Guide.

Usage

Chapter 4 SQL Statements

247

Syntax 2 An archive backup creates a single file holding all the required
backup information. The destination can be either a file name or a tape drive
device name. Archive backups to tape are not supported on versions of
NetWare earlier than NetWare 5.

There can be only one backup on a given tape. The file backup.syb records
the BACKUP and RESTORE operations that have been performed on a
given server.

The tape is ejected at the end of the backup.

Only one archive per tape is allowed, but a single archive can span multiple
tapes. To restore a database from an archive backup, use the RESTORE
DATABASE statement.

Must have DBA authority.

Causes a checkpoint.

"RESTORE DATABASE statement" on page 511
"Backup and Data Recovery" on page 299 of the book ASA Database

Administration Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not compatible with Adaptive Server Enterprise.

♦ Windows CE Only the BACKUP DATABASE DIRECTORY syntax
(syntax 1 above) is supported on the Windows CE platform.

Back up the current database and the transaction log to a file, renaming the
existing transaction log. An image backup is created.

BACKUP DATABASE
DIRECTORY ’d:\\temp\\backup’
TRANSACTION LOG RENAME

The option to rename the transaction log is useful especially in replication
environments, where the old transaction log is still required.

Back up the current database and transaction log to tape:

BACKUP DATABASE
TO ’\\\\.\\tape0’

Rename the log without making a copy:

BACKUP DATABASE DIRECTORY’’
TRANSACTION LOG ONLY
TRANSACTION LOG RENAME

Permissions

Side effects

See also

Example

BEGIN statement

248

BEGIN statement
Use this statement to group SQL statements together.

[statement-label :]
BEGIN [[NOT] ATOMIC]

[local-declaration; …]
statement-list
[EXCEPTION [exception-case …]]

END [statement-label]

local-declaration :
 variable-declaration
| cursor-declaration
| exception-declaration
| temporary-table-declaration

variable-declaration :
DECLARE variable-name data-type

exception-declaration :
DECLARE exception-name EXCEPTION
FOR SQLSTATE [VALUE] string

exception-case :
 WHEN exception-name [, …] THEN statement-list
| WHEN OTHERS THEN statement-list

local-declaration Immediately following the BEGIN, a compound
statement can have local declarations for objects that only exist within the
compound statement. A compound statement can have a local declaration for
a variable, a cursor, a temporary table, or an exception. Local declarations
can be referenced by any statement in that compound statement, or in any
compound statement nested within it. Local declarations are not visible to
other procedures that are called from within a compound statement.

statement-label If the ending statement-label is specified, it must match
the beginning statement-label. The LEAVE statement can be used to resume
execution at the first statement after the compound statement. The compound
statement that is the body of a procedure or trigger has an implicit label that
is the same as the name of the procedure or trigger.

$ For a complete description of compound statements and exception
handling, see "Using Procedures, Triggers, and Batches" on page 507 of the
book ASA SQL User’s Guide.

The body of a procedure or trigger is a compound statement. Compound
statements can also be used in control statements within a procedure or
trigger.

Description

Syntax

Parameters

Usage

Chapter 4 SQL Statements

249

A compound statement allows one or more SQL statements to be grouped
together and treated as a unit. A compound statement starts with the keyword
BEGIN and ends with the keyword END.

None.

None.

"DECLARE CURSOR statement [ESQL] [SP]" on page 379
"DECLARE LOCAL TEMPORARY TABLE statement" on page 386
"LEAVE statement" on page 469
"SIGNAL statement" on page 548
"RESIGNAL statement" on page 510
"Using Procedures, Triggers, and Batches" on page 507 of the book ASA

SQL User’s Guide

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Supported by Adaptive Server Enterprise. This does not mean
that all statements inside a compound statement are supported.

The BEGIN and END keywords are not required in Transact-SQL.

BEGIN and END are used in Transact-SQL to group a set of statements
into a single compound statement, so that control statements such as IF
… ELSE, which only affect the execution of a single SQL statement,
can affect the execution of the whole group. The ATOMIC keyword is
not supported by Adaptive Server Enterprise.

In Transact-SQL. DECLARE statements need not immediately follow a
BEGIN keyword, and the cursor or variable that is declared exists for
the duration of the compound statement. You should declare variables at
the beginning of the compound statement for compatibility.

The body of a procedure or trigger is a compound statement.

Permissions

Side effects

See also

Standards and
compatibility

Example

BEGIN statement

250

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35),
OUT TopValue INT)
BEGIN

DECLARE err_notfound EXCEPTION FOR
SQLSTATE ’02000’;

DECLARE curThisCust CURSOR FOR
SELECT company_name, CAST(

sum(sales_order_items.quantity *
product.unit_price) AS INTEGER) VALUE

FROM customer
LEFT OUTER JOIN sales_order
LEFT OUTER JOIN sales_order_items
LEFT OUTER JOIN product

GROUP BY company_name;
DECLARE ThisValue INT;
DECLARE ThisCompany CHAR(35);

SET TopValue = 0;
OPEN curThisCust;

CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue;

IF SQLSTATE = err_notfound THEN
LEAVE CustomerLoop;

END IF;
IF ThisValue > TopValue THEN

SET TopValue = ThisValue;
SET TopCompany = ThisCompany;

END IF;
END LOOP CustomerLoop;

CLOSE curThisCust;
END

Chapter 4 SQL Statements

251

BEGIN TRANSACTION statement
Use this statement to begin a user-defined transaction.

BEGIN TRAN[SACTION] [transaction-name]

The optional parameter transaction-name is the name assigned to this
transaction. It must be a valid identifier. Use transaction names only on the
outermost pair of nested BEGIN/COMMIT or BEGIN/ROLLBACK
statements.

When executed inside a transaction, the BEGIN TRANSACTION statement
increases the nesting level of transactions by one. The nesting level is
decreased by a COMMIT statement. When transactions are nested, only the
outermost COMMIT makes the changes to the database permanent.

Both Adaptive Server Enterprise and Adaptive Server Anywhere have two
transaction modes.

The default Adaptive Server Enterprise transaction mode, called unchained
mode, commits each statement individually, unless an explicit BEGIN
TRANSACTION statement is executed to start a transaction. In contrast, the
ISO SQL/92 compatible chained mode only commits a transaction when an
explicit COMMIT is executed or when a statement that carries out an
autocommit (such as data definition statements) is executed.

You can control the mode by setting the CHAINED database option. The
default setting for ODBC and embedded SQL connections in Adaptive
Server Anywhere is ON, in which case Adaptive Server Anywhere runs in
chained mode. (ODBC users should also check the AutoCommit ODBC
setting). The default for TDS connections is OFF.

In unchained mode, a transaction is implicitly started before any data
retrieval or modification statement. These statements include: DELETE,
INSERT, OPEN, FETCH, SELECT, and UPDATE. You must still explicitly
end the transaction with a COMMIT or ROLLBACK statement.

You cannot alter the CHAINED option within a transaction.

Caution
When calling a stored procedure, you should ensure that it operates
correctly under the required transaction mode.

$ For more information, see "CHAINED option" on page 557 of the book
ASA Database Administration Guide.

Description

Syntax

Usage

BEGIN TRANSACTION statement

252

The current nesting level is held in the global variable @@trancount. The
@@trancount variable has a value of zero before the first BEGIN
TRANSACTION statement is executed, and only a COMMIT executed
when @@trancount is equal to one makes changes to the database
permanent.

A ROLLBACK statement without a transaction or savepoint name always
rolls back statements to the outermost BEGIN TRANSACTION (explicit or
implicit) statement, and cancels the entire transaction.

None.

None.

"COMMIT statement" on page 265
"ISOLATION_LEVEL option" on page 571 of the book ASA Database

Administration Guide
"ROLLBACK statement" on page 522
"SAVEPOINT statement" on page 525

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Adaptive Server Enterprise.

The following batch reports successive values of @@trancount as 0, 1, 2, 1,
and 0. The values are printed on the server window.

PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
COMMIT
PRINT @@trancount
COMMIT
PRINT @@trancount

You should not rely on the value of@@trancount for more than keeping
track of the number of explicit BEGIN TRANSACTION statements that
have been issued.

When Adaptive Server Enterprise starts a transaction implicitly, the
@@trancount variable is set to 1. Adaptive Server Anywhere does not set the
@@trancount value to 1 when a transaction is started implicitly.
Consequently, the Adaptive Server Anywhere @@trancount variable has a
value of zero before any BEGIN TRANSACTION statement (even though
there is a current transaction), while in Adaptive Server Enterprise (in
chained mode) it has a value of 1.

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

253

For transactions starting with a BEGIN TRANSACTION statement,
@@trancount has a value of 1 in both Adaptive Server Anywhere and
Adaptive Server Enterprise after the first BEGIN TRANSACTION
statement. If a transaction is implicitly started with a different statement, and
a BEGIN TRANSACTION statement is then executed, @@trancount has a
value of 1 in Adaptive Server Anywhere, and a value of 2 in Adaptive Server
Enterprise after the BEGIN TRANSACTION statement.

CALL statement

254

CALL statement
Use this statement to invoke a procedure.

[variable =] CALL procedure-name ([expression, …])

[variable =] CALL procedure-name ([parameter-name = expression, …])

The CALL statement invokes a procedure that has been previously created
with a CREATE PROCEDURE statement. When the procedure completes,
any INOUT or OUT parameter values will be copied back.

The argument list can be specified by position or by using keyword format.
By position, the arguments will match up with the corresponding parameter
in the parameter list for the procedure. By keyword, the arguments are
matched up with the named parameters.

Procedure arguments can be assigned default values in the CREATE
PROCEDURE statement, and missing parameters are assigned the default
value or. If no default is set, and an argument is not provided, an error is
given.

Inside a procedure, a CALL statement can be used in a DECLARE statement
when the procedure returns result sets (see "Returning results from
procedures" on page 539 of the book ASA SQL User’s Guide).

Procedures can return an integer value (as a status indicator, say) using the
RETURN statement. You can save this return value in a variable using the
equality sign as an assignment operator:

CREATE VARIABLE returnval INT;
returnval = CALL proc_integer (arg1 = val1, ...)

$ For information on returning non-integer values, see "CREATE
FUNCTION statement" on page 296.

Must be the owner of the procedure, have EXECUTE permission for the
procedure, or have DBA authority.

None.

"CREATE PROCEDURE statement" on page 305
"GRANT statement" on page 443
"EXECUTE statement [T-SQL]" on page 418
"Using Procedures, Triggers, and Batches" on page 507 of the book ASA

SQL User’s Guide

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

Description

Syntax 1

Syntax 2

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

255

♦ Sybase Not supported by Adaptive Server Enterprise. For an
alternative that is supported, see "EXECUTE statement [T-SQL]" on
page 418.

Call the sp_customer_list procedure. This procedure has no parameters, and
returns a result set.

CALL sp_customer_list()

The following Interactive SQL example creates a procedure to return the
number of orders placed by the customer whose ID is supplied, creates a
variable to hold the result, calls the procedure, and displays the result.

CREATE PROCEDURE OrderCount (IN customer_ID INT, OUT
Orders INT)
BEGIN

SELECT COUNT("DBA".sales_order.id)
INTO Orders
FROM "DBA".customer
KEY LEFT OUTER JOIN "DBA".sales_order
WHERE "DBA".customer.id = customer_ID;

END
go

 -- Create a variable to hold the result
CREATE VARIABLE Orders INT
go

-- Call the procedure, FOR customer 101
CALL OrderCount (101, Orders)
go

-- Display the result
SELECT Orders FROM DUMMY
go

Example

CASE statement

256

CASE statement
Use this statement to select an execution path based on multiple cases.

CASE value-expression
WHEN [constant | NULL] THEN statement-list …
[WHEN [constant | NULL] THEN statement-list] …
[ELSE statement-list]
END CASE

CASE
WHEN [search-condition | NULL] THEN statement-list …
[WHEN [search-condition | NULL] THEN statement-list] …
[ELSE statement-list]
END CASE

Syntax 1 The CASE statement is a control statement that allows you to
choose a list of SQL statements to execute based on the value of an
expression. The value-expression is an expression that takes on a single
value, which may be a string, a number, a date, or other SQL data type. If a
WHEN clause exists for the value of value-expression, the statement-list in
the WHEN clause is executed. If no appropriate WHEN clause exists, and an
ELSE clause exists, the statement-list in the ELSE clause is executed.
Execution resumes at the first statement after the END CASE.

If the value-expression can be null, use the ISNULL function to replace the
NULL value-expression with a different expression.

$ For more information about the ISNULL function, see "ISNULL
function" on page 146.

Syntax 2 With this form, the statements are executed for the first satisfied
search-condition in the CASE statement. The ELSE clause is executed if
none of the search-conditions are met.

If the expression can be NULL, use the following syntax for the first
search-condition:

WHEN search-condition IS NULL THEN statement-list

$ For more information about NULL values, see "Unknown Values:
NULL" on page 202 of the book ASA SQL User’s Guide.

Description

Syntax 1

Syntax 2

Usage

Chapter 4 SQL Statements

257

CASE statement is different from CASE expression
Do not confuse the syntax of the CASE statement with that of the CASE
expression.

$ For information on the CASE expression, see "CASE expressions"
on page 18.

None.

None.

"BEGIN statement" on page 248
"Using Procedures, Triggers, and Batches" on page 507 of the book ASA

SQL User’s Guide

♦ SQL/92 Persistent Stored Module feature. Adaptive Server Anywhere
supports the CASE statement allowing WHEN NULL. This is a vendor
extension to the SQL/92 standard.

♦ SQL/99 Persistent Stored Module feature. Adaptive Server Anywhere
supports the CASE statement allowing WHEN NULL. This is a vendor
extension to the SQL/92 standard.

♦ Sybase Not supported by Adaptive Server Enterprise.

The following procedure using a case statement classifies the products listed
in the product table of the sample database into one of shirt, hat, shorts, or
unknown.

CREATE PROCEDURE ProductType (IN product_id INT, OUT
type CHAR(10))
BEGIN

DECLARE prod_name CHAR(20);
SELECT name INTO prod_name FROM "DBA"."product"
WHERE id = product_id;
CASE prod_name
WHEN ’Tee Shirt’ THEN

SET type = ’Shirt’
WHEN ’Sweatshirt’ THEN

SET type = ’Shirt’
WHEN ’Baseball Cap’ THEN

SET type = ’Hat’
WHEN ’Visor’ THEN

SET type = ’Hat’
WHEN ’Shorts’ THEN

SET type = ’Shorts’
ELSE

SET type = ’UNKNOWN’
END CASE;

END

Permissions

Side effects

See also

Standards and
compatibility

Example

CASE statement

258

The following example uses Syntax 2 to generate a message about product
quantity within the sample database.

CREATE PROCEDURE StockLevel (IN product_id INT)
BEGIN

DECLARE qty INT;
SELECT quantity INTO qty FROM product
WHERE id = product_id;
CASE
WHEN qty < 30 THEN

MESSAGE ’Order Stock’ TO CLIENT;
WHEN qty > 100 THEN

MESSAGE ’Overstocked’ TO CLIENT;
ELSE

MESSAGE ’Sufficient stock on hand’ TO CLIENT;
END CASE;

END

Chapter 4 SQL Statements

259

CHECKPOINT statement
Use this statement to checkpoint the database.

CHECKPOINT

The CHECKPOINT statement forces the database server to execute a
checkpoint. Checkpoints are also performed automatically by the database
server according to an internal algorithm. It is not normally required for
applications issue the CHECKPOINT statement.

$ For a full description of checkpoints, see "Backup and Data Recovery"
on page 299 of the book ASA Database Administration Guide.

DBA authority is required to checkpoint the network database server.

No permissions are required to checkpoint the personal database server.

None.

"CHECKPOINT_TIME option" on page 557 of the book ASA Database
Administration Guide

"RECOVERY_TIME option" on page 595 of the book ASA Database
Administration Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Adaptive Server Enterprise.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

CLEAR statement [Interactive SQL]

260

CLEAR statement [Interactive SQL]
Use this statement to clear the Interactive SQL panes.

CLEAR

The CLEAR statement is used to clear the SQL Statements pane, the
Messages pane and the Results, Messages, Plan, and UltraLite Plan tabs in
the Results pane.

None.

Closes the cursor associated with the data being cleared.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable

Description

Syntax

Usage

Permissions

Side effects

Standards and
compatibility

Chapter 4 SQL Statements

261

CLOSE statement [ESQL] [SP]
Use this statement to close a cursor.

CLOSE cursor-name

cursor-name : identifier | hostvar

This statement closes the named cursor.

The cursor must have been previously opened.

None.

"OPEN statement [ESQL] [SP]" on page 485
"DECLARE CURSOR statement [ESQL] [SP]" on page 379
"PREPARE statement [ESQL]" on page 495

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Adaptive Server Enterprise.

The following examples close cursors in embedded SQL.

EXEC SQL CLOSE employee_cursor;

EXEC SQL CLOSE :cursor_var;

The following procedure uses a cursor.

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35),
OUT TopValue INT)
BEGIN

DECLARE err_notfound EXCEPTION
FOR SQLSTATE ’02000’;

DECLARE curThisCust CURSOR FOR
SELECT company_name, CAST(
sum(sales_order_items.quantity *
product.unit_price) AS INTEGER) VALUE
FROM customer
LEFT OUTER JOIN sales_order
LEFT OUTER JOIN sales_order_items
LEFT OUTER JOIN product
GROUP BY company_name;

DECLARE ThisValue INT;
DECLARE ThisCompany CHAR(35);
SET TopValue = 0;
OPEN curThisCust;

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

CLOSE statement [ESQL] [SP]

262

CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue;

IF SQLSTATE = err_notfound THEN
LEAVE CustomerLoop;

END IF;
IF ThisValue > TopValue THEN

SET TopValue = ThisValue;
SET TopCompany = ThisCompany;

END IF;
END LOOP CustomerLoop;

CLOSE curThisCust;
END

Chapter 4 SQL Statements

263

COMMENT statement
Use this statement to store a comment in the system tables for a database
object.

COMMENT ON
{

 COLUMN [owner.]table-name.column-name
| EVENT event-name
| FOREIGN KEY [owner.]table-name.role-name
| INDEX [[owner.] table.]index-name
| JAVA CLASS java-class-name
| JAVA JAR java-jar-name
| LOGIN integrated_login_id
| PROCEDURE [owner.]procedure-name
| TABLE [owner.]table-name
| TRIGGER [[owner.]tablename.]trigger-name
| USER userid
| VIEW [owner.]view-name

}
IS comment

comment : string | NULL

Several system tables have a column named Remarks that allows you to
associate a comment with a database item (SYSUSERPERM, SYSTABLE,
SYSCOLUMN, SYSINDEX, SYSLOGIN, SYSFOREIGNKEY,
SYSPROCEDURE, SYSTRIGGER). The COMMENT ON statement allows
you to set the Remarks column in these system tables. A comment can be
removed by setting it to NULL.

For a comment on an index or trigger, the owner of the comment is the
owner of the table on which the index or trigger is defined.

Must either be the owner of the database object being commented, or have
DBA authority.

Automatic commit.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

The following examples show how to add and remove a comment.

Add a comment to the employee table.

COMMENT
ON TABLE employee
IS ’Employee information’

Description

Syntax

Usage

Permissions

Side effects

Standards and
compatibility

Example

COMMENT statement

264

Remove the comment from the employee table.

COMMENT
ON TABLE employee
IS NULL

Chapter 4 SQL Statements

265

COMMIT statement
Use this statement to make changes to the database permanent, or to
terminate a user-defined transaction.

COMMIT [WORK]

COMMIT TRAN[SACTION] [transaction-name]

transaction-name An optional name assigned to this transaction. It must
be a valid identifier. You should use transaction names only on the outermost
pair of nested BEGIN/COMMIT or BEGIN/ROLLBACK statements.

$ For more information on transaction nesting in Adaptive Server
Enterprise and Adaptive Server Anywhere, see "BEGIN TRANSACTION
statement" on page 251. For more information on savepoints, see
"SAVEPOINT statement" on page 525.

You can use a set of options to control the detailed behavior of the COMMIT
statement. For information, see "COOPERATIVE_COMMIT_TIMEOUT
option" on page 561 of the book ASA Database Administration Guide,
"COOPERATIVE_COMMITS option" on page 561 of the book ASA
Database Administration Guide, "DELAYED_COMMITS option" on
page 565 of the book ASA Database Administration Guide, and
"DELAYED_COMMIT_TIMEOUT option" on page 564 of the book ASA
Database Administration Guide. You can use the Commit connection
property to return the number of Commits on the current connection.

Syntax 1 The COMMIT statement ends a transaction and makes all
changes made during this transaction permanent in the database.

Data definition statements all carry out a commit automatically. For
information, see the Side effects listing for each SQL statement.

The COMMIT statement fails if the database server detects any invalid
foreign keys. This makes it impossible to end a transaction with any invalid
foreign keys. Usually, foreign key integrity is checked on each data
manipulation operation. However, if the database option
WAIT_FOR_COMMIT is set ON or a particular foreign key was defined
with a CHECK ON COMMIT clause, the database server delays integrity
checking until the COMMIT statement is executed.

Description

Syntax 1

Syntax 2

Parameters

Usage

COMMIT statement

266

Syntax 2 You can use BEGIN TRANSACTION and COMMIT
TRANSACTION statements in pairs to construct nested transactions. Nested
transactions are similar to savepoints. When executed as the outermost of a
set of nested transactions, the statement makes changes to the database
permanent. When executed inside a transaction, the COMMIT
TRANSACTION statement decreases the nesting level of transactions by
one. When transactions are nested, only the outermost COMMIT makes the
changes to the database permanent.

None.

Closes all cursors except those opened WITH HOLD.

Deletes all rows of declared temporary tables on this connection, unless they
were declared using ON COMMIT PRESERVE ROWS..

"BEGIN TRANSACTION statement" on page 251
"PREPARE TO COMMIT statement" on page 497
"ROLLBACK statement" on page 522

♦ SQL/92 Syntax 1 is an entry-level feature. Syntax 2 is a Transact-SQL
extension.

♦ SQL/99 Syntax 1 is a core feature. Syntax 2 is a Transact-SQL
extension.

♦ Sybase Supported by Adaptive Server Enterprise.

The following statement commits the current transaction:

COMMIT

The following Transact-SQL batch reports successive values of
@@trancount as 0, 1, 2, 1, 0.

PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
go

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

267

CONFIGURE statement [Interactive SQL]
Use this statement to open the Interactive SQL Options dialog.

CONFIGURE

The CONFIGURE statement activates the Interactive SQL Options dialog.
This window displays the current settings of all Interactive SQL options. It
does not display or allow you to modify database options.

You can configure Interactive SQL settings in this dialog. If you select Make
Permanent, the options are written to the SYSOPTION table in the database
and the database server performs an automatic COMMIT. If you do not
choose Make Permanent, and instead click OK, the options are set
temporarily and remain in effect for the current database connection only.

None.

None.

"SET OPTION statement" on page 539

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

CONNECT statement [ESQL] [Interactive SQL]

268

CONNECT statement [ESQL] [Interactive SQL]
Use this statement to establish a connection to a database.

CONNECT
[TO engine-name]
[DATABASE database-name]
[AS connection-name]
[USER] userid IDENTIFIED BY password

engine-name, database-name, connection-name, userid, password :
{ identifier | string | hostvar }

CONNECT USING connect-string

connect-string : { identifier | string | hostvar }

AS clause A connection can optionally be named by specifying the AS
clause. This allows multiple connections to the same database, or multiple
connections to the same or different database servers, all simultaneously.
Each connection has its own associated transaction. You may even get
locking conflicts between your transactions if, for example, you try to
modify the same record in the same database from two different connections.

Syntax 2 A connect-string is a list of parameter settings of the form
keyword=value, and must be enclosed in single quotes.

$ For more information on connection strings, see "Connection
parameters" on page 70 of the book ASA Database Administration Guide.

The CONNECT statement establishes a connection to the database identified
by database-name running on the server identified by engine-name.

Embedded SQL behavior In Embedded SQL, if no engine-name is
specified, the default local database server will be assumed (the first database
server started). If no database-name is specified, the first database on the
given server will be assumed.

The WHENEVER statement, SET SQLCA and some DECLARE statements
do not generate code and thus may appear before the CONNECT statement
in the source file. Otherwise, no statements are allowed until a successful
CONNECT statement has been executed.

The user ID and password are used for permission checks on all dynamic
SQL statements.

You can connect without explicitly specifying a password by using a host
variable for the password and setting the value of the host variable to be the
null pointer.

Description

Syntax 1

Syntax 2

Parameters

Usage

Chapter 4 SQL Statements

269

If you are connected to a user ID with DBA authority, you can connect to
another user ID without specifying a password. (The output of dbtran
requires this capability.)

$ For a detailed description of the connection algorithm, see
"Troubleshooting connections" on page 73 of the book ASA Database
Administration Guide.

Interactive SQL behavior If no database or server is specified in the
CONNECT statement, Interactive SQL remains connected to the current
database, rather than to the default server and database. If a database name is
specified without a server name, Interactive SQL attempts to connect to the
specified database on the current server. If a server name is specified without
a database name, Interactive SQL connects to the default database on the
specified server.

For example, if the following batch is executed while connected to a
database, the two tables are created in the same database.

CREATE TABLE t1(c1 int)
go

CONNECT DBA IDENTIFIED BY SQL
go

CREATE TABLE t2 (c1 int)
go

No other database statements are allowed until a successful CONNECT
statement has been executed.

In the user interface, if the password or the user ID and password are not
specified, the user is prompted to type the missing information.

In Interactive SQL running in command prompt mode or batch mode, if you
execute CONNECT without an AS clause, an unnamed connection is
opened. If there is another unnamed connection already opened, the old one
is automatically closed. Otherwise, existing connections are not closed when
you run CONNECT.

Multiple connections are managed through the concept of a current
connection. After a successful connect statement, the new connection
becomes the current one. To switch to a different connection, use the
SET CONNECTION statement. The DISCONNECT statement is used to
drop connections.

In Interactive SQL, the connection information (including the database name,
your user ID, and the database server) appears in the title bar above the SQL
Statements pane. If you are not connected to a database, Not Connected
appears in the title bar.

None.Permissions

CONNECT statement [ESQL] [Interactive SQL]

270

None.

"GRANT statement" on page 443
"DISCONNECT statement [ESQL] [Interactive SQL]" on page 396
"SET CONNECTION statement [Interactive SQL] [ESQL]" on page 536
"SETUSER statement" on page 546
"Connection parameters" on page 164 of the book ASA Database

Administration Guide

♦ SQL/92 Syntax 1 is a full SQL feature. Syntax 2 is a vendor extension.

♦ SQL/99 Syntax 1 is a SQL/foundation feature outside of core SQL.
Syntax 2 is a vendor extension.

♦ Sybase Open Client Embedded SQL supports a different syntax for
the CONNECT statement.

The following are examples of CONNECT usage within Embedded SQL.

EXEC SQL CONNECT AS :conn_name
USER :userid IDENTIFIED BY :password;

EXEC SQL CONNECT USER "DBA" IDENTIFIED BY "SQL";

Connect to a database from Interactive SQL. Interactive SQL prompts for a
user ID and a password.

CONNECT

Connect to the default database as DBA from Interactive SQL.
Interactive SQL prompts for a password.

CONNECT USER "DBA"

Connect to the sample database as the DBA from Interactive SQL.

CONNECT
TO asademo
USER DBA
IDENTIFIED BY SQL

Connect to the sample database using a connect string, from Interactive SQL.

CONNECT
USING ’UID=DBA;PWD=SQL;DBN=asademo’

Once you connect to the sample database, the database name, your user ID,
and the server name appear on the title bar: asademo (DBA) on asademo.

Side effects

See also

Standards and
compatibility

Examples

Chapter 4 SQL Statements

271

CREATE COMPRESSED DATABASE statement
Use this statement to create a compressed database from an existing database
file, or to expand a compressed database.

CREATE [COMPRESSED | EXPANDED] DATABASE new-db-file-name
FROM old-db-file-name [KEY key]

Creates a compressed database file from an uncompressed database file, or
an uncompressed database file from a compressed one.

Any relative path is resolved relative to the current working directory of the
server.

You cannot use this statement on files other than the main database file.

♦ The permissions required to execute this statement are set on the server
command line, using the -gu option. The default setting is to require
DBA authority.

♦ The operating system account under which the server is running must
have write permissions on the directories where files are created.

♦ The old database file must not be currently running.

♦ Not supported on Windows CE.

♦ You must specify a key if you want to create a compressed database for
a strongly encrypted database.

An operating system file is created.

"The Compression utility" on page 448 of the book ASA Database
Administration Guide

"The Uncompression utility" on page 511 of the book ASA Database
Administration Guide

"Encryption Key connection parameter" on page 179 of the book ASA
Database Administration Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

The following statement creates a compressed database file named
compress.db in the C:\ directory from a database file named full.db in the
current working directory of the server.

CREATE COMPRESSED DATABASE ’C:\\compress.db’
FROM ’full.db’

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

CREATE COMPRESSED DATABASE statement

272

The following statement creates an uncompressed database file named full.db
in the C:\ directory from a compressed database file named compress.db in
the current working directory of the server.

CREATE EXPANDED DATABASE ’C:\\full.db’
FROM ’compress.db’

Chapter 4 SQL Statements

273

CREATE DATABASE statement
Use this statement to create a database. The database is stored as an
operating-system file.

CREATE DATABASE db-file-name
 [[TRANSACTION] { LOG OFF | LOG ON } [log-file-name-string]
 [MIRROR mirror-file-name-string]]
[CASE { RESPECT | IGNORE }]
[PAGE SIZE page-size]
[COLLATION collation-label]
[ENCRYPTED { ON | OFF | key-spec }]
[BLANK PADDING { ON | OFF }]
[ASE [COMPATIBLE]]
[JAVA { ON | OFF | JDK { ’1.1.8’ | ’1.3’ } }]
[JCONNECT { ON | OFF }]
]

page-size :
1024 | 2048 | 4096 | 8192 | 16384 | 32768

collation-label : string

key-spec:
[ON] KEY key [ALGORITHM { ’AES’ | ’MDSR’ }]

File name The file names (db-file-name-string, log-file-name-string,
mirror-file-name-string) are strings containing operating system file names.
As literal strings, they must be enclosed in single quotes.

♦ If you specify a path, any backslash characters (\) must be doubled if
they are followed by an n or an x. Escaping them prevents them being
interpreted as new line characters (\n) or as hexadecimal numbers (\x),
according to the rules for strings in SQL.

It is safer to always escape the backslash character. For example,

CREATE DATABASE ’c:\\sybase\\my_db.db’
LOG ON ’e:\\logdrive\\my_db.log’

♦ If you specify no path, or a relative path, the database file is created
relative to the working directory of the server. If you specify no path for
a log file, the file is created in the same directory as the database file.

♦ If you provide no file extension, a file is created with extension .db for
databases, .log for the transaction log, or .mlg for the mirror log.

Description

Syntax

Parameters

CREATE DATABASE statement

274

TRANSACTION LOG clause The transaction log is a file where the
database server logs all changes made to the database. The transaction log
plays a key role in backup and recovery (see "The transaction log" on
page 305 of the book ASA Database Administration Guide), and in data
replication.

MIRROR clause A transaction log mirror is an identical copy of a
transaction log, usually maintained on a separate device, for greater
protection of your data. By default, Adaptive Server Anywhere does not use
a mirrored transaction log. If you do wish to use a transaction log mirror, this
option allows you to provide a filename.

CASE clause For databases created with CASE RESPECT, all values are
case sensitive in comparisons and string operations.

This option is provided for compatibility with the ISO/ANSI SQL standard.
The default value for the option is CASE IGNORE; that is, all comparisons
are case insensitive. If you create a case-sensitive database, all passwords are
case sensitive. User IDs and other identifiers in the database are case
insensitive, even in case sensitive databases.

PAGE SIZE clause The page size for a database can be 1024, 2048, 4096,
8192, 16384, or 32768 bytes. The default page size is 2048 bytes. Large
databases generally obtain performance benefits from a larger page size, but
there can be additional overhead associated with large page sizes.

$ For more information, see "Information utility options" on page 463 of
the book ASA Database Administration Guide.

For example,

CREATE DATABASE ’c:\\sybase\\my_db.db’
PAGE SIZE 4096

Page size limit
The page size cannot be larger than the page size used by the current
server. The server page size is taken from the first set of databases started
or is set on the server command line using the -gp option.

COLLATION clause The collation sequence used for all string
comparisons in the database.

$ For more information on collation sequences, see "International
Languages and Character Sets" on page 249 of the book ASA Database
Administration Guide.

ENCRYPTED clause Encryption makes the data stored in your physical
database file unreadable. There are two levels of encryption:

Chapter 4 SQL Statements

275

Simple encryption is equivalent to obfuscation. The data is unreadable, but
someone with cryptographic expertise could decipher the data. Simple
encryption is achieved by specifying the ENCRYPTED clause with no KEY
clause.

Strong encryption is achieved through the use of a 128-bit algorithm and a
security key. The data is unreadable and virtually undecipherable without the
key. To create a strongly encrypted database, specify the ENCRYPTED
clause with the KEY clause. As with most passwords, it is best to choose a
KEY value that cannot be easily guessed. We recommend that you choose a
value for your KEY that is at least 16 characters long, contains a mix of
upper and lower case, and includes numbers, letters and special characters.

You will require this key each time you want to start the database.

Using the ALGORITHM clause in conjunction with the ENCRYPTED and
KEY clauses lets you specify the encryption algorithm. You can choose
either AES or MDSR. If the ENCRYPTED clause is used but no algorithm is
specified, the default is AES.

Caution
Protect your KEY! Be sure to store a copy of your key in a safe location. A
lost KEY will result in a completely inaccessible database, from which
there is no recovery.

BLANK PADDING clause If you specify BLANK PADDING ON,
trailing blanks are ignored in comparisons. For example, the two strings

’Smith’

’Smith ’

would be treated as equal in a database created with BLANK PADDING
ON.

This option is provided for compatibility with the ISO/ANSI SQL standard,
which is to ignore trailing blanks in comparisons. The default is that blanks
are significant for comparisons (BLANK PADDING OFF).

ASE COMPATIBLE clause Do not create the SYS.SYSCOLUMNS and
SYS.SYSINDEXES views. By default, these views are created for
compatibility with system tables available in Watcom SQL (versions 4 and
earlier of this software). These views conflict with the Sybase Adaptive
Server Enterprise compatibility views dbo.syscolumns and dbo.sysindexes.

CREATE DATABASE statement

276

JCONNECT clause If you wish to use the Sybase jConnect JDBC driver
to access system catalog information, you need to install jConnect support.
Specify JCONNECT OFF if you wish to exclude the jConnect system
objects. You can still use JDBC, as long as you do not access system
information.

JAVA clause The default behavior is JAVA OFF.

To use Java in your database, you must install entries for the Sybase runtime
Java classes into the system tables. Specifying JAVA JDK ’1.1.8’or JAVA
JDK ’1.3’ explicitly installs entries for the named version of the JDK. For
JDK 1.1.8 the classes are held java\1.1\classes.zip under your
SQL Anywhere directory. For JDK 1.3, they are held in java\1.3\rt.jar. The
default classes are the JDK 1.3 classes.

Java in the database is a separately licensable component. For more
information, see "Introduction to Java in the Database" on page 49 of the
book ASA Programming Guide.

Creates a database file with the supplied name and attributes.

The permissions required to execute this statement are set on the server
command line, using the -gu option. The default setting is to require DBA
authority.

The account under which the server is running must have write permissions
on the directories where files are created.

Not supported on Windows CE.

An operating system file is created.

"ALTER DATABASE statement" on page 205
"DROP DATABASE statement" on page 399
"The Initialization utility" on page 465 of the book ASA Database

Administration Guide
"Encryption Key connection parameter" on page 179 of the book ASA

Database Administration Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Enterprise provides a CREATE DATABASE
statement, but with different options.

The following statement creates a database file named mydb.db in the C:\
directory.

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

277

CREATE DATABASE ’C:\\mydb’
TRANSACTION LOG ON
CASE IGNORE
PAGE SIZE 1024
COLLATION ’437’
ENCRYPTED OFF
BLANK PADDING OFF
JAVA JDK ’1.3’
JCONNECT OFF

The following statement creates a database with no Sybase runtime Java
classes. All database operations will execute normally, except for those
involving Java classes or objects.

CREATE DATABASE ’C:\\nojava’
JAVA OFF

CREATE DBSPACE statement

278

CREATE DBSPACE statement
Use this statement to define a new database space and create the associated
database file.

CREATE DBSPACE dbspace-name AS filename

dbspace-name An internal name for the database file. The filename
parameter is the actual name of the database file, with a path where
necessary.

filename A filename without an explicit directory is created in the same
directory as the main database file. Any relative directory is relative to the
main database file. The filename is relative to the database server. When you
are using the database server for NetWare, the filename should use a volume
name (not a drive letter) when an absolute directory is specified.

The CREATE DBSPACE statement creates a new database file. When a
database is created, it is composed of one file. All tables and indexes created
are placed in that file. CREATE DBSPACE adds a new file to the database.
This file can be on a different disk drive than the main file, which means that
the database can be larger than one physical device.

For each database, there is a limit of twelve dbspaces in addition to the main
file.

Each table is contained entirely within one database file. The IN clause of the
CREATE TABLE statement specifies the dbspace into which a table is
placed. Tables are put into the main database file by default.

Must have DBA authority.

Automatic commit. Automatic checkpoint.

"DROP statement" on page 397
"Using additional dbspaces" on page 220 of the book ASA Database

Administration Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Create a dbspace called library to hold the LibraryBooks table and its indexes.

CREATE DBSPACE library
AS ’e:\\dbfiles\\library.db’;

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

279

CREATE TABLE LibraryBooks (
 title char(100),
 author char(50),
 isbn char(30),
) IN library;

CREATE DECRYPTED FILE statement

280

CREATE DECRYPTED FILE statement
This statement decrypts strongly encrypted databases.

CREATE DECRYPTED FILE newfile
FROM oldfile
KEY key

FROM Lists the filename of the encrypted file.

KEY Lists the key required to access the encrypted file.

This statement decrypts an encrypted database, transaction log file, or
dbspace and creates a new, unencrypted file. The original file must be
strongly encrypted using an encryption key. The resulting file is an exact
copy of the encrypted file, without encryption and therefore requiring no
encryption key.

If a database is decrypted using this statement, the corresponding transaction
log file (and any dbspaces) must also be decrypted in order to use the
database.

If a database requiring recovery is decrypted, its transaction log file must
also be decrypted and recovery on the new database will still be necessary.

The name of the transaction log file remains the same in this process, so if
the database and transaction log file are renamed, then you need to run dblog
-t on the resulting database.

If you want to encrypt an existing database, you need to either use the
CREATE ENCRYPTED FILE statement, or unload and reload the database
using the -an option with either -ek or -ep. You can also use this method to
change an existing encryption key.

Must be a user with DBA authority.

None.

The following example decrypts the contacts database and creates a new
unencrypted database called contacts2.

CREATE DECRYPTED FILE ’contacts2.db’
FROM ’contacts.db’
KEY ’Sd8f6654*Mnn’

Description

Syntax

Parameters

Usage

Permissions

Side effects

Example

Chapter 4 SQL Statements

281

CREATE ENCRYPTED FILE statement
This statement encrypts strongly encrypted databases, transaction log files, or
dbspaces.

CREATE ENCRYPTED FILE newfile
FROM oldfile
KEY key
ALGORITHM algorithm

FROM Lists the filename of the unencrypted file.

KEY Lists the key assigned to the encrypted file.

ALGORITHM Can be either AES (default) or MDSR. MDSR is only
supported on Win32 platforms.

This statement takes an unencrypted database, transaction log file or dbspace
and creates a new encrypted file. The original file must not be encrypted. The
resulting file is an exact copy of the original file,except that it is encrypted
using the specified algorithm and key.

If a database is encrypted using this statement, the corresponding transaction
log file (and any dbspaces) must also be encrypted with the same algorithm
and key in order to use the database. You cannot mix encrypted and
unencrypted files, nor can you mix encrypted files with different encryption
algorithms or different keys.

If a database requiring recovery is encrypted, its transaction log file must
also be encrypted and recovery on the new database will still be necessary.

The name of the transaction log file remains the same in this process, so if
the database and transaction log file are renamed, then you need to run dblog
-t on the resulting database.

You can encrypt an existing database or change an existing encryption key
by unloading and reloading the database using the -an option with either -ek
or -ep. You can also use the CREATE ENCRYPTED FILE statement in
conjunction with the CREATE DECRYPTED FILE statement to change an
encryption key.

Must be a user with DBA authority.

None.

The following example decrypts the contacts database and creates a new
unencrypted database called contacts2.

Description

Syntax

Parameters

Usage

Permissions

Side effects

Example 1

CREATE ENCRYPTED FILE statement

282

CREATE ENCRYPTED FILE ’contacts2.db’
FROM ’contacts.db’
KEY ’Sd8f6654*Mnn’

The following example encrypts the contacts database and the contacts log
file, renaming the both files. You will need to run dblog -ek abcd -t
contacts2.log contacts.db, since the log has been renamed and the
database file still points at the old log.

CREATE ENCRYPTED FILE ’contacts2.db’
FROM ’contacts.db’
KEY ’Sd8f6654*Mnn’
CREATE ENCRYPTED FILE ’contacts2.log’
FROM ’contacts.db’
KEY ’Te9g7765*Noo’

The following example encrypts the contacts database and the contacts log
file, leaving the original log file name untouched. In this case, you do not
need to run dblog, since the name of the file remains the same.

CREATE ENCRYPTED FILE ’newpath\contacts.db’
FROM ’contacts.db’
KEY ’Sd8f6654*Mnn’
CREATE ENCRYPTED FILE ’newpath\contacts.log’
FROM ’contacts.log’
KEY ’Sd8f6654*Mnn’

The following example changes the encryption key of the contacts database.

CREATE DECRYPTED FILE ’temp.db’
FROM ’contacts.db’
KEY ’oldkey’
del contacts.db
CREATE ENCRYPTED FILE ’contacts.db’
FROM ’temp.db’
KEY ’newkey’
del temp.db

Example 2

Example 3

Example 4

Chapter 4 SQL Statements

283

CREATE DOMAIN statement
Use this statement to create a domain in a database.

CREATE { DOMAIN | DATATYPE } [AS] domain-name data-type
[[NOT] NULL]
[DEFAULT default-value]
[CHECK (condition)]

domain-name : identifier

data-type : built-in data type, with precision and scale

DOMAIN | DATATYPE It is recommended that you use CREATE
DOMAIN, rather than CREATE DATATYPE because CREATE DOMAIN
is the ANSI/ISO SQL3 term.

NULL By default, domains allow NULLs unless the
allow_nulls_by_default option is set to OFF. In this case, new domains by
default do not allow NULLs. The nullability of a column created on a
domain depends on the setting of the definition of the domain, not on the
setting of the allow_nulls_by_default option when the column is referenced.
Any explicit setting of NULL or NOT NULL in the column definition
overrides the domain setting.

CHECK clause When creating a CHECK condition, you can use a
variable name prefixed with the @ sign in the condition. When the data type
is used in the definition of a column, such a variable is replaced by the
column name. This allows CHECK conditions to be defined on data types
and used by columns of any name.

Domains are aliases for built-in data types, including precision and scale
values where applicable. They improve convenience and encourage
consistency in the database.

Domains are objects within the database. Their names must conform to the
rules for identifiers. Domain names are always case insensitive, as are
built-in data type names.

The user who creates a data type is automatically made the owner of that
data type. No owner can be specified in the CREATE DATATYPE
statement. The domain name must be unique, and all users can access the
data type without using the owner as prefix.

Domains can have CHECK conditions and DEFAULT values, and you can
indicate whether the data type permits NULL values or not. These conditions
and values are inherited by any column defined on the data type. Any
conditions or values explicitly specified on the column override those
specified for the data type.

Description

Syntax

Parameters

Usage

CREATE DOMAIN statement

284

To drop the data type from the database, use the DROP statement. You must
be either the owner of the data type or have DBA authority in order to drop a
domain.

Must have RESOURCE authority.

Automatic commit.

"DROP statement" on page 397
"SQL Data Types" on page 51

♦ SQL/92 Intermediate-level feature.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Not supported by Adaptive Server Enterprise. Transact-SQL
provides similar functionality using the sp_addtype system procedure
and the CREATE DEFAULT and CREATE RULE statements.

The following statement creates a data type named address, which holds a
35-character string, and which may be NULL.

CREATE DOMAIN address CHAR(35) NULL

The following statement creates a data type named id, which does not allow
NULLS, and which is autoincremented by default.

CREATE DOMAIN id INT
NOT NULL
DEFAULT AUTOINCREMENT

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

285

CREATE EVENT statement
Use this statement to define an event and its associated handler for
automating predefined actions. Also, to define scheduled actions.

CREATE EVENT event-name
[TYPE event-type
 [WHERE trigger-condition [AND trigger-condition] …]
 | SCHEDULE schedule-spec, …]
[ENABLE | DISABLE]
[AT { CONSOLIDATED | REMOTE | ALL }]
[HANDLER
 BEGIN
…
 END]

event-type :
 BackupEnd | "Connect"
| ConnectFailed | DatabaseStart
| DBDiskSpace | "Disconnect"
| GlobalAutoincrement | GrowDB
| GrowLog | GrowTemp
| LogDiskSpace | "RAISERROR"
| ServerIdle | TempDiskSpace

trigger-condition :
event_condition(condition-name) { = | < | > | != | <= | >= } value

schedule-spec :
[schedule-name]

{ START TIME start-time | BETWEEN start-time AND end-time }
[EVERY period { HOURS | MINUTES | SECONDS }]
[ON { (day-of-week, …) | (day-of-month, …) }]
[START DATE start-date]

event-name | schedule-name : identifier

day-of-week : string

day-of-month | value | period : integer

start-time | end-time : time

start-date : date

CREATE EVENT clause The event name is an identifier. An event has a
creator, which is the user creating the event, and the event handler executes
with the permissions of that creator. This is the same as stored procedure
execution. You cannot create events owned by other users.

TYPE clause You can specify the TYPE clause with an optional WHERE
clause; or specify the SCHEDULE.

Description

Syntax

Parameters

CREATE EVENT statement

286

The event-type is one of the listed set of system-defined event types. The
event types are case insensitive. To specify the conditions under which this
event-type triggers the event, use the WHERE clause.

♦ DiskSpace event types If the database contains an event handler for
one of the DiskSpace types, the database server checks the available
space on each device associated with the relevant file every 30 seconds.

In the event the database has more than one dbspace, on separate drives,
DBDiskSpace checks each drive and acts depending on the lowest
available space.

The LogDiskSpace event type checks the location of the transaction log
and any mirrored transaction log, and reports based on the least available
space.

Disk space event types are not supported on Windows CE or on very
early releases of Windows 95.

♦ Globalautoincrement event type This event fires when the GLOBAL
AUTOINCREMENT default value for a table is within one percent of
the end of its range. A typical action for the handler could be to request a
new value for the GLOBAL_DATABASE_ID option.

You can use the event_condition function with RemainingValues as
argument for this event type.

♦ ServerIdle event type If the database contains an event handler for the
ServerIdle type, the server checks for server activity every 30 seconds.

WHERE clause The trigger condition determines the condition under
which an event is fired. For example, to take an action when the disk
containing the transaction log becomes more than 80% full, use the
following triggering condition:

...
WHERE event_condition(’LogDiskSpacePercentFree’) < 20
...

The argument to the event_condition function must be valid for the event
type.

You can use multiple AND conditions to make up the WHERE clause, but
you cannot use OR conditions or other conditions.

$ For information on valid arguments, see "EVENT_CONDITION
function" on page 132.

SCHEDULE clause This clause specifies when scheduled actions are to
take place. The sequence of times acts as a set of triggering conditions for the
associated actions defined in the event handler.

Chapter 4 SQL Statements

287

You can create more than one schedule for a given event and its associated
handler. This permits complex schedules to be implemented. While it is
compulsory to provide a schedule-name when there is more than one
schedule, it is optional if you provide only a single schedule.

A scheduled event is recurring if its definition includes EVERY or ON; if
neither of these reserved words is used, the event will execute at most once.
An attempt to create a non-recurring scheduled event for which the start time
has passed will generate an error. When a non-recurring scheduled event has
passed, its schedule is deleted, but the event handler is not deleted.

Scheduled event times are calculated when the schedules are created, and
again when the event handler completes execution. The next event time is
computed by inspecting the schedule or schedules for the event, and finding
the next schedule time that is in the future. If an event handler is instructed to
run every hour between 9:00 and 5:00, and it takes 65 minutes to execute, it
runs at 9:00, 11:00, 1:00, 3:00, and 5:00. If you want execution to overlap,
you must create more than one event.

The subclauses of a schedule definition are as follows:

♦ START TIME The first scheduled time for each day on which the event
is scheduled. If a START DATE is specified, the START TIME refers
to that date. If no START DATE is specified, the START TIME is on
the current day (unless the time has passed) and each subsequent day (if
the schedule includes EVERY or ON).

♦ BETWEEN … AND A range of times during the day outside of which
no scheduled times occur. If a START DATE is specified, the scheduled
times do not occur until that date.

♦ EVERY An interval between successive scheduled events. Scheduled
events occur only after the START TIME for the day, or in the range
specified by BETWEEN … AND.

♦ ON A list of days on which the scheduled events occur. The default is
every day if EVERY is specified. These can be specified as days of the
week or days of the month.

Days of the week are Monday, Tuesday, and so on. The abbreviated
forms of the day, such as Mon, may also be used. Note that you must use
the full-length English day names (such as Monday) if you want the day
names to be recognized by a server running in a language other than
English.

Days of the month are integers from 0 to 31. A value of 0 represents the
last day of any month.

♦ START DATE The date on which scheduled events are to start
occurring. The default is the current date.

CREATE EVENT statement

288

Each time a scheduled event handler is completed, the next scheduled time
and date is calculated.

1 If the EVERY clause is used, find whether the next scheduled time falls
on the current day, and is before the end of the BETWEEN … AND
range. If so, that is the next scheduled time.

2 If the next scheduled time does not fall on the current day, find the next
date on which the event is to be executed.

3 Find the START TIME for that date, or the beginning of the BETWEEN
… AND range.

ENABLE | DISABLE By default, event handlers are enabled. When
DISABLE is specified, the event handler does not execute even when the
scheduled time or triggering condition occurs. A TRIGGER EVENT
statement does not cause a disabled event handler to be executed.

AT clause If you wish to execute events at remote or consolidated
databases in a SQL Remote setup, you can use this clause to restrict the
databases at which the event is handled. By default, all databases execute the
event.

HANDLER clause Each event has one handler.

Events can be used in two main ways:

♦ Scheduling actions The database server carries out a set of actions on
a schedule of times. You could use this capability to schedule backups,
validity checks, queries to fill up reporting tables, and so on.

♦ Event handling actions The database server carries out a set of
actions when a predefined event occurs. The events that can be handled
include disk space restrictions (when a disk fills beyond a specified
percentage), when the server is idle, and so on.

An event definition includes two distinct pieces. The trigger condition can be
an occurrence, such as a disk filling up beyond a defined threshold. A
schedule is a set of times, each of which acts as a trigger condition. When a
trigger condition is satisfied, the event handler executes. The event handler
includes one or more actions specified inside a compound statement
(BEGIN… END).

If no trigger condition or schedule specification is supplied, only an explicit
TRIGGER EVENT statement can trigger the event. During development,
you may wish to develop and test event handlers using TRIGGER EVENT,
and add the schedule or WHERE clause once testing is complete.

Event errors are logged to the database server console.

Usage

Chapter 4 SQL Statements

289

When event handlers are triggered, the server makes context information,
such as the connection ID that caused the event to be triggered, available to
the event handler using the event_parameter function. For more information
about event_parameter, see "EVENT_PARAMETER function" on page 134.

Must have DBA authority.

Event handlers execute on a separate connection, with the permissions of the
event owner. To execute with permissions other than DBA, you can call a
procedure from within the event handler: the procedure executes with the
permissions of its owner. The separate connection does not count towards the
ten-connection limit of the personal database server.

Automatic commit.

The actions of an event handler are committed if no error is detected during
execution, and rolled back if errors are detected.

"BEGIN statement" on page 248
"ALTER EVENT statement" on page 211
"COMMENT statement" on page 263
"DROP statement" on page 397
"TRIGGER EVENT statement" on page 566

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Instruct the database server to carry out an automatic backup to tape using
the first tape drive on a Windows NT machine, every day at 1 am.

CREATE EVENT DailyBackup
SCHEDULE daily_backup
START TIME ’1:00AM’ EVERY 24 HOURS
HANDLER

BEGIN
BACKUP DATABASE TO ’\\\\.\\tape0’
ATTENDED OFF

END

Instruct the database server to carry out an automatic backup of the
transaction log only, every hour, Monday to Friday between 8 am and 6 pm.

Permissions

Side effects

See also

Standards and
compatibility

Example

CREATE EVENT statement

290

CREATE EVENT HourlyLogBackup
SCHEDULE hourly_log_backup
BETWEEN ’8:00AM’ AND ’8:00PM’
EVERY 1 HOURS ON

(’Monday’,’Tuesday’,’Wednesday’,’Thursday’,’Friday’)
HANDLER

BEGIN
BACKUP DATABASE TO ’c:\\database\\backup’
TRANSACTION LOG ONLY
TRANSACTION LOG RENAME

END

$ For more examples see "Defining trigger conditions for events" on
page 237 of the book ASA Database Administration Guide.

Chapter 4 SQL Statements

291

CREATE EXISTING TABLE statement
Use this statement to create a new proxy table, which represents an existing
object on a remote server.

CREATE EXISTING TABLE [owner.]table-name
[(column-definition, …)]
AT location-string

column-definition :
column-name data-type [NOT NULL]

location-string :
 remote-server-name.[db-name].[owner].object-name
| remote-server-name;[db-name];[owner];object-name

AT clause The AT clause specifies the location of the remote object. The
AT clause supports the semicolon (;) as a delimiter. If a semicolon is present
anywhere in the location-string string, the semicolon is the field delimiter. If
no semicolon is present, a period is the field delimiter. This allows filenames
and extensions to be used in the database and owner fields. For example, the
following statement maps the table a1 to the MS Access file mydbfile.mdb:

CREATE EXISTING TABLE a1
AT ’access;d:\mydbfile.mdb;;a1’

The CREATE EXISTING TABLE statement creates a new local, proxy table
that maps to a table at an external location. The CREATE EXISTING
TABLE statement is a variant of the CREATE TABLE statement. The
EXISTING keyword is used with CREATE TABLE to specify that a table
already exists remotely and that its metadata is to be imported into Adaptive
Server Anywhere. This establishes the remote table as a visible entity to
Adaptive Server Anywhere users. Adaptive Server Anywhere verifies that
the table exists at the external location before it creates the table.

If the object does not exist (either host data file or remote server object), the
statement is rejected with an error message.

Index information from the host data file or remote server table is extracted
and used to create rows for the system table sysindexes. This defines indexes
and keys in server terms and enables the query optimizer to consider any
indexes that may exist on this table.

Referential constraints are passed to the remote location when appropriate.

If column-definitions are not specified, Adaptive Server Anywhere derives
the column list from the metadata it obtains from the remote table. If
column-definitions are specified, Adaptive Server Anywhere verifies the
column-definitions. Column names, data types, lengths, identity property,
and null properties are checked for the following:

Description

Syntax

Parameters

Usage

CREATE EXISTING TABLE statement

292

♦ Column names must match identically (although case is ignored).

♦ Data types in the CREATE EXISTING TABLE statement must match
or be convertible to the data types of the column on the remote location.
For example, a local column data type is defined as money, while the
remote column data type is numeric.

♦ Each column’s NULL property is checked. If the local column’s NULL
property is not identical to the remote column’s NULL property, a
warning message is issued, but the statement is not aborted.

♦ Each column’s length is checked. If the length of char, varchar, binary,
varbinary, decimal and numeric columns do not match, a warning
message is issued, but the command is not aborted.

You may choose to include only a subset of the actual remote column
list in your CREATE EXISTING statement.

Must have RESOURCE authority. To create a table for another user, you
must have DBA authority.

Not supported on Windows CE.

Automatic commit.

CREATE TABLE statement
"Specifying proxy table locations" on page 467 of the book ASA SQL User’s

Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

Create a proxy table named blurbs for the blurbs table at the remote server
server_a.

CREATE EXISTING TABLE blurbs
(author_id id not null,
copy text not null)
AT ’server_a.db1.joe.blurbs’

Create a proxy table named blurbs for the blurbs table at the remote server
server_a. Adaptive Server Anywhere derives the column list from the
metadata it obtains from the remote table.

CREATE EXISTING TABLE blurbs
AT ’server_a.db1.joe.blurbs’

Create a proxy table named rda_employee for the employee table at the
Adaptive Server Anywhere remote server asademo.

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

293

CREATE EXISTING TABLE rda_employee
AT ’asademo..DBA.employee’

CREATE EXTERNLOGIN statement

294

CREATE EXTERNLOGIN statement
Use this statement to assign an alternate login name and password to be used
when communicating with a remote server.

CREATE EXTERNLOGIN login-name
TO remote-server
REMOTE LOGIN remote-user
[IDENTIFIED BY remote-password]

login-name specifies the local user login name. When using integrated
logins, the login-name is the database user to which the Windows user ID is
mapped.

TO clause The TO clause specifies the name of the remote server.

REMOTE LOGIN clause The REMOTE LOGIN clause specifies the user
account on remote-server for the local user login-name.

IDENTIFIED BY clause The IDENTIFIED BY clause specifies the
remote-password for remote-user. The remote-user and remote-password
combination must be valid on the remote-server.

By default, Adaptive Server Anywhere uses the names and passwords of its
clients whenever it connects to a remote server on behalf of those clients.
CREATE EXTERNLOGIN assigns an alternate login name and password to
be used when communicating with a remote server.

The password is stored internally in encrypted form. The remote-server must
be known to the local server by an entry in the SYSERVERS table. For more
information, see "CREATE SERVER statement" on page 321.

Sites with automatic password expiration should plan for periodic updates of
passwords for external logins.

CREATE EXTERNLOGIN cannot be used from within a transaction.

Only the login-name and the DBA account can add or modify an external
login for login-name.

Not supported on Windows CE.

Automatic commit.

"DROP EXTERNLOGIN statement" on page 401

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

295

Map the local user named DBA to the user sa with password Plankton when
connecting to the server sybase1.

CREATE EXTERNLOGIN DBA
TO sybase1
REMOTE LOGIN sa
IDENTIFIED BY Plankton

Example

CREATE FUNCTION statement

296

CREATE FUNCTION statement
Use this statement to create a new function in the database.

CREATE FUNCTION [owner.]function-name ([parameter, …])
RETURNS data-type
routine-characteristics
{ compound-statement | external-name }

parameter :
[IN] parameter-name data-type

routine-characteristics
ON EXCEPTION RESUME | [NOT] DETERMINISTIC

external-name:
 EXTERNAL NAME library-call
| EXTERNAL NAME java-call LANGUAGE JAVA

library-call :
'[operating-system:]function-name@library.dll; …'

operating-system :
Windows95 | WindowsNT | NetWare | UNIX

java-call :
'[package-name.]class-name.method-name method-signature'

method-signature :
([field-descriptor, …]) return-descriptor

field-descriptor | return-descriptor :
Z | B | S | I | J | F | D | C | V | [descriptor | Lclass-name;

CREATE FUNCTION clause Parameter names must conform to the rules
for database identifiers. They must have a valid SQL data type, and must be
prefixed by the keyword IN, signifying that the argument is an expression
that provides a value to the function.

EXTERNAL NAME clause A function using the EXTERNAL NAME
clause is a wrapper around a call to a function in an external library.
A function using EXTERNAL NAME can have no other clauses following
the RETURNS clause.

$ For information about external library calls, see "Calling external
libraries from procedures" on page 562 of the book ASA SQL User’s Guide.

EXTERNAL NAME LANGUAGE JAVA clause A function that uses
EXTERNAL NAME with a LANGUAGE JAVA clause is a wrapper around
a Java method.

Description

Syntax

Parameters

Chapter 4 SQL Statements

297

$ For information on calling Java procedures, see "CREATE
PROCEDURE statement" on page 305.

ON EXCEPTION RESUME clause Use Transact-SQL -like error
handling. For more information, see "CREATE PROCEDURE statement" on
page 305.

NOT DETERMINISTIC clause A function specified as NOT
DETERMINISTIC is re-evaluated each time it is called in a query. The
results of functions not specified in this manner may be cached for better
performance, and re-used each time the function is called with the same
parameters during query evaluation.

Functions that have side effects such as modifying the underlying data
should be declared as NOT DETERMINISTIC. For example, a function that
generates primary key values and is used in an INSERT ... SELECT
statement should be declared NOT DETERMINISTIC:

CREATE FUNCTION keygen(increment INTEGER)
RETURNS INTEGER
NOT DETERMINISTIC
BEGIN
 DECLARE keyval INTEGER;
 UPDATE counter SET x = x + increment;
 SELECT counter.x INTO keyval FROM counter;
 RETURN keyval
END

INSERT INTO new_table
SELECT keygen(1), ...
FROM old_table

Functions may be declared as DETERMINISTIC if they always return the
same value for given input parameters. Future versions of the software may
use this declaration to allow optimizations that are unsafe for functions that
could return different values for the same input.

The CREATE FUNCTION statement creates a user-defined function in the
database. A function can be created for another user by specifying an owner
name. Subject to permissions, a user-defined function can be used in exactly
the same way as other non-aggregate functions.

Adaptive Server Anywhere treats all user-defined functions as idempotent:
the function returns a consistent result for the same parameters and is free of
side effects. That is, the server assumes that two successive calls to the same
function with the same parameters will return the same result, and will not
have any unwanted side-effects on the query’s semantics.

Must have RESOURCE authority.

External functions, including Java functions, must have DBA authority.

Usage

Permissions

CREATE FUNCTION statement

298

Automatic commit.

"ALTER FUNCTION statement" on page 213
"DROP statement" on page 397
"BEGIN statement" on page 248
"CREATE PROCEDURE statement" on page 305
"RETURN statement" on page 514
"Using Procedures, Triggers, and Batches" on page 507 of the book ASA

SQL User’s Guide

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Not supported by Adaptive Server Enterprise.

The following function concatenates a firstname string and a lastname string.

CREATE FUNCTION fullname (
firstname CHAR(30),
lastname CHAR(30))

RETURNS CHAR(61)
BEGIN

DECLARE name CHAR(61);
SET name = firstname || ’ ’ || lastname;
RETURN (name);

END

The following examples illustrate the use of the fullname function.

Return a full name from two supplied strings:

SELECT fullname (’joe’,’smith’)

fullname(’joe’, ’smith’)

joe smith

List the names of all employees:

SELECT fullname (emp_fname, emp_lname)
FROM employee

fullname (emp_fname, emp_lname)

Fran Whitney

Matthew Cobb

Philip Chin

Julie Jordan

…

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

299

CREATE INDEX statement

300

CREATE INDEX statement
Use this statement to create an index on a specified table. Indexes can
improve database performance.

CREATE [UNIQUE] [CLUSTERED] INDEX index-name
 ON [owner.]table-name

(column-name [ASC | DESC], …)
 [{ IN | ON } dbspace-name]

CLUSTERED keyword The CLUSTERED attribute causes table rows to
be stored in an approximate key order corresponding to the index. While the
server makes an attempt to preserve key order, total clustering is not
guaranteed.

If a clustered index exists, the LOAD TABLE statement inserts rows into the
table in the order of the index key, and the INSERT statement attempts to put
new rows on the same table page as the one containing adjacent rows, as
defined by the key order.

$ For more information, see "Using Clustered Indexes" on page 58 of the
book ASA SQL User’s Guide.

UNIQUE keyword The UNIQUE attribute ensures that there will not be
two rows in the table with identical values in all the columns in the index.
Each index key must be unique or contain a NULL in at least one column.

There is a difference between a unique constraint on a table and a unique
index. Columns of a unique index are allowed to be NULL, while columns in
a unique constraint are not. A foreign key can reference either a primary key
or a column with a unique constraint, but not a unique index, because it can
include multiple instances of NULL.

ASC | DESC option Columns are sorted in ascending (increasing) order
unless descending (DESC) is explicitly specified. An index will be used for
both an ascending and a descending ORDER BY, whether the index was
ascending or descending. However, if an ORDER BY is performed with
mixed ascending and descending attributes, an index will be used only if the
index was created with the same ascending and descending attributes.

IN | ON clause By default, the index is placed in the same database file as
its table. You can place the index in a separate database file by specifying a
dbspace name in which to put the index. This feature is useful mainly for
large databases to circumvent file size limitations.

$ For more information on limitations, see "Size and number limitations"
on page 636 of the book ASA Database Administration Guide.

Description

Syntax

Parameters

Chapter 4 SQL Statements

301

The CREATE INDEX statement creates a sorted index on the specified
columns of the named table. Indexes are automatically used to improve the
performance of queries issued to the database, and to sort queries with an
ORDER BY clause. Once an index is created, it is never referenced in a SQL
statement again except to validate it (VALIDATE INDEX) or delete it
(DROP INDEX).

You cannot create indexes on views.

♦ Index ownership There is no way of specifying the index owner in the
CREATE INDEX statement. Indexes are always owned by the owner of
the table. The index name must be unique for each owner.

♦ No indexes on views Indexes cannot be created for views.

♦ Index name space The name of each index must be unique for a
given table.

♦ Exclusive table use CREATE INDEX is prevented whenever the
statement affects a table currently being used by another connection.
CREATE INDEX can be time consuming and the server will not process
requests referencing the same table while the statement is being
processed.

♦ Automatically created indexes Adaptive Server Anywhere
automatically creates indexes for primary keys and for unique
constraints. These automatically created indexes are held in the same
database file as the table.

Must be the owner of the table or have either DBA authority or
REFERENCES permission.

The table must be a base table or a global temporary table.

Automatic commit.

"DROP statement" on page 397
"Indexes" on page 340 of the book ASA SQL User’s Guide
"Types of index" on page 346 of the book ASA SQL User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Enterprise has a more complex CREATE
INDEX statement than Adaptive Server Anywhere. While the Adaptive
Server Enterprise syntax is permitted in Adaptive Server Anywhere,
some clauses and keywords are ignored.

The full syntax for Adaptive Server Enterprise 11.5 is as follows:

Usage

Permissions

Side effects

See also

Standards and
compatibility

CREATE INDEX statement

302

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED]
INDEX index-name
ON [[database.]owner.]table_name

(column_name [, column_name], …)
 [WITH {

{ FILLFACTOR | MAX_ROWS_PER_PAGE } = x,
 CONSUMERS = x,
… IGNORE_DUP_KEY,
… SORTED_DATA,
 [IGNORE_DUP_ROW | ALLOW_DUP_ROW]
}]

 [ON segment_name]

Adaptive Server Enterprise indexes can be either clustered or
nonclustered. A clustered index almost always retrieves data faster than
a nonclustered index. Only one clustered index is permitted per table.

Adaptive Server Anywhere does not support clustered indexes. The
CLUSTERED and NONCLUSTERED keywords are allowed by
Adaptive Server Anywhere, but no action is taken.

Adaptive Server Anywhere also allows, by ignoring, the following
keywords:

♦ FILLFACTOR

♦ IGNORE_DUP_KEY

♦ SORTED_DATA

♦ IGNORE_DUP_ROW

♦ ALLOW_DUP_ROW

Physical placement of an index is carried out differently in Adaptive
Server Enterprise and Adaptive Server Anywhere. The ON
segment-name clause is supported in Adaptive Server Anywhere, but
segment-name refers to a dbspace.

Unique indexes in Adaptive Server Anywhere permit entries that contain
NULL, and are otherwise identical. Unique indexes in Adaptive Server
Enterprise do not permit entries that contain NULL and are otherwise
identical.

Index names must be unique on a given table for both Adaptive Server
Anywhere and Enterprise.

Create a two-column index on the employee table.

CREATE INDEX employee_name_index
ON employee
(emp_lname, emp_fname)

Create an index on the sales_order_items table for the prod_id column.

Example

Chapter 4 SQL Statements

303

CREATE INDEX item_prod
ON sales_order_items
(prod_id)

CREATE MESSAGE statement [T-SQL]

304

CREATE MESSAGE statement [T-SQL]
Use this statement to add a user-defined message to the
SYSUSERMESSAGES system table for use by PRINT and RAISERROR
statements.

CREATE MESSAGE message-number AS message-text

message-number : integer

message-text : string

message_number The message number of the message to add. The
message number for a user-defined message must be 20000 or greater.

message_text The text of the message to add. The maximum length is
255 bytes. PRINT and RAISERROR recognize placeholders in the message
text. A single message can contain up to 20 unique placeholders in any order.
These placeholders are replaced with the formatted contents of any
arguments that follow the message when the text of the message is sent to the
client.

The placeholders are numbered to allow reordering of the arguments when
translating a message to a language with a different grammatical structure. A
placeholder for an argument appears as "%nn!": a percent sign (%), followed
by an integer from 1 to 20, followed by an exclamation mark (!), where the
integer represents the position of the argument in the argument list. "%1!" is
the first argument, "%2!" is the second argument, and so on.

There is no parameter corresponding to the language argument for
sp_addmessage.

CREATE MESSAGE associates a message number with a message string.
The message number can be used in PRINT and RAISERROR statements.

To drop a message, see "DROP statement" on page 397.

Must have RESOURCE authority

Automatic commit.

"PRINT statement [T-SQL]" on page 498
"RAISERROR statement [T-SQL]" on page 501

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase The functionality of CREATE MESSAGE is provided by the
sp_addmessage procedure in Adaptive Server Enterprise.

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

305

CREATE PROCEDURE statement
Use this statement to create a procedure in the database.

CREATE PROCEDURE [owner.]procedure-name ([parameter, …])
{ [RESULT (result-column, …)]
 [ON EXCEPTION RESUME]
 compound-statement
 | AT location-string
 | EXTERNAL NAME library-call
 | [DYNAMIC RESULT SETS integer-expression]
 [EXTERNAL NAME java-call LANGUAGE JAVA]
 }

CREATE PROCEDURE [owner.]procedure-name ([parameter, …])
compound-statement

parameter :
 parameter_mode parameter-name data-type [DEFAULT expression]
| SQLCODE
| SQLSTATE

parameter_mode : IN | OUT | INOUT

result-column : column-name data-type

library-call :
'[operating-system:]function-name@library.dll; …'

operating-system :
Windows95 | WindowsNT | NetWare | UNIX

java-call :
'[package-name.]class-name.method-name method-signature'

method-signature :
([field-descriptor, …]) return-descriptor

field-descriptor | return-descriptor :
Z | B | S | I | J | F | D | C | V | [descriptor | Lclass-name;

CREATE PROCEDURE clause Parameter names must conform to the
rules for other database identifiers such as column names. They must be a
valid SQL data type (see "SQL Data Types" on page 51), and must be
prefixed by one of the keywords IN, OUT or INOUT. The keywords have
the following meanings:

♦ IN The parameter is an expression that provides a value to the
procedure.

♦ OUT The parameter is a variable that could be given a value by the
procedure.

Description

Syntax 1

Syntax 2

Parameters

CREATE PROCEDURE statement

306

♦ INOUT The parameter is a variable that provides a value to the
procedure, and could be given a new value by the procedure.

When procedures are executed using the CALL statement, not all parameters
need to be specified. If a default value is provided in the CREATE
PROCEDURE statement, missing parameters are assigned the default values.
If an argument is not provided in the CALL statement, and no default is set,
an error is given.

SQLSTATE and SQLCODE are special parameters that output the
SQLSTATE or SQLCODE value when the procedure ends (they are OUT
parameters). Whether or not a SQLSTATE and SQLCODE parameter is
specified, the SQLSTATE and SQLCODE special values can always be
checked immediately after a procedure call to test the return status of the
procedure.

The SQLSTATE and SQLCODE special values are modified by the next
SQL statement. Providing SQLSTATE or SQLCODE as procedure
arguments allows the return code to be stored in a variable.

RESULT clause The RESULT clause declares the number and type of
columns in the result set. The parenthesized list following the RESULT
keyword defines the result column names and types. This information is
returned by the Embedded SQL DESCRIBE or by ODBC SQLDescribeCol
when a CALL statement is being described. Allowable data types are listed
in "SQL Data Types" on page 51.

$ For more information on returning result sets from procedures, see
"Returning results from procedures" on page 539 of the book ASA SQL
User’s Guide.

Some procedures can more than one result set, with different numbers of
columns, depending on how they are executed. For example, the following
procedure returns two columns under some circumstances, and one in others.

CREATE PROCEDURE names(IN formal char(1))
BEGIN

IF formal = ’n’ THEN
SELECT emp_fname
FROM employee

ELSE
SELECT emp_lname,emp_fname
FROM employee

END IF
END

Procedures with variable result sets must be written without a RESULT
clause, or in Transact-SQL. Their use is subject to the following limitations:

Chapter 4 SQL Statements

307

♦ Embedded SQL You must DESCRIBE the procedure call after the
cursor for the result set is opened, but before any rows are returned, in
order to get the proper shape of result set. The CURSOR cursor-name
clause on the DESCRIBE statement is required.

♦ ODBC Variable result-set procedures can be used by ODBC
applications. The proper description of the result sets is carried out by
the ODBC driver.

♦ Open Client applications Variable result-set procedures can be used
by Open Client applications.

If your procedure returns only one result set, you should use a RESULT
clause. The presence of this clause prevents ODBC and Open Client
applications from redescribing the result set after a cursor is open.

In order to handle multiple result sets, ODBC must describe the currently
executing cursor, not the procedure’s defined result set. Therefore, ODBC
does not always describe column names as defined in the RESULT clause of
the procedure definition. To avoid this problem, use column aliases in the
SELECT statement that generates the result set.

ON EXCEPTION RESUME clause This clause enables Transact-SQL
-like error handling to be used within a Watcom-SQL syntax procedure.

If you use ON EXCEPTION RESUME, the procedure takes an action that
depends on the setting of the ON_TSQL_ERROR option. If
ON_TSQL_ERROR is set to CONDITIONAL (which is the default) the
execution continues if the next statement handles the error; otherwise, it
exits.

Error-handling statements include the following:

♦ IF

♦ SELECT @variable =

♦ CASE

♦ LOOP

♦ LEAVE

♦ CONTINUE

♦ CALL

♦ EXECUTE

♦ SIGNAL

♦ RESIGNAL

♦ DECLARE

CREATE PROCEDURE statement

308

♦ SET VARIABLE

You should not use explicit error handling code with an ON EXCEPTION
RESUME clause.

$ For more information, see "ON_TSQL_ERROR option" on page 587 of
the book ASA Database Administration Guide.

EXTERNAL NAME clause A procedure using the EXTERNAL NAME
clause is a wrapper around a call to an external library. A stored procedure
using EXTERNAL NAME can have no other clauses following the
parameter list.

$ For information about external library calls, see "Calling external
libraries from procedures" on page 562 of the book ASA SQL User’s Guide.

AT location-string clause Create a proxy stored procedure on the current
database for a remote procedure specified by location-string. The AT clause
supports the semicolon (;) as a field delimiter in location-string. If no
semicolon is present, a period is the field delimiter. This allows filenames
and extensions to be used in the database and owner fields.

For example, the following statement creates a proxy procedure (remotewho)
that calls the dbo.sp_who procedure on the master database of the bostonase
server:

CREATE PROCEDURE remotewho ()
AT ’bostonase.master.dbo.sp_who

Remote procedures can return only up to 254 characters in output variables.

$ For information on remote servers, see "CREATE SERVER statement"
on page 321. For information on using remote procedures, see "Using remote
procedure calls (RPCs)" on page 476 of the book ASA SQL User’s Guide.

DYNAMIC RESULT SETS clause This clause is for use with procedures
that are wrappers around Java methods. If the DYNAMIC RESULT SETS
clause is not provided, it is assumed that the method returns no result set.

EXTERNAL NAME LANGUAGE JAVA clause A procedure that uses
EXTERNAL NAME with a LANGUAGE JAVA clause is a wrapper around
a Java method.

If the number of parameters is less than the number indicated in the
method-signature then the difference must equal the number specified in
DYNAMIC RESULT SETS, and each parameter in the method signature in
excess of those in the procedure parameter list must have a method signature
of [Ljava/SQL/ResultSet;.

Chapter 4 SQL Statements

309

A Java method signature is a compact character representation of the types of
the parameters and the type of the return value.

The field-descriptor and return-descriptor have the following meanings:

Field type Java data type

B byte

C char

D double

F float

I int

J long

Lclass-name; an instance of the class class-name. The class name must be fully
qualified, and any dot in the name must be replaced by a /.
For example, java/lang/String

S short

V void

Z Boolean

[use one for each dimension of an array

For example,
double some_method(
 boolean a,
 int b,
 java.math.BigDecimal c,
 byte [][] d,
 java.SQL.ResultSet[] rs) {
}

would have the following signature:

’(ZILjava/math/BigDecimal;[[B[Ljava/SQL/ResultSet;)D’

$ For more information, see "Returning result sets from Java methods"
on page 113 of the book ASA Programming Guide.

The CREATE PROCEDURE statement creates a procedure in the database.
Users with DBA authority can create procedures for other users by
specifying an owner. A procedure is invoked with a CALL statement.

Must have RESOURCE authority.

Must have DBA authority for external procedures or to create a procedure
for another user.

Automatic commit.

Usage

Permissions

Side effects

CREATE PROCEDURE statement

310

"BEGIN statement" on page 248
"CALL statement" on page 254
"CREATE FUNCTION statement" on page 296
"CREATE PROCEDURE statement [T-SQL]" on page 312
"DROP statement" on page 397
"EXECUTE statement [SP]" on page 416
"GRANT statement" on page 443
"Using Procedures, Triggers, and Batches" on page 507 of the book ASA

SQL User’s Guide

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase The Transact-SQL CREATE PROCEDURE statement is
different.

♦ SQLJ The syntax extensions for Java result sets are as specified in the
proposed SQLJ1 standard.

The following procedure uses a case statement to classify the results of a
query.

CREATE PROCEDURE ProductType (IN product_id INT, OUT
type CHAR(10))
BEGIN

DECLARE prod_name CHAR(20);
SELECT name INTO prod_name FROM "DBA"."product"
WHERE id = product_id;
CASE prod_name
WHEN ’Tee Shirt’ THEN

SET type = ’Shirt’
WHEN ’Sweatshirt’ THEN

SET type = ’Shirt’
WHEN ’Baseball Cap’ THEN

SET type = ’Hat’
WHEN ’Visor’ THEN

SET type = ’Hat’
WHEN ’Shorts’ THEN

SET type = ’Shorts’
ELSE

SET type = ’UNKNOWN’
END CASE;

END

The following procedure uses a cursor and loops over the rows of the cursor
to return a single value.

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35),
OUT TopValue INT)
BEGIN

DECLARE err_notfound EXCEPTION

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

311

FOR SQLSTATE ’02000’;
DECLARE curThisCust CURSOR FOR
SELECT company_name, CAST(
sum(sales_order_items.quantity *
product.unit_price) AS INTEGER) VALUE
FROM customer
LEFT OUTER JOIN sales_order
LEFT OUTER JOIN sales_order_items
LEFT OUTER JOIN product
GROUP BY company_name;
DECLARE ThisValue INT;
DECLARE ThisCompany CHAR(35);
SET TopValue = 0;
OPEN curThisCust;
CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue;
IF SQLSTATE = err_notfound THEN

LEAVE CustomerLoop;
END IF;
IF ThisValue > TopValue THEN

SET TopValue = ThisValue;
SET TopCompany = ThisCompany;
END IF;

END LOOP CustomerLoop;
CLOSE curThisCust;

END

CREATE PROCEDURE statement [T-SQL]

312

CREATE PROCEDURE statement [T-SQL]
Use this statement to create a new procedure in the database in a manner
compatible with Adaptive Server Enterprise.

The following subset of the Transact-SQL CREATE PROCEDURE
statement is supported in Adaptive Server Anywhere.

CREATE PROCEDURE [owner.]procedure_name
[[(] @parameter_name data-type [= default] [OUTPUT], … [)]]
[WITH RECOMPILE] AS statement-list

The following differences between Transact-SQL and Adaptive Server
Anywhere statements (Watcom-SQL) are listed to help those writing in both
dialects.

♦ Variable names prefixed by @ The "@" sign denotes a Transact-SQL
variable name, while Watcom-SQL variables can be any valid identifier,
and the @ prefix is optional.

♦ Input and output parameters Watcom-SQL procedure parameters are
specified as IN, OUT, or INOUT, while Transact-SQL procedure
parameters are INPUT parameters by default or can be specified as
OUTPUT. Those parameters that would be declared as INOUT or as
OUT in Adaptive Server Anywhere should be declared with OUTPUT
in Transact-SQL.

♦ Parameter default values Watcom-SQL procedure parameters are
given a default value using the keyword DEFAULT, while
Transact-SQL uses an equality sign (=) to provide the default value.

♦ Returning result sets Watcom-SQL uses a RESULT clause to specify
returned result sets. In Transact-SQL procedures, the column names or
alias names of the first query are returned to the calling environment.

The following Transact-SQL procedure illustrates how result sets are
returned from Transact-SQL stored procedures:

CREATE PROCEDURE showdept @deptname varchar(30)
AS

SELECT employee.emp_lname, employee.emp_fname
FROM department, employee
WHERE department.dept_name = @deptname
AND department.dept_id = employee.dept_id

The following is the corresponding Watcom-SQL procedure:
CREATE PROCEDURE showdept(in deptname

varchar(30))
RESULT (lastname char(20), firstname char(20))
ON EXCEPTION RESUME
BEGIN

Description

Syntax 1

Usage

Chapter 4 SQL Statements

313

SELECT employee.emp_lname, employee.emp_fname
FROM department, employee
WHERE department.dept_name = deptname
AND department.dept_id = employee.dept_id

END

♦ Procedure body The body of a Transact-SQL procedure is a list of
Transact-SQL statements prefixed by the AS keyword. The body of a
Watcom-SQL procedure is a compound statement, bracketed by BEGIN
and END keywords.

Must have RESOURCE authority.

Automatic commit.

"CREATE PROCEDURE statement" on page 305

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Anywhere supports a subset of the Adaptive Server Enterprise
CREATE PROCEDURE statement syntax.

If the Transact-SQL WITH RECOMPILE optional clause is supplied, it
is ignored. Adaptive Server Anywhere always recompiles procedures the
first time they are executed after a database is started, and stores the
compiled procedure until the database is stopped.

Groups of procedures are not supported.

Permissions

Side effects

See also

Standards and
compatibility

CREATE PUBLICATION statement

314

CREATE PUBLICATION statement
Use this statement to create a publication. In MobiLink, a publication
identifies synchronized data in UltraLite or Adaptive Server Anywhere
remote database. In SQL Remote, publications identify replicated data in
both consolidated and remote databases.

CREATE PUBLICATION [owner.]publication-name
(TABLE article-description, …)

owner, publication-name : identifier

article-description:
 table-name [(column-name, …)]
[WHERE search-condition]
[SUBSCRIBE BY expression]

article-description Publications are built from articles. Each article is a
table or part of a table. An article may be a vertical partition of a table (a
subset of the table’s columns), a horizontal partition (a subset of the table’s
rows) or a vertical and horizontal partition.

WHERE clause The WHERE clause is a way of defining the subset of
rows of a table to be included in an article. It is useful if the same subset is to
be received by all subscribers to the publication.

SUBSCRIBE BY clause In SQL Remote, one way of defining a subset of
rows of a table to be included in an article is to use a SUBSCRIBE BY
clause. This clause allows many different subscribers to receive different
rows from a table in a single publication definition. This clause is ignored
during MobiLink synchronization.

You can combine WHERE and SUBSCRIBE BY clauses in an article
definition, but the SUBSCRIBE BY clause is used only by SQL Remote.

This statement is applicable only to MobiLink and SQL Remote.

The CREATE PUBLICATION statement creates a publication in the
database. A publication can be created for another user by specifying an
owner name.

In MobiLink, publications are required in Adaptive Server Anywhere remote
databases, and are optional in UltraLite databases. These publications and the
subscriptions to them determine which data will be uploaded to the
MobiLink synchronization server. You can construct a remote database by
creating publications and subscriptions directly. Alternatively, you can create
publications and subscriptions in an Adaptive Server Anywhere reference
database, which acts as a template for the remote databases, and then
construct the remote databases using the MobiLink extraction utility.

Description

Syntax

Parameters

Usage

Chapter 4 SQL Statements

315

You set options for a MobiLink publication with the ADD OPTION clause
in the ALTER SYNCHRONIZATION SUBSCRIPTION statement or
CREATE SYNCHRONIZATION SUBSCRIPTION statement.

In SQL Remote, publishing is a two-way operation, as data can be entered at
both consolidated and remote databases. In a SQL Remote installation, any
consolidated database and all remote databases must have the same
publication defined. Running the SQL Remote extraction utility from a
consolidated database automatically executes the correct CREATE
PUBLICATION statement in the remote database.

Must have DBA authority. Requires exclusive access to all tables referred to
in the statement.

Automatic commit.

"ALTER PUBLICATION statement" on page 216
"DROP PUBLICATION statement" on page 402
"ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]"

on page 227
"CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]"

on page 331
"sp_create_publication procedure" on page 392 of the book SQL Remote

User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

The following statement publishes all columns and rows of two tables.

CREATE PUBLICATION pub_contact (
TABLE contact,
TABLE company

)

The following statement publishes only some columns of one table.

CREATE PUBLICATION pub_customer (
TABLE customer (id, company_name, city)

)

The following statement publishes only the active customer rows by
including a WHERE clause that tests the status column of the customer table.

CREATE PUBLICATION pub_customer (
TABLE customer (id, company_name, city, state)
WHERE status = ’active’

)

The following statement publishes only some rows by providing a
subscribe-by value. This method can be used only with SQL Remote.

Permissions

Side effects

See also

Standards and
compatibility

Example

CREATE PUBLICATION statement

316

CREATE PUBLICATION pub_customer (
TABLE customer (id, company_name, city, state)
SUBSCRIBE BY state

)

The subscribe-by value is used as follows when you create a SQL Remote
subscription.

CREATE SUBSCRIPTION TO pub_customer (’NY’)
FOR jsmith

Chapter 4 SQL Statements

317

CREATE REMOTE MESSAGE TYPE statement
[SQL Remote]

Use this statement to identify a message-link and return address for outgoing
messages from a database.

CREATE REMOTE MESSAGE TYPE message-system
ADDRESS address

message-system: FILE | FTP | MAPI | SMTP | VIM

address: string

message-system One of the supported message systems.

address The address for the specified message system.

The Message Agent sends outgoing messages from a database using one of
the supported message links. Return messages for users employing the
specified link are sent to the specified address as long as the remote database
is created by the extraction utility. The Message Agent starts links only if it
has remote users for those links.

The address is the publisher’s address under the specified message system. If
it is an e-mail system, the address string must be a valid e-mail address. If it
is a file-sharing system, the address string is a subdirectory of the directory
set in the SQLREMOTE environment variable, or of the current directory if
that is not set. You can override this setting on the GRANT CONSOLIDATE
statement at the remote database.

The initialization utility creates message types automatically, without an
address. Unlike other CREATE statements, the CREATE REMOTE
MESSAGE TYPE statement does not give an error if the type exists; instead
it alters the type.

Must have DBA authority.

Automatic commit.

"GRANT PUBLISH statement [SQL Remote]" on page 449
"GRANT REMOTE statement [SQL Remote]" on page 450
"GRANT CONSOLIDATE statement [SQL Remote]" on page 447
"sp_remote_type procedure" on page 430 of the book SQL Remote User’s

Guide
"Using message types" on page 215 of the book SQL Remote User’s Guide

♦ SQL/92 Vendor extension.

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

CREATE REMOTE MESSAGE TYPE statement [SQL Remote]

318

♦ SQL/99 Vendor extension.

When remote databases are extracted using the extraction utility, the
following statement sets all recipients of file message-system messages to
send messages back to the company subdirectory.

The statement also instructs dbremote to look in the company subdirectory
for incoming messages.

CREATE REMOTE MESSAGE TYPE file
ADDRESS ’company’

Example

Chapter 4 SQL Statements

319

CREATE SCHEMA statement
Use this statement to create a collection of tables, views, and permissions for
a database user.

CREATE SCHEMA AUTHORIZATION userid
[

create-table-statement
| create-view-statement
| grant-statement

], …

The CREATE SCHEMA statement creates a schema. A schema is a
collection of tables, views, and their associated permissions.

The userid must be the user ID of the current connection. You cannot create
a schema for another user.

If any statement contained in the CREATE SCHEMA statement fails, the
entire CREATE SCHEMA statement is rolled back.

The CREATE SCHEMA statement is simply a way of collecting together
individual CREATE and GRANT statements into one operation. There is no
SCHEMA database object created in the database, and to drop the objects
you must use individual DROP TABLE or DROP VIEW statements. To
revoke permissions, you must use a REVOKE statement for each permission
granted.

The individual CREATE or GRANT statements are not separated by
statement delimiters. The statement delimiter marks the end of the CREATE
SCHEMA statement itself.

The individual CREATE or GRANT statements must be ordered such that
the objects are created before permissions are granted on them.

Although you can currently create more than one schema for a user, this is
not recommended, and may not be supported in future releases.

Must have RESOURCE authority.

Automatic commit.

"CREATE TABLE statement" on page 350
"CREATE VIEW statement" on page 371
"GRANT statement" on page 443

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

CREATE SCHEMA statement

320

♦ Sybase Adaptive Server Anywhere does not support the use of
REVOKE statements within the CREATE SCHEMA statement, and
does not allow its use within Transact-SQL batches or procedures.

The following CREATE SCHEMA statement creates a schema consisting of
two tables. The statement must be executed by the user ID sample_user, who
must have RESOURCE authority. If the statement creating table t2 fails,
neither table is created.

CREATE SCHEMA AUTHORIZATION sample_user
CREATE TABLE t1 (id1 INT PRIMARY KEY)
CREATE TABLE t2 (id2 INT PRIMARY KEY);

The statement delimiter in the following CREATE SCHEMA statement is
placed after the first CREATE TABLE statement. As the statement delimiter
marks the end of the CREATE SCHEMA statement, the example is
interpreted as a two statement batch by the database server. Consequently, if
the statement creating table t2 fails, the table t1 is still created.

CREATE SCHEMA AUTHORIZATION sample_user
CREATE TABLE t1 (id1 INT PRIMARY KEY);
CREATE TABLE t2 (id2 INT PRIMARY KEY);

Example

Chapter 4 SQL Statements

321

CREATE SERVER statement
Use this statement to add a server to the SYSSERVERS system table.

CREATE SERVER server-name
CLASS ’server-class’
USING ’connection-info’
[READ ONLY]

server-class :
 ASAJDBC | ASEJDBC
| ASAODBC | ASEODBC
| DB2ODBC | MSSODBC
| ORAODBC | ODBC

connection-info :
 { machine-name:port-number [/dbname] | data-source-name }

USING clause If a JDBC-based server class is used, the USING clause is
of the form hostname:portnumber [/dbname], where:

♦ hostname is the machine the remote server runs on

♦ portnumber is the TCP/IP port number the remote server listens on.
The default port number for Adaptive Server Anywhere is 2638.

♦ dbname For Adaptive Server Anywhere remote servers, if you do not
specify a dbname, then the default database is used. For Adaptive Server
Enterprise, the default is the master database, and an alternative to using
dbname is to another database by some other means (for example, in the
FORWARD TO statement).

If an ODBC-based server class is used, the USING clause is the
data-source-name. The data-source-name is the ODBC Data Source Name.

READ ONLY The READ ONLY clause specifies that the remote server is
a read-only data source. Any update request is rejected by Adaptive Server
Anywhere.

The CREATE SERVER statement defines a remote server from the Adaptive
Server Anywhere catalogs.

$ For more information on server classes and how to configure a server,
see "Server Classes for Remote Data Access" on page 487 of the book ASA
SQL User’s Guide.

Must have RESOURCE authority.

Not supported on Windows CE.

Automatic commit.

Description

Syntax

Parameters

Usage

Permissions

Side effects

CREATE SERVER statement

322

"ALTER SERVER statement" on page 220
"DROP SERVER statement" on page 404
"Server Classes for Remote Data Access" on page 487 of the book ASA SQL

User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

The following example creates an Adaptive Server Anywhere remote server
named testasa, located on the machine apple and listening on port number
2638, use:

CREATE SERVER testasa
CLASS ’asajdbc’
USING ’apple:2638’

The following example creates a remote server for the JDBC-based Adaptive
Server named ase_prod. Its machine name is banana and port number
is 3025.

CREATE SERVER ase_prod
CLASS ’asejdbc’
USING ’banana:3025’

The following example creates a remote server for the Oracle server named
oracle723. Its ODBC Data Source Name is oracle723.

CREATE SERVER oracle723
CLASS ’oraodbc’
USING ’oracle723’

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

323

CREATE STATISTICS statement
This statement should be used only in rare circumstances. It explicitly
recreates the statistics that are used by the optimizer.

CREATE STATISTICS table-name [(column-list)]

This statement recreates the statistics that Adaptive Server Anywhere uses to
optimize database queries. These statistics analyze the distribution of data in
the database for the specified table. The process of running CREATE
STATISTICS is time-consuming because it performs ordered scans of the
entire table.

In rare circumstances, when your database queries are very variable, and
when data distribution is not uniform or the data is changing frequently, you
may improve performance by running CREATE STATISTICS against a
table or column. This causes an ordered scan of the table or column, using an
index if possible.

CREATE STATISTICS overwrites existing statistics. You do not need to
drop statistics before executing it.

CREATE STATISTICS creates histograms for the specified table, regardless
of the size of the table or the setting of
MIN_TABLE_SIZE_FOR_HISTOGRAM.

You can also create statistics using the LOAD TABLE statement.

Must have DBA authority.

Query plans will probably change.

"DROP STATISTICS statement" on page 406
"ALTER DATABASE statement" on page 205
"MIN_TABLE_SIZE_FOR_HISTOGRAM option" on page 583 of the book

ASA Database Administration Guide
"LOAD TABLE statement" on page 472

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

CREATE SUBSCRIPTION statement [SQL Remote]

324

CREATE SUBSCRIPTION statement
[SQL Remote]

Use this statement to create a subscription for a user to a publication.

CREATE SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR subscriber-id

publication-name: identifier

subscription-value, subscriber-id: string

subscriber-id: string

In a SQL Remote installation, data is organized into publications for
replication. In order to receive SQL Remote messages, a subscription must
be created for a user ID with REMOTE permissions.

If a string is supplied in the subscription, it is matched against each
SUBSCRIBE BY expression in the publication. The subscriber receives all
rows for which the value of the expression is equal to the supplied string.

In SQL Remote, publications and subscriptions are two-way relationships. If
you create a subscription for a remote user to a publication on a consolidated
database, you should also create a subscription for the consolidated database
on the remote database. The extraction utility carries this out automatically.

publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value A string that is compared to the subscription
expression of the publication. The subscriber receives all rows for which the
subscription expression matches the subscription value.

subscriber-id The user ID of the subscriber to the publication. This user
must have been granted REMOTE permissions.

Must have DBA authority.

Automatic commit.

"DROP SUBSCRIPTION statement [SQL Remote]" on page 407
"GRANT REMOTE statement [SQL Remote]" on page 450
"SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]" on page 564
"START SUBSCRIPTION statement [SQL Remote]" on page 554
"sp_subscription procedure" on page 436 of the book SQL Remote User’s

Guide

Description

Syntax

Usage

Parameters

Permissions

Side effects

See also

Chapter 4 SQL Statements

325

♦ The following statement creates a subscription for the user p_chin to the
publication pub_sales. The subscriber receives all rows for which the
subscription expression has a value of Eastern.

CREATE SUBSCRIPTION
TO pub_sales (’Eastern’)
FOR p_chin

Example

CREATE SYNCHRONIZATION DEFINITION statement [MobiLink] (deprecated)

326

CREATE SYNCHRONIZATION DEFINITION
statement [MobiLink] (deprecated)

This statement specifies how to register with the MobiLink synchronization
server and to identify the contents that are to be uploaded from the remote
database to the consolidated database. This command is deprecated. In its
place, you should use ALTER PUBLICATION or ALTER
SYNCHRONIZATION SUBSCRIPTION.

CREATE SYNCHRONIZATION DEFINITION sync-def-name
SITE ml_username
[TYPE sync-type]
ADDRESS network-parameters
[OPTION parameter=value, …]
(TABLE article-description, …)

ml_username: identifier

network-parameters: string

sync-type: http | https | tcpip

value: string | integer

article-description:
table-name [(column-name, ...)]

[WHERE search-condition]

SITE clause The name that uniquely identifies this remote database within
your MobiLink setup.

TYPE clause This clause specifies the method of synchronization. The
default value is tcpip. You may also choose to use http or https.

ADDRESS clause This clause specifies network parameters, including
the location of the MobiLink synchronization server.

$ For a complete list of the available parameters, see "CREATE
SYNCHRONIZATION USER statement [MobiLink]" on page 335

OPTION clause The OPTION clause allows you to set options.

The values for each option cannot contain the characters "=" or "," or ";".

$ For a complete list of options, see "CREATE SYNCHRONIZATION
USER statement [MobiLink]" on page 335.

Description

Syntax

Parameters

Chapter 4 SQL Statements

327

Create synchronization definitions in Adaptive Server Anywhere version 7
databases that are to function as MobiLink clients. Each definition specifies
the site name that uniquely identifies that logical MobiLink client within the
MobiLink setup. In addition, each site specifies how to contact the MobiLink
synchronization server and which data in the remote database is to be
synchronized with the consolidated database.

Using this statement, you can set options and choose a method of
synchronization. In addition, specify the contents that you wish to upload by
listing each table, followed by the column list and the WHERE clause. The
WHERE clause is a way of defining the subset of rows of a table to be
included in a synchronization.

Must have DBA authority. Requires exclusive access to all tables named in
the article description.

Automatic commit.

"CREATE PUBLICATION statement" on page 314
"CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]"

on page 331
"ALTER SYNCHRONIZATION DEFINITION statement" on page 222
"DROP SYNCHRONIZATION DEFINITION statement [MobiLink]" on

page 408
"CREATE SYNCHRONIZATION TEMPLATE statement [MobiLink]" on

page 333
"CREATE SYNCHRONIZATION SITE statement [MobiLink]" on

page 328

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Anywhere version 7.0.

Use TCP/IP synchronization to upload the row(s) of the Pets table with a
pet_id of 2 as well as the person_id, fname, and lname columns of the People
table from the remote database to the consolidated database:

CREATE SYNCHRONIZATION DEFINITION mysharedtables
SITE "demo_sync_site"
TYPE ’tcpip’
ADDRESS ’host=localhost;port=2439;’
OPTION memory=’2m’, dir=’c:\db\logs’
(table People(person_id, fname, lname),

table Pets WHERE pet_id=2);

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

CREATE SYNCHRONIZATION SITE statement [MobiLink] (deprecated)

328

CREATE SYNCHRONIZATION SITE statement
[MobiLink] (deprecated)

Use this statement to create a site within a MobiLink reference database, to
be used when extracting Adaptive Server Anywhere remote databases with
the mlxtract utility. This command is deprecated. In its place, you should use
CREATE SYNCHRONIZATION SUBSCRIPTION, CREATE
PUBLICATION, and CREATE SYNCHRONIZATION USER.

CREATE SYNCHRONIZATION SITE ml_username
USING sync-template-name
[TYPE sync-type]
[ADDRESS network-parameters]
[OPTION option=value, …]

ml_username: identifier

sync-template-name: name

network-parameters: string

sync-type: http | https | tcpip

value: string | integer

SITE clause The name that uniquely identifies this remote database within
your MobiLink setup.

TYPE clause This clause specifies the method of synchronization. The
default value is tcpip. You may also choose to use http or https.

ADDRESS clause This clause specifies network parameters, including
the location of the MobiLink synchronization server. The value of this clause
overrides the value in the synchronization template.

$ For a complete list of network parameters, see "CREATE
SYNCHRONIZATION USER statement [MobiLink]" on page 335.

OPTION clause The OPTION clause allows you to set the following
options. Set the appropriate options using a comma-delimited list.

The values for each option cannot contain the characters "=" or "," or ";".

$ For a complete list of options, see "CREATE SYNCHRONIZATION
USER statement [MobiLink]" on page 335.

Synchronization templates and synchronization sites are used only when
creating Adaptive Server Anywhere remote databases by means of extracting
them from an Adaptive Server Anywhere version 7 reference database.

Description

Syntax

Parameters

Usage

Chapter 4 SQL Statements

329

Each remote database is created from a synchronization site, stored within
the reference database. Each synchronization site is based upon a single
synchronization template, although many sites can use a single template.

Information that is common to many sites should be stored in the
synchronization template, rather than be duplicated in each site.

The extraction process not only creates the remote databases, but also creates
a synchronization definition using properties of the corresponding
synchronization template and site. This information must include the unique
name of that MobiLink site within the MobiLink system. In addition, it
should specify how to contact the MobiLink synchronization server and
which data in the remote database is to be synchronized.

Use this statement to create a separate synchronization site for each remote
database. This statement also allows you to override the template settings.
For example, you can choose options different than those specified in the
template

Must have DBA authority.

Automatic commit

"CREATE PUBLICATION statement" on page 314
"CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]"

on page 331
"ALTER SYNCHRONIZATION SITE statement [MobiLink]" on page 225
"DROP SYNCHRONIZATION SITE statement [MobiLink]" on page 409
"CREATE SYNCHRONIZATION DEFINITION statement [MobiLink]" on

page 326
"CREATE SYNCHRONIZATION TEMPLATE statement [MobiLink]" on

page 333

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Anywhere version 7.0.

Deploy the template mytemplate to site demo_sync_site. Connect to a
different MobiLink synchronization server from the one specified in the
template and set the memory option to 3 Mb.

CREATE SYNCHRONIZATION SITE ’demo_sync_site’
USING mytemplate
ADDRESS ’host=test.internal;port=2439;’
OPTION memory=’3m’;

Deploy the template mytemplate to site demo_sync_site using Certicom
transmission-layer security.

Permissions

Side effects

See also

Standards and
compatibility

Examples

CREATE SYNCHRONIZATION SITE statement [MobiLink] (deprecated)

330

CREATE SYNCHRONIZATION SITE ’demo_sync_site’
USING mytemplate2
ADDRESS ’host=test.internal;port=2439;

security=ecc_tls’

Chapter 4 SQL Statements

331

CREATE SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]

Use this statement in an Adaptive Server Anywhere remote database to
subscribe a MobiLink user to a publication.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO publication-name
[FOR ml_username, …]
[TYPE sync-type]
[ADDRESS network-parameters]
[OPTION option=value, …]

ml_username: identifier

network-parameters: string

sync-type: http | https | tcpip | ActiveSync

value: string | integer

TO clause Specify the name of a publication.

FOR clause Specify one or more MobiLink user IDs.

Omitting this clause creates a default subscription for the publication.
MobiLink users subscribed to this publication inherit these defaults, unless
their own settings override them. This feature is most useful when extracting
remote databases from a reference database.

TYPE clause This clause specifies the communication protocol to use for
synchronization. The default protocol is tcpip.

ADDRESS clause This clause specifies network parameters, including
the location of the MobiLink synchronization server.

$ For a complete list of network parameters, see "CREATE
SYNCHRONIZATION USER statement [MobiLink]" on page 335.

OPTION clause This clause allows you to set extended options for the
subscription. If no FOR clause is provided, the extended options act as
default settings for the publication, and are overridden by any extended
options set for a synchronization user.

$ For a complete list of options, see "CREATE SYNCHRONIZATION
USER statement [MobiLink]" on page 335.

Use this statement to create a synchronization subscription within a
MobiLink remote or reference database.

Description

Syntax

Parameters

Usage

CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]

332

Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Automatic commit.

"CREATE PUBLICATION statement" on page 314
"CREATE SYNCHRONIZATION USER statement [MobiLink]" on

page 335

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Anywhere version 8.0.

Create a default subscription, which contains default subscription values, for
the sales publication (by omitting the FOR clause). Indicate the address of
the MobiLink synchronization server and specify that only the Certicom root
certificate is to be trusted.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
ADDRESS ’host=test.internal;port=2439;

security=ecc_tls’
OPTION memory=’2m’;

Subscribe MobiLink user ml_user1 to the sales publication. Set the memory
option to 3 Mb, rather than the value specified in the default publication.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION memory=’3m’;

Permissions

Side effects

See also

Standards and
compatibility

Examples

Chapter 4 SQL Statements

333

CREATE SYNCHRONIZATION TEMPLATE
statement [MobiLink] (deprecated)

This statement creates a template within a MobiLink reference database, to
be used when extracting Adaptive Server Anywhere remote databases with
the mlxtract utility. This command is deprecated. In its place, you should use
CREATE SYNCHRONIZATION SUBSCRIPTION and CREATE
PUBLICATION.

CREATE SYNCHRONIZATION TEMPLATE sync-template-name
[TYPE sync-type]
ADDRESS network-parameters
[OPTION option=value]
(TABLE article-description, …)

network-parameters: string

article-description:
table-name [(column-name, ...)]

[WHERE search-condition]

value:
string | integer

TYPE clause This clause specifies the method of synchronization. The
default value is tcpip. You may also choose to use http or https.

ADDRESS clause This clause specifies network parameters, including
the location of the MobiLink synchronization server.

$ For a complete list of the network parameters, see "CREATE
SYNCHRONIZATION USER statement [MobiLink]" on page 335.

OPTION clause The OPTION clause allows you to set options. The
values for each option cannot contain the characters "=" or "," or ";".

The values for each option cannot contain the characters "=" or "," or ";".

$ For a complete list of options, see "CREATE SYNCHRONIZATION
USER statement [MobiLink]" on page 335.

Synchronization templates and synchronization sites are used only when
creating Adaptive Server Anywhere remote databases by means of extracting
them from an Adaptive Server Anywhere version 7 reference database.

Each remote database is created from a synchronization site, stored within
the reference database. Each synchronization site is based upon a single
synchronization template, although many sites can use a single template.

Description

Syntax

Parameters

Usage

CREATE SYNCHRONIZATION TEMPLATE statement [MobiLink] (deprecated)

334

Information that is common to many sites should be stored in the
synchronization template, rather than be duplicated in each site.

The extraction process not only creates the remote databases, but also creates
a synchronization definition using properties of the corresponding
synchronization template and site. This information must include the unique
name of that MobiLink site within the MobiLink system. In addition, it
should specify how to contact the MobiLink synchronization server and
which data in the remote database is to be synchronized.

Use this statement to create a template for each type of remote database.

Must have DBA authority. Requires exclusive access to all tables referred to
in the statement.

Automatic commit

"CREATE PUBLICATION statement" on page 314
"CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]"

on page 331
"ALTER SYNCHRONIZATION TEMPLATE statement [MobiLink]" on

page 229
"DROP SYNCHRONIZATION TEMPLATE statement [MobiLink]" on

page 411
"CREATE SYNCHRONIZATION DEFINITION statement [MobiLink]" on

page 326
"CREATE SYNCHRONIZATION SITE statement [MobiLink]" on

page 328

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Anywhere version 7.0.

Use TCP/IP synchronization to upload the row(s) of the Pets table with a
pet_id of 2 as well as the person_id, fname, and lname columns of the People
table from the remote database to the consolidated database:

CREATE SYNCHRONIZATION TEMPLATE mytemplate
TYPE ’tcpip’
ADDRESS ’host=localhost;port=2439;’
OPTION memory=’2m’, dir=’c:\db\logs’
(table People(person_id, fname, lname),

table Pets WHERE pet_id=2);

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

335

CREATE SYNCHRONIZATION USER statement
[MobiLink]

Use this statement in an Adaptive Server Anywhere remote database to
create a synchronization user.

CREATE SYNCHRONIZATION USER ml_username
[TYPE sync-type]
[ADDRESS network-parameters]
[OPTION option=value, …]

ml_username: identifier

sync-type: tcpip | http | https | ActiveSync

network-parameters: string

value: string | integer

TYPE clause This clause specifies the communication protocol to use for
synchronization. The options are tcpip, http, https, and ActiveSync. The
default protocol is tcpip.

If conflicting values are specified, the protocol that is used is based on the
following priority scheme:

♦ protocol specified with the dbmlsync extended option
CommunicationType using the -eu option

♦ protocol specified with the dbmlsync extended option
CommunicationType using the -e option

♦ protocol specified for the subscription

♦ protocol specified for the user

♦ protocol specified for the publication

ADDRESS clause This clause specifies network-parameters in the form
keyword=value, separated by semi-colons. Which settings you supply
depends on the communication protocol you are using (TCP/IP, HTTP,
HTTPS, or ActiveSync).

If conflicting values are specified, the network parameters that are used are
based on the following priority scheme:

♦ network parameters specified with the dbmlsync extended option
CommunicationAddress using the -eu option

♦ network parameters specified with the dbmlsync extended option
CommunicationAddress using the -e option

Description

Syntax

Parameters

CREATE SYNCHRONIZATION USER statement [MobiLink]

336

♦ network parameters specified for the subscription

♦ network parameters specified for the user

♦ network parameters specified for the publication

♦ TCP/IP parameters If you specify the tcpip protocol, you can
optionally specify the following network-parameters:

♦ client_port=nnnnn or client_port=nnnnn-mmmmm A range of
client ports for communication. If only one value is specified, the
end of the range is 100 greater than the initial value, for a total of
101 ports.

The option can be useful for clients inside a firewall communicating
with a MobiLink synchronization server outside the firewall

♦ host=hostname The host name or IP number for the machine on
which the MobiLink synchronization server is running. The default
value is localhost. For Windows CE, the default value is the value
of ipaddr in the registry folder Comm\Tcpip\Hosts\ppp_peer. This
allows a Windows CE device to connect to a MobiLink
synchronization server executing on the desktop machine where the
Windows CE device’s cradle is connected.

For the Palm Computing Platform, the default value of localhost
refers to the device. It is recommended that an explicit host name or
IP address be specified.

♦ port=portnumber The socket port number. The port number must
be a decimal number that matches the port the MobiLink
synchronization server is setup to monitor. The default value for the
port parameter is 2439, which is the IANA registered port number
for the MobiLink synchronization server.

♦ keep_alive=[0|1] In some circumstances, MobiLink worker
threads become unavailable when TCP/IP-based connections
disappear during synchronization. These blocked worker threads are
waiting for replies from the MobiLink client. If all worker threads
reach this state, MobiLink cannot process synchronizations.
Similarly, MobiLink clients can become blocked if the connection
disappears. The TCP/IP-based streams that are used during
MobiLink synchronization accept a parameter, both on the client
and server side, to manage liveness. The default is 1 (On).

Chapter 4 SQL Statements

337

♦ network_name=name Specify the network name so that you can
use MobiLink’s auto-dial feature. This allows you to connect from a
Pocket PC 2002 or Windows desktop computer without manually
dialing. Used with scheduling, your remote can synchronize
unattended. Used without scheduling, this allows you to run
dbmlsync without manually dialing a connection. The name should
be the network name that you have specified in the dropdown list in
Settings➤Connections➤Connections (Pocket PC) or Network &
Dialup Connections (Windows).

$ For more information about scheduling, see "Scheduling
synchronization" on page 162 of the book MobiLink
Synchronization User’s Guide.

♦ network_connect_timeout=seconds When you specify
network_name, you can optionally specify a timeout after which the
dial-up fails. This feature applies to Pocket PC 2002 only. (On
Windows, you control this feature by configuring the connection
profile.) The default is 120 seconds.

♦ network_leave_open={0|1} When you specify network_name,
you can optionally specify that the connection should be left open
after the synchronization finishes (1). The default behavior is to
close the connection (0).

♦ security=cipher(keyword=value;…) All communication through
this connection is to be encrypted using the cipher suite specified.
The cipher can be one of ecc_tls or rsa_tls. These refer to
elliptic-curve and RSA certification. For backwards compatibility,
ecc_tls can also be specified as certicom_tls.

Separately licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

$ For more information about security, see "Transport-Layer
Security" on page 283 of the book MobiLink Synchronization User’s
Guide.

The following security keywords are supported.

♦ certificate_company If you specify this parameter, the
MobiLink client only accepts server certificates when the
organization field on the certificate matches this value.

CREATE SYNCHRONIZATION USER statement [MobiLink]

338

♦ certificate_unit If you specify this parameter, the MobiLink
client only accepts server certificates when the organization
unit field on the certificate matches this value.

♦ certificate_name If you specify this parameter, the MobiLink
client only accepts server certificates when the common name
field on the certificate matches this value.

♦ trusted_certificates When synchronization occurs through a
Certicom TLS synchronization stream, the MobiLink
synchronization server sends its certificate to the client, as well
as the certificate of the entity that signed it, and so on up to a
self-signed root.

The client checks that the chain is valid and that it trusts the
root certificate in the chain. This feature allows you to specify
which root certificates to trust. By default, the Sybase
certificate is the trusted root.

♦ HTTP parameters If you specify the http protocol, you can optionally
specify the following network-parameters:

♦ buffer_size=number The maximum body size for a fixed content
length message, in bytes. Changing the option will decrease or
increase the amount of memory allocated for sending content. The
default is 64 000, except on UltraLite and Pocket PC, in which case
it is 1 000.

♦ client_port=nnnnn or client_port=nnnnn-mmmmm A range of
client ports for communication. If only one value is specified, the
end of the range is 100 greater than the initial value, for a total of
101 ports.

The option can be useful for clients inside a firewall communicating
with a MobiLink synchronization server outside the firewall.

♦ host=hostname The host name or IP number for the machine on
which the MobiLink synchronization server is running. The default
value is localhost. For Windows CE, the default value is the value
of ipaddr in the registry folder Comm\Tcpip\Hosts\ppp_peer. This
allows a Windows CE device to connect to a MobiLink
synchronization server executing on the desktop machine where the
Windows CE device’s cradle is connected.

For the Palm Computing Platform, the default value of localhost
refers to the device. It is recommended that an explicit host name or
IP address be specified.

Chapter 4 SQL Statements

339

♦ keep_alive=[0|1] In some circumstances, MobiLink worker
threads become unavailable when TCP/IP-based connections
disappear during synchronization. These blocked worker threads are
waiting for replies from the MobiLink client. If all worker threads
reach this state, MobiLink cannot process synchronizations.
Similarly, MobiLink clients can become blocked if the connection
disappears. The TCP/IP-based streams that are used during
MobiLink synchronization accept a parameter, both on the client
and server side, to manage liveness. The default is 1 (On).

♦ network_name=name Specify the network name so that you can
use MobiLink’s auto-dial feature. This allows you to connect from a
Pocket PC 2002 or Windows desktop computer without manually
dialing. Used with scheduling, your remote can synchronize
unattended. Used without scheduling, this allows you to run
dbmlsync without manually dialing a connection. The name should
be the network name that you have specified in the dropdown list in
Settings➤Connections➤Connections (Pocket PC) or Network &
Dialup Connections (Windows).

$ For more information about scheduling, see "Scheduling
synchronization" on page 162 of the book MobiLink
Synchronization User’s Guide.

♦ network_connect_timeout=seconds When you specify
network_name, you can optionally specify a timeout after which the
dial-up fails. This feature applies to Pocket PC 2002 only. (On
Windows, you control this feature by configuring the connection
profile.) The default is 120 seconds.

♦ network_leave_open={0|1} When you specify network_name,
you can optionally specify that the connection should be left open
after the synchronization finishes (1). The default behavior is to
close the connection (0).

♦ persistent={TRUE|FALSE} TRUE means that the client will
attempt to use the same TCP/IP connection for all HTTP requests in
a synchronization. A setting of FALSE is more compatible with
intermediate agents. The default is FALSE, except on Palm devices
it is TRUE.

Note: Except on Palm devices, you should only set persistent to
TRUE if you are connecting directly to MobiLink. If you are
connecting through an intermediate agent such as a proxy or
redirector, a persistent connection may cause problems.

CREATE SYNCHRONIZATION USER statement [MobiLink]

340

♦ port=portnumber The socket port number. The port number must
be a decimal number that matches the port the MobiLink
synchronization server is set up to monitor. The default value for
the port number is 80, which is the IANA registered port number for
the MobiLink synchronization server.

♦ proxy_host=proxy_hostname The host name or IP address of
the proxy server. The default value is localhost.

♦ proxy_port=proxy_portnumber The port number of the proxy
server. The default value is 80.

♦ security=cipher(keyword=value;…) All communication through
this connection is to be encrypted using the cipher suite specified.
The cipher can be one of ecc_tls or rsa_tls. These refer to
elliptic-curve and RSA certification. For backwards compatibility,
ecc_tls can also be specified as certicom_tls.

Separately licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

$ For more information about security, see "Transport-Layer
Security" on page 283 of the book MobiLink Synchronization User’s
Guide.

The following security keywords are supported.

♦ certificate_company If you specify this parameter, the
MobiLink client only accepts server certificates when the
organization field on the certificate matches this value.

♦ certificate_unit If you specify this parameter, the MobiLink
client only accepts server certificates when the organization
unit field on the certificate matches this value.

♦ certificate_name If you specify this parameter, the MobiLink
client only accepts server certificates when the common name
field on the certificate matches this value.

♦ trusted_certificates When synchronization occurs through a
Certicom TLS synchronization stream, the MobiLink
synchronization server sends its certificate to the client, as well
as the certificate of the entity that signed it, and so on up to a
self-signed root.

Chapter 4 SQL Statements

341

The client checks that the chain is valid and that it trusts the
root certificate in the chain. This feature allows you to specify
which root certificates to trust. By default, the Sybase
certificate is the trusted root.

♦ url_suffix=suffix The suffix to add to the URL on the first line of
each HTTP request. When synchronizing through a proxy server,
the suffix may be necessary in order to find the MobiLink
synchronization server. The default value is MobiLink.

♦ version=versionnumber A string specifying the version of HTTP
to use. You have a choice of 1.0 or 1.1. The default value is 1.1.

♦ HTTPS parameters The HTTPS communication stream uses
Certicom RSA security.

Separately licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

$ For more information about security, see "Transport-Layer
Security" on page 283 of the book MobiLink Synchronization User’s
Guide.

If you specify the HTTPS protocol, you can optionally specify the
following network-parameters:

♦ buffer_size=number The maximum body size for a fixed content
length message, in bytes. Changing the option will decrease or
increase the amount of memory allocated for sending content. The
default is 64 000, except on UltraLite and Pocket PC, in which case
it is 1 000.

♦ client_port=nnnnn or client_port=nnnnn-mmmmm A range of
client ports for communication. If only one value is specified, the
end of the range is 100 greater than the initial value, for a total of
101 ports.

The option can be useful for clients inside a firewall communicating
with a MobiLink synchronization server outside the firewall.

♦ host=hostname The host name or IP number for the machine on
which the MobiLink synchronization server is running. The default
value is localhost. For Windows CE, the default value is the value
of ipaddr in the registry folder Comm\Tcpip\Hosts\ppp_peer. This
allows a Windows CE device to connect to a MobiLink
synchronization server executing on the desktop machine where the
Windows CE device’s cradle is connected.

CREATE SYNCHRONIZATION USER statement [MobiLink]

342

For the Palm Computing Platform, the default value of localhost
refers to the device. It is recommended that an explicit host name or
IP address be specified.

♦ keep_alive=[0|1] In some circumstances, MobiLink worker
threads become unavailable when TCP/IP-based connections
disappear during synchronization. These blocked worker threads are
waiting for replies from the MobiLink client. If all worker threads
reach this state, MobiLink cannot process synchronizations.
Similarly, MobiLink clients can become blocked if the connection
disappears. The TCP/IP-based streams that are used during
MobiLink synchronization accept a parameter, both on the client
and server side, to manage liveness. The default is 1 (On).

♦ network_name=name Specify the network name so that you can
use MobiLink’s auto-dial feature. This allows you to connect from a
Pocket PC 2002 or Windows desktop computer without manually
dialing. Used with scheduling, your remote can synchronize
unattended. Used without scheduling, this allows you to run
dbmlsync without manually dialing a connection. The name should
be the network name that you have specified in the dropdown list in
Settings➤Connections➤Connections (Pocket PC) or Network &
Dialup Connections (Windows).

$ For more information about scheduling, see "Scheduling
synchronization" on page 162 of the book MobiLink
Synchronization User’s Guide.

♦ network_connect_timeout=seconds When you specify
network_name, you can optionally specify a timeout after which the
dial-up fails. This feature applies to Pocket PC 2002 only. (On
Windows, you control this feature by configuring the connection
profile.) The default is 120 seconds.

♦ network_leave_open={0|1} When you specify network_name,
you can optionally specify that the connection should be left open
after the synchronization finishes (1). The default behavior is to
close the connection (0).

♦ persistent={TRUE|FALSE} TRUE means that the client will
attempt to use the same TCP/IP connection for all HTTPS requests
in a synchronization. A setting of FALSE is more compatible with
intermediate agents. The default is FALSE, except on Palm devices
it is TRUE.

Note: Except on Palm devices, you should only set persistent to
TRUE if you are connecting directly to MobiLink. If you are
connecting through an intermediate agent such as a proxy or
redirector, a persistent connection may cause problems.

Chapter 4 SQL Statements

343

♦ port=portnumber The socket port number. The port number must
be a decimal number that matches the port the MobiLink
synchronization server is set up to monitor. The default value for
the port parameter is 443, which is the IANA registered port
number for the MobiLink synchronization server.

♦ proxy_host=proxy_hostname The host name or IP address of
the proxy server. The default value is localhost.

♦ proxy_port=proxy_portnumber The port number of the proxy
server. The default value is 443.

♦ certificate_company If you specify this parameter, the MobiLink
client only accepts server certificates when the organization field on
the certificate matches this value.

♦ certificate_unit If you specify this parameter, the MobiLink client
only accepts server certificates when the organization unit field on
the certificate matches this value.

♦ certificate_name If you specify this parameter, the MobiLink
client only accepts server certificates when the common name field
on the certificate matches this value.

♦ trusted_certificates When synchronization occurs through a
Certicom TLS synchronization stream, the MobiLink
synchronization server sends its certificate to the client, as well as
the certificate of the entity that signed it, and so on up to a
self-signed root.

The client checks that the chain is valid and that it trusts the root
certificate in the chain. This feature allows you to specify which
root certificates to trust. By default, the Sybase certificate is the
trusted root.

$ For more information about security, see "Transport-Layer
Security" on page 283 of the book MobiLink Synchronization User’s
Guide.

♦ url_suffix=suffix The suffix to add to the URL on the first line of
each HTTPS request. When synchronizing through a proxy server,
the suffix may be necessary in order to find the MobiLink
synchronization server. The default value is MobiLink.

♦ version=versionnumber A string specifying the version of HTTP
to use. You have a choice of 1.0 or 1.1. The default value is 1.1.

CREATE SYNCHRONIZATION USER statement [MobiLink]

344

♦ ActiveSync parameters During ActiveSync synchronization,
ActiveSync is used to exchange data with the MobiLink provider for
ActiveSync, which resides on the desktop machine. The ActiveSync
parameters describe the communications between the MobiLink
provider for ActiveSync and the MobiLink synchronization server.

The address string for ActiveSync takes the following form:

stream=desktop-stream;[desktop-stream-params]

where:

♦ desktop-stream is the synchronization stream to use between the
MobiLink provider for ActiveSync and the MobiLink
synchronization server. It can be http, https, or tcpip. The default
setting is tcpip.

♦ desktop-stream-params are TCP/IP, HTTP, or HTTPS
parameters, as described in the lists above.

$ For more information, see "ActiveSync provider installation
utility" on page 610 of the book MobiLink Synchronization User’s
Guide.

OPTION clause The OPTION clause allows you to set options using
option=value in a comma-separated list.

The values for each option cannot contain the characters "=" or "," or ";".
The database server accepts any option that you enter without checking for
its validity. Therefore, if you misspell an option or enter an invalid value, no
error message appears until you run the dbmlsync command to perform
synchronization.

Options set for a synchronization user can be overridden in individual
subscriptions or on the dbmlsync command line. For more information, see
"-e extended options" on page 414 of the book MobiLink Synchronization
User’s Guide.

The following table lists the available options:

Chapter 4 SQL Statements

345

Full Name Short
name

Default Description

ConflictRetries cr –1 Number of retries if download fails
because of conflicts. –1 means to
continue indefinitely.

DisablePolling p OFF Disable the transaction log scan
polling.

DownloadBufferSize dbs 1 Mb

(32K on
Windows
CE)

The size of buffer for buffering the
download stream. If the size is too
small to hold the entire download
stream, dbmlsync uses a temporary
file to store the download stream
before applying it. Valid settings
are n, nK, and nM, where n is zero
or a positive integer and the units
are in bytes. If the setting is zero,
dbmlsync does not buffer the
download stream. If the setting is
greater than zero, but less than 4K,
dbmlsync gives a warning message
and automatically uses 4K memory
for buffering the download stream.

ErrorLogSendLimit el 32 kb The maximum size of error log to
send to the MobiLink
synchronization server when an
error occurs.

FireTriggers ft ON Fire triggers on download.

Increment inc No limit Send the upload stream in chunks
of roughly the specified size. Once
the specified size is reached, a
chunk is sent at the next point in
the stream at which there are no
outstanding partial transactions.
MobiLink does not send a
download stream to the remote
until the last chunk has been
received. If you do not specify an
increment size, the whole upload
stream is sent in a single transfer
(the default).

IgnoreHookErrors eh OFF Ignore errors that occur when
synchronization hooks are being
processed.

IgnoreScheduling isc OFF Ignore scheduling information.

CREATE SYNCHRONIZATION USER statement [MobiLink]

346

Full Name Short
name

Default Description

LockTables lt ON Set to OFF to allow modifications
during synchronization.

Memory mem 1 Mb The size of the cache used to
assemble the upload stream. If
more space is needed, some
content is written temporarily to
disk.

MobiLinkPwd mp NULL Set a MobiLink password.

NewMobiLinkPwd mn NULL Set a new MobiLink password.

OfflineDirectory dir NULL Path of a directory that contains
offline transaction logs.

PollingPeriod pp 1 min. The period at which the transaction
log is scanned.

Schedule sch NULL If set, remain in standby mode after
synchronizing and synchronize
again automatically at the specified
times. A complete description of
how to set scheduling is provided
below.

ScriptSiteName sn NULL The name of a script to be executed
after synchronization.

ScriptVersion sv default Tells the MobiLink
synchronization server to use the
scripts for the named schema
version.

SendColumnNames scn OFF Send column names for automatic
script generation.

SendTriggers st OFF Send trigger actions on upload.

StreamCompression sc MEDIU
M

Compress upload stream. Choose
LOW, MEDIUM, or HIGH.
At higher settings the stream is
smaller but takes longer to create.

TableOrder tor NULL Specify the order of tables in the
upload stream, for referential
integrity resolution.

Verbose v OFF Full verbosity. This is the same as
setting the command line option
-v+.

VerboseHooks vs OFF Log messages related to hook
scripts.

Chapter 4 SQL Statements

347

Full Name Short
name

Default Description

VerboseMin vm OFF Log a minimal amount of
information.

VerboseOptions vo OFF Log a list of the extended options
you have specified.

VerboseRowCounts vn OFF Log the number of rows that were
uploaded or downloaded.

VerboseRowValues vr OFF Log the values of rows that were
uploaded or downloaded.

VerboseUpload vu OFF Log information about the upload
stream.

$ For information on how these options can be used to tune
synchronization, see "Tuning synchronization" on page 139 of the book
MobiLink Synchronization User’s Guide.

Schedule option syntax The schedule option syntax is the same when
used in the synchronization SQL statements and in the dbmlsync command
line. In both cases, the syntax is as follows.

sch= { EVERY:hhhh:mm | singleSchedule,... }

where:

hhhh : 00... 9999

singleSchedule : day @hh:mm[AM | PM] [–hh:mm[AM | PM]]

day : EVERYDAY | WEEKDAY | MONDAY | TUESDAY | WEDNESDAY
| THURSDAY | FRIDAY | SATURDAY | SUNDAY | dayOfMonth

hh : 00... 24

mm : 00... 59

dayOfMonth : 1... 31

When the EVERY keyword is present, synchronization occurs immediately,
and then synchronization repeats indefinitely after the specified time period.
Should the synchronization process take longer than the specified period,
synchronization starts again immediately. A repeat period of zero has the
same effect as specifying 1 minute.

Given one or more single schedules, synchronization occurs only at the
specified days and times.

If AM or PM is not specified, a 24-hour clock is assumed. 24:00 is
interpreted as 00:00 on the next day.

CREATE SYNCHRONIZATION USER statement [MobiLink]

348

An interval is specified as @hh:mm–hh:mm (with optional specification of
AM or PM). When an interval is specified, synchronization occurs exactly
once, starting at a random time within the interval. The interval provides a
window of time for synchronization so that multiple remote databases with
the same schedule do not synchronize at exactly the same time, causing
congestion at the synchronization server.

The interval end time is always interpreted as following the first. When the
time interval includes midnight, it ends on the next day. If dbmlsync is
started midway through the interval, synchronization occurs at a random time
before the end time.

EVERYDAY is all seven days of the week and WEEKDAY is Monday
through Friday.

Days of the week are Monday, Tuesday, and so on. The abbreviated forms of
the day, such as Mon, may also be used. You must use the full-length
English day names (such as Monday) if you want them to be recognized by a
synchronization server running in a language other than English.

If a previous synchronization is still incomplete at a scheduled time, the
scheduled synchronization commences when the previous synchronization
completes.

The IgnoreScheduling option and the -is command line option instruct
dbmlsync to ignore scheduling, so that synchronization is immediate. For
more information, see "-is option" on page 424 of the book MobiLink
Synchronization User’s Guide.

$ For more information about scheduling, see "Scheduling
synchronization" on page 162 of the book MobiLink Synchronization User’s
Guide.

Must have DBA authority.

Automatic commit.

"ALTER SYNCHRONIZATION USER statement [MobiLink]" on page 231
"CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]"

on page 331
"CREATE PUBLICATION statement" on page 314

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

The following example creates a user named SSinger, who synchronizes over
TCP/IP with a server machine named mlserver.mycompany.com using the
password Sam. The use of a password in the user definition is not secure.

Permissions

Side effects

See also

Standards and
compatibility

Examples

Chapter 4 SQL Statements

349

CREATE SYNCHRONIZATION USER SSinger
TYPE http
ADDRESS ’host=mlserver.mycompany.com’
OPTION MobiLinkPwd=’Sam’

The following creates a synchronization user called factory014 that will
cause dbmlsync to hover and synchronize via Certicom-encrypted TCP/IP at
a random time in every 8-hour interval. The randomness helps prevent
performance degradation at the MobiLink server due to multiple
simultaneous synchronizations:

CREATE SYNCHRONIZATION USER factory014
TYPE tcpip
ADDRESS
’host=mycompany.manufacturing.mobilink1;security=certico
m_tls(certificate=mycompany_mobilink.crt;certificate_pas
sword=thepassword)’
OPTION Schedule=’EVERY:08:00’

The following creates a synchronization user called sales5322 that will be
used to synchronize with HTTP. In this example, the MobiLink
synchronization server runs behind the corporate firewall, and
synchronization requests are redirected to it using the Redirector (a reverse
proxy to an NSAPI Web server).

CREATE SYNCHRONIZATION USER sales5322
TYPE https
ADDRESS
’host=www.mycompany.com;port=80;url_suffix=mlredirect/ml
/’

CREATE TABLE statement

350

CREATE TABLE statement
Use this statement to create a new table in the database and, optionally, to
create a table on a remote server.

CREATE [GLOBAL TEMPORARY] TABLE [owner.]table-name
({ column-definition | table-constraint | pctfree }, …)
[{ IN | ON } dbspace-name]
[ON COMMIT { DELETE | PRESERVE } ROWS]
 [AT location-string]

column-definition :
column-name data-type [NOT NULL]
 [DEFAULT default-value] [column-constraint …]

default-value :
 special-value
| string
| global variable
| [-] number
| (constant-expression)
| built-in-function(constant-expression)
| AUTOINCREMENT
| CURRENT DATABASE
| CURRENT REMOTE USER
| CURRENT UTC TIMESTAMP
| GLOBAL AUTOINCREMENT [(partition-size)]
| NULL
| TIMESTAMP
| UTC TIMESTAMP
| LAST USER

special-value:
 CURRENT { DATE | TIME | TIMESTAMP
 | UTC TIMESTAMP | USER | PUBLISHER }
| USER

column-constraint :
{ UNIQUE
 | PRIMARY KEY [CLUSTERED]
 | REFERENCES table-name
 [(column-name)] [actions] [CLUSTERED]
}
| CHECK (condition)
| COMPUTE (expression)

table-constraint :
 UNIQUE (column-name, …)
| PRIMARY KEY [CLUSTERED] (column-name, …)
| CHECK (condition)
| foreign-key-constraint

Description

Syntax

Chapter 4 SQL Statements

351

foreign-key-constraint :
[NOT NULL] FOREIGN KEY [role-name] [(column-name, …)]
… REFERENCES table-name [(column-name, …)] [CLUSTERED]
… [actions] [CHECK ON COMMIT]

action :
ON { UPDATE | DELETE }
…{ CASCADE | SET NULL | SET DEFAULT | RESTRICT }

location-string :
 remote-server-name.[db-name].[owner].object-name
| remote-server-name;[db-name];[owner];object-name

pctfree : PCTFREE percent-free-space

percent-free-space : integer

PCTFREE Specifies the percentage of free space you want to reserve for
each table page. The free space is used if rows increase in size when the data
is updated. If there is no free space in a table page, every increase in the size
of a row on that page requires the row to be split across multiple table pages,
causing row fragmentation and possible performance degradation.

The value percent-free-space is an integer between 0 and 100. The former
specifies that no free space is to be left on each page—each page is to be
fully packed. A high value causes each row to be inserted into a page by
itself. If PCTFREE is not set, 200 bytes are reserved in each page.

The value for PCTFREE is stored in the SYSATTRIBUTE system table.

$ For more information, see "SYSATTRIBUTE system table" on
page 601.

IN clause The IN clause specifies the dbspace in which the table is to be
created. If the table is a GLOBAL TEMPORARY table, the IN clause is
ignored.

$ For more information about dbspaces, see "CREATE DBSPACE
statement" on page 278.

ON COMMIT clause The ON COMMIT clause is allowed only for
temporary tables. By default, the rows of a temporary table are deleted on
COMMIT.

AT clause Create a remote table on a different server specified by
location-string and also a proxy table on the current database that maps to
the remote table. The AT clause supports the semicolon (;) as a field
delimiter in location-string. If no semicolon is present, a period is the field
delimiter. This allows filenames and extensions to be used in the database
and owner fields.

Parameters

CREATE TABLE statement

352

For example, the following statement maps the table a1 to the MS Access
file mydbfile.mdb:

CREATE TABLE a1
AT ’access;d:\mydbfile.mdb;;a1’

$ For information on remote servers, see "CREATE SERVER statement"
on page 321. For information on proxy tables, see "CREATE EXISTING
TABLE statement" on page 291 and "Specifying proxy table locations" on
page 467 of the book ASA SQL User’s Guide.

Foreign key definitions are ignored on remote tables. Foreign key definitions
on local tables that refer to remote tables are also ignored. Primary key
definitions are sent to the remote server if the server supports primary keys.

The COMPUTE clause is ignored for remote tables.

column-definition Define a column in the table. The following are part of
column definitions.

♦ column-name The column name is an identifier. Two columns in the
same table cannot have the same name. For more information, see
"Identifiers" on page 7.

♦ data-type For information on data types, see "SQL Data Types" on
page 51.

♦ NOT NULL If NOT NULL is specified, or if the column is in a
UNIQUE or PRIMARY KEY constraint, the column cannot contain
NULL in any row.

♦ DEFAULT For more information on the special-value, see "Special
values" on page 33.

If a DEFAULT value is specified, it is used as the value for the column
in any INSERT statement that does not specify a value for the column. If
no DEFAULT is specified, it is equivalent to DEFAULT NULL.

Some of the defaults require more description:

♦ AUTOINCREMENT When using AUTOINCREMENT, the
column must be one of the integer data types, or an exact numeric
type.

On inserts into the table, if a value is not specified for the
AUTOINCREMENT column, a unique value larger than any other
value in the column is generated. If an INSERT specifies a value for
the column, it is used; if the specified value is larger than the
current maximum value for the column, that value will be used as a
starting point for subsequent inserts.

Chapter 4 SQL Statements

353

Deleting rows does not decrement the AUTOINCREMENT
counter. Gaps created by deleting rows can only be filled by explicit
assignment when using an insert. After an explicit insert of a row
number less then the maximum, subsequent rows without explicit
assignment are still automatically incremented with a value of one
greater than the previous maximum.

The next value to be used for each column is stored as an integer.
Using values greater than (231 – 1) may cause wraparound to
incorrect values, and AUTOINCREMENT should not be used in
such cases.

You can find the most recently inserted value of the column by
inspecting the @@identity global variable.

The identity column is a Transact-SQL-compatible alternative to
using the AUTOINCREMENT default. In Adaptive Server
Anywhere, the identity column is implemented as
AUTOINCREMENT default. For information, see "The special
IDENTITY column" on page 399 of the book ASA SQL User’s
Guide.

♦ GLOBAL AUTOINCREMENT This default is intended for use
when multiple databases will be used in a SQL Remote replication
or MobiLink synchronization environment.

This default is similar to AUTOINCREMENT, except that the
domain is partitioned. Each partition contains the same number of
values. You assign each copy of the database a unique global
database identification number. Adaptive Server Anywhere supplies
default values in a database only from the partition uniquely
identified by that database's number.

The partition size can be specified in parentheses immediately
following the AUTOINCREMENT keyword. The partition size
may be any positive integer, although the partition size is generally
chosen so that the supply of numbers within any one partition will
rarely, if ever, be exhausted.

If the column is of type BIGINT or UNSIGNED BIGINT, the
default partition size is 232 = 4294967296; for columns of all other
types the default partition size is 216 = 65536. Since these defaults
may be inappropriate, especially if our column is not of type INT or
BIGINT, it is best to specify the partition size explicitly.

CREATE TABLE statement

354

When using this default, the value of the public option
Global_database_id in each database must be set to a unique,
non-negative integer. This value uniquely identifies the database
and indicates from which partition default values are to be assigned.
The range of allowed values is n p + 1 to (n + 1) p, where n is the
value of the public option Global_database_id and p is the
partition size. For example, if you define the partition size to be
1000 and set Global_database_id to 3, then the range is from 3001
to 4000.

If the previous value is less than (n + 1) p, the next default value
will be one greater than the previous largest value in column. If the
column contains no values, the first default value is n p + 1. Default
column values are not affect by values in the column outside of the
current partition; that is, by numbers less than pn + 1 or greater than
p(n + 1). Such values may be present if they have been replicated
from another database via MobiLink synchronization.

Because the public option Global_database_id cannot be set to
negative values, the values chosen are always positive. The
maximum identification number is restricted only by the column
data type and the partition size.

If the public option Global_database_id is set to the default value
of 2147483647, a null value is inserted into the column. Should null
values not be permitted, attempting to insert the row causes an error.
This situation arises, for example, if the column is contained in the
table’s primary key.

Null default values are also generated when the supply of values
within the partition has been exhausted. In this case, a new value of
Global_database_id should be assigned to the database to allow
default values to be chosen from another partition. Attempting to
insert the null value causes an error if the column does not permit
nulls. To detect that the supply of unused values is low and handle
this condition, create an event of type GlobalAutoincrement.

You cannot use DEFAULT GLOBAL AUTOINCREMENT in
databases created with version 6 or earlier software, even if they
have been upgraded.

♦ Constant expressions Constant expressions that do not reference
database objects are allowed in a DEFAULT clause, so functions
such as GETDATE or DATEADD can be used. If the expression is
not a function or simple value, it must be enclosed in parentheses.

Chapter 4 SQL Statements

355

♦ TIMESTAMP Provides a way of indicating when each row in the
table was last modified. When a column is declared with
DEFAULT TIMESTAMP, a default value is provided for inserts,
and the value is updated with the current date and time whenever
the row is updated.

To provide a default value on insert, but not update the column
whenever the row is updated, use DEFAULT CURRENT
TIMESTAMP instead of DEFAULT TIMESTAMP.

$ For more information on timestamp columns, see "The special
Transact-SQL timestamp column and data type" on page 398 of the
book ASA SQL User’s Guide.

Columns declared with DEFAULT TIMESTAMP contain unique
values, so that applications can detect near-simultaneous updates to
the same row. If the current timestamp value is the same as the last
value, it is incremented by the value of the
DEFAULT_TIMESTAMP_INCREMENT option.

$ For more information, see
"DEFAULT_TIMESTAMP_INCREMENT option" on page 564 of
the book ASA Database Administration Guide.

You can automatically truncate timestamp values in Adaptive
Server Anywhere based on the
DEFAULT_TIMESTAMP_INCREMENT option. This is useful for
maintaining compatibility with other database software that records
less precise timestamp values.

For more information, see "TRUNCATE_TIMESTAMP_VALUES
option" on page 604 of the book ASA Database Administration
Guide.

The global variable @@dbts returns a TIMESTAMP value
representing the last value generated for a column using DEFAULT
TIMESTAMP. For more information, see "Global variables" on
page 40.

♦ string For more information, see "Strings" on page 9.

♦ global-variable For more information, see "Global variables" on
page 40.

♦ column-constraint A column constraint restricts the values the
column can hold.

table-constraint A table constraint restricts the values that one or more
columns in the table can hold.

CREATE TABLE statement

356

Constraints Column and table constraints help ensure the integrity of data
in the database. If a statement would cause a violation of a constraint,
execution of the statement does not complete, any changes made by the
statement before error detection are undone, and an error is reported. Column
constraints are abbreviations for the corresponding table constraints.

For example, the following statements are equivalent:

CREATE TABLE Product (
product_num INTEGER UNIQUE

)

CREATE TABLE Product (
product_num INTEGER,
UNIQUE (product_num)

)

Column constraints are normally used unless the constraint references more
than one column in the table. In these cases, a table constraint must be used.

Constraints include the following:

♦ CHECK This allows arbitrary conditions to be verified. For example, a
check constraint could be used to ensure that a column called Sex only
contains the values M or F.

No row in a table is allowed to violate a constraint. If an INSERT or
UPDATE statement would cause a row to violate a constraint, the
operation is not permitted and the effects of the statement are undone.

The change is rejected only if a constraint condition evaluates to
FALSE, the change is allowed if a constraint condition evaluates to
TRUE or UNKNOWN.

$ For more information about TRUE, FALSE, and UNKNOWN
conditions, see "NULL value" on page 48 and "Search conditions" on
page 24.

♦ COMPUTE The COMPUTE constraint is a column constraint only.
When a column is created using a COMPUTE constraint, its value in
any row is the value of the supplied expression. Columns created with
this constraint are read-only columns for applications: the value is
changed by the database server when the expression is evaluated.

Any UPDATE statement that attempts to change the value of a
computed column does fire any triggers associated with the column.

$ The Compute constraint is particularly useful when designing
databases using Java class data types. For more information, see "Using
computed columns with Java classes" on page 124 of the book ASA
Programming Guide.

Chapter 4 SQL Statements

357

♦ UNIQUE Identifies one or more columns that uniquely identify each
row in the table. No two rows in the table can have the same values in
all the named column(s). A table may have more than one unique
constraint.

There is a difference between a unique constraint and a unique index.
Columns of a unique index are allowed to be NULL, while columns in a
unique constraint are not. A foreign key can reference either a primary
key or a column with a unique constraint, but not a unique index,
because it can include multiple instances of NULL.

$ For information about unique indexes, see "CREATE INDEX
statement" on page 300.

♦ PRIMARY KEY This is the same as a unique constraint, except that a
table can have only one primary key constraint. The primary key usually
identifies the best identifier for a row. For example, the customer
number might be the primary key for the customer table.

Columns included in primary keys cannot allow NULL. Each row in the
table has a unique primary key value. A table can have only one
PRIMARY KEY.

The order of the columns in a primary key is the order in which the
columns were created in the table, not the order in which they are listed
when the primary key is created.

$ For more information about the CLUSTERED option and clustered
indexes, see "Using Clustered Indexes" on page 58 of the book ASA SQL
User’s Guide.

♦ Foreign key A foreign key constraint can be implemented using a
REFERENCES column constraint (single column only) or a FOREIGN
KEY table constraint. It restricts the values for a set of columns to match
the values in a primary key or, less commonly, a unique constraint of
another table (the primary table). For example, a foreign key constraint
could be used to ensure that a customer number in an invoice table
corresponds to a customer number in the customer table.

If you specify column name in a REFERENCES column constraint, it
must be a column in the primary table, must be subject to a unique
constraint or primary key constraint, and that constraint must consist of
only that one column. If you do not specify column-name, the foreign
key references the primary key of the primary table.

$ For more information about the CLUSTERED option and
clustered indexes, see "Using Clustered Indexes" on page 58 of the book
ASA SQL User’s Guide.

CREATE TABLE statement

358

If you do not explicitly define a foreign key column, it is created with
the same data type as the corresponding column in the primary table.
These automatically-created columns cannot be part of the primary key
of the foreign table. Thus, a column used in both a primary key and
foreign key of the same table must be explicitly created.

If foreign key column names are specified, then primary key column
names must also be specified, and the column names are paired
according to position in the lists. If the primary table column names are
not specified in a FOREIGN KEY table constraint, then the primary key
columns are used. If foreign key column names are not specified then
the foreign key columns are give the same names as the columns in the
primary table.

If at least one value in a multi-column foreign key is NULL, there is no
restriction on the values that can be held in other columns of the key.

A temporary table cannot have a foreign key that references a base table
and a base table cannot have a foreign key that references a temporary
table.

♦ NOT NULL Disallow NULL in the foreign key columns. A NULL
in a foreign key means that no row in the primary table corresponds
to this row in the foreign table.

♦ role-name The role name is the name of the foreign key. The
main function of the role name is to distinguish two foreign keys to
the same table. If no role name is specified, the role name is
assigned as follows:

1 If there is no foreign key with a role name the same as the table
name, the table name is assigned as the role name.

2 If the table name is already taken, the role name is the table
name concatenated with a zero-padded three-digit number
unique to the table.

♦ action The referential integrity action defines the action to be
taken to maintain foreign key relationships in the database.
Whenever a primary key value is changed or deleted from a
database table, there may be corresponding foreign key values in
other tables that should be modified in some way. You can specify
either an ON UPDATE clause, an ON DELETE clause, or both,
followed by one of the following actions:

♦ CASCADE When used with ON UPDATE, updates the
corresponding foreign keys to match the new primary key
value. When used with ON DELETE, deletes the rows from the
foreign table that match the deleted primary key.

Chapter 4 SQL Statements

359

♦ SET NULL Sets to NULL all the foreign key values that
correspond to the updated or deleted primary key.

♦ SET DEFAULT Sets foreign key values that match the
updated or deleted primary key value to values specified on the
DEFAULT clause of each foreign key column.

♦ RESTRICT Generates an error if an attempt is made to update
or delete a primary key value while there are corresponding
foreign keys elsewhere in the database. RESTRICT is the
default action.

♦ CHECK ON COMMIT The CHECK ON COMMIT clause
overrides the WAIT_FOR_COMMIT database option, and causes
the database server to wait for a COMMIT before checking
RESTRICT actions on a foreign key. The CHECK ON COMMIT
clause does not delay CASCADE, SET NULL, or SET DEFAULT
actions.

If you use CHECK ON COMMIT with out specifying any actions,
then RESTRICT is implied as an action for UPDATE and
DELETE.

The CREATE TABLE statement creates a new table. A table can be created
for another user by specifying an owner name. If GLOBAL TEMPORARY
is specified, the table is a temporary table. Otherwise, the table is a base
table.

The definition of a temporary table exists in the database, like that of a base
table, and remains in the database until it is explicitly removed by a DROP
TABLE statement. The rows in a temporary table are visible only to the
connection that inserted the rows. Multiple connections from the same or
different applications can use the same temporary table at the same time, and
each connection will see only its own rows. The rows of a temporary table
for a connection are deleted when the connection ends.

Must have RESOURCE authority.

Must have DBA authority to create a table for another user.

The AT clause to create proxy tables is not supported on Windows CE.

Automatic commit.

"ALTER TABLE statement" on page 233
"CREATE DBSPACE statement" on page 278
"CREATE EXISTING TABLE statement" on page 291
"DECLARE LOCAL TEMPORARY TABLE statement" on page 386
"DROP statement" on page 397
"Special values" on page 33
"SQL Data Types" on page 51

Usage

Permissions

Side effects

See also

CREATE TABLE statement

360

"Creating tables" on page 40 of the book ASA SQL User’s Guide

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

The following are vendor extensions:

♦ The { IN | ON } dbspace-name clause.

♦ The ON COMMIT clause

♦ Some of the default values.

♦ Sybase Supported by Adaptive Server Enterprise, with some
differences.

♦ Temporary tables You can create a temporary table by preceding
the table name in a CREATE TABLE statement with a pound sign
(#). In Adaptive Server Anywhere, these are declared temporary
tables, which are available only in the current connection. For
information, see "DECLARE LOCAL TEMPORARY TABLE
statement" on page 386.

♦ Physical placement Physical placement of a table is carried out
differently in Adaptive Server Anywhere and in Adaptive Server
Enterprise. The ON segment-name clause supported by Adaptive
Server Enterprise is supported in Adaptive Server Anywhere, but
segment-name refers to a dbspace name.

♦ Constraints Adaptive Server Anywhere does not support named
constraints or named defaults, but does support domains, which
allow constraint and default definitions to be encapsulated in the
data type definition. It also supports explicit defaults and CHECK
conditions in the CREATE TABLE statement.

♦ NULL default By default, columns in Adaptive Server Enterprise
default to NOT NULL, whereas in Adaptive Server Anywhere the
default setting is NULL. This setting can be controlled using the
ALLOW_NULLS_BY_DEFAULT database option. You should
explicitly specify NULL or NOT NULL to make your data
definition statements transferable between Adaptive Server
Anywhere and Adaptive Server Enterprise.

$ For more information, see
"ALLOW_NULLS_BY_DEFAULT option" on page 550 of the
book ASA Database Administration Guide.

The following example creates a table for a library database to hold book
information.

Standards and
compatibility

Example

Chapter 4 SQL Statements

361

CREATE TABLE library_books (
-- NOT NULL is assumed for primary key columns
isbn CHAR(20) PRIMARY KEY,
copyright_date DATE,
title CHAR(100),
author CHAR(50),
-- column(s) corresponding to primary key of room
-- are created automatically
FOREIGN KEY location REFERENCES room
)

The following example creates a table for a library database to hold
information on borrowed books. The default value for date_borrowed
indicates that the book is borrowed on the day the entry is made. The
date_returned column is NULL until the book is returned.

CREATE TABLE borrowed_book (
date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
date_returned DATE,
book CHAR(20)
 REFERENCES library_books (isbn),
-- The check condition is UNKNOWN until
-- the book is returned, which is allowed
CHECK(date_returned >= date_borrowed)
)

The following example creates tables for a sales database to hold order and
order item information.

CREATE TABLE Orders (
order_num INTEGER NOT NULL PRIMARY KEY,
date_ordered DATE,
name CHAR(80)

);
CREATE TABLE Order_item (

order_num INTEGER NOT NULL,
item_num SMALLINT NOT NULL,
PRIMARY KEY (order_num, item_num),
-- When an order is deleted, delete all of its
-- items.
FOREIGN KEY (order_num)
REFERENCES Orders (order_num)
ON DELETE CASCADE

)

The following example creates a table named t1 at the remote server
SERVER_A and creates a proxy table named t1 that is mapped to the remote
table.

CREATE TABLE t1
(a INT,
 b CHAR(10))
AT ’SERVER_A.db1.joe.t1’

CREATE TRIGGER statement

362

CREATE TRIGGER statement
Use this statement to create a new trigger on a table.

CREATE TRIGGER trigger-name trigger-time trigger-event [, trigger-event,...]
[ORDER integer] ON table-name
[REFERENCING [OLD AS old-name]
 [NEW AS new-name]]
 [REMOTE AS remote-name]]
[FOR EACH { ROW | STATEMENT }]
[WHEN (search-condition)]
 compound-statement

trigger-time : BEFORE | AFTER | RESOLVE

trigger-event :
DELETE | INSERT | UPDATE | UPDATE OF column-list

Trigger events Triggers can be fired by one or more of the following
events:

♦ DELETE Invoked whenever a row of the associated table is deleted.

♦ INSERT Invoked whenever a new row is inserted into the table
associated with the trigger.

♦ UPDATE Invoked whenever a row of the associated table is updated.

♦ UPDATE OF column-list Invoked whenever a row of the associated
table is updated and a column in the column-list is modified.

You may write separate triggers for each event that you need to handle or, if
you have some shared actions and some actions that depend on the event,
you can create a trigger for all events and use an IF statement to distinguish
the action taking place.

$ For more information, see "IF statement" on page 454.

trigger-time Row-level triggers can be defined to execute BEFORE or
AFTER the insert, update, or delete. Statement-level triggers execute
AFTER the statement. The RESOLVE trigger time is for use with
SQL Remote: it fires before row-level UPDATE or UPDATE OF
column-lists only.

BEFORE UPDATE triggers fire any time an UPDATE occurs on a row,
whether or not the new value differs from the old value. AFTER UPDATE
triggers fire only if the new value is different from the old value.

Description

Syntax

Parameters

Chapter 4 SQL Statements

363

FOR EACH clause To declare a trigger as a row-level trigger, use the
FOR EACH ROW clause. To declare a trigger as a statement-level trigger,
you can either use a FOR EACH STATEMENT clause or omit the FOR
EACH clause. For clarity, it is recommended that you enter the FOR EACH
STATEMENT clause if declaring a statement-level trigger.

ORDER clause Triggers of the same type (insert, update, or delete) that
fire at the same time (before, after, or resolve) can use the ORDER clause to
determine the order that the triggers are fired.

REFERENCING clause The REFERENCING OLD and REFERENCING
NEW clauses allow you to refer to the deleted and inserted rows. For the
purposes of this clause, an UPDATE is treated as a delete followed by an
insert.

The REFERENCING REMOTE clause is for use with SQL Remote. It
allows you to refer to the values in the VERIFY clause of an UPDATE
statement. It should be used only with RESOLVE UPDATE or RESOLVE
UPDATE OF column-list triggers.

The meaning of REFERENCING OLD and REFERENCING NEW differs,
depending on whether the trigger is a row-level or a statement-level trigger.
For row-level triggers, the REFERENCING OLD clause allows you to refer
to the values in a row prior to an update or delete, and the REFERENCING
NEW clause allows you to refer to the inserted or updated values. The OLD
and NEW rows can be referenced in BEFORE and AFTER triggers. The
REFERENCING NEW clause allows you to modify the new row in a
BEFORE trigger before the insert or update operation takes place.

For statement-level triggers, the REFERENCING OLD and
REFERENCING NEW clauses refer to declared temporary tables holding
the old and new values of the rows. The default names for these tables are
deleted and inserted.

WHEN clause The trigger fires only for rows where the search-condition
evaluates to true. The WHEN clause can be used only with row level
triggers.

The CREATE TRIGGER statement creates a trigger associated with a table
in the database, and stores the trigger in the database.

The trigger is declared as either a row-level trigger, in which case it executes
before or after each row is modified, or as a statement-level trigger, in which
case it executes after the entire triggering statement is completed.

Must have RESOURCE authority and have ALTER permissions on the table,
or must be the owner of the table or have DBA authority. CREATE
TRIGGER puts a table lock on the table, and thus requires exclusive use of
the table.

Usage

Permissions

CREATE TRIGGER statement

364

Automatic commit.

"BEGIN statement" on page 248
"CREATE PROCEDURE statement" on page 305
"CREATE TRIGGER statement [T-SQL]" on page 369
"DROP statement" on page 397
"Using Procedures, Triggers, and Batches" on page 507 of the book ASA

SQL User’s Guide

♦ SQL/92 Persistent stored module feature. Some clauses are vendor
extensions.

♦ SQL/99 Persistent Stored Module feature. Some clauses are vendor
extensions.

♦ Sybase This syntax is different to that supported by Adaptive Server
Enterprise.

The first example creates a row-level trigger. When a new department head
is appointed, update the manager_id column for employees in that
department.

CREATE TRIGGER tr_manager
BEFORE UPDATE OF dept_head_id
ON department
REFERENCING OLD AS old_dept NEW AS new_dept
FOR EACH ROW
BEGIN

UPDATE employee
SET employee.manager_id=new_dept.dept_head_id
WHERE employee.dept_id=old_dept.dept_id

END

The next example, which is more complex, deals with a statement-level
trigger. First, create a table as follows:

CREATE TABLE "DBA"."t0"
(

"id" integer NOT NULL,
"times" timestamp NULL DEFAULT current

timestamp,
"remarks" text NULL,
PRIMARY KEY ("id")

)

Next, create a statement-level trigger for this table:

create trigger DBA."insert-st" after insert order 4 on
DBA.t0
referencing new as new_name
for each statement
begin

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

365

 declare @id1 integer;
 declare @times1 timestamp;
 declare @remarks1 long varchar;

 declare @err_notfound exception for sqlstate value
’02000’;

//declare a cursor for table new_name
 declare new1 cursor for

select id,times,remarks from
 new_name;
 open new1;
 //Open the cursor, and get the value
 LoopGetRow:
 loop
 fetch next new1

into @id1, @times1,@remarks1;

 if sqlstate = @err_notfound then
leave LoopGetRow

 end if;

 //print the value or for other use
 Print (@remarks1);

 end loop LoopGetRow;
 close new1

end

CREATE TRIGGER statement [SQL Remote]

366

CREATE TRIGGER statement [SQL Remote]
Use this statement to create a new trigger in the database. One form of
trigger is designed specifically for use by SQL Remote.

CREATE TRIGGER trigger-name trigger-time
trigger-event, …
[ORDER integer] ON table-name
[REFERENCING [OLD AS old-name]

[NEW AS new-name]]
[REMOTE AS remote-name]]

[FOR EACH { ROW | STATEMENT }]
[WHEN (search-condition)]
[IF UPDATE (column-name) THEN
[{ AND | OR } UPDATE (column-name)] …]

compound-statement
[ELSEIF UPDATE (column-name) THEN
[{ AND | OR } UPDATE (column-name)] …

 compound-statement
END IF]]

trigger-time:
BEFORE | AFTER | RESOLVE

trigger-event:
DELETE | INSERT | UPDATE
| UPDATE OF column-name [, column-name, …]

trigger-time Row-level triggers can be defined to execute BEFORE or
AFTER the insert, update, or delete. Statement-level triggers execute
AFTER the statement. The RESOLVE trigger time is for use with
SQL Remote: it fires before row-level UPDATE or UPDATE OF
column-lists only.

BEFORE UPDATE triggers fire any time an UPDATE occurs on a row,
whether or not the new value differs from the old value. AFTER UPDATE
triggers fire only if the new value is different from the old value.

Trigger events Triggers can be fired by one or more of the following
events:

♦ DELETE Invoked whenever a row of the associated table is deleted.

♦ INSERT Invoked whenever a new row is inserted into the table
associated with the trigger.

♦ UPDATE Invoked whenever a row of the associated table is updated.

♦ UPDATE OF column-list Invoked whenever a row of the associated
table is updated and a column in the column-list is modified.

Description

Syntax

Parameters

Chapter 4 SQL Statements

367

Anywhere.

Must have RESOURCE authority and have ALTER permissions on the table,
or must have DBA authority. CREATE TRIGGER puts a table lock on the
table and thus requires exclusive use of the table.

Automatic commit.

"UPDATE statement" on page 575

The CREATE TRIGGER statement creates a trigger associated with a table
in the database and stores the trigger in the database.

BEFORE UPDATE triggers fire any time an update occurs on a row,
regardless of whether or not the new value differs from the old value.
AFTER UPDATE triggers will fire only if the new value is different from
the old value.

The trigger is declared as either a row-level trigger, in which case it executes
before or after each row is modified, or as a statement-level trigger, in which
case it executes after the entire triggering statement is completed.

Row-level triggers can be defined to execute BEFORE or AFTER the insert,
update, or delete. Statement-level triggers execute AFTER the statement.
The RESOLVE trigger time is for use with SQL Remote; it fires before
row-level UPDATE or UPDATE OF column-lists only.

To declare a trigger as a row-level trigger, use the FOR EACH ROW clause.
To declare a trigger as a statement-level trigger, you can either use a FOR
EACH STATEMENT clause or omit the FOR EACH clause. For clarity, it is
recommended that you enter the FOR EACH STATEMENT clause if
declaring a statement-level trigger.

Triggers of the same type (insert, update, or delete) that fire at the same time
(before, after, or resolve) can use the ORDER clause to determine the order
that the triggers are fired.

The REFERENCING OLD and REFERENCING NEW clauses allow you to
refer to the deleted and inserted rows. For the purposes of this clause, an
UPDATE is treated as a delete followed by an insert.

The REFERENCING REMOTE clause is for use with SQL Remote. It
allows you to refer to the values in the VERIFY clause of an UPDATE
statement. It should be used only with RESOLVE UPDATE or RESOLVE
UPDATE OF column-list triggers.

Usage

Permissions

Side effects

See also

Description

Row and
statement-level
triggers

Order of firing

Referencing
deleted and
inserted values

CREATE TRIGGER statement [SQL Remote]

368

The meaning of REFERENCING OLD and REFERENCING NEW differs,
depending on whether the trigger is a row-level or a statement-level trigger.
For row-level triggers, the REFERENCING OLD clause allows you to refer
to the values in a row prior to an update or delete, and the REFERENCING
NEW clause allows you to refer to the inserted or updated values. The OLD
and NEW rows can be referenced in BEFORE and AFTER triggers. The
REFERENCING NEW clause allows you to modify the new row in a
BEFORE trigger before the insert or update operation takes place.

For statement-level triggers, the REFERENCING OLD and
REFERENCING NEW clauses refer to declared temporary tables holding
the old and new values of the rows. The default names for these tables are
deleted and inserted.

The WHEN clause causes the trigger to fire only for rows where the
search-condition evaluates to true.

BEFORE UPDATE triggers fire any time an UPDATE occurs on a row,
whether or not the new value differs from the old value. AFTER UPDATE
triggers fire only if the new value is different from the old value.

♦ When a new department head is appointed, update the manager_id
column for employees in that department.

CREATE TRIGGER
tr_manager BEFORE UPDATE OF dept_head_id ON
department
REFERENCING OLD AS old_dept
NEW AS new_dept
FOR EACH ROW
BEGIN

UPDATE employee
SET employee.manager_id=new_dept.dept_head_id
WHERE employee.dept_id=old_dept.dept_id

END

Updating values
with the same
value

Example

Chapter 4 SQL Statements

369

CREATE TRIGGER statement [T-SQL]
Use this statement to create a new trigger in the database in a manner
compatible with Adaptive Server Enterprise.

CREATE TRIGGER [owner.]trigger_name
ON [owner.]table_name
FOR { INSERT, UPDATE, DELETE }
AS statement-list

CREATE TRIGGER [owner.]trigger_name
ON [owner.]table_name
FOR {INSERT, UPDATE}
AS
[IF UPDATE (column_name)
[{ AND | OR } UPDATE (column_name)] …]
 statement-list
[IF UPDATE (column_name)
[{ AND | OR} UPDATE (column_name)] …]
 statement-list

The rows deleted or inserted are held in two temporary tables. In the
Transact-SQL form of triggers, they can be accessed using the table names
deleted, and inserted, as in Adaptive Server Enterprise. In the Watcom-SQL
CREATE TRIGGER statement, these rows are accessed using the
REFERENCING clause.

Trigger names must be unique in the database.

Transact-SQL triggers are executed AFTER the triggering statement.

Must have RESOURCE authority and have ALTER permissions on the table,
or must have DBA authority.

CREATE TRIGGER locks all the rows on the table, and thus requires
exclusive use of the table.

Automatic commit.

"CREATE TRIGGER statement" on page 362

♦ SQL/92 Transact-SQL extension.

♦ SQL/92 Transact-SQL extension.

♦ Sybase Anywhere supports a subset of the Adaptive Server Enterprise
syntax.

Description

Syntax 1

Syntax 2

Usage

Permissions

Side effects

See also

Standards and
compatibility

CREATE VARIABLE statement

370

CREATE VARIABLE statement
Use this statement to create a SQL variable.

CREATE VARIABLE identifier data-type

The CREATE VARIABLE statement creates a new variable of the specified
data type. The variable contains the NULL value until it is assigned a
different value by the SET VARIABLE statement.

A variable can be used in a SQL expression anywhere a column name is
allowed. If a column name exists with the same name as the variable, the
variable value is used.

Variables belong to the current connection, and disappear when you
disconnect from the database or when you use the DROP VARIABLE
statement. Variables are not visible to other connections. Variables are not
affected by COMMIT or ROLLBACK statements.

Variables are useful for creating large text or binary objects for INSERT or
UPDATE statements from embedded SQL programs.

Local variables in procedures and triggers are declared within a compound
statement (see "Using compound statements" on page 533 of the book ASA
SQL User’s Guide).

None.

None.

"BEGIN statement" on page 248
"SQL Data Types" on page 51
"DROP VARIABLE statement" on page 413
"SET statement" on page 531

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

For an example, see "SET statement" on page 531

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

371

CREATE VIEW statement
Use this statement to create a view on the database. Views are used to give a
different perspective on the data, even though it is not stored that way.

CREATE VIEW
[owner.]view-name [(column-name, …)]
AS select-without-order-by
[WITH CHECK OPTION]

view-name The view-name is an identifier. The default owner is the
current user ID.

column-name The columns in the view are given the names specified in
the column-name list. If the column name list is not specified, the view
columns are given names from the select list items. In order to use the names
from the select list items, each item must be a simple column name or have
an alias-name specified (see "SELECT statement" on page 526). All items in
the select list must have unique names.

AS clause The SELECT statement on which the view is based must not
have an ORDER BY clause on it. It may have a GROUP BY clause and may
be a UNION. The SELECT statement must not refer to local temporary
tables.

WITH CHECK OPTION clause The WITH CHECK OPTION clause
rejects any updates and inserts to the view that do not meet the criteria of the
views as defined by its SELECT statement.

The CREATE VIEW statement creates a view with the given name. You can
create a view owned by another user by specifying the owner. You must
have DBA authority to create a view for another user.

A view name can be used in place of a table name in SELECT, DELETE,
UPDATE, and INSERT statements. Views, however, do not physically exist
in the database as tables. They are derived each time they are used. The view
is derived as the result of the SELECT statement specified in the
CREATE VIEW statement. Table names used in a view should be qualified
by the user ID of the table owner. Otherwise, a different user ID might not be
able to find the table or might get the wrong table.

Views can be updated unless the SELECT statement defining the view
contains a GROUP BY clause, an aggregate function, or involves a UNION
operation. An update to the view causes the underlying table(s) to be
updated.

Must have RESOURCE authority and SELECT permission on the tables in
the view definition.

Description

Syntax

Parameters

Usage

Permissions

CREATE VIEW statement

372

Automatic commit.

"DROP statement" on page 397
"CREATE TABLE statement" on page 350

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Adaptive Server Enterprise.

The following example creates a view showing information for male
employees only. This view has the same column names as the base table.

CREATE VIEW male_employee
AS SELECT *
FROM Employee

WHERE Sex = ’M’

The following example creates a view showing employees and the
departments they belong to.

CREATE VIEW emp_dept
AS SELECT emp_lname, emp_fname, dept_name
FROM Employee JOIN Department

ON Employee.dept_id = Department.dept_id

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

373

CREATE WRITEFILE statement
Use this statement to create a write file for a database.

CREATE WRITEFILE write-file-name
FOR DATABASE db-file-name [KEY key]
[LOG OFF | LOG ON [log-file-name [MIRROR mirror-file-name]]]

write-file-name | db-file-name | log-file-name | mirror-file-name : string

Creates a database write file with the supplied name and attributes.

The file names (write-file-name, db-file-name, log-file-name,
mirror-file-name) are strings containing operating system file names.

$ For information on strings, see "Strings" on page 9.

If you specify no path, or a relative path, the file is created relative to the
current working directory of the server.

You cannot create a write file for a database that is currently loaded.

The permissions required to execute this statement are set on the server
command line, using the -gu option. The default setting is to require DBA
authority.

The account under which the server is running must have write permissions
on the directories where files are created.

Not supported on Windows CE.

You must specify a KEY value if you want to create a writefile for a strongly
encrypted database.

An operating system file is created.

"CREATE DATABASE statement" on page 273
"The Write File utility" on page 530 of the book ASA Database

Administration Guide
"Working with write files" on page 224 of the book ASA Database

Administration Guide
"Encryption Key connection parameter" on page 179 of the book ASA

Database Administration Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

The following statement creates a write file.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

CREATE WRITEFILE statement

374

CREATE WRITEFILE ’c:\\sybase\\my_db.wrt’
FOR DATABASE ’c:\\sybase\\my_db.db’
LOG ON ’e:\\logdrive\\my_db.log’

Chapter 4 SQL Statements

375

DEALLOCATE statement
Use this statement to free resources associated with a cursor.

DEALLOCATE [CURSOR] cursor-name

cursor-name : identifier

Frees all memory associated with a cursor, including the data items, indicator
variables, and the structure itself.

This option has no effect in Adaptive Server Anywhere. It is provided for
compatibility with Adaptive Server Enterprise and Microsoft SQL Server. In
Adaptive Server Enterprise, the CURSOR keyword is required. In Microsoft
SQL Server, the keyword is not permitted. Adaptive Server Anywhere
recognizes both forms.

None.

None.

"DECLARE CURSOR statement [ESQL] [SP]" on page 379

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Adaptive Server Enterprise.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

DEALLOCATE DESCRIPTOR statement [ESQL]

376

DEALLOCATE DESCRIPTOR statement [ESQL]
Use this statement to free memory associated with a SQL descriptor area.

DEALLOCATE DESCRIPTOR descriptor-name

descriptor-name : string

Frees all memory associated with a descriptor area, including the data items,
indicator variables, and the structure itself.

None.

None.

"ALLOCATE DESCRIPTOR statement [ESQL]" on page 203
"The SQL descriptor area (SQLDA)" on page 206 of the book ASA

Programming Guide
"SET DESCRIPTOR statement [ESQL]" on page 537

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

For an example, see "ALLOCATE DESCRIPTOR statement [ESQL]" on
page 203.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

377

Declaration section [ESQL]
Use this statement to declare host variables in an embedded SQL program.
Host variables are used to exchange data with the database.

EXEC SQL BEGIN DECLARE SECTION;
C declarations
EXEC SQL END DECLARE SECTION;

A declaration section is simply a section of C variable declarations
surrounded by the BEGIN DECLARE SECTION and
END DECLARE SECTION statements. A declaration section makes the
SQL preprocessor aware of C variables that will be used as host variables.
Not all C declarations are valid inside a declaration section. See "Using host
variables" on page 181 of the book ASA Programming Guide for more
information.

None.

"BEGIN statement" on page 248

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

EXEC SQL BEGIN DECLARE SECTION;
char *emp_lname, initials[5];
int dept;

EXEC SQL END DECLARE SECTION;

Description

Syntax

Usage

Permissions

See also

Standards and
compatibility

Example

DECLARE statement

378

DECLARE statement
Use this statement to declare a SQL variable within a compound statement
(BEGIN … END).

DECLARE variable-name data-type

Variables used in the body of a procedure, trigger, or batch can be declared
using the DECLARE statement. The variable persists for the duration of the
compound statement in which it is declared.

The body of a Watcom-SQL procedure or trigger is a compound statement,
and variables must be declared immediately following BEGIN. In a
Transact-SQL procedure or trigger, there is no such restriction.

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Supported by Adaptive Server Enterprise.

♦ To be compatible with Adaptive Server Enterprise, the variable
name must be preceded by an @.

♦ In Adaptive Server Enterprise, a variable that is declared in a
procedure or trigger exists for the duration of the procedure or
trigger. In Adaptive Server Anywhere, if a variable is declared
inside a compound statement, it exists only for the duration of that
compound statement (whether it is declared in a Watcom-SQL or
Transact-SQL compound statement).

The following batch illustrates the use of the DECLARE statement and prints
a message on the server window:

BEGIN
 DECLARE varname CHAR(61);
 SET varname = ’Test name’;
 MESSAGE varname;
END

Description

Syntax

Usage

Standards and
compatibility

Example

Chapter 4 SQL Statements

379

DECLARE CURSOR statement [ESQL] [SP]
Use this statement to declare a cursor. Cursors are the primary means for
manipulating the results of queries.

DECLARE cursor-name
[UNIQUE]
[NO SCROLL
 | DYNAMIC SCROLL
 | SCROLL
 | INSENSITIVE
 | SENSITIVE
]
CURSOR FOR
{ select-statement
| statement-name
 [FOR { UPDATE [cursor-concurrency] | READ ONLY }]
| call-statement }

DECLARE cursor-name
[NO SCROLL
 | DYNAMIC SCROLL
 | SCROLL
 | INSENSITIVE
 | SENSITIVE
]
CURSOR FOR
{ select -statement
 [FOR { UPDATE [cursor-concurrency] | READ ONLY }]
| call-statement
| USING variable-name }

cursor-name : identifier

statement-name : identifier | hostvar

variable-name : identifier

cursor-concurrency :
BY { VALUES | TIMESTAMP | LOCK }

UNIQUE When a cursor is declared UNIQUE, the query is forced to return
all the columns required to uniquely identify each row. Often this means
ensuring that all columns in the primary key or a uniqueness table constraint
are returned. Any columns that are required but were not specified in the
query are added to the result set.

A DESCRIBE done on a UNIQUE cursor sets the following additional flags
in the indicator variables:

♦ DT_KEY_COLUMN The column is part of the key for the row

Description

Syntax 1 [ESQL]

Syntax 2 [SP]

Parameters

DECLARE CURSOR statement [ESQL] [SP]

380

♦ DT_HIDDEN_COLUMN The column was added to the query because
it was required to uniquely identify the rows

NO SCROLL A cursor declared NO SCROLL is restricted to moving
forwards through the result set using FETCH NEXT and
FETCH RELATIVE 0 seek operations.

As rows cannot be returned to once the cursor leaves the row, there are no
sensitivity restrictions on the cursor. Consequently, when a NO SCROLL
cursor is requested, Adaptive Server Anywhere supplies the most efficient
kind of cursor, which is an asensitive cursor.

$ For more information, see "Asensitive cursors" on page 36 of the book
ASA Programming Guide.

DYNAMIC SCROLL DYNAMIC SCROLL is the default cursor type.
DYNAMIC SCROLL cursors can use all formats of the FETCH statement.

When a DYNAMIC SCROLL cursor is requested, Adaptive Server
Anywhere supplies an asensitive cursor. When using cursors there is always
a trade-off between efficiency and consistency. Asensitive cursors provide
efficient performance at the expense of consistency.

$ For more information, see "Asensitive cursors" on page 36 of the book
ASA Programming Guide.

SCROLL A cursor declared SCROLL can use all formats of the FETCH
statement. When a SCROLL cursor is requested, Adaptive Server Anywhere
supplies a value-sensitive cursor.

$ For more information, see "Value-sensitive cursors" on page 37 of the
book ASA Programming Guide.

Adaptive Server Anywhere must execute value-sensitive cursors in such a
way that result set membership is guaranteed. DYNAMIC SCROLL cursors
are more efficient and should be used unless the consistent behavior of
SCROLL cursors is required.

INSENSITIVE A cursor declared INSENSITIVE has its membership fixed
when it is opened; a temporary table is created with a copy of all the original
rows. FETCHING from an INSENSITIVE cursor does not see the effect of
any other INSERT, UPDATE, or DELETE statement, or any other PUT,
UPDATE WHERE CURRENT, DELETE WHERE CURRENT operations
on a different cursor. It does see the effect of PUT, UPDATE WHERE
CURRENT, DELETE WHERE CURRENT operations on the same cursor.

$ For more information, see "Insensitive cursors" on page 33 of the book
ASA Programming Guide.

Chapter 4 SQL Statements

381

SENSITIVE A cursor declared SENSITIVE is sensitive to changes to
membership or values of the result set.

$ For more information, see "Sensitive cursors" on page 34 of the book
ASA Programming Guide.

FOR statement-name Statements are named using the PREPARE
statement. Cursors can be declared only for a prepared SELECT or CALL.

FOR UPDATE | READ ONLY A cursor declared FOR READ ONLY may
not be used in an UPDATE (positioned) or a DELETE (positioned)
operation. FOR UPDATE is the default.

In response to any request for a cursor that specifies FOR UPDATE,
Adaptive Server Anywhere provides either a value-sensitive cursor or an
asensitive cursor. Insensitive and asensitive cursors are not updateable.

USING variable-name For use within stored procedures only. The
variable is a string containing a SELECT statement for the cursor. The
variable must be available when the DECLARE is processed, and so must be
one of the following:

♦ A parameter to the procedure. For example,

create function get_row_count(in qry long varchar)
returns int
begin
 declare crsr cursor using qry;
 declare rowcnt int;

 set rowcnt = 0;
 open crsr;
 lp: loop
 fetch crsr;
 if SQLCODE <> 0 then leave lp end if;
 set rowcnt = rowcnt + 1;
 end loop;
 return rowcnt;
end

♦ Nested inside another BEGIN… END after the variable has been
assigned a value. For example,

DECLARE CURSOR statement [ESQL] [SP]

382

create procedure get_table_name(
 in id_value int, out tabname char(128)
)
begin
 declare qry long varchar;

 set qry = ’select table_name from SYS.SYSTABLE ’
||
 ’where table_id=’ || string(id_value);
 begin
 declare crsr cursor using qry;

 open crsr;
 fetch crsr into tabname;
 close crsr;
 end
end

The DECLARE CURSOR statement declares a cursor with the specified
name for a SELECT statement or a CALL statement.

None.

None.

"PREPARE statement [ESQL]" on page 495
"OPEN statement [ESQL] [SP]" on page 485
"EXPLAIN statement [ESQL]" on page 422
"SELECT statement" on page 526
"CALL statement" on page 254

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

The following example illustrates how to declare a scroll cursor in
Embedded SQL:

EXEC SQL DECLARE cur_employee SCROLL CURSOR
FOR SELECT * FROM employee;

The following example illustrates how to declare a cursor for a prepared
statement in Embedded SQL:

EXEC SQL PREPARE employee_statement
FROM ’SELECT emp_lname FROM employee’;
EXEC SQL DECLARE cur_employee CURSOR

FOR employee_statement;

The following example illustrates the use of cursors in a stored procedure:

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

383

BEGIN
 DECLARE cur_employee CURSOR FOR
 SELECT emp_lname

 FROM employee;
 DECLARE name CHAR(40);
 OPEN cur_employee;
 LOOP
 FETCH NEXT cur_employee INTO name;
 ...
 END LOOP
 CLOSE cur_employee;
END

DECLARE CURSOR statement [T-SQL]

384

DECLARE CURSOR statement [T-SQL]
Use this statement to declare a cursor in a manner compatible with Adaptive
Server Enterprise.

DECLARE cursor-name
 CURSOR FOR select-statement
 [FOR { READ ONLY | UPDATE }]

cursor-name : identifier

select-statement : string

Adaptive Server Anywhere supports a DECLARE CURSOR syntax that is
not supported in Adaptive Server Enterprise. For information on the full
DECLARE CURSOR syntax, see "DECLARE CURSOR statement [ESQL]
[SP]" on page 379.

This section describes the overlap between the Adaptive Server Anywhere
and Enterprise flavors of DECLARE CURSOR.

None.

None.

"DECLARE CURSOR statement [ESQL] [SP]" on page 379

♦ SQL/92 Entry-level feature. The FOR UPDATE and
FOR READ ONLY options are Transact-SQL extensions.

♦ SQL/92 Core feature. The FOR UPDATE and FOR READ ONLY
options are Transact-SQL extensions.

♦ Sybase There are some features of the Adaptive Server Enterprise
DECLARE CURSOR statement that are not supported in Adaptive
Server Anywhere.

♦ Adaptive Server Enterprise supports cursors opened for update of a
list of columns from the tables specified in the select-statement.
This is not supported in Adaptive Server Anywhere.

♦ In the Watcom-SQL dialect, a DECLARE CURSOR statement in a
procedure, trigger, or batch must immediately follow the BEGIN
keyword. In the Transact-SQL dialect, there is no such restriction.

♦ In Adaptive Server Enterprise, when a cursor is declared in a
procedure, trigger, or batch, it exists for the duration of the
procedure, trigger, or batch. In Adaptive Server Anywhere, if a
cursor is declared inside a compound statement, it exists only for
the duration of that compound statement (whether it is declared in a
Watcom-SQL or Transact-SQL compound statement).

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

385

♦ CURSOR type (UNIQUE, NO SCROLL, and so on) and CURSOR
FOR statement-name are not supported in Adaptive Server
Anywhere.

DECLARE LOCAL TEMPORARY TABLE statement

386

DECLARE LOCAL TEMPORARY TABLE
statement

Use this statement to declare a local temporary table.

DECLARE LOCAL TEMPORARY TABLE table-name
({ column-definition [column-constraint …] | table-constraint | pctfree },
…)
[ON COMMIT { DELETE | PRESERVE } ROWS]

pctfree : PCTFREE percent-free-space

percent-free-space : integer

PCTFREE Specifies the percentage of free space you want to reserve for
each table page. The free space is used if rows increase in size when the data
is updated. If there is no free space in a table page, every increase in the size
of a row on that page requires the row to be split across multiple table pages,
causing row fragmentation and possible performance degradation.

The value percent-free-space is an integer between 0 and 100.The former
specifies that no free space is to be left on each page—each page is to be
fully packed. A high value causes each row to be inserted into a page by
itself. If PCTFREE is not set, 200 bytes are reserved in each page.

The DECLARE LOCAL TEMPORARY TABLE statement declares a
temporary table. For definitions of column-definition, column-constraint, and
table-constraint, see "CREATE TABLE statement" on page 350.

Declared local temporary tables within compound statements exist within the
compound statement. (See "Using compound statements" on page 533 of the
book ASA SQL User’s Guide). Otherwise, the declared local temporary table
exists until the end of the connection.

By default, the rows of a temporary table are deleted on COMMIT.

None.

None.

"CREATE TABLE statement" on page 350
"Using compound statements" on page 533 of the book ASA SQL User’s

Guide

♦ SQL/92 Conforms to the SQL/92 standard.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Adaptive Server Enterprise does not support DECLARE
TEMPORARY TABLE.

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

387

The following example illustrates how to declare a temporary table in
Embedded SQL:

EXEC SQL DECLARE LOCAL TEMPORARY TABLE MyTable (
 number INT

);

The following example illustrates how to declare a temporary table in a
stored procedure:

BEGIN
 DECLARE LOCAL TEMPORARY TABLE TempTab (
 number INT

);
 ...
END

Example

DELETE statement

388

DELETE statement
Use this statement to delete rows from the database.

DELETE [FIRST | TOP n]
[FROM] [owner.]table-name
[FROM table-list]
[WHERE search-condition]

The DELETE statement deletes all the rows from the named table that satisfy
the search condition. If no WHERE clause is specified, all rows from the
named table are deleted.

The DELETE statement can be used on views, provided the SELECT
statement defining the view has only one table in the FROM clause and does
not contain a GROUP BY clause, an aggregate function, or involve a
UNION operation.

The optional second FROM clause in the DELETE statement allows rows to
be deleted based on joins. If the second FROM clause is present, the
WHERE clause qualifies the rows of this second FROM clause. Rows are
deleted from the table name given in the first FROM clause.

$ The second FROM clause can contain arbitrary complex table
expressions, such as KEY and NATURAL joins. For a full description of the
FROM clause and joins, see "FROM clause" on page 433.

The following statement illustrates a potential ambiguity in table names in
DELETE statements with two FROM clauses that use correlation names:

DELETE
FROM table_1
FROM table_1 AS alias_1, table_2 AS alias_2
WHERE ...

The table table_1 is identified without a correlation name in the first FROM
clause, but with a correlation name in the second FROM clause. In this case,
table_1 in the first clause is identified with alias_1 in the second clause—
there is only one instance of table_1 in this statement.

This is an exception to the general rule that where a table is identified with a
correlation name and without a correlation name in the same statement, two
instances of the table are considered.

Consider the following example:
DELETE
FROM table_1
FROM table_1 AS alias_1, table_1 AS alias_2
WHERE ...

Description

Syntax

Usage

Chapter 4 SQL Statements

389

In this case, there are two instances of table_1in the second FROM clause.
The statement will fail with a syntax error as it is ambiguous which instance
of the table_1 from the second FROM clause matches the first instance of
table_1 in the first FROM clause.

Must have DELETE permission on the table.

None.

"TRUNCATE TABLE statement" on page 567
"INSERT statement" on page 463
"INPUT statement [Interactive SQL]" on page 459
"FROM clause" on page 433

♦ SQL/92 Entry-level compliant. The use of more than one table in the
FROM clause is a vendor extension.

♦ SQL/99 Core feature. The use of more than one table in the FROM
clause is a vendor extension.

♦ Sybase Supported by Adaptive Server Enterprise, including the
vendor extension.

Remove employee 105 from the database.

DELETE
FROM employee
WHERE emp_id = 105

Remove all data prior to 2000 from the fin_data table.

DELETE
FROM fin_data
WHERE year < 2000

Remove all orders from sales_order_items table if their ship date is older
than 2001-01-01 and their region is Central.

DELETE
FROM sales_order_items
FROM sales_order
WHERE sales_order_items.id = sales_order.id
 and ship_date < ’2001-01-01’ and region =’Central’

Permissions

Side effects

See also

Standards and
compatibility

Example

DELETE (positioned) statement [ESQL] [SP]

390

DELETE (positioned) statement [ESQL] [SP]
Use this statement to delete the data at the current location of a cursor.

DELETE [FROM table-spec] WHERE CURRENT OF cursor-name

cursor-name : identifier | hostvar

table-spec : [owner.]correlation-name

owner : identifier

This form of the DELETE statement deletes the current row of the specified
cursor. The current row is defined to be the last row fetched from the cursor.

The table from which rows are deleted is determined as follows:

♦ If no FROM clause is included, the cursor must be on a single table
only.

♦ If the cursor is for a joined query (including using a view containing a
join), then the FROM clause must be used. Only the current row of the
specified table is deleted. The other tables involved in the join are not
affected.

♦ If a FROM clause is included, and no table owner is specified,
table-spec is first matched against any correlation names.

♦ If a correlation name exists, table-spec is identified with the
correlation name.

♦ If a correlation name does not exist, table-spec must be
unambiguously identifiable as a table name in the cursor.

♦ If a FROM clause is included, and a table owner is specified, table-spec
must be unambiguously identifiable as a table name in the cursor.

♦ The positioned DELETE statement can be used on a cursor open on a
view as long as the view is updateable.

Must have DELETE permission on tables used in the cursor.

None.

"UPDATE statement" on page 575
"UPDATE (positioned) statement [ESQL] [SP]" on page 580
"INSERT statement" on page 463
"PUT statement [ESQL]" on page 499

♦ SQL/92 Entry-level feature. The range of cursors that can be updated
may contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS
option is set to OFF.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

391

♦ SQL/99 Core feature. The range of cursors that can be updated may
contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS
option is set to OFF.

♦ Sybase Embedded SQL use is supported by Open Client/Open Server.
Procedure and trigger use is supported only in Adaptive Server
Anywhere.

The following statement removes the current row from the database.

DELETE
WHERE CURRENT OF cur_employee

Example

DESCRIBE statement [ESQL]

392

DESCRIBE statement [ESQL]
Use this statement to get information about the host variables required to
store data retrieved from the database, or host variables required to pass data
to the database.

DESCRIBE
[USER TYPES]
[ALL | BIND VARIABLES FOR | INPUT | OUTPUT
 | SELECT LIST FOR]
[LONG NAMES [long-name-spec] | WITH VARIABLE RESULT]
[FOR] { statement-name | CURSOR cursor-name }
INTO sqlda-name

long-name-spec :
OWNER.TABLE.COLUMN | TABLE.COLUMN | COLUMN

statement-name : identifier | hostvar

cursor-name : declared cursor

sqlda-name : identifier

USER TYPES A DESCRIBE statement with the USER TYPES clause
returns information about domains of a column. Typically, such a
DESCRIBE will be done when a previous DESCRIBE returns an indicator of
DT_HAS_USERTYPE_INFO.

The information returned is the same as for a DESCRIBE without the USER
TYPES keywords, except that the sqlname field holds the name of the
domain, instead of the name of the column.

If the DESCRIBE uses the LONG NAMES clause, the sqldata field holds
this information.

ALL DESCRIBE ALL allows you to describe INPUT and OUTPUT with
one request to the database server. This has a performance benefit. The
INPUT information will be filled in the SQLDA first, followed by the
OUTPUT information. The sqld field contains the total number of INPUT
and OUTPUT variables. The DT_DESCRIBE_INPUT bit in the indicator
variable is set for INPUT variables and clear for OUTPUT variables.

INPUT A bind variable is a value supplied by the application when the
database executes the statements. Bind variables can be considered
parameters to the statement. DESCRIBE INPUT fills in the name fields in
the SQLDA with the bind variable names. DESCRIBE INPUT also puts the
number of bind variables in the sqld field of the SQLDA.

Description

Syntax

Parameters

Chapter 4 SQL Statements

393

DESCRIBE uses the indicator variables in the SQLDA to provide additional
information. DT_PROCEDURE_IN and DT_PROCEDURE_OUT are bits
that are set in the indicator variable when a CALL statement is described.
DT_PROCEDURE_IN indicates an IN or INOUT parameter and
DT_PROCEDURE_OUT indicates an INOUT or OUT parameter. Procedure
RESULT columns will have both bits clear. After a describe OUTPUT, these
bits can be used to distinguish between statements that have result sets (need
to use OPEN, FETCH, RESUME, CLOSE) and statements that do not (need
to use EXECUTE). DESCRIBE INPUT only sets DT_PROCEDURE_IN
and DT_PROCEDURE_OUT appropriately when a bind variable is an
argument to a CALL statement; bind variables within an expression that is an
argument in a CALL statement will not set the bits.

OUTPUT The DESCRIBE OUTPUT statement fills in the data type and
length for each select list item in the SQLDA. The name field is also filled in
with a name for the select list item. If an alias is specified for a select list
item, the name will be that alias. Otherwise, the name will be derived from
the select list item: if the item is a simple column name, it will be used;
otherwise, a substring of the expression will be used. DESCRIBE will also
put the number of select list items in the sqld field of the SQLDA.

If the statement being described is a UNION of two or more SELECT
statements, the column names returned for DESCRIBE OUTPUT are the
same column names which would be returned for the first SELECT
statement.

If you describe a CALL statement, the DESCRIBE OUTPUT statement fills
in the data type, length, and name in the SQLDA for each INOUT or OUT
parameter in the procedure. DESCRIBE OUTPUT also puts the number of
INOUT or OUT parameters in the sqld field of the SQLDA.

If you describe a CALL statement with a result set, the DESCRIBE
OUTPUT statement fills in the data type, length, and name in the SQLDA
for each RESULT column in the procedure definition. DESCRIBE OUTPUT
will also put the number of result columns in the sqld field of the SQLDA.

LONG NAMES The LONG NAMES clause is provided to retrieve column
names for a statement or cursor. Without this clause, there is a 29-character
limit on the length of column names; with the clause, names of an arbitrary
length are supported.

If LONG NAMES is used, the long names are placed into the SQLDATA
field of the SQLDA, as if you were fetching from a cursor. None of the other
fields (SQLLEN, SQLTYPE, and so on) are filled in. The SQLDA must be
set up like a FETCH SQLDA: it must contain one entry for each column, and
the entry must be a string type. If there is an indicator variable, truncation is
indicated in the usual fashion.

DESCRIBE statement [ESQL]

394

The default specification for the long names is TABLE.COLUMN.

WITH VARIABLE RESULT This clause is used to describe procedures
that may have more than one result set, with different numbers or types of
columns.

If WITH VARIABLE RESULT is used, the database server sets the
SQLCOUNT value after the DESCRIBE statement to one of the following
values:

♦ 0 The result set may change. The procedure call should be described
again following each OPEN statement.

♦ 1 The result set is fixed. No redescribing is required.

$ For more information on the use of the SQLDA structure, see "The SQL
descriptor area (SQLDA)" on page 206 of the book ASA Programming
Guide.

The DESCRIBE statement sets up the named SQLDA to describe either the
OUTPUT (equivalently SELECT LIST) or the INPUT (BIND
VARIABLES) for the named statement.

In the INPUT case, DESCRIBE BIND VARIABLES does not set up the data
types in the SQLDA: this needs to be done by the application. The ALL
keyword allows you to describe INPUT and OUTPUT in one SQLDA.

If you specify a statement name, the statement must have been previously
prepared using the PREPARE statement with the same statement name and
the SQLDA must have been previously allocated (see the "ALLOCATE
DESCRIPTOR statement [ESQL]" on page 203).

If you specify a cursor name, the cursor must have been previously declared
and opened. The default action is to describe the OUTPUT. Only SELECT
statements and CALL statements have OUTPUT. A DESCRIBE OUTPUT
on any other statement, or on a cursor that is not a dynamic cursor, indicates
no output by setting the sqld field of the SQLDA to zero.

None.

None.

"ALLOCATE DESCRIPTOR statement [ESQL]" on page 203
"DECLARE CURSOR statement [ESQL] [SP]" on page 379
"OPEN statement [ESQL] [SP]" on page 485
"PREPARE statement [ESQL]" on page 495

♦ SQL/92 Part of the SQL/92 standard. Some clauses are vendor
extensions.

♦ SQL/99 Core feature. Some clauses are vendor extensions.

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

395

♦ Sybase Some clauses supported by Open Client/Open Server.

The following example shows how to use the DESCRIBE statement:

sqlda = alloc_sqlda(3);
EXEC SQL DESCRIBE OUTPUT
 FOR employee_statement

 INTO sqlda;
if(sqlda->sqld > sqlda->sqln) {
 actual_size = sqlda->sqld;
 free_sqlda(sqlda);
 sqlda = alloc_sqlda(actual_size);
 EXEC SQL DESCRIBE OUTPUT
 FOR employee_statement
 INTO sqlda;
}

Example

DISCONNECT statement [ESQL] [Interactive SQL]

396

DISCONNECT statement [ESQL]
[Interactive SQL]

Use this statement to drop the current connection to a database.

DISCONNECT [connection-name | CURRENT | ALL]

connection-name : identifier, string, or hostvar

The DISCONNECT statement drops a connection with the database server
and releases all resources used by it. If the connection to be dropped was
named on the CONNECT statement, the name can be specified. Specifying
ALL will drop all of the application’s connections to all database
environments. CURRENT is the default, and will drop the current
connection.

An implicit ROLLBACK is executed on connections that are dropped.

$ For information on dropping connections other than the current
connection, see "DROP CONNECTION statement" on page 400.

None.

None.

"CONNECT statement [ESQL] [Interactive SQL]" on page 268
"SET CONNECTION statement [Interactive SQL] [ESQL]" on page 536

♦ SQL/92 Intermediate-level feature.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Supported by Open Client/Open Server.

The following statement shows how to use DISCONNECT in Embedded
SQL:

EXEC SQL DISCONNECT :conn_name

The following statement shows how to use DISCONNECT from
Interactive SQL to disconnect all connections:

DISCONNECT ALL

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

397

DROP statement
Use this statement to remove objects from the database.

DROP
 { DATATYPE | DOMAIN } datatype-name
| DBSPACE dbspace-name
| EVENT event-name
| FUNCTION [owner.]function-name
| INDEX [[owner.]table-name.]index-name
| MESSAGE msgnum
| PROCEDURE [owner.]procedure-name
| TABLE [owner.]table-name
| TRIGGER [[owner.]table-name.]trigger-name
| VIEW [owner.]view-name

The DROP statement removes the definition of the indicated database
structure. If the structure is a dbspace, all tables in that dbspace must be
dropped prior to dropping the dbspace. If the structure is a table, all data in
the table is automatically deleted as part of the dropping process. Also, all
indexes and keys for the table are dropped by the DROP TABLE statement.

DROP TABLE, DROP INDEX, and DROP DBSPACE are prevented
whenever the statement affects a table that is currently being used by another
connection.

DROP PROCEDURE and DROP FUNCTION are prevented when the
procedure or function is in use by another connection.

DROP DATATYPE is prevented if the data type is used in a table. You must
change data types on all columns defined on the domain in order to drop the
data type. It is recommended that you use DROP DOMAIN rather than
DROP DATATYPE, as DROP DOMAIN is the syntax used in the
ANSI/ISO SQL3 draft.

Any user who owns the object, or has DBA authority, can execute the DROP
statement.

For DROP DBSPACE, you must be the only connection to the database.

A user with ALTER permissions on the table can execute DROP TRIGGER.

A user with REFERENCES permissions on the table can execute DROP
INDEX.

Global temporary tables cannot be dropped unless all users that have
referenced the temporary table have disconnected.

Description

Syntax

Usage

Permissions

DROP statement

398

Automatic commit. Clears the Results tab in the Results pane in
Interactive SQL. DROP TABLE and DROP INDEX close all cursors for the
current connection.

Local temporary tables is an exception; no commit is performed when one is
dropped.

When a view is dropped, all procedures and triggers are unloaded from
memory, so that any procedure or trigger that references the view reflects the
fact that the view does not exist. The unloading and loading of procedures
and triggers can have a performance impact if you are regularly dropping and
creating views.

"CREATE DATABASE statement" on page 273
"CREATE DOMAIN statement" on page 283
"CREATE INDEX statement" on page 300
"CREATE FUNCTION statement" on page 296
"CREATE PROCEDURE statement" on page 305
"CREATE TABLE statement" on page 350
"CREATE TRIGGER statement" on page 362
"CREATE VIEW statement" on page 371

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Adaptive Server Enterprise for those objects
that exist in Adaptive Server Enterprise.

Drop the department table from the database.

DROP TABLE department

Drop the emp_dept view from the database.

DROP VIEW emp_dept

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

399

DROP DATABASE statement
Use this statement to delete all database files associated with a database.

DROP DATABASE database-name [KEY key]

The DROP DATABASE statement physically deletes all associated database
files from disk. If the database file does not exist, or is not in a suitable
condition for the database to be started, an error is generated.

DROP DATABASE cannot be used in a stored procedure.

Required permissions are set using the database server -gu option. The
default setting is to require DBA authority.

The database must not be in use in order to be dropped.

You must specify a key if you want to drop a strongly encrypted database

Not supported on Windows CE.

In addition to deleting the database files from disk, any associated
transaction log file or transaction log mirror file is deleted.

"CREATE DATABASE statement" on page 273

"Encryption Key connection parameter" on page 179 of the book ASA
Database Administration Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Drop the database temp.db, in the C:\temp directory..

DROP DATABASE ’c:\temp\temp.db’

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

DROP CONNECTION statement

400

DROP CONNECTION statement
Use this statement to drop a connection to the database, belonging to any
user.

DROP CONNECTION connection-id

The DROP CONNECTION statement disconnects a user from the database
by dropping the connection to the database.

You can obtain the connection-id by using the connection_property
function to request the connection number. The following statement returns
the connection ID of the current connection:

SELECT connection_property(’number’)

Must have DBA authority.

None.

"CONNECT statement [ESQL] [Interactive SQL]" on page 268

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

The following statement drops the connection with ID number 4.

DROP CONNECTION 4

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

401

DROP EXTERNLOGIN statement
Use this statement to drop an external login from the Adaptive Server
Anywhere catalogs.

DROP EXTERNLOGIN login-name TO remote-server

DROP clause Specifies the local user login name

TO clause Specifies the name of the remote server. The local user’s
alternate login name and password for that server is the external login that is
deleted.

DROP EXTERNLOGIN deletes an external login from the Adaptive Server
Anywhere catalogs.

Must be the owner of login-name or have DBA authority.

Automatic commit.

"CREATE EXTERNLOGIN statement" on page 294

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

DROP EXTERNLOGIN DBA TO sybase1

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

DROP PUBLICATION statement

402

DROP PUBLICATION statement
Use this statement to drop a publication. In MobiLink a publication identifies
synchronized data in a Adaptive Server Anywhere remote database. In
SQL Remote, publications identify replicated data in both consolidated and
remote databases.

DROP PUBLICATION [owner.]publication-name

owner, publication-name : identifier

This statement is applicable only to MobiLink and SQL Remote.

Must have DBA authority.

Automatic commit. All subscriptions to the publication are dropped.

"ALTER PUBLICATION statement" on page 216
"CREATE PUBLICATION statement" on page 314
"sp_drop_publication procedure" on page 393 of the book SQL Remote

User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

The following statement drops the pub_contact publication.

DROP PUBLICATION pub_contact

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

403

DROP REMOTE MESSAGE TYPE statement
[SQL Remote]

Use this statement to delete a message type definition from a database.

DROP REMOTE MESSAGE TYPE message-system

message-system: FILE | FTP | MAPI | SMTP | VIM

The statement removes a message type from a database.

Must have DBA authority. To be able to drop the type, there must be no user
granted REMOTE or CONSOLIDATE permissions with this type.

Automatic commit.

"CREATE REMOTE MESSAGE TYPE statement [SQL Remote]" on
page 317

"sp_drop_remote_type procedure" on page 394 of the book SQL Remote
User’s Guide

"Using message types" on page 215 of the book SQL Remote User’s Guide.

The following statement drops the FILE message type from a database.

DROP REMOTE MESSAGE TYPE file

Description

Syntax

Usage

Permissions

Side effects

See also

Example

DROP SERVER statement

404

DROP SERVER statement
Use this statement to drop a remote server from the Adaptive Server
Anywhere catalog.

DROP SERVER server-name

DROP SERVER deletes a remote server from the Adaptive Server
Anywhere catalogs. You must drop all the proxy tables that have been
defined for the remote server before this statement will succeed.

Only the DBA account can delete a remote server.

Not supported on Windows CE.

Automatic commit.

"CREATE SERVER statement" on page 321

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

DROP SERVER ase_prod

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

405

DROP STATEMENT statement [ESQL]
Use this statement to free statement resources.

DROP STATEMENT [owner.]statement-name

statement-name : identifier | hostvar

The DROP STATEMENT statement frees resources used by the named
prepared statement. These resources are allocated by a successful PREPARE
statement, and are normally not freed until the database connection is
released.

Must have prepared the statement.

None.

"PREPARE statement [ESQL]" on page 495

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Open Client/Open Server

The following are examples of DROP STATEMENT use:

EXEC SQL DROP STATEMENT S1;

EXEC SQL DROP STATEMENT :stmt;

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

DROP STATISTICS statement

406

DROP STATISTICS statement
Use this statement to erase all optimizer statistics on the specified columns.

DROP STATISTICS [ON] [owner.]table-name [(column-list)]

The Adaptive Server Anywhere optimizer uses statistical information to
determine the best strategy for executing each statement. Adaptive Server
Anywhere automatically gathers and updates these statistics. These statistics
are stored permanently in the database in the system table SYSCOLSTAT.
Statistics gathered while processing one statement are available when
searching for efficient ways to execute subsequent statements.

Occasionally, the statistics may become inaccurate or relevant statistics may
be unavailable. This condition is most likely to arise when few queries have
been executed since a large amount of data was added, updated, or deleted.

The DROP STATISTICS statement deletes all internal statistical data from
the system table SYSCOLSTAT for the specified columns. This drastic step
leaves the optimizer with no access to essential statistical information.
Without these statistics, the optimizer may generate very inefficient data
access plans, causing poor database performance.

This statement should be used only during problem determination or when
reloading data into a database that differs substantially from the original data.

Pre-version 8 databases The DROP STATISTICS syntax has no effect
on Adaptive Server Anywhere 7 databases and earlier. To drop statistics on
those databases, use the syntax:

DROP OPTIMIZER STATISTICS

This syntax drops all statistics on the database. If you use this syntax on
version 8 databases, nothing will happen—statistics will not be dropped.
This syntax is deprecated.

Must have DBA authority.

Automatic commit.

"CREATE STATISTICS statement" on page 323

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

407

DROP SUBSCRIPTION statement [SQL Remote]
Use this statement to drop a subscription for a user from a publication.

DROP SUBSCRIPTION TO publication-name [(subscription-value)]
 FOR subscriber-id, …

subscription-value: string

subscriber-id: string

publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value A string that is compared to the subscription
expression of the publication. This value is required because a user may have
more than one subscription to a publication.

subscriber-id The user ID of the subscriber to the publication.

Drops a SQL Remote subscription for a user ID to a publication in the
current database. The user ID will no longer receive updates when data in the
publication is changed.

In SQL Remote, publications and subscriptions are two-way relationships. If
you drop a subscription for a remote user to a publication on a consolidated
database, you should also drop the subscription for the consolidated database
on the remote database to prevent updates on the remote database being sent
to the consolidated database.

Must have DBA authority.

Automatic commit.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Anywhere version 7.0.

"CREATE SUBSCRIPTION statement [SQL Remote]" on page 324

The following statement drops a subscription for the user ID SamS to the
publication pub_contact.

DROP SUBSCRIPTION TO pub_contact
FOR SamS

Description

Syntax

Parameters

Usage

Permissions

Side effects

Standards and
compatibility

See also

Example

DROP SYNCHRONIZATION DEFINITION statement [MobiLink] (deprecated)

408

DROP SYNCHRONIZATION DEFINITION
statement [MobiLink] (deprecated)

Use this statement to drop a synchronization definition. This command is
deprecated. Definitions and sites have been replaced with synchronization
publications and subscriptions.

DROP SYNCHRONIZATION DEFINITION sync-def-name

Synchronization definitions are created in Adaptive Server Anywhere
version 7 databases that are to function as MobiLink clients. Each definition
specifies the site name that uniquely identifies that logical MobiLink client
within the MobiLink setup. In addition, each site specifies how to contact the
MobiLink synchronization server and which data in the remote database is to
be synchronized with the consolidated database.

Use the DROP SYNCHRONIZATION DEFINITION statement to drop a
synchronization definition.

Note, however, that once a synchronization definition has been dropped,
outstanding updates (insert, delete, update and alter commands) will not be
synchronized.

Must have DBA authority.

Automatic commit.

"DROP PUBLICATION statement" on page 402
"DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]" on

page 410
"CREATE SYNCHRONIZATION DEFINITION statement [MobiLink]" on

page 326
"ALTER SYNCHRONIZATION DEFINITION statement" on page 222

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Anywhere version 7.0.

Drop the mysharedtables synchronization definition.

DROP SYNCHRONIZATION DEFINITION mysharedtables;

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

409

DROP SYNCHRONIZATION SITE statement
[MobiLink] (deprecated)

Use this statement to drop a specific synchronization site. This command is
deprecated. Definitions and sites have been replaced with synchronization
publications and subscriptions.

DROP SYNCHRONIZATION SITE sync-site-name

Synchronization templates and synchronization sites are used only when
creating Adaptive Server Anywhere remote databases by means of extracting
them from an Adaptive Server Anywhere version 7 reference database.

Each remote database is created from a synchronization site, stored within
the reference database. Each synchronization site is based upon a single
synchronization template, although many sites can use a single template.

Use the DROP SYNCHRONIZATION SITE statement to drop a specific
synchronization site.

Must have DBA authority.

Automatic commit.

"DROP PUBLICATION statement" on page 402
"DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]" on

page 410
"CREATE SYNCHRONIZATION SITE statement [MobiLink]" on

page 328
"ALTER SYNCHRONIZATION SITE statement [MobiLink]" on page 225

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Anywhere version 7.0.

The template mytemplate will no longer be deployed to the new_sync_site
remote database.

DROP SYNCHRONIZATION SITE new_sync_site;

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]

410

DROP SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]

Use this statement to drop a synchronization subscription within a MobiLink
remote database or a MobiLink reference database. You can also use it to
drop a default subscription, which contains default subscription values, for
the specified publication.

DROP SYNCHRONIZATION SUBSCRIPTION
TO publication-name
[FOR ml_username, …]

TO clause Specify the name of a publication.

FOR clause Specify one more MobiLink users.

Omitting this clause drops the default subscription for the publication.
MobiLink users subscribed to a publication inherit as defaults the values in a
default publication.

Drop a synchronization subscription in a MobiLink remote or reference
database.

Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Automatic commit.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Anywhere version 8.0.

Unsubscribe MobiLink user ml_user1 to the sales publication.

DROP SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR "ml_user1"

Drop the default subscription, which contains default subscription values, for
the sales publication (by omitting the FOR clause).

DROP SYNCHRONIZATION SUBSCRIPTION
TO sales_publication

Description

Syntax

Parameters

Usage

Permissions

Side Effects

Standards and
compatibility

Examples

Chapter 4 SQL Statements

411

DROP SYNCHRONIZATION TEMPLATE
statement [MobiLink] (deprecated)

Use this statement to drop a synchronization template. This command is
deprecated. Please use synchronization publications and subscriptions
instead.

DROP SYNCHRONIZATION TEMPLATE sync-template-name

Synchronization templates and synchronization sites are used only when
creating Adaptive Server Anywhere remote databases by means of extracting
them from an Adaptive Server Anywhere version 7 reference database.

Each remote database is created from a synchronization site, stored within
the reference database. Each synchronization site is based upon a single
synchronization template, although many sites can use a single template.

Use the DROP SYNCHRONIZATION TEMPLATE statement to drop a
synchronization template.

Must have DBA authority.

Automatic commit. Dropping a synchronization template implicitly drops all
sites using that template.

"DROP PUBLICATION statement" on page 402
"DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]" on

page 410
"CREATE SYNCHRONIZATION TEMPLATE statement [MobiLink]" on

page 333
"ALTER SYNCHRONIZATION TEMPLATE statement [MobiLink]" on

page 229

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Anywhere version 7.0.

♦ Drop the mytemplate synchronization template.

DROP SYNCHRONIZATION TEMPLATE mytemplate;

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

DROP SYNCHRONIZATION USER statement [MobiLink]

412

DROP SYNCHRONIZATION USER statement
[MobiLink]

Use this statement to drop a synchronization user from a MobiLink remote
database.

DROP SYNCHRONIZATION USER ml_username, …

ml_username: identifier

Drop one or more synchronization users from a MobiLink remote database.

Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

All subscriptions associated with the user are also deleted.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Anywhere version 8.0.

Remove MobiLink user ml_user1 from the database.

DROP SYNCHRONIZATION USER ml_user1

Description

Syntax

Usage

Permissions

Side Effects

Standards and
compatibility

Example

Chapter 4 SQL Statements

413

DROP VARIABLE statement
Use this statement to eliminate a SQL variable.

DROP VARIABLE identifier

The DROP VARIABLE statement eliminates a SQL variable that was
previously created using the CREATE VARIABLE statement. Variables will
be automatically eliminated when the database connection is released.
Variables are often used for large objects, so eliminating them after use or
setting them to NULL may free up significant resources (primarily disk
space).

None.

None.

"CREATE VARIABLE statement" on page 370
"SET statement" on page 531

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

EXECUTE statement [ESQL]

414

EXECUTE statement [ESQL]
Use this statement to execute a prepared SQL statement.

EXECUTE statement
[USING { hostvar-list | DESCRIPTOR sqlda-name }]
[INTO { into-hostvar-list | DESCRIPTOR into-sqlda-name }]
[ARRAY :integer]

statement : { identifier | hostvar | string }

sqlda-name : identifier

into-sqlda-name : identifier

EXECUTE IMMEDIATE statement

statement : { string | hostvar }

USING clause Results from a SELECT statement or a CALL statement
are put into either the variables in the variable list or the program data areas
described by the named SQLDA. The correspondence is one-to-one from the
OUTPUT (selection list or parameters) to either the host variable list or the
SQLDA descriptor array.

INTO clause If EXECUTE INTO is used with an INSERT statement, the
inserted row is returned in the second descriptor. For example, when using
auto-increment primary keys or BEFORE INSERT triggers that generate
primary key values, the EXECUTE statement provides a mechanism to
re-fetch the row immediately and determine the primary key value that was
assigned to the row. The same thing can be achieved by using @@identity
with auto-increment keys.

ARRAY clause The optional ARRAY clause can be used with prepared
INSERT statements to allow wide inserts, which insert more than one row at
a time and which may improve performance. The integer value is the number
of rows to be inserted. The SQLDA must contain a variable for each entry
(number of rows * number of columns). The first row is placed in SQLDA
variables 0 to (columns per row)-1, and so on.

The EXECUTE statement can be used for any SQL statement that can be
prepared. Cursors are used for SELECT statements or CALL statements that
return many rows from the database (see "Using cursors in embedded SQL"
on page 194 of the book ASA Programming Guide).

After successful execution of an INSERT, UPDATE or DELETE statement,
the sqlerrd[2] field of the SQLCA (SQLCOUNT) is filled in with the
number of rows affected by the operation.

Description

Syntax 1

Syntax 2

Parameters

Usage

Chapter 4 SQL Statements

415

Syntax 1 Execute the named dynamic statement, which was previously
prepared. If the dynamic statement contains host variable place holders
which supply information for the request (bind variables), either the
sqlda-name must specify a C variable which is a pointer to an SQLDA
containing enough descriptors for all of the bind variables occurring in the
statement, or the bind variables must be supplied in the hostvar -list.

Syntax 2 A short form to PREPARE and EXECUTE a statement that does
not contain bind variables or output. The SQL statement contained in the
string or host variable is immediately executed, and is dropped on
completion.

Permissions are checked on the statement being executed.

None.

"EXECUTE statement [SP]" on page 416
"PREPARE statement [ESQL]" on page 495
"DECLARE CURSOR statement [ESQL] [SP]" on page 379

♦ SQL/92 Intermediate-level feature.

♦ SQL/99 Feature outside of core SQL.

♦ Sybase Supported in Open Client/Open Server.

Execute a DELETE.

EXEC SQL EXECUTE IMMEDIATE
’DELETE FROM employee WHERE emp_id = 105’;

Execute a prepared DELETE statement.

EXEC SQL PREPARE del_stmt FROM
’DELETE FROM employee WHERE emp_id = :a’;
EXEC SQL EXECUTE del_stmt USING :employee_number;

Execute a prepared query.

EXEC SQL PREPARE sel1 FROM
’SELECT emp_lname FROM employee WHERE emp_id = :a’;
EXEC SQL EXECUTE sel1 USING :employee_number INTO
:emp_lname;

Permissions

Side effects

See also

Standards and
compatibility

Example

EXECUTE statement [SP]

416

EXECUTE statement [SP]
Use this statement to enable dynamically constructed statements to be
executed from within a procedure.

EXECUTE IMMEDIATE [WITH QUOTES] string-expression

EXECUTE (string-expression)

WITH QUOTES When you specify WITH QUOTES, any double quotes in
the string expression are assumed to delimit an identifier. When you don’t
specify WITH QUOTES, the treatment of double quotes in the string
expression depends on the current setting of the QUOTED_IDENTIFIER
option. WITH QUOTES is useful when an object name that is passed into
the stored procedure is used to construct the statement that is to be executed,
but the name might require double quotes and the procedure might be called
when QUOTED_IDENTIFIER is set to OFF.

$ For more information, see the "QUOTED_IDENTIFIER option" on
page 594 of the book ASA Database Administration Guide.

The EXECUTE statement extends the range of statements that can be
executed from within procedures and triggers. It lets you execute
dynamically prepared statements, such as statements that are constructed
using the parameters passed in to a procedure.

Literal strings in the statement must be enclosed in single quotes, and the
statement must be on a single line.

The EXECUTE IMMEDIATE statement does not support statements and
queries that return result sets.

Only global variables can be referenced in a statement executed by
EXECUTE IMMEDIATE.

Only syntax 2 can be used inside Transact-SQL stored procedures and
triggers.

None. The statement is executed with the permissions of the owner of the
procedure, not with the permissions of the user who calls the procedure.

None. However, if the statement is a data definition statement with an
automatic commit as a side effect, that commit does take place.

$ For more information about using the EXECUTE IMMEDIATE
statement in procedures, see "Using the EXECUTE IMMEDIATE statement
in procedures" on page 557 of the book ASA SQL User’s Guide.

"CREATE PROCEDURE statement" on page 305
"BEGIN statement" on page 248

Description

Syntax 1

Syntax 2

Parameters

Usage

Permissions

Side effects

See also

Chapter 4 SQL Statements

417

"EXECUTE statement [ESQL]" on page 414

♦ SQL/92 Intermediate-level feature.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Supported in Open Client/Open Server.

The following procedure creates a table, where the table name is supplied as
a parameter to the procedure. The EXECUTE IMMEDIATE statement must
all be on a single line.

CREATE PROCEDURE CreateTableProc(
IN tablename char(30)
)

BEGIN
EXECUTE IMMEDIATE ’CREATE TABLE ’ || tablename ||

’ (column1 INT PRIMARY KEY)’
END

To call the procedure and create a table called mytable:

CALL CreateTableProc(’mytable’)

Standards and
compatibility

Example

EXECUTE statement [T-SQL]

418

EXECUTE statement [T-SQL]
Use Syntax 1 to invoke a procedure, as an Adaptive Server
Enterprise-compatible alternative to the CALL statement. Note: You can also
execute statements within Transact-SQL stored procedures and triggers. For
more information, see "EXECUTE statement [SP]" on page 416. Use Syntax
2 to execute a prepared SQL statement in T-SQL.

EXECUTE [@return_status =] [creator.]procedure_name [argument, ...]

argument :
 [@parameter-name =] expression
| [@parameter-name =] @variable [output]

EXECUTE (string-expression)

Syntax 1 executes a stored procedure, optionally supplying procedure
parameters and retrieving output values and return status information.

The EXECUTE statement is implemented for Transact-SQL compatibility,
but can be used in either Transact-SQL or Watcom-SQL batches and
procedures.

With Syntax 2, you can execute statements within Transact-SQL stored
procedures and triggers. The EXECUTE statement extends the range of
statements that can be executed from within procedures and triggers. It lets
you execute dynamically prepared statements, such as statements that are
constructed using the parameters passed in to a procedure. Literal strings in
the statement must be enclosed in single quotes, and the statement must be
on a single line.

Must be the owner of the procedure, have EXECUTE permission for the
procedure, or have DBA authority.

None.

"CALL statement" on page 254
"EXECUTE statement [ESQL]" on page 414

The following procedure illustrates Syntax 1.

CREATE PROCEDURE p1(@var INTEGER = 54)
AS
PRINT ’on input @var = %1!’, @var
DECLARE @intvar integer
SELECT @intvar=123
SELECT @var=@intvar
PRINT ’on exit @var = %1!’, @var

Description

Syntax 1

Syntax 2

Usage

Permissions

Side effects

See also

Example

Chapter 4 SQL Statements

419

The following statement executes the procedure, supplying the input value of
23 for the parameter. If you are connected from an Open Client or JDBC
application, the PRINT messages are displayed on the client window. If you
are connected from an ODBC or Embedded SQL application, the messages
are displayed on the database server window.

EXECUTE p1 23

The following is an alternative way of executing the procedure, which is
useful if there are several parameters.

EXECUTE p1 @var = 23

The following statement executes the procedure, using the default value for
the parameter

EXECUTE p1

The following statement executes the procedure, and stores the return value
in a variable for checking return status.

EXECUTE @status = p1 23

EXIT statement [Interactive SQL]

420

EXIT statement [Interactive SQL]
Use this statement to leave Interactive SQL.

{ EXIT | QUIT | BYE } [return-code]

return-code:
number | hostvar

This statement closes your connection with the database, then closes the
Interactive SQL environment. Before closing the database connection,
Interactive SQL automatically executes a COMMIT statement if the
COMMIT_ON_EXIT option is set to ON. If this option is set to OFF,
Interactive SQL instead performs a ROLLBACK. By default, the
COMMIT_ON_EXIT option is set to ON.

The optional return code can be used in batch files to indicate success or
failure of the commands in an Interactive SQL command file. The default
return code is 0.

None.

This statement automatically performs a commit if option
COMMIT_ON_EXIT is set to ON (the default); otherwise it performs a
rollback.

On Windows operating systems the optional return value is available as
ERRORLEVEL.

"SET OPTION statement" on page 539

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable in Adaptive Server Enterprise.

The following example sets the Interactive SQL return value to 1 if there are
any rows in table T, or to 0 if T contains no rows.

CREATE VARIABLE rowCount INT;
CREATE VARIABLE retcode INT;
SELECT COUNT(*) INTO rowCount FROM T;
IF(rowCount > 0) THEN
 SET retcode = 1;
ELSE
 SET retcode = 0;
END IF;
EXIT retcode;

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Examples

Chapter 4 SQL Statements

421

The following sample is invalid, as the EXIST statement is an
Interactive SQL statement only. It cannot be included inside IF statements or
any other SQL block statement.

// this example shows incorrect code
CREATE VARIABLE rowCount INT;
SELECT COUNT(*) INTO rowCount FROM T;
IF(rowCount > 0) THEN
 EXIT 1; // <-- not allowed
ELSE
 EXIT 0; // <-- not allowed
END IF;

The following Windows batch file prints Error = 1 on the command
prompt.

dbisql -c "dsn=ASA 8.0 Sample" EXIT 1
if errorlevel 1 echo "Errorlevel is 1"

EXPLAIN statement [ESQL]

422

EXPLAIN statement [ESQL]
Use this statement to retrieve a text specification of the optimization strategy
used for a particular cursor.

EXPLAIN PLAN FOR CURSOR cursor-name
{ INTO hostvar | USING DESCRIPTOR sqlda-name }

cursor-name : identifier or hostvar

sqlda-name : identifier

The EXPLAIN statement retrieves a text representation of the optimization
strategy for the named cursor. The cursor must be previously declared and
opened.

The hostvar or sqlda-name variable must be of string type. The optimization
string specifies in what order the tables are searched, and also which indexes
are being used for the searches if any.

This string may be long, depending on the query, and has the following
format:

table (index), table (index), ...

If a table has been given a correlation name, the correlation name will appear
instead of the table name. The order that the table names appear in the list is
the order in which they will be accessed by the database server. After each
table is a parenthesized index name. This is the index that will be used to
access the table. If no index will be used (the table will be scanned
sequentially) the letters "seq" will appear for the index name. If a particular
SQL SELECT statement involves subqueries, a colon (:) will separate each
subquery’s optimization string. These subquery sections will appear in the
order that the database server executes the queries.

After successful execution of the EXPLAIN statement, the sqlerrd[3] field
of the SQLCA (SQLIOESTIMATE) will be filled in with an estimate of the
number of input/output operations required to fetch all rows of the query.

A discussion with quite a few examples of the optimization string can be
found in "Monitoring and Improving Performance" on page 143 of the book
ASA SQL User’s Guide.

Must have opened the named cursor.

None.

"DECLARE CURSOR statement [ESQL] [SP]" on page 379
"PREPARE statement [ESQL]" on page 495
"FETCH statement [ESQL] [SP]" on page 424
"CLOSE statement [ESQL] [SP]" on page 261

Description

Syntax

Usage

Permissions

Side effects

See also

Chapter 4 SQL Statements

423

"OPEN statement [ESQL] [SP]" on page 485
"Using cursors in embedded SQL" on page 194 of the book ASA

Programming Guide
"The SQL Communication Area (SQLCA)" on page 188 of the book ASA

Programming Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

The following example illustrates the use of EXPLAIN:

EXEC SQL BEGIN DECLARE SECTION;
char plan[300];
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE employee_cursor CURSOR FOR

SELECT emp_id, emp_lname
FROM employee
WHERE emp_lname like :pattern;

EXEC SQL OPEN employee_cursor;
EXEC SQL EXPLAIN PLAN FOR CURSOR employee_cursor INTO
:plan;
printf("Optimization Strategy: ’%s’.n", plan);

The plan variable contains the following string:

’employee <seq>’

Standards and
compatibility

Example

FETCH statement [ESQL] [SP]

424

FETCH statement [ESQL] [SP]
Use this statement to reposition a cursor and then get data from it.

FETCH cursor-position cursor-name
[INTO { hostvar-list | variable-list }
 | USING DESCRIPTOR sqlda-name]
[PURGE]
[BLOCK n]
[FOR UPDATE]
[ARRAY fetch-count]
INTO variable-list [FOR UPDATE]

cursor-position :
 NEXT | PRIOR | FIRST | LAST
| { ABSOLUTE | RELATIVE } row-count

row-count : number or hostvar

cursor-name : identifier or hostvar

hostvar-list : may contain indicator variables

variable-list : stored procedure variables

sqlda-name : identifier

fetch-count : integer or hostvar

INTO The INTO clause is optional. If it is not specified, the FETCH
statement positions the cursor only. The hostvar-list is for Embedded SQL
use only.

cursor position An optional positional parameter allows the cursor to be
moved before a row is fetched. If the fetch includes a positioning parameter
and the position is outside the allowable cursor positions, the
SQLE_NOTFOUND warning is issued and the SQLCOUNT field indicates
the offset from a valid position.

The OPEN statement initially positions the cursor before the first row.

♦ NEXT Next is the default positioning, and causes the cursor to be
advanced one row before the row is fetched.

♦ PRIOR Causes the cursor to be backed up one row before fetching.

♦ RELATIVE RELATIVE positioning is used to move the cursor by a
specified number of rows in either direction before fetching. A positive
number indicates moving forward and a negative number indicates
moving backwards. Thus, a NEXT is equivalent to RELATIVE 1 and
PRIOR is equivalent to RELATIVE -1. RELATIVE 0 retrieves the same
row as the last fetch statement on this cursor.

Description

Syntax

Parameters

Chapter 4 SQL Statements

425

♦ ABSOLUTE The ABSOLUTE positioning parameter is used to go to a
particular row. A zero indicates the position before the first row (see
"Using cursors in procedures and triggers" on page 545 of the book ASA
SQL User’s Guide).

A one (1) indicates the first row, and so on. Negative numbers are used
to specify an absolute position from the end of the cursor. A negative
one (-1) indicates the last row of the cursor.

♦ FIRST A short form for ABSOLUTE 1.

♦ LAST A short form for ABSOLUTE -1.

Cursor positioning problems
Inserts and some updates to DYNAMIC SCROLL cursors can cause
problems with cursor positioning. The database server does not put
inserted rows at a predictable position within a cursor unless there is an
ORDER BY clause on the SELECT statement. In some cases, the inserted
row does not appear at all until the cursor is closed and opened again.

This occurs if a temporary table had to be created to open the cursor (see
"Use of work tables in query processing" on page 160 of the book ASA
SQL User’s Guide for a description).

The UPDATE statement may cause a row to move in the cursor. This will
happen if the cursor has an ORDER BY that uses an existing index (a
temporary table is not created).

BLOCK clause Rows may be fetched by the client application more than
one at a time. This is referred to as block fetching, prefetching, or multi-row
fetching. The first fetch causes several rows to be sent back from the server.
The client buffers these rows, and subsequent fetches are retrieved from
these buffers without a new request to the server.

The BLOCK clause is for use in Embedded SQL only. It gives the client and
server a hint as to how many rows may be fetched by the application. The
special value of 0 means the request will be sent to the server and a single
row will be returned (no row blocking).

If no BLOCK clause is specified, the value specified on OPEN is used. For
more information, see "OPEN statement [ESQL] [SP]" on page 485.

FETCH RELATIVE 0 always re-fetches the row.

PURGE clause The PURGE clause is for use in embedded SQL only. It
causes the client to flush its buffers of all rows, and then send the fetch
request to the server. Note that this fetch request may return a block of rows.

FETCH statement [ESQL] [SP]

426

FOR UPDATE clause The FOR UPDATE clause indicates that the
fetched row will subsequently be updated with an UPDATE WHERE
CURRENT OF CURSOR statement. This clause causes the database server
to put a write lock on the row. The lock will be held until the end of the
current transaction. See "How locking works" on page 121 of the book ASA
SQL User’s Guide.

ARRAY clause The ARRAY clause is for use in Embedded SQL only. It
allows so-called wide fetches, which retrieve more than one row at a time,
and which may improve performance.

To use wide fetches in embedded SQL, include the fetch statement in your
code as follows:

EXEC SQL FETCH . . . ARRAY nnn

where ARRAY nnn is the last item of the FETCH statement. The fetch count
nnn can be a host variable. The SQLDA must contain nnn * (columns per
row) variables. The first row is placed in SQLDA variables 0 to (columns
per row)-1, and so on.

$ For a detailed example of using wide fetches, see the section "Fetching
more than one row at a time" on page 197 of the book ASA Programming
Guide.

The FETCH statement retrieves one row from the named cursor. The cursor
must have been previously opened.

Embedded SQL use A DECLARE CURSOR statement must appear
before the FETCH statement in the C source code, and the OPEN statement
must be executed before the FETCH statement. If a host variable is being
used for the cursor name, the DECLARE statement actually generates code
and thus must be executed before the FETCH statement.

The server returns in SQLCOUNT the number of records fetched, and
always returns a SQLCOUNT greater than zero unless there is an error or
warning. A SQLCOUNT of zero with no error condition indicates that one
valid row has been fetched.

If the SQLSTATE_NOTFOUND warning is returned on the fetch, the
sqlerrd[2] field of the SQLCA (SQLCOUNT) contains the number of rows
by which the attempted fetch exceeded the allowable cursor positions. The
value is 0 if the row was not found but the position is valid; for example,
executing FETCH RELATIVE 1 when positioned on the last row of a cursor.
The value is positive if the attempted fetch was beyond the end of the cursor,
and negative if the attempted fetch was before the beginning of the cursor.

Usage

Chapter 4 SQL Statements

427

After successful execution of the fetch statement, the sqlerrd[1] field of the
SQLCA (SQLIOCOUNT) is incremented by the number of input/output
operations required to perform the fetch. This field is actually incremented
on every database statement.

Single row fetch One row from the result of the SELECT statement is put
into the variables in the variable list. The correspondence is one-to-one from
the select list to the host variable list.

Multi-row fetch One or more rows from the result of the SELECT
statement are put into either the variables in variable-list or the program data
areas described by sqlda-name. In either case, the correspondence is
one-to-one from the select-list to either the hostvar-list or the sqlda-name
descriptor array.

The cursor must be opened, and the user must have SELECT permission on
the tables referenced in the declaration of the cursor.

None.

"DECLARE CURSOR statement [ESQL] [SP]" on page 379
"PREPARE statement [ESQL]" on page 495
"OPEN statement [ESQL] [SP]" on page 485
"Using cursors in embedded SQL" on page 194 of the book ASA

Programming Guide
"Using cursors in procedures and triggers" on page 545 of the book ASA SQL

User’s Guide
FETCH in PowerScript Reference

♦ SQL/92 Entry-level feature. Use in procedures is a Persistent Stored
Module feature.

♦ SQL/99 Core feature. Use in procedures is a Persistent Stored Module
feature.

♦ Sybase Supported in Adaptive Server Enterprise.

The following is an Embedded SQL example.

EXEC SQL DECLARE cur_employee CURSOR FOR
SELECT emp_id, emp_lname FROM employee;
EXEC SQL OPEN cur_employee;
EXEC SQL FETCH cur_employee
INTO :emp_number, :emp_name:indicator;

The following is a procedure example:

Permissions

Side effects

See also

Standards and
compatibility

Example

FETCH statement [ESQL] [SP]

428

BEGIN
DECLARE cur_employee CURSOR FOR

SELECT emp_lname
FROM employee;

DECLARE name CHAR(40);
OPEN cur_employee;
LOOP

FETCH NEXT cur_employee into name;
 ...

END LOOP
CLOSE cur_employee;

END

Chapter 4 SQL Statements

429

FOR statement
Use this statement to repeat the execution of a statement list once for each
row in a cursor.

[statement-label :]
FOR for-loop-name AS cursor-name
 CURSOR FOR statement
 [FOR UPDATE | FOR READ ONLY]
 DO statement-list
END FOR [statement-label]

The FOR statement is a control statement that allows you to execute a list of
SQL statements once for each row in a cursor. The FOR statement is
equivalent to a compound statement with a DECLARE for the cursor and a
DECLARE of a variable for each column in the result set of the cursor
followed by a loop that fetches one row from the cursor into the local
variables and executes statement-list once for each row in the cursor.

The name and data type of each local variable is derived from the statement
used in the cursor. With a SELECT statement, the data types will be the data
types of the expressions in the select list. The names will be the select list
item aliases, if they exist; otherwise, they will be the names of the columns.
Any select list item that is not a simple column reference must have an alias.
With a CALL statement, the names and data types will be taken from the
RESULT clause in the procedure definition.

The LEAVE statement can be used to resume execution at the first statement
after the END FOR. If the ending statement-label is specified, it must match
the beginning statement-label.

None.

None.

"DECLARE CURSOR statement [ESQL] [SP]" on page 379
"FETCH statement [ESQL] [SP]" on page 424
"LEAVE statement" on page 469
"LOOP statement" on page 481

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Not supported by Adaptive Server Enterprise.

The following fragment illustrates the use of the FOR loop.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

FOR statement

430

FOR names AS curs CURSOR FOR
SELECT emp_lname
FROM employee
DO

CALL search_for_name(emp_lname);
END FOR;

Chapter 4 SQL Statements

431

FORWARD TO statement
Use this statement to send native syntax SQL statements to a remote server.

FORWARD TO server-name SQL-statement

FORWARD TO [server-name]

The FORWARD TO statement enables users to specify the server to which a
passthrough connection is required. The statement can be used in two ways:

♦ Syntax 1 Send a single statement to a remote server.

♦ Syntax 2 Place Adaptive Server Anywhere into passthrough mode for
sending a series of statements to a remote server. All subsequent
statements are passed directly to the remote server. To turn passthrough
mode off, issue FORWARD TO without a server-name specification.

If you encounter an error from the remote server while in passthrough
mode, you must still issue a FORWARD TO statement to turn
passthrough off.

When establishing a connection to server-name on behalf of the user, the
server uses:

♦ A remote login alias set using CREATE EXTERNLOGIN, or

♦ If a remote login alias is not set up, the name and password used to
communicate with Adaptive Server Anywhere

If the connection cannot be made to the server specified, the reason is
contained in a message returned to the user.

After statements are passed to the requested server, any results are converted
into a form that can be recognized by the client program.

server-name The name of the remote server.

SQL-statement A command in the native SQL syntax of the remote
server. The command or group of commands is enclosed in curly brackets
({}).

None

The remote connection is set to AUTOCOMMIT (unchained) mode for the
duration of the FORWARD TO session. Any work that was pending prior to
the FORWARD TO statement is automatically committed.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Description

Syntax 1

Syntax 2

Usage

Permissions

Side effects

Standards and
compatibility

FORWARD TO statement

432

♦ Sybase Supported by Open Client/Open Server.

The following example shows a passthrough session with the remote server
ase_prod:

FORWARD TO aseprod
SELECT * from titles
SELECT * from authors
FORWARD TO

Example

Chapter 4 SQL Statements

433

FROM clause
Use this clause to specify the database tables or views involved in a
SELECT, UPDATE, or DELETE statement.

FROM table_expression, …

table_expression:
 table
| view
| derived table
| joined table
| (table_expression, …)

table or view:
[userid.] table-or-view-name [[AS] correlation-name] [WITH (table-hint
)]

derived table:
(select-statement) [AS] correlation-name [(column-name, …)]

joined table:
table_expression join_operator table_expression [ON join_condition]

join_operator: [KEY | NATURAL] [join_type] JOIN
 | CROSS JOIN

join_type:
 INNER
| LEFT [OUTER]
| RIGHT [OUTER]
| FULL [OUTER]

table-hint:
 NOLOCK
| READUNCOMMITTED
| READCOMMITTED
| REPEATABLEREAD
| HOLDLOCK
| SERIALIZABLE
| FASTFIRSTROW

The SELECT, UPDATE, and DELETE statements require a table list, to
specify which tables will be used by the statement.

Views and derived tables
Although this description refers to tables, it also applies to views and
derived tables unless otherwise noted.

Description

Syntax

Usage

FROM clause

434

The FROM table list creates a result set consisting of all the columns from
all the tables specified. Initially, all combinations of rows in the component
tables are in the result set, and the number of combinations is usually
reduced by JOIN conditions and/or WHERE conditions.

You cannot use an ON phrase with CROSS JOIN.

Tables owned by a different user can be qualified by specifying the user ID.
Tables owned by groups to which the current user belongs will be found by
default without specifying the user ID (see "Referring to tables owned by
groups" on page 373 of the book ASA Database Administration Guide).

The correlation name is the name of a table or view that is used in the FROM
clause of the query—either its original name, or an alias that is defined in the
FROM clause.

If the same correlation name is used twice for the same table in a table
expression, that table is treated as if it were listed only once. For example, in:

SELECT *
FROM sales_order
KEY JOIN sales_order_items,
sales_order
KEY JOIN employee

the two instances of the sales_order table are treated as one instance, and so
is equivalent to:

SELECT *
FROM sales_order
KEY JOIN sales_order_items
KEY JOIN employee

Whereas:

SELECT *
FROM Person HUSBAND, Person WIFE

would be treated as two instances of the Person table, with different
correlation names HUSBAND and WIFE.

You can supply SELECT statements instead of table or view names in the
FROM clause. This allows you to use groups on groups, or joins with
groups, without creating a view. The tables that you create in this way are
derived tables.

WITH table-hint allows you to specify the behavior of Adaptive Server
Anywhere to be used only for this table, and only for this statement. You can
use WITH table-hint to change Adaptive Server Anywhere's behavior
without changing the isolation level or setting a database or connection
option. Table hints can be used only on base tables and temporary tables.

Chapter 4 SQL Statements

435

Caution
WITH table-hint is an advanced feature that should be used only if
needed, and only by experienced database administrators. In addition, the
setting may not be respected in all situations.

♦ Isolation level hints The following table hints can be used to specify
isolation level settings for tables. They specify a locking method to be
used only for this table, and only for this statement.

The table hints set the following isolation levels:

Table hint Isolation level

NOLOCK 0

READUNCOMMITTED 0

READCOMMITTED 1

REPEATABLEREAD 2

HOLDLOCK 3

SERIALIZABLE 3

♦ Optimization hints The FASTFIRSTROW table hint allows you to set
the optimization goal for the query without setting the
OPTIMIZATION_GOAL option to first-row. When you use
FASTFIRSTROW, Adaptive Server Anywhere chooses an access plan
that is intended to reduce the time to fetch the first row of the query’s
result.

$ For more information, see "OPTIMIZATION_GOAL option" on
page 587 of the book ASA Database Administration Guide.

None.

None.

"DELETE statement" on page 388
"SELECT statement" on page 526
"UPDATE statement" on page 575
"Joins: Retrieving Data from Several Tables" on page 227 of the book ASA

SQL User’s Guide

♦ SQL/92 Entry-level feature. The complexity of the FROM clause
means that you should check individual clauses against the standard.

Permissions

Side effects

See also

Standards and
compatibility

FROM clause

436

♦ SQL/99 Core feature, except for KEY JOIN, which is a vendor
extension; and FULL OUTER JOIN and NATURAL JOIN, which are
SQL/foundation features outside of core SQL. The complexity of the
FROM clause means that you should check individual clauses against
the standard.

♦ Sybase The ON phrase is not supported in Adaptive Server Enterprise
prior to version 12. In earlier versions, you must use the WHERE clause
to build joins.

The following are valid FROM clauses:

...
FROM employee
...

...
FROM employee NATURAL JOIN department

...

...
FROM customer
KEY JOIN sales_order
KEY JOIN sales_order_items
KEY JOIN product
...

The following query illustrates how to use derived tables in a query:

SELECT lname, fname, number_of_orders
FROM customer JOIN
 (SELECT cust_id, count(*)
 FROM sales_order
 GROUP BY cust_id)
 AS sales_order_counts (cust_id,
 number_of_orders)
ON (customer.id = sales_order_counts.cust_id)
WHERE number_of_orders > 3

Example

Chapter 4 SQL Statements

437

GET DATA statement [ESQL]
Use this statement to get string or binary data for one column of the current
row of a cursor. GET DATA is usually used to fetch LONG BINARY or
LONG VARCHAR fields. See "SET statement" on page 531.

GET DATA cursor-name
COLUMN column-num
OFFSET start-offset
[WITH TEXTPTR]
USING DESCRIPTOR sqlda-name | INTO hostvar [, …]

cursor-name : identifier, or hostvar

column-num : integer or hostvar

start-offset : integer or hostvar

sqlda-name : identifier

COLUMN clause The value of column-num starts at one, and identifies
the column whose data is to be fetched. That column must be of a string or
binary type.

OFFSET clause The start-offset indicates the number of bytes to skip
over in the field value. Normally, this would be the number of bytes
previously fetched. The number of bytes fetched on this GET DATA
statement is determined by the length of the target host variable.

The indicator value for the target host variable is a short integer, so it cannot
always contain the number of bytes truncated. Instead, it contains a negative
value if the field contains the NULL value, a positive value (NOT
necessarily the number of bytes truncated) if the value is truncated, and zero
if a non-NULL value is not truncated.

Similarly, if a LONGVARCHAR or a LONGVARCHAR host variable is
used with an offset greater than zero, the untrunc_len field does not
accurately indicate the size before truncation.

WITH TEXTPTR clause If the WITH TEXTPTR clause is given, a text
pointer is retrieved into a second host variable or into the second field in the
SQLDA. This text pointer can be used with the Transact-SQL READ TEXT
and WRITE TEXT statements. The text pointer is a 16-bit binary value, and
can be declared as follows:

DECL_BINARY(16) textptr_var;

WITH TEXTPTR can be used only with long data types (LONG BINARY,
LONG VARCHAR, TEXT, IMAGE). If you attempt to use it with another
data type, the error INVALID_TEXTPTR_VALUE is returned.

Description

Syntax

Parameters

GET DATA statement [ESQL]

438

The total length of the data is returned in the SQLCOUNT field of the
SQLCA structure.

Get a piece of one column value from the row at the current cursor position.

The cursor must be opened and positioned on a row, using FETCH.

None.

"FETCH statement [ESQL] [SP]" on page 424
"READTEXT statement [T-SQL]" on page 504

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Open Client/Open Server. An alternative is
the Transact-SQL READTEXT statement.

The following example uses GET DATA to fetch a binary large object
(often called a blob).

EXEC SQL BEGIN DECLARE SECTION;
DECL_BINARY(1000) piece;
short ind;

EXEC SQL END DECLARE SECTION;
int size;
/* Open a cursor on a long varchar field */
EXEC SQL DECLARE big_cursor CURSOR FOR
SELECT long_data FROM some_table
WHERE key_id = 2;
EXEC SQL OPEN big_cursor;
EXEC SQL FETCH big_cursor INTO :piece;
for(offset = 0; ; offset += piece.len) {

EXEC SQL GET DATA big_cursor COLUMN 1
OFFSET :offset INTO :piece:ind;
/* Done if the NULL value */
if(ind < 0) break;
write_out_piece(piece);
/* Done when the piece was not truncated */
if(ind == 0) break;

}
EXEC SQL CLOSE big_cursor;

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

439

GET DESCRIPTOR statement [ESQL]
Use this statement to retrieve information about a variable within a descriptor
area, or retrieves its value.

GET DESCRIPTOR descriptor-name
{ hostvar = COUNT | VALUE { integer | hostvar } assignment [, …] }

assignment :
 hostvar = TYPE | LENGTH | PRECISION | SCALE | DATA |
INDICATOR | NAME | NULLABLE | RETURNED_LENGTH

The GET DESCRIPTOR statement is used to retrieve information about a
variable within a descriptor area, or to retrieve its value.

The value { integer | hostvar } specifies the variable in the descriptor area
about which the information will be retrieved. Type checking is performed
when doing GET … DATA to ensure that the host variable and the
descriptor variable have the same data type.

If an error occurs, it is returned in the SQLCA.

None.

None.

"ALLOCATE DESCRIPTOR statement [ESQL]" on page 203
"DEALLOCATE DESCRIPTOR statement [ESQL]" on page 376
"SET DESCRIPTOR statement [ESQL]" on page 537
"The SQL descriptor area (SQLDA)" on page 206 of the book ASA

Programming Guide

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

The following example returns the type of the column with position col_num
in sqlda.

int get_type(SQLDA *sqlda, int col_num)
{
 EXEC SQL BEGIN DECLARE SECTION;
 int ret_type;
 int col = col_num;
 EXEC SQL END DECLARE SECTION;

EXEC SQL GET DESCRIPTOR sqlda VALUE :col :ret_type =
TYPE;
 return(ret_type);
}

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

GET DESCRIPTOR statement [ESQL]

440

For a longer example, see "ALLOCATE DESCRIPTOR statement [ESQL]"
on page 203.

Chapter 4 SQL Statements

441

GET OPTION statement [ESQL]
You can use this statement to get the current setting of an option. It is
recommended that you use the connection_property function instead.

GET OPTION [userid.]option-name
[INTO hostvar]
[USING DESCRIPTOR sqlda-name]

userid : identifier, string, or hostvar

option-name : identifier, string, or hostvar

hostvar : indicator variable allowed

sqlda-name : identifier

The GET OPTION statement is provided for compatibility with older
versions of the software. The recommended way to get the values of options
is to use the connection_property system function.

The GET OPTION statement gets the option setting of the option
option-name for the user userid or for the connected user if userid is not
specified. This will be either the user’s personal setting or the PUBLIC
setting if there is no setting for the connected user. If the option specified is a
database option and the user has a temporary setting for that option, then the
temporary setting is retrieved.

If option-name does not exist, GET OPTION returns the warning
SQLE_NOTFOUND.

None required.

None.

"SET OPTION statement" on page 539
"System and catalog stored procedures" on page 685
"CONNECTION_PROPERTY function" on page 113

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

The following statement illustrates use of GET OPTION.

EXEC SQL GET OPTION ’date_format’ INTO :datefmt;

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

GOTO statement [T-SQL]

442

GOTO statement [T-SQL]
Use this statement to branch to a labeled statement.

label : GOTO label

Any statement in a Transact-SQL procedure, trigger, or batch can be labeled.
The label name is a valid identifier followed by a colon. In the GOTO
statement, the colon is not used.

None.

None.

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Adaptive Server Enterprise supports the GOTO statement.

The following Transact-SQL batch prints the message "yes" on the server
window four times:

declare @count smallint
select @count = 1
restart:

print ’yes’
select @count = @count + 1
while @count <=4
 goto restart

Description

Syntax

Usage

Permissions

Side effects

Standards and
compatibility

Example

Chapter 4 SQL Statements

443

GRANT statement
Use this statement to create new user IDs, to grant or deny permissions to
specific users, and to create or change passwords.

GRANT CONNECT TO userid, …
[AT starting-id]
IDENTIFIED BY password, …

GRANT {
 DBA,
 GROUP,
 MEMBERSHIP IN GROUP userid, …,
 [RESOURCE | ALL]
}
 TO userid, …

GRANT {
 ALL [PRIVILEGES],
 ALTER,
 DELETE,
 INSERT,
 REFERENCES [(column-name, …)],
 SELECT [(column-name, …)],
 UPDATE [(column-name, …)],
}
 ON [owner.]table-name
 TO userid, …
 [WITH GRANT OPTION]
 [FROM userid]

GRANT EXECUTE ON [owner.]procedure-name TO userid, …

GRANT INTEGRATED LOGIN TO user_profile_name, … AS USER userid

CONNECT TO Creates a new user. GRANT CONNECT can also be used
by any user to change their own password. To create a user with the empty
string as the password, type:

GRANT CONNECT TO userid IDENTIFIED BY ""

To create a user with no password, type:

GRANT CONNECT TO userid

A user with no password cannot connect to the database. This is useful if you
are creating a group and do not want anyone to connect to the database using
the group user ID. The password must be a valid identifier, as described in
"Identifiers" on page 7.

Description

Syntax 1

Syntax 2

Syntax 3

Syntax 4

Syntax 5

Parameters

GRANT statement

444

AT starting-id This clause is not for general purpose use. The clause
specifies the internal numeric value to be used for the first user ID in the list.

The clause is implemented primarily for use by the Unload utility.

DBA Database Administrator authority gives a user permission to do
anything. This is usually reserved for the person in the organization who is
looking after the database.

GROUP Allows the user(s) to have members.

$ For more information, see "Managing groups" on page 369 of the book
ASA Database Administration Guide.

MEMBERSHIP IN GROUP This allows the user(s) to inherit table
permissions from a group and to reference tables created by the group
without qualifying the table name.

$ For more information, see "Managing groups" on page 369 of the book
ASA Database Administration Guide.

Syntax 3 of the GRANT statement is used to grant permission on individual
tables or views. The table permissions can be specified individually, or you
can use ALL to grant all six permissions at once.

RESOURCE Allows the user to create tables and views. In syntax 2, ALL
is a synonym for RESOURCE that is compatible with Sybase Adaptive
Server Enterprise.

ALL In Syntax 3, this grants all of the permissions outlined below.

ALTER The users will be allowed to alter the named table with the
ALTER TABLE statement. This permission is not allowed for views.

DELETE The users will be allowed to delete rows from the named table or
view.

INSERT The users will be allowed to insert rows into the named table or
view.

REFERENCES [(column-name, …)] The users will be allowed to create
indexes on the named table, and foreign keys which reference the named
tables. If column names are specified, the users will be allowed to reference
only those columns. REFERENCES permissions on columns cannot be
granted for views, only for tables.

INDEX is a synonym for REFERENCES.

Chapter 4 SQL Statements

445

SELECT [(column-name, …)] The users will be allowed to look at
information in this view or table. If column names are specified, the users
will be allowed to look at only those columns. SELECT permissions on
columns cannot be granted for views, only for tables.

UPDATE [(column-name, …)] The users will be allowed to update rows
in this view or table. If column names are specified, the users will be allowed
to update only those columns. UPDATE permissions on columns cannot be
granted for views, only for tables.

FROM If FROM userid is specified, the userid is recorded as a grantor
user ID in the system tables. This clause is for use by the Unload utility
(dbunload). Do not use or modify this option directly.

The GRANT statement is used to grant database permissions to individual
user IDs and groups. It is also used to create and delete users and groups.

If WITH GRANT OPTION is specified, then the named user ID is also given
permission to GRANT the same permissions to other user IDs.

Syntax 4 of the GRANT statement is used to grant permission to execute a
procedure.

Syntax 5 of the GRANT statement creates an explicit integrated login
mapping between one or more Windows user profiles and an existing
database user ID, allowing users who successfully log in to their local
machine to connect to a database without having to provide a user ID or
password.

$ For more information on integrated logins, see "Using integrated
logins" on page 83 of the book ASA Database Administration Guide.

Syntax 1 or 2 One of the following conditions must be met.

♦ You are changing your own password using GRANT CONNECT.

♦ You have DBA authority.

If you are changing another user’s password (with DBA authority), the other
user must not be connected to the database.

Syntax 3 If the FROM clause is specified you must have DBA authority.
Otherwise, at least one of the following conditions must be met:

♦ You own the table

♦ You have been granted permissions on the table with GRANT OPTION

♦ You have DBA authority

Syntax 4 One of the following conditions must be met:

Usage

Permissions

GRANT statement

446

♦ You own the procedure

♦ You have DBA authority

Syntax 5 The following condition must be met:

♦ You have DBA authority

Automatic commit.

"REVOKE statement" on page 516

♦ SQL/92 Syntax 3 is an entry-level feature. Syntax 4 is a Persistent
Stored Module feature. Other syntaxes are vendor extensions.

♦ SQL/99 Syntax 3 is a core feature. Syntax 4 is a Persistent Stored
Module feature. Other syntaxes are vendor extensions.

♦ Sybase Syntaxes 2 and 3 are supported in Adaptive Server Enterprise.
The security model is different in Adaptive Server Enterprise and
Adaptive Server Anywhere, so other syntaxes differ.

Make two new users for the database.

GRANT
CONNECT TO Laurel, Hardy
IDENTIFIED BY Stan, Ollie

Grant permissions on the employee table to user Laurel.

GRANT
SELECT, UPDATE (street)
ON employee

TO Laurel

More than one permission can be granted in a single statement. Separate the
permissions with commas.

Allow the user Hardy to execute the Calculate_Report procedure.

GRANT
EXECUTE ON Calculate_Report

TO Hardy

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

447

GRANT CONSOLIDATE statement [SQL Remote]
Use this statement to identify the database immediately above the current
database in a SQL Remote hierarchy, who will receive messages from the
current database.

GRANT CONSOLIDATE
TO userid, …
TYPE message-system, …
ADDRESS address-string, …
[SEND { EVERY | AT }’hh:mm:ss’]

message-system: FILE | FTP | MAPI | SMTP | VIM

address: string

userid The user ID for the user to be granted the permission

message-system One of the message systems supported by
SQL Remote.

address The address for the specified message system.

In a SQL Remote installation, the database immediately above the current
database in a SQL Remote hierarchy must be granted CONSOLIDATE
permissions. GRANT CONSOLIDATE is issued at a remote database to
identify its consolidated database. Each database can have only one user ID
with CONSOLIDATE permissions: you cannot have a database that is a
remote database for more than one consolidated database.

The consolidated user is identified by a message system, identifying the
method by which messages are sent to and received from the consolidated
user. The address-name must be a valid address for the message-system,
enclosed in single quotes.

For the FILE message type, the address is a subdirectory of the directory
pointed to by the SQLREMOTE environment variable.

The GRANT CONSOLIDATE statement is required for the consolidated
database to receive messages, but does not by itself subscribe the
consolidated database to any data. To subscribe to data, a subscription must
be created for the consolidated user ID to one of the publications in the
current database. Running the database extraction utility at a consolidated
database creates a remote database with the proper GRANT
CONSOLIDATE statement already issued.

Description

Syntax

Parameters

Usage

GRANT CONSOLIDATE statement [SQL Remote]

448

The optional SEND EVERY and SEND AT clauses specify a frequency at
which messages are sent. The string contains a time that is a length of time
between messages (for SEND EVERY) or a time of day at which messages
are sent (for SEND AT). With SEND AT, messages are sent once per day.

If a user has been granted remote permissions without a SEND EVERY or
SEND AT clause, the Message Agent processes messages, and then stops. In
order to run the Message Agent continuously, you must ensure that every
user with REMOTE permission has either a SEND AT or SEND EVERY
frequency specified.

It is anticipated that at many remote databases, the Message Agent will be
run periodically, and that the consolidated database will have no SEND
clause specified.

Must have DBA authority.

Automatic commit.

"GRANT PUBLISH statement [SQL Remote]" on page 449
"GRANT REMOTE statement [SQL Remote]" on page 450
"REVOKE CONSOLIDATE statement [SQL Remote]" on page 518
"sp_grant_consolidate procedure" on page 396 of the book SQL Remote

User’s Guide

GRANT CONSOLIDATE TO con_db
TYPE mapi
ADDRESS ’Consolidated Database’

Permissions

Side effects

See also

Example

Chapter 4 SQL Statements

449

GRANT PUBLISH statement [SQL Remote]
Use this statement to identify the publisher of the current database.

GRANT PUBLISH TO userid

Each database in a SQL Remote installation is identified in outgoing
messages by a user ID, called the publisher. The GRANT PUBLISH
statement identifies the publisher user ID associated with these outgoing
messages.

Only one user ID can have PUBLISH authority. The user ID with PUBLISH
authority is identified by the special constant CURRENT PUBLISHER. The
following query identifies the current publisher:

SELECT CURRENT PUBLISHER

If there is no publisher, the special constant is NULL.

The current publisher special constant can be used as a default setting for
columns. It is often useful to have a CURRENT PUBLISHER column as part
of the primary key for replicating tables, as this helps prevent primary key
conflicts due to updates at more than one site.

In order to change the publisher, you must first drop the current publisher
using the REVOKE PUBLISH statement, and then create a new publisher
using the GRANT PUBLISH statement.

Must have DBA authority.

Automatic commit.

"GRANT PUBLISH statement [SQL Remote]" on page 449
"GRANT CONSOLIDATE statement [SQL Remote]" on page 447
"REVOKE PUBLISH statement [SQL Remote]" on page 519
"CREATE SUBSCRIPTION statement [SQL Remote]" on page 324
"sp_publisher procedure" on page 413 of the book SQL Remote User’s Guide

GRANT PUBLISH TO publisher_ID

Description

Syntax

Usage

Permissions

Side effects

See also

Example

GRANT REMOTE statement [SQL Remote]

450

GRANT REMOTE statement [SQL Remote]
Use this statement to identify a database immediately below the current
database in a SQL Remote hierarchy, who will receive messages from the
current database. These are called remote users.

GRANT REMOTE TO userid, …
TYPE message-system, …
ADDRESS address-string, …
[SEND { EVERY | AT } send-time]

userid The user ID for the user to be granted the permission

message-system One of the message systems supported by
SQL Remote. It must be one of the following values:

♦ FILE

♦ FTP

♦ MAPI

♦ SMTP

♦ VIM

address-string A string containing a valid address for the specified
message system.

send-time A string containing a time specification in the form hh:mm:ss.

In a SQL Remote installation, each database receiving messages from the
current database must be granted REMOTE permissions.

The single exception is the database immediately above the current database
in a SQL Remote hierarchy, which must be granted CONSOLIDATE
permissions.

The remote user is identified by a message system, identifying the method by
which messages are sent to and received from the consolidated user. The
address-name must be a valid address for the message-system, enclosed in
single quotes.

For the FILE message type, the address is a subdirectory of the directory
pointed to by the SQLREMOTE environment variable.

The GRANT REMOTE statement is required for the remote database to
receive messages, but does not by itself subscribe the remote user to any
data. To subscribe to data, a subscription must be created for the user ID to
one of the publications in the current database, using the database extraction
utility or the CREATE SUBSCRIPTION statement.

Description

Syntax

Parameters

Usage

Chapter 4 SQL Statements

451

The optional SEND EVERY and SEND AT clauses specify a frequency at
which messages are sent. The string contains a time that is a length of time
between messages (for SEND EVERY) or a time of day at which messages
are sent (for SEND AT). With SEND AT, messages are sent once per day.

If a user has been granted remote permissions without a SEND EVERY or
SEND AT clause, the Message Agent processes messages, and then stops. In
order to run the Message Agent continuously, you must ensure that every
user with REMOTE permission has either a SEND AT or SEND EVERY
frequency specified.

It is anticipated that at many consolidated databases, the Message Agent will
be run continuously, so that all remote databases would have a SEND clause
specified. A typical setup may involve sending messages to laptop users
daily (SEND AT) and to remote servers every hour or two (SEND EVERY).
You should use as few different times as possible, for efficiency.

Must have DBA authority.

Automatic commit.

"GRANT PUBLISH statement [SQL Remote]" on page 449
"REVOKE REMOTE statement [SQL Remote]" on page 520
"GRANT CONSOLIDATE statement [SQL Remote]" on page 447
"sp_grant_remote procedure" on page 398 of the book SQL Remote User’s

Guide
"Granting and revoking REMOTE and CONSOLIDATE permissions" on

page 209 of the book SQL Remote User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ The following statement grants remote permissions to user SamS, using
a MAPI e-mail system, sending messages to the address Singer, Samuel
once every two hours:

GRANT REMOTE TO SamS
TYPE mapi
ADDRESS ’Singer, Samuel’
SEND EVERY ’02:00’

Permissions

Side effects

See also

Standards and
compatibility

Example

GRANT REMOTE DBA statement [SQL Remote]

452

GRANT REMOTE DBA statement [SQL Remote]
Use this statement to provide DBA privileges to a user ID, but only when
connected from the Message Agent.

GRANT REMOTE DBA
TO userid, …
IDENTIFIED BY password

REMOTE DBA authority enables the Message Agent to have full access to
the database in order to make any changes contained in the messages, while
avoiding security problems associated with distributing DBA user IDs
passwords.

REMOTE DBA has the following properties.

♦ No distinct permissions when not connected from the Message Agent. A
user ID granted REMOTE DBA authority has no extra privileges on any
connection apart from the Message Agent. Even if the user ID and
password for a REMOTE DBA user is widely distributed, there is no
security problem. As long as the user ID has no permissions beyond
CONNECT granted on the database, no one can use this user ID to
access data in the database.

♦ Full DBA permissions when connected from the Message Agent.

Must have DBA authority.

Automatic commit.

"The Message Agent and replication security" on page 249 of the book SQL
Remote User’s Guide

"REVOKE REMOTE DBA statement [SQL Remote]" on page 521

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

453

HELP statement [Interactive SQL]
Use this statement to receive help in the Interactive SQL environment.

HELP [topic]

The HELP statement is used to access SQL Anywhere Studio
documentation.

The topic for help can be optionally specified. If topic is a reserved word, it
must be enclosed in single quotes. In some help formats, the topic cannot be
specified; in this case, a link to the home page of the online books is
provided.

None.

None.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable

Description

Syntax

Usage

Permissions

Side effects

Standards and
compatibility

IF statement

454

IF statement
Use this statement to control conditional execution of SQL statements.

IF search-condition THEN statement-list
[ELSEIF { search-condition | operation-type } THEN statement-list] …
[ELSE statement-list]
END IF

The IF statement is a control statement that allows you to conditionally
execute the first list of SQL statements whose search-condition evaluates to
TRUE. If no search-condition evaluates to TRUE, and an ELSE clause
exists, the statement-list in the ELSE clause is executed.

Execution resumes at the first statement after the END IF.

IF statement is different from IF expression
Do not confuse the syntax of the IF statement with that of the IF
expression.

$ For information on the IF expression, see "IF expressions" on
page 17.

None.

None.

"BEGIN statement" on page 248
"Using Procedures, Triggers, and Batches" on page 507 of the book ASA

SQL User’s Guide

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase The Transact-SQL IF statement has a slightly different syntax.

The following procedure illustrates the use of the IF statement:

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35),
OUT TopValue INT)

BEGIN
DECLARE err_notfound EXCEPTION
FOR SQLSTATE ’02000’;
DECLARE curThisCust CURSOR FOR
SELECT company_name, CAST(
sum(sales_order_items.quantity *
product.unit_price) AS INTEGER) VALUE
FROM customer
LEFT OUTER JOIN sales_order

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

455

LEFT OUTER JOIN sales_order_items
LEFT OUTER JOIN product
GROUP BY company_name;
DECLARE ThisValue INT;
DECLARE ThisCompany CHAR(35);
SET TopValue = 0;
OPEN curThisCust;
CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue;
IF SQLSTATE = err_notfound THEN

LEAVE CustomerLoop;
END IF;
IF ThisValue > TopValue THEN

SET TopValue = ThisValue;
SET TopCompany = ThisCompany;

END IF;
END LOOP CustomerLoop;
CLOSE curThisCust;

END

IF statement [T-SQL]

456

IF statement [T-SQL]
Use this statement to control conditional execution of a SQL statement, as an
alternative to the Watcom-SQL IF statement.

 IF expression
statement
[ELSE
[IF expression]
statement]

The Transact-SQL IF conditional and the ELSE conditional each control the
execution of only a single SQL statement or compound statement (between
the keywords BEGIN and END).

In comparison to the Watcom-SQL IF statement, there is no THEN in the
Transact-SQL IF statement. The Transact-SQL version also has no ELSEIF
or END IF keywords.

None.

None.

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Adaptive Server Enterprise supports the Transact-SQL IF
statement.

The following example illustrates the use of the Transact-SQL IF statement:

IF (SELECT max(id) FROM sysobjects) < 100
RETURN

ELSE

PRINT ’These are the user-created objects’
SELECT name, type, id
FROM sysobjects
WHERE id < 100

END

The following two statement blocks illustrate Transact-SQL and
Watcom-SQL compatibility:

/* Transact-SQL IF statement */
IF @v1 = 0

PRINT ’0’
ELSE IF @v1 = 1

PRINT ’1’
ELSE

PRINT ’other’

Description

Syntax

Usage

Permissions

Side effects

Standards and
compatibility

Example

Chapter 4 SQL Statements

457

/* Watcom-SQL IF statement */
IF v1 = 0 THEN

PRINT ’0’
ELSEIF v1 = 1 THEN

PRINT ’1’
ELSE

PRINT ’other’
END IF

INCLUDE statement [ESQL]

458

INCLUDE statement [ESQL]
Use this statement to include a file into a source program to be scanned by
the SQL preprocessor.

INCLUDE filename

filename : SQLDA | SQLCA | string

The INCLUDE statement is very much like the C preprocessor #include
directive. The SQL preprocessor reads an embedded SQL source file and
replaces all the embedded SQL statements with C-language source code. If a
file contains information that the SQL preprocessor requires, include it with
the embedded SQL INCLUDE statement.

Two file names are specially recognized: SQLCA and SQLDA. The
following statement must appear before any embedded SQL statements in all
embedded SQL source files.

EXEC SQL INCLUDE SQLCA;

This statement must appear at a position in the C program where static
variable declarations are allowed. Many embedded SQL statements require
variables (invisible to the programmer), which are declared by the SQL
preprocessor at the position of the SQLCA include statement. The SQLDA
file must be included if any SQLDAs are used.

None.

None.

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

Description

Syntax

Usage

Permissions

Side effects

Standards and
compatibility

Chapter 4 SQL Statements

459

INPUT statement [Interactive SQL]
Use this statement to import data into a database table from an external file
or from the keyboard.

INPUT INTO [owner.]table-name
[FROM filename | PROMPT]
[FORMAT input-format]
[ESCAPE CHARACTER character]
[BY ORDER | BY NAME]
[DELIMITED BY string]
[COLUMN WIDTHS (integer, …)]
[NOSTRIP]
[(column-name, …)]

input-format :
ASCII | DBASE | DBASEII | DBASEIII
| EXCEL | FIXED | FOXPRO | LOTUS

FORMAT clause Each set of values must occupy one input line and must
be in the format specified by the FORMAT clause, or the format set by the
SET OPTION INPUT_FORMAT statement if the FORMAT clause is not
specified. When input is entered by the user, an empty screen is provided for
the user to enter one row per line in the input format.

Certain file formats contain information about column names and types.
Using this information, the INPUT statement will create the database table if
it does not already exist. This is a very easy way to load data into the
database. The formats that have enough information to create the table are:
DBASEII, DBASEIII, FOXPRO, and LOTUS.

Input from a command file is terminated by a line containing END. Input
from a file is terminated at the end of the file.

Allowable input formats are:

♦ ASCII Input lines are assumed to be ASCII characters, one row per
line, with values separated by commas. Alphabetic strings may be
enclosed in apostrophes (single quotes) or quotation marks (double
quotes). Strings containing commas must be enclosed in either single or
double quotes. If the string itself contains single or double quotes,
double the quote character to use it within the string. Optionally, you can
use the DELIMITED BY clause to specify a different delimiter string
than the default, which is a comma.

Three other special sequences are also recognized. The two characters \n
represent a newline character, \\ represents a single (\), and the sequence
\xDD represents the character with hexadecimal code DD.

Description

Syntax

Parameters

INPUT statement [Interactive SQL]

460

♦ DBASE The file is in dBASE II or dBASE III format. Interactive SQL
will attempt to determine which format, based on information in the file.
If the table doesn’t exist, it will be created.

♦ DBASEII The file is in dBASE II format. If the table doesn’t exist, it
will be created.

♦ DBASEIII The file is in dBASE III format. If the table doesn’t exist, it
will be created.

♦ EXCEL Input file is in the format of Microsoft Excel 2.1. If the table
doesn’t exist, it will be created.

♦ FIXED Input lines are in fixed format. The width of the columns can be
specified using the COLUMN WIDTHS clause. If they are not specified,
column widths in the file must be the same as the maximum number of
characters required by any value of the corresponding database column’s
type.

The FIXED format cannot be used with binary columns that contain
embedded newline and End of File character sequences.

♦ FOXPRO The file is in FoxPro format (the FoxPro memo field is
different than the dBASE memo field). If the table doesn’t exist, it will
be created.

♦ LOTUS The file is a Lotus WKS format worksheet. INPUT assumes
that the first row in the Lotus WKS format worksheet is column names.
If the table doesn’t exist, it will be created. In this case, the types and
sizes of the columns created may not be correct because the information
in the file pertains to a cell, not to a column.

ESCAPE CHARACTER clause The default escape character for
hexadecimal codes and symbols is a backslash (\), so \x0A is the linefeed
character, for example.

The escape character can be changed, using the ESCAPE CHARACTER
clause. For example, to use the exclamation mark as the escape character,
you would enter:

... ESCAPE CHARACTER ’!’

Only one single-byte character can be used as an escape character.

BY clause The BY clause allows the user to specify whether the columns
from the input file should be matched up with the table columns based on
their ordinal position in the lists (ORDER, the default) or by their names
(NAME). Not all input formats have column name information in the file.
NAME is allowed only for those formats that do. They are the same formats
that allow automatic table creation: DBASEII, DBASEIII, FOXPRO, and
LOTUS.

Chapter 4 SQL Statements

461

DELIMITED BY clause The DELIMITED BY clause allows you to
specify a string to be used as the delimiter in ASCII input format.

COLUMN WIDTHS clause COLUMN WIDTHS can be specified for
FIXED format only. It specifies the widths of the columns in the input file. If
COLUMN WIDTHS is not specified, the widths are determined by the
database column types. This clause should not be used if inserting
LONG VARCHAR or BINARY data in FIXED format.

NOSTRIP clause Normally, for ASCII input format, trailing blanks will
be stripped from unquoted strings before the value is inserted. NOSTRIP can
be used to suppress trailing blank stripping. Trailing blanks are not stripped
from quoted strings, regardless of whether the option is used. Leading blanks
are stripped from unquoted strings, regardless of the NOSTRIP option
setting.

If the ASCII file has entries such that a column appears to be null, it is
treated as NULL. If the column in that position cannot be NULL, a zero is
inserted in numeric columns and an empty string in character columns.

The INPUT statement allows efficient mass insertion into a named database
table. Lines of input are read either from the user via an input window (if
PROMPT is specified) or from a file (if FROM filename is specified). If
neither is specified, the input will be read from the command file that
contains the input statement—in Interactive SQL, this can even be directly
from the SQL Statements pane. In this case, input is ended with a line
containing only the string END.

If a column list is specified for any input format, the data is inserted into the
specified columns of the named table. By default, the INPUT statement
assumes that column values in the input file appear in the same order as they
appear in the database table definition. If the input file's column order is
different, you must list the input file's actual column order at the end of the
INPUT statement.

For example, if you create a table with the following statement:

CREATE TABLE inventory (
quantity INTEGER,
item VARCHAR(60)
)

and you want to import ASCII data from the input file stock.txt that contains
the name value before the quantity value,

’Shirts’, 100
’Shorts’, 60

then you must list the input file's actual column order at the end of the
INPUT statement for the data to be inserted correctly:

Usage

INPUT statement [Interactive SQL]

462

INPUT INTO inventory
FROM stock.txt
FORMAT ascii
(item, quantity);

By default, the INPUT statement stops when it attempts to insert a row that
causes an error. Errors can be treated in different ways by setting the
ON_ERROR and CONVERSION_ERROR options (see SET OPTION).
Interactive SQL prints a warning in the Messages pane if any string values
are truncated on INPUT. Missing values for NOT NULL columns are set to
zero for numeric types and to the empty string for non-numeric types. If
INPUT attempts to insert a NULL row, the input file contains an empty row.

Must have INSERT permission on the table or view.

None.

"OUTPUT statement [Interactive SQL]" on page 488
"INSERT statement" on page 463
"UPDATE statement" on page 575
"DELETE statement" on page 388
"SET OPTION statement" on page 539
"LOAD TABLE statement" on page 472
"xp_read_file system procedure" on page 734

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

The following is an example of an INPUT statement from an ASCII text file.

INPUT INTO employee
FROM new_emp.inp
FORMAT ascii;

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

463

INSERT statement
Use this statement to insert a single row (syntax 1) or a selection of rows
from elsewhere in the database (syntax 2) into a table.

INSERT [INTO] [owner.]table-name [(column-name, …)]
[ON EXISTING { ERROR | SKIP | UDPATE }]
VALUES (expression | DEFAULT, …)

INSERT [INTO] [owner.]table-name
[ON EXISTING { ERROR | SKIP | UDPATE }]
[WITH AUTO NAME]
select-statement

WITH AUTO NAME clause WITH AUTO NAME applies only to syntax
2. If you specify WITH AUTO NAME, the names of the items in the
SELECT statement determine which column the data belongs in. The
SELECT statement items should be either column references or aliased
expressions. Destination columns not defined in the SELECT statement will
be assigned their default value. This is useful when the number of columns
in the destination table is very large.

ON EXISTING clause The ON EXISTING clause of the INSERT
statement applies to both syntaxes. It updates existing rows in a table, based
on primary key lookup, with new values. This clause can only be used on
tables that have a primary key. Attempting to use this clause on tables
without primary keys generates a syntax error.

If you specify the ON EXISTING clause, the server does a primary key
lookup for each input row. If the corresponding row does not already exist in
the table, it inserts the new row as usual. For rows that already exist in the
table, you can choose to silently ignore the input row (SKIP), update the
values in the input row (UPDATE), or generate an error message for
duplicate key values (ERROR).

By default, if you do not specify ON EXISTING, attempting to insert rows
into a table where the row already exist results in a duplicate key value error.
This is equivalent to specifying ON EXISTING ERROR.

The INSERT statement is used to add new rows to a database table.

Description

Syntax 1

Syntax 2

Parameters

Usage

INSERT statement

464

Syntax 1 Insert a single row with the specified expression values. The
keyword DEFAULT can be used to cause the default value for the column to
be inserted. If the optional list of column names is given, the values are
inserted one for one into the specified columns. If the list of column names is
not specified, the values are inserted into the table columns in the order they
were created (the same order as retrieved with SELECT *). The row is
inserted into the table at an arbitrary position. (In relational databases, tables
are not ordered.)

Syntax 2 Carry out mass insertion into a table with the results of a fully
general SELECT statement. Insertions are done in an arbitrary order unless
the SELECT statement contains an ORDER BY clause.

If you specify column names, the columns from the select list are matched
ordinally with the columns specified in the column list, or sequentially in the
order in which the columns were created.

Inserts can be done into views, if the query specification defining the view is
updateable and has only one table in the FROM clause.

An inherently non-updateable view consists of a query expression or query
specification containing any of the following:

♦ DISTINCT clause

♦ GROUP BY clause

♦ Aggregate function

♦ A select-list item that is not a base table.

Character strings inserted into tables are always stored in the same case as
they are entered, regardless of whether the database is case sensitive or not.
Thus a string Value inserted into a table is always held in the database with
an upper-case V and the remainder of the letters lower case. SELECT
statements return the string as Value. If the database is not case-sensitive,
however, all comparisons make Value the same as value, VALUE, and so
on. Further, if a single-column primary key already contains an entry Value,
an INSERT of value is rejected, as it would make the primary key not
unique.

Performance tips
To insert many rows into a table, it is more efficient to declare a cursor
and insert the rows through the cursor, where possible, than to carry out
many separate INSERT statements.
Before inserting data, you can specify the percentage of each table page
that should be left free for later updates. For more information, see
"ALTER TABLE statement" on page 233.

Chapter 4 SQL Statements

465

Must have INSERT permission on the table.

None.

"INPUT statement [Interactive SQL]" on page 459
"UPDATE statement" on page 575
"DELETE statement" on page 388
"PUT statement [ESQL]" on page 499

♦ SQL/92 Entry-level feature. INSERT … ON EXISTING is a vendor
extension.

♦ SQL/99 Core feature. INSERT … ON EXISTING is a vendor
extension.

♦ Sybase Supported by Adaptive Server Enterprise.

Add an Eastern Sales department to the database.

INSERT
INTO department (dept_id, dept_name)
VALUES (230, ’Eastern Sales’)

Create the table dept_head and fill it with the names of department heads
and their departments.

CREATE TABLE dept_head(
pk int primary key default autoincrement,
dept_name varchar(128),
manager_name varchar (128));

INSERT
INTO dept_head (manager_name, dept_name)
SELECT emp_fname || ’ ’ || emp_lname AS manager,
 dept_name
FROM employee JOIN department
ON emp_id = dept_head_id

Create the table dept_head and fill it with the names of department heads
and their departments using the WITH AUTO NAME syntax.

CREATE TABLE dept_head(
pk int primary key default autoincrement,
dept_name varchar(128),
manager varchar (128));

INSERT
INTO dept_head WITH AUTO NAME
SELECT emp_fname || ’ ’ || emp_lname AS manager,

dept_name
FROM employee JOIN department
ON emp_id = dept_head_id

Create the table mytab and populate it using the WITH AUTO NAME
syntax.

Permissions

Side effects

See also

Standards and
compatibility

Examples

INSERT statement

466

CREATE TABLE mytab(
pk int primary key default autoincrement,
table_name char(128),
len int);

INSERT into mytab WITH AUTO NAME
SELECT

length(t.table_name) AS len,
t.table_name

FROM SYS.SYSTABLE t
WHERE table_id<=10

Chapter 4 SQL Statements

467

INSTALL statement
Use this statement to make Java classes available for use within a database.

INSTALL JAVA
[NEW | UPDATE]
[JAR jar-name]
FROM { FILE filename | expression }

NEW | UPDATE keyword If you specify an install mode of NEW, the
referenced Java classes must be new classes, rather than updates of currently
installed classes. An error occurs if a class with the same name exists in the
database and the NEW install mode is used.

If you specify UPDATE, the referenced Java classes may include
replacements for Java classes that are already installed in the given database.

If install-mode is omitted, the default is NEW.

JAR clause If this is specified, then the filename must designate a jar file.
Jar files typically have extensions of .jar or .zip.

Installed jar and zip files can be compressed or uncompressed.

If the JAR option is specified, the jar is retained as a jar after the classes that
it contains have been installed. That jar is the associated jar of each of those
classes. The jars installed in a database with the JAR option are called the
retained jars of the database.

The jar-name is a character string value, of up to 255 bytes long. The
jar-name is used to identify the retained jar in subsequent
INSTALL UPDATE and REMOVE statements.

FROM FILE clause Specifies the location of the Java class(es) to be
installed.

The formats supported for file-name include fully qualified file names, such
as ’c:\libs\jarname.jar’ and ’/usr/u/libs/jarname.jar’, and relative file names,
which are relative to the current working directory of the database server.

The filename must identify either a class file, or a jar file.

FROM expression clause Expressions must evaluate to a binary type
whose value contains a valid class file or jar file.

The class definition for each class is loaded by each connection’s VM the
first time that class is used. When you INSTALL a class, the VM on your
connection is implicitly restarted. Therefore, you have immediate access to
the new class, whether the INSTALL has an install-mode of NEW or
UPDATE. Because the VM is restarted, any values stored in Java static
variables are lost, and any SQL variables with Java class types are dropped.

Description

Syntax

Parameters

Usage

INSTALL statement

468

For other connections, the new class is loaded the next time a VM accesses
the class for the first time. If the class is already loaded by a VM, that
connection does not see the new class until the VM is restarted for that
connection (for example, with a STOP JAVA and START JAVA).

DBA permissions are required to execute the INSTALL statement.

All installed classes can be referenced in any way by any user.

Not supported on Windows CE.

"REMOVE statement" on page 507

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

The following statement installs the user-created Java class named Demo, by
providing the filename and location of the class.

INSTALL JAVA NEW
FROM FILE ’D:\JavaClass\Demo.class’

After installation, the class is referenced using its name. Its original file path
location is no longer used. For example, the following statement uses the
class installed in the previous statement.

create variable d Demo

If the Demo class was a member of the package sybase.work, the fully
qualified name of the class must be used, for example,

CREATE VARIABLE d sybase.work.Demo

The following statement installs all the classes contained in a zip file, and
associates them within the database with a JAR file name.

INSTALL JAVA
JAR ’Widgets’
FROM FILE ’C:\Jars\Widget.zip’

Again, the location of the zip file is not retained and classes must be
referenced using the fully qualified class name (package name and class
name).

Permissions

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

469

LEAVE statement
Use this statement to leave a compound statement or loop.

LEAVE statement-label

"LOOP statement" on page 481
"FOR statement" on page 429
"BEGIN statement" on page 248
"Using Procedures, Triggers, and Batches" on page 507 of the book ASA

SQL User’s Guide

The LEAVE statement is a control statement that allows you to leave a
labeled compound statement or a labeled loop. Execution resumes at the first
statement after the compound statement or loop.

The compound statement that is the body of a procedure or trigger has an
implicit label that is the same as the name of the procedure or trigger.

None.

None.

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Not supported in Adaptive Server Enterprise. The BREAK
statement provides a similar feature for Transact-SQL compatible
procedures.

The following fragment shows how the LEAVE statement is used to leave a
loop.

SET i = 1;
lbl:
LOOP

INSERT
INTO Counters (number)
VALUES (i);
IF i >= 10 THEN

LEAVE lbl;
END IF;
SET i = i + 1

END LOOP lbl

The following example fragment uses LEAVE in a nested loop.

Description

Syntax

See also

Usage

Permissions

Side effects

Standards and
compatibility

Example

LEAVE statement

470

outer_loop:
LOOP

SET i = 1;
inner_loop:
LOOP

...
SET i = i + 1;
IF i >= 10 THEN

LEAVE outer_loop
END IF

END LOOP inner_loop
END LOOP outer_loop

Chapter 4 SQL Statements

471

LOAD STATISTICS statement
This statement loads statistics into the system table SYSCOLSTAT. It is
used by the dbunload utility to unload column statistics from the old
database. It should not be used manually.

LOAD STATISTICS [[owner.]table-name.]column-name
 format-id, density, max-steps, actual-steps, step-values, frequencies

format_id Internal field used to determine the format of the rest of the row
in the SYSCOLSTAT system table.

density An estimate of the weighted average selectivity of a single value
for the column, not counting the selectivity of large single value selectivities
stored in the row.

max_steps The maximum number of steps allowed in the histogram.

actual_steps The number of steps actually used at this time.

step_values Boundary values of the histogram steps.

frequencies Selectivities of histogram steps.

Must have DBA authority.

None.

"SYSCOLSTAT system table" on page 608
"Unloading a database using the dbunload command-line utility" on

page 514 of the book ASA Database Administration Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Description

Syntax

Parameters

Permissions

Side effects

See also

Standards and
compatibility

LOAD TABLE statement

472

LOAD TABLE statement
Use this statement to import bulk data into a database table from an external
ASCII-format file. Inserts are not recorded in the log file, raising the risk
that data will be lost in the event of a crash and making this statement
unusable with SQL Remote or with MobiLink remote databases.

LOAD [INTO] TABLE [owner.]table-name [(column-name, …)]
FROM filename-string
[load-option …]

load-option :
 CHECK CONSTRAINTS { ON | OFF }
| COMPUTES { ON | OFF }
| DEFAULTS { ON | OFF }
| DELIMITED BY string
| ESCAPE CHARACTER character
| ESCAPES { ON | OFF }
| FORMAT { ASCII | BCP }
| HEXADECIMAL {ON | OFF}
| ORDER {ON | OFF}
| PCTFREE percent-free-space
| QUOTES { ON | OFF }
| STRIP { ON | OFF }
| WITH CHECKPOINT { ON | OFF }

Column-name Any columns not present in the column list become NULL
if the DEFAULTS option is off. If DEFAULTS is on and the column has a
default value, that value will be used. If DEFAULTS is off and a
non-nullable column is omitted from the column list, the engine attempts to
convert the empty string to the column’s type.

When a column list is specified, it lists the columns that are expected to exist
in the file and the order in which they are to appear. Column names cannot
be repeated. Column names that do not appear in the list will be set to
null/zero/empty or DEFAULT (depending on column nullability, data type,
and the DEFAULT setting). Columns that exist in the input file that are to be
ignored by LOAD TABLE can be specified using the column name "filler()".

FROM option The filename-string is passed to the server as a string. The
string is therefore subject to the same formatting requirements as other SQL
strings. In particular:

♦ To indicate directory paths, the backslash character \ must be
represented by two backslashes. The statement to load data from the file
c:\temp\input.dat into the employee table is:

LOAD TABLE employee
FROM ’c:\\temp\\input.dat’ ...

Description

Syntax

Parameters

Chapter 4 SQL Statements

473

♦ The path name is relative to the database server, not to the client
application. If you are running the statement on a database server on
another computer, the directory names refer to directories on the server
machine, not on the client machine.

♦ You can use UNC path names to load data from files on computers other
than the server. For example, on a Windows for Workgroups,
Windows 95, or Windows NT network, you may use the following
statement to load data from a file on the client machine:

LOAD TABLE employee
FROM ’\\\\client\\temp\\input.dat’

CHECK CONSTRAINTS option This option is on by default, but the
Unload utility writes out LOAD TABLE statements with the option set to
off.

Setting CHECK CONSTRAINTS to off disables check constraints. This can
be useful, for example, during database rebuilding. If a table has check
constraints that call user-defined functions that are not yet created, the
rebuild fails unless this option is set to off.

COMPUTES option By default, COMPUTES is ON. Setting
COMPUTES to ON enables recalculation of computed columns.

Setting COMPUTES to OFF disables computed column recalculations. This
option is useful, for example, if you are rebuilding a database, and a table has
a computed column that calls a user-defined function that is not yet created.
The rebuild would fail unless this option was set to OFF.

The Unload utility (dbunload) writes out LOAD TABLE statements with the
COMPUTES option set to OFF.

DEFAULTS option By default, DEFAULTS is OFF. If DEFAULTS is
OFF, any column not present in the column list is assigned NULL. If
DEFAULTS is OFF and a non-nullable column is omitted from the column
list, the database server attempts to convert the empty string to the column’s
type. If DEFAULTS is ON and the column has a default value, that value is
used.

DELIMITED BY option The default column delimiter character is a
comma. You can specify an alternative column delimiter by providing a
string. The same formatting requirements apply as to other SQL strings. In
particular, if you wanted to specify tab-delimited values, the hexadecimal
ASCII code of the tab character (9) is used. The DELIMITED BY clause is
as follows:

...DELIMITED BY ’\x09’ ...

You can specify delimiters that are up to 255 bytes in length. For example,

LOAD TABLE statement

474

...DELIMITED BY ’###’ ...

ESCAPE CHARACTER option The default escape character for
characters stored as hexadecimal codes and symbols is a backslash (\), so
\x0A is the linefeed character, for example.

This can be changed using the ESCAPE CHARACTER clause. For example,
to use the exclamation mark as the escape character, you would enter

... ESCAPE CHARACTER ’!’

Only one single-byte character can be used as an escape character.

ESCAPES option With ESCAPES turned on (the default), characters
following the backslash character are recognized and interpreted as special
characters by the database server. New line characters can be included as the
combination \n, other characters can be included in data as hexadecimal
ASCII codes, such as \x09 for the tab character. A sequence of two backslash
characters (\\) is interpreted as a single backslash. A backslash followed by
any character other than n, x, X or \ is interpreted as two separate characters.
For example, \q inserts a backslash and the letter q.

FORMAT option If you choose ASCII, input lines are assumed to be
ASCII characters, one row per line, with values separated by the column
delimiter character. Choosing BCP allows the import of ASE generated BCP
out files containing blobs.

HEXADECIMAL option By default, HEXADECIMAL is ON. With
HEXADECIMAL ON, binary column values are read as 0xnnnnnn…, where
each n is a hexadecimal digit. It is important to use HEXADECIMAL ON
when dealing with multi-byte character sets.

The HEXADECIMAL option can be used only with the FORMAT ASCII
option.

ORDER option If ORDER is ON, and a clustered index has been
declared, then LOAD TABLE sorts the input data according to the clustered
index and inserts rows in the same order. If the data you are loading is
already sorted, you should set ORDER to OFF.

$ For more information, see "Using Clustered Indexes" on page 58 of the
book ASA SQL User's Guide.

Chapter 4 SQL Statements

475

QUOTES option With QUOTES turned on (the default), the LOAD
TABLE statement expects strings to be enclosed in quote characters. The
quote character is either an apostrophe (single quote) or a quotation mark
(double quote). The first such character encountered in a string is treated as
the quote character for the string. Strings must be terminated by a matching
quote.

With quotes on, column delimiter characters can be included in column
values. Also, quote characters are assumed not to be part of the value.
Therefore, a line of the form

’123 High Street, Anytown’,(715)398-2354

is treated as two values, not three, despite the presence of the comma in the
address. Also, the quotes surrounding the address are not inserted into the
database.

To include a quote character in a value, with QUOTES on, you must use two
quotes. The following line includes a value in the third column that is a
single quote character:

’123 High Street, Anytown’,’(715)398-2354’,’’’’

STRIP option With STRIP turned on (the default), trailing blanks are
stripped from values before they are inserted. To turn the STRIP option off,
the clause is as follows:

...STRIP OFF ...

Trailing blanks are stripped only for non-quoted strings. Quoted strings
retain their trailing blanks. Leading blanks are trimmed, regardless of the
STRIP setting, unless they are enclosed in quotes.

WITH CHECKPOINT option The default setting is OFF. If set to ON, a
checkpoint is issued after successfully completing and logging the statement.

If WITH CHECKPOINT ON is not specified, and the database requires
automatic recovery before a CHECKPOINT is issued, the data file used to
load the table must be present for the recovery to complete successfully. If
WITH CHECKPOINT ON is specified, and recovery is subsequently
required, recovery begins after the checkpoint, and the data file need not be
present.

LOAD TABLE statement

476

Caution
If you set the database option CONVERSION_ERROR to OFF, you may
load bad data into your table without any error being reported. If you do
not specify WITH CHECKPOINT ON, and the database needs to be
recovered, the recovery may fail as CONVERSION_ERROR is ON (the
default value) during recovery. It is recommended that you do not load
tables with CONVERSION_ERROR set to OFF and WITH
CHECKPOINT ON not specified.

$ For more information, see CONVERSION_ERROR option.

The data files are required, regardless of this option, if the database becomes
corrupt and you need to use a backup and apply the current log file.

PCTFREE option Specifies the percentage of free space you want to
reserve for each table page. This setting overrides any permanent setting for
the table, but only for the duration of the load.

The value percent-free-space is an integer between 0 and 100. The former
specifies that no free space is to be left on each page—each page is to be
fully packed. A high value causes each row to be inserted into a page by
itself.

$ For more information about PCTFREE, see "CREATE TABLE
statement" on page 350.

The LOAD TABLE statement allows efficient mass insertion into a database
table from an ASCII file. LOAD TABLE is more efficient than the
Interactive SQL statement INPUT.

Before inserting data, you can specify the percentage of each table page that
should be left free for later updates. For more information, see ALTER
TABLE statement.

LOAD TABLE places an exclusive lock on the whole table. It does not fire
any triggers associated with the table.

LOAD TABLE captures column statistics when it loads data in order to
create histograms on table columns. If a histogram already exists for a
column, LOAD TABLE leaves the existing histogram alone and does not
create a new one. If you are loading into an empty table, it is beneficial to
drop statistics first.

LOAD TABLE does not generate statistics for columns that contain NULL
values for more than 90% of the rows being loaded.

LOAD TABLE saves statistics on base tables for future use. It does not save
statistics on global temporary tables.

Usage

Chapter 4 SQL Statements

477

LOAD TABLE adds statistics only if the number of rows being loaded is
greater than the threshold specified in the database option
MIN_TABLE_SIZE_FOR_HISTOGRAM (the default is 1000). If the table
has at least that many rows, histograms are added as follows:

Data already in table? Histogram present? Action taken

Yes Yes Use existing histograms

Yes No Don’t build histograms

No Yes Use existing histograms

No No Build new histograms

$ For more information, see "Optimizer estimates" on page 315 of the
book ASA SQL User’s Guide.

You can use LOAD TABLE on temporary tables, but the temporary table
must have been created with the ON COMMIT PRESERVE ROWS clause
because LOAD TABLE does a COMMIT after the load.

If the ASCII file has entries such that a column appears to be NULL, LOAD
TABLE treats it as null. If the column in that position cannot be NULL, it
inserts a zero in numeric columns and an empty string in character columns.
LOAD TABLE skips empty lines in the input file.

Caution
LOAD TABLE is intended solely for fast loading of large amounts of data.
LOAD TABLE does not write individual rows to the transaction log.

The permissions required to execute a LOAD TABLE statement are set on
the database server command line, using the –gl option.

$ For more information, see "–gl server option" on page 141 of the book
ASA Database Administration Guide.

Requires an exclusive lock on the table.

Inserts are not recorded in the log file. Thus, the inserted rows may not be
recovered in the event of a crash. In addition, the LOAD TABLE statement
should never be used in a database involved in SQL Remote replication or
databases used as MobiLink clients because these technologies replicated
changes through analysis of the log file.

The LOAD TABLE statement does not fire triggers, including referential
integrity actions.

A checkpoint is carried out at the beginning of the operation. A second
checkpoint, at the end of the operation, is optional.

Permissions

Side effects

LOAD TABLE statement

478

Column statistics will be updated if a significant amount of data is loaded.

Automatic commit.

"UNLOAD TABLE statement" on page 573
"MIN_TABLE_SIZE_FOR_HISTOGRAM option" on page 583 of the book

ASA Database Administration Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Following is an example of LOAD TABLE. First, we create a table, then
load data into it using a file called input.

CREATE TABLE T(a char(100), let_me_default int DEFAULT
1, c char(100))

Following is the content of a file called input: file and LOAD TABLE
statement that load the file correctly:

ignore_me, this_is_for_column_c, this_is_for_column_a

The following LOAD statement loads the file called input:

LOAD TABLE T (filler(), c, a) FROM ’input’ FORMAT
ASCII DEFAULTS ON

The following row data appears in the table:

this_is_for_column_a, 1, this_is_for_column_c

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

479

LOCK TABLE statement
Use this statement to prevent other concurrent transactions from accessing or
modifying a table.

LOCK TABLE table-name
[WITH HOLD]
IN { SHARE | EXCLUSIVE } MODE

table-name The table must be a base table, not a view. As temporary table
data is local to the current connection, locking global or local temporary
tables has no effect.

WITH HOLD clause If this clause is specified, the lock is held until the
end of the connection. If the clause is not specified, the lock is release when
the current transaction is committed or rolled back.

SHARE mode Prevent other transactions from modifying the table, but
allow them read access. In this mode you can change data in the table as long
as no other transaction has locked the row being modified, either indirectly
or explicitly using LOCK TABLE.

EXCLUSIVE mode Prevent other transactions from accessing the table.
No other transaction can execute queries, updates of any kind, or any other
action against the table.

The LOCK TABLE statement allows direct control over concurrency at a
table level, independent of the current isolation level.

While the isolation level of a transaction generally governs the kinds of locks
that are set when the current transaction executes a request, the LOCK
TABLE statement allows more explicit control locking of the rows in a table.

The locks placed by LOCK TABLE in SHARE mode are phantom and
anti-phantom locks, which are displayed by the sa_locks procedure as PT
and AT.

To lock a table in SHARE mode, SELECT privileges are required.

To lock a table in EXCLUSIVE mode; you must be the table owner or have
DBA authority.

Other transactions that require access to the locked table may be delayed or
blocked.

"SELECT statement" on page 526
"sa_locks system procedure" on page 698

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

LOCK TABLE statement

480

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported in Adaptive Server Enterprise. The WITH HOLD
clause is not supported in Adaptive Server Enterprise. Adaptive Server
Enterprise provides a WAIT clause that is not supported in Adaptive
Server Anywhere.

The following statement prevents other transactions from modifying the
customer table for the duration of the current transaction:

LOCK TABLE customer
IN SHARE MODE

Standards and
compatibility

Example

Chapter 4 SQL Statements

481

LOOP statement
Use this statement to repeat the execution of a statement list.

 [statement-label :]
[WHILE search-condition] LOOP
 statement-list
END LOOP [statement-label]

The WHILE and LOOP statements are control statements that allow you to
execute a list of SQL statements repeatedly while a search-condition
evaluates to TRUE. The LEAVE statement can be used to resume execution
at the first statement after the END LOOP.

If the ending statement-label is specified, it must match the beginning
statement-label.

None.

None.

"FOR statement" on page 429
"LEAVE statement" on page 469

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Not supported in Adaptive Server Enterprise. The WHILE
statement provides looping in Transact-SQL stored procedures.

A While loop in a procedure.

...
SET i = 1;
WHILE i <= 10 LOOP

INSERT INTO Counters(number) VALUES (i);
SET i = i + 1;

END LOOP;
...

A labeled loop in a procedure.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

LOOP statement

482

SET i = 1;
lbl:
LOOP

INSERT
INTO Counters(number)
VALUES (i);
IF i >= 10 THEN

LEAVE lbl;
END IF;
SET i = i + 1;

END LOOP lbl

Chapter 4 SQL Statements

483

MESSAGE statement
Use this statement to display a message.

MESSAGE expression, …
[TYPE { INFO | ACTION | WARNING | STATUS }]
[TO { CONSOLE | CLIENT | LOG }]

TYPE clause The TYPE clause only has an effect if the message is sent to
the client. The client application must decide how to handle the message.
Interactive SQL displays messages in the following locations:

♦ INFO The Messages pane. INFO is the default type.

♦ ACTION A Message box with an OK button.

♦ WARNING A Message box with an OK button.

♦ STATUS The Messages pane.

TO clause This clause specifies the destination of a message:

♦ CONSOLE Send messages to the database server window. CONSOLE
is the default.

♦ CLIENT Send messages to the client application. Your application
must decide how to handle the message, and you can use the TYPE as
information on which to base that decision.

♦ LOG Send messages to the server log file specified by the -o option.

The MESSAGE statement displays a message, which can be any expression.
Clauses can specify where the message appears.

Valid expressions can include a quoted string or other constant, variable, or
function. However, queries are not permitted in the output of a Message
statement even though the definition of an expression includes queries.

None.

None.

"CREATE PROCEDURE statement" on page 305

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise. The
Transact-SQL PRINT statement provides a similar feature, and is also
available in Adaptive Server Anywhere.

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

MESSAGE statement

484

The following procedure displays a message on the server message window:

CREATE PROCEDURE message_test ()
BEGIN
MESSAGE ’The current date and time: ’, Now();
END

The statement:

CALL message_test()

displays the string The current date and time, and the current date and time,
on the database server message window.

Example

Chapter 4 SQL Statements

485

OPEN statement [ESQL] [SP]
Use this statement to open a previously declared cursor to access information
from the database.

OPEN cursor-name
[USING [DESCRIPTOR sqlda-name | hostvar, …]]
[WITH HOLD]
[ISOLATION LEVEL n]
[BLOCK n]

cursor-name : identifier or hostvar

sqlda-name : identifier

Embedded SQL usage After successful execution of the OPEN
statement, the sqlerrd[3] field of the SQLCA (SQLIOESTIMATE) is filled
in with an estimate of the number of input/output operations required to fetch
all rows of the query. Also, the sqlerrd[2] field of the SQLCA
(SQLCOUNT) is filled with either the actual number of rows in the cursor (a
value greater than or equal to 0), or an estimate thereof (a negative number
whose absolute value is the estimate). It will be the actual number of rows if
the database server can compute it without counting the rows. The database
can also be configured to always return the actual number of rows (see
"ROW_COUNTS option" on page 597 of the book ASA Database
Administration Guide), but this can be expensive.

If cursor-name is specified by an identifier or string, the corresponding
DECLARE CURSOR must appear prior to the OPEN in the C program; if
the cursor-name is specified by a host variable, the DECLARE CURSOR
statement must execute before the OPEN statement.

USING DESCRIPTOR clause The USING DESCRIPTOR clause is for
Embedded SQL only. It specifies the host variables to be bound to the
place-holder bind variables in the SELECT statement for which the cursor
has been declared.

WITH HOLD clause By default, all cursors are automatically closed at the
end of the current transaction (COMMIT or ROLLBACK). The optional
WITH HOLD clause keeps the cursor open for subsequent transactions. It
will remain open until the end of the current connection or until an explicit
CLOSE statement is executed. Cursors are automatically closed when a
connection is terminated.

Description

Syntax

Parameters

OPEN statement [ESQL] [SP]

486

ISOLATION LEVEL clause The ISOLATION LEVEL clause allows this
cursor to be opened at an isolation level different from the current setting of
the ISOLATION_LEVEL option. All operations on this cursor will be
performed at the specified isolation level regardless of the option setting. If
this clause is not specified, then the cursor’s isolation level for the entire time
the cursor is open is the value of the ISOLATION_LEVEL option when the
cursor is opened. See "How locking works" on page 121 of the book ASA
SQL User’s Guide.

The cursor is positioned before the first row (see "Using cursors in embedded
SQL" on page 194 of the book ASA Programming Guide or "Using cursors
in procedures and triggers" on page 545 of the book ASA SQL User’s Guide).

BLOCK clause This clause is for Embedded SQL use only. Rows are
fetched by the client application in blocks (more than one at a time). By
default, the number of rows in a block is determined dynamically based on
the size of the rows and how long it takes the database server to fetch each
row. The application can specify a maximum number of rows that should be
contained in a block by specifying the BLOCK clause. For example, if you
are fetching and displaying 5 rows at a time, use BLOCK 5. Specifying
BLOCK 0 will cause one row at a time to be fetched, and also cause a
FETCH RELATIVE 0 to always fetch the row again.

$ For more information, see "FETCH statement [ESQL] [SP]" on
page 424.

The OPEN statement opens the named cursor. The cursor must be previously
declared.

When the cursor is on a CALL statement, OPEN causes the procedure to
execute until the first result set (SELECT statement with no INTO clause) is
encountered. If the procedure completes and no result set is found, the
SQLSTATE_PROCEDURE_COMPLETE warning is set.

Must have SELECT permission on all tables in a SELECT statement, or
EXECUTE permission on the procedure in a CALL statement.

None.

"DECLARE CURSOR statement [ESQL] [SP]" on page 379
"RESUME statement" on page 513
"PREPARE statement [ESQL]" on page 495
"FETCH statement [ESQL] [SP]" on page 424
"RESUME statement" on page 513
"CLOSE statement [ESQL] [SP]" on page 261

♦ SQL/92 Embedded SQL use is an entry-level feature. Procedures use
is a Persistent Stored Modules feature.

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

487

♦ SQL/99 Embedded SQL use is a core feature. Procedures use is a
Persistent Stored Modules feature.

♦ Sybase The simple OPEN cursor-name syntax is supported by
Adaptive Server Enterprise. None of the other clauses are supported in
Adaptive Server Enterprise stored procedures. Open Client/Open Server
supports the USING descriptor or host variable syntax.

The following examples show the use of OPEN in Embedded SQL.

EXEC SQL OPEN employee_cursor;

and

EXEC SQL PREPARE emp_stat FROM
’SELECT empnum, empname FROM employee WHERE name like
?’;
EXEC SQL DECLARE employee_cursor CURSOR FOR emp_stat;
EXEC SQL OPEN employee_cursor USING :pattern;

The following example is from a procedure or trigger.

BEGIN
DECLARE cur_employee CURSOR FOR

SELECT emp_lname
FROM employee;

DECLARE name CHAR(40);
OPEN cur_employee;
LOOP
FETCH NEXT cur_employee into name;

 ...
END LOOP
CLOSE cur_employee;
END

Example

OUTPUT statement [Interactive SQL]

488

OUTPUT statement [Interactive SQL]
Use this statement to output the current query results to a file.

OUTPUT TO filename
[APPEND]
[VERBOSE]
[FORMAT output-format]
[ESCAPE CHARACTER character]
[DELIMITED BY string]
[QUOTE string [ALL]]
[COLUMN WIDTHS (integer, …)]
[HEXADECIMAL { ON | OFF | ASIS }]

output-format :
ASCII | DBASEII | DBASEIII | EXCEL
| FIXED | FOXPRO | HTML | LOTUS | SQL | XML

APPEND clause This optional keyword is used to append the results of
the query to the end of an existing output file without overwriting the
previous contents of the file. If the APPEND clause is not used, the
OUTPUT statement overwrites the contents of the output file by default. The
APPEND keyword is valid if the output format is ASCII, FIXED, or SQL.

VERBOSE clause When the optional VERBOSE keyword is included,
error messages about the query, the SQL statement used to select the data,
and the data itself are written to the output file. If VERBOSE is omitted (the
default) only the data is written to the file. The VERBOSE keyword is valid
if the output format is ASCII, FIXED, or SQL.

FORMAT clause Allowable output formats are:

♦ ASCII The output is an ASCII format file with one row per line in the
file. All values are separated by commas, and strings are enclosed in
apostrophes (single quotes). The delimiter and quote strings can be
changed using the DELIMITED BY and QUOTE clauses. If ALL is
specified in the QUOTE clause, all values (not just strings) are quoted.

Three other special sequences are also used. The two characters \n
represent a newline character, \\ represents a single \, and the sequence
\xDD represents the character with hexadecimal code DD. This is the
default output format.

If you are exporting Java methods that have string return values, you
must use the HEXADECIMAL OFF clause.

Description

Syntax

Parameters

Chapter 4 SQL Statements

489

♦ DBASEII The output is a dBASE II format file with the column
definitions at the top of the file. Note that a maximum of 32 columns can
be output. Also, note that columns longer than 255 characters will be
truncated in the file.

♦ DBASEIII The output is a dBASE III format file with the column
definitions at the top of the file. Note that a maximum of 128 columns
can be output. Also, note that columns longer than 255 characters will be
truncated in the file.

♦ EXCEL The output is an Excel 2.1 worksheet. The first row of the
worksheet contains column labels (or names if there are no labels
defined). Subsequent worksheet rows contain the actual table data.

♦ FIXED The output is fixed format with each column having a fixed
width. The width for each column can be specified using the COLUMN
WIDTHS clause. No column headings are output in this format.

If the COLUMN WIDTHS clause is omitted, the width for each column
is computed from the data type for the column, and is large enough to
hold any value of that data type. The exception is that LONG
VARCHAR and LONG BINARY data defaults to 32 kb.

♦ FOXPRO The output is a FoxPro format file (the FoxPro memo field is
different than the dBASE memo field) with the column definitions at the
top of the file. Note that a maximum of 128 columns can be output.
Also, note that columns longer than 255 characters will be truncated in
the file.

♦ HTML The output is in the Hyper Text Markup Language format.

♦ LOTUS The output is a Lotus WKS format worksheet. Column names
will be put as the first row in the worksheet. Note that there are certain
restrictions on the maximum size of Lotus WKS format worksheets that
other software (such as Lotus 1-2-3) can load. There is no limit to the
size of file Interactive SQL can produce.

♦ SQL The output is an Interactive SQL INPUT statement required to
recreate the information in the table.

♦ XML The output is an XML file encoded in UTF-8 and containing an
embedded DTD. Binary values are encoded in CDATA blocks with the
binary data rendered as 2-hex-digit strings. The INPUT statement does
not accept XML as a file format.

ESCAPE CHARACTER clause The default escape character for
characters stored as hexadecimal codes and symbols is a backslash (\), so
\x0A is the linefeed character, for example.

This can be changed using the ESCAPE CHARACTER clause. For example,
to use the exclamation mark as the escape character, you would enter

OUTPUT statement [Interactive SQL]

490

... ESCAPE CHARACTER ’!’

DELIMITED BY clause The DELIMITED BY clause is for the ASCII
output format only. The delimiter string is placed between columns (default
comma).

QUOTE clause The QUOTE clause is for the ASCII output format only.
The quote string is placed around string values. The default is a single quote
character. If ALL is specified in the QUOTE clause, the quote string is
placed around all values, not just around strings.

COLUMN WIDTHS clause The COLUMN WIDTHS clause is used to
specify the column widths for the FIXED format output.

HEXADECIMAL clause The HEXADECIMAL clause specifies how
binary data is to be unloaded for the ASCII format only. When set to ON,
binary data is unloaded in the format 0xabcd. When set to OFF, binary data
is escaped when unloaded (\xab\xcd). When set to ASIS, values are written
as is, that is, without any escaping—even if the value contains control
characters. ASIS is useful for text that contains formatting characters such as
tabs or carriage returns.

The OUTPUT statement copies the information retrieved by the current
query to a file.

The output format can be specified with the optional FORMAT clause. If no
FORMAT clause is specified, the Interactive SQL OUTPUT_FORMAT
option setting is used (see "OUTPUT_FORMAT option" on page 588 of the
book ASA Database Administration Guide).

The current query is the SELECT or INPUT statement which generated the
information that appears on the Results tab in the Results pane. The
OUTPUT statement will report an error if there is no current query.

When exporting Java data, you may wish to export objects as binary, or you
may want to export them as strings using the toString() method. You can
control which way Java data is exported using the
DESCRIBE_JAVA_FORMAT Interactive SQL option.

For example, consider the following script:

CREATE VARIABLE JavaString java.lang.String;
SET JavaString = NEW java.lang.String(’TestVar’);
SELECT JavaString FROM dummy;

If you set DESCRIBE_JAVA_FORMAT to Varchar:

♦ The following command gives the hexadecimal representation of
TestVar in the output file.

OUTPUT TO filename

Usage

Chapter 4 SQL Statements

491

♦ The following command gives a text representation of TestVar in the
output file (possibly escaped).

OUTPUT TO filename HEXADECIMAL OFF

If you set DESCRIBE_JAVA_FORMAT to binary:

♦ The following command gives the hexadecimal representation of
JavaString in the output file.

OUTPUT TO filename

♦ The following command gives the actual JavaString object in the output
file (with escape sequences).

OUTPUT TO filename HEXADECIMAL OFF

$ For more information, see "DESCRIBE_JAVA_FORMAT option" on
page 566 of the book ASA Database Administration Guide.

None.

In Interactive SQL, the Results tab displays only the results of the current
query. All previous query results are replaced with the current query results.

"SELECT statement" on page 526
"INPUT statement [Interactive SQL]" on page 459
"xp_write_file system procedure" on page 736

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Place the contents of the employee table in a file in ASCII format:

SELECT *
FROM employee;
OUTPUT TO employee.txt

FORMAT ASCII

Place the contents of the employee table at the end of an existing file, and
include any messages about the query in this file as well:

SELECT *
FROM employee;

OUTPUT TO employee.txt APPEND VERBOSE

Output the contents of the toString() method of the JProd column to file:

SELECT JProd>>toString()
FROM jdba.product;
OUTPUT TO d:\temp\temp.txt
FORMAT ASCII HEXADECIMAL OFF

Permissions

Side effects

See also

Standards and
compatibility

Examples

OUTPUT statement [Interactive SQL]

492

Suppose you need to export a value that contains an embedded line feed
character. A line feed character has the numeric value 10, which you can
represent as the string ’\x0a’ in a SQL statement. If you execute the following
statement, with HEXADECIMAL set to ON,

SELECT ’line1\x0aline2’;
OUTPUT TO file.txt HEXADECIMAL ON

you get a file with one line in it containing the following text:

line10x0aline2

But if you execute the same statement with HEXADEMICAL set to OFF,
you get the following:

line1\x0aline2

Finally, if you set HEXADECIMAL to ASIS, you get a file with two lines:

line1
line2

You get two lines when you use ASIS because the embedded line feed
character has been exported without being converted to a two digit hex
representation, and without being prefixed by anything.

Chapter 4 SQL Statements

493

PARAMETERS statement [Interactive SQL]
Use this statement to specify parameters to an Interactive SQL command
file.

PARAMETERS parameter1, parameter2, …

The PARAMETERS statement names the parameters for a command file, so
that they can be referenced later in the command file.

Parameters are referenced by putting:

{parameter1}

into the file where you wish the named parameter to be substituted. There
must be no spaces between the braces and the parameter name.

If a command file is invoked with less than the required number of
parameters, Interactive SQL prompts for values of the missing parameters.

None.

None.

"READ statement [Interactive SQL]" on page 503

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

The following Interactive SQL command file takes two parameters.

PARAMETERS department_id, file;
SELECT emp_lname
FROM employee
WHERE dept_id = {department_id}
>#{file}.dat;

If you save this script in a file named test.SQL, you can run it from
Interactive SQL using the following command:

READ test.SQL [100] [data]

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

PASSTHROUGH statement [SQL Remote]

494

PASSTHROUGH statement [SQL Remote]
Use this statement to start or stop passthrough mode for SQL Remote
administration. Forms 1 and 2 start passthrough mode, while form 3 stops
passthrough mode.

PASSTHROUGH [ONLY] FOR userid, …

PASSTHROUGH [ONLY] FOR SUBSCRIPTION
TO [(owner)].publication-name [(constant)]

PASSTHROUGH STOP

In passthrough mode, any SQL statements are executed by the database
server, and are also placed into the transaction log to be sent in messages to
subscribers. If the ONLY keyword is used to start passthrough mode, the
statements are not executed at the server; they are sent to recipients only. The
recipients of the passthrough SQL statements are either a list of user IDs
(form 1) or all subscribers to a given publication. Passthrough mode may be
used to apply changes to a remote database from the consolidated database or
send statements from a remote database to the consolidated database.

Syntax 2 sends statements to remote databases whose subscriptions are
started, and does not send statements to remote databases whose
subscriptions are created and not started.

Must have DBA authority.

None.

"sp_passthrough procedure" on page 406 of the book SQL Remote User’s
Guide

PASSTHROUGH FOR rem_db ;
…
(SQL statements to be executed at the remote database)
...
PASSTHROUGH STOP ;

Description

Syntax 1

Syntax 2

Syntax 3

Usage

Permissions

Side effects

See also

Example

Chapter 4 SQL Statements

495

PREPARE statement [ESQL]
Use this statement to prepare a statement to be executed later, or used to
define a cursor.

PREPARE statement-name
 FROM statement
[DESCRIBE describe-type INTO [[SQL] DESCRIPTOR] descriptor]
[WITH EXECUTE]

statement-name : identifier or hostvar

statement : string or hostvar

describe-type :
 [ALL | BIND VARIABLES | INPUT | OUTPUT | SELECT LIST]
 [LONG NAMES [[[OWNER.]TABLE.]COLUMN]
 | WITH VARIABLE RESULT]

statement-name The statement name can be an identifier or host variable.
However, you should not use an identifier when using multiple SQLCAs. If
you do, two prepared statements may have the same statement number,
which could cause the wrong statement to be executed or opened.

DESCRIBE clause If DESCRIBE INTO DESCRIPTOR is used, the
prepared statement is described into the specified descriptor. The describe
type may be any of the describe types allowed in the DESCRIBE statement.

WITH EXECUTE clause If the WITH EXECUTE clause is used, the
statement is executed if and only if it is not a CALL or SELECT statement,
and it has no host variables. The statement is immediately dropped after a
successful execution. If the PREPARE and the DESCRIBE (if any) are
successful but the statement cannot be executed, a warning SQLCODE 111,
SQLSTATE 01W08 is set, and the statement is not dropped.

The DESRIBE INTO DESCRIPTOR and WITH EXECUTE clauses may
improve performance because they cut down on the required client/server
communication.

WITH VARIABLE RESULT clause The WITH VARIABLE RESULT
clause is used to describe procedures that may have more than one result set,
with different numbers or types of columns.

If WITH VARIABLE RESULT is used, the database server sets the
SQLCOUNT value after the describe to one of the following values:

♦ 0 The result set may change: The procedure call should be described
again following each OPEN statement.

♦ 1 The result set is fixed. No redescribing is required.

Description

Syntax

Parameters

PREPARE statement [ESQL]

496

Static and dynamic
For compatibility reasons, preparing COMMIT, PREPARE TO
COMMIT, and ROLLBACK statements is still supported. However, we
recommend that you do all transaction management operations with static
Embedded SQL because certain application environments may require it.
Also, other Embedded SQL systems do not support dynamic transaction
management operations.

The PREPARE statement prepares a SQL statement from the statement and
associates the prepared statement with statement-name. This statement name
is referenced to execute the statement, or to open a cursor if the statement is
a SELECT statement. The statement-name may be a host variable of type
a_SQL_statement_number defined in the sqlca.h header file that is
automatically included. If an identifier is used for the statement-name, only
one statement per module may be prepared with this statement-name.

If a host variable is used for statement-name, it must have the type short int.
There is a typedef for this type in sqlca.h called
a_SQL_statement_number. This type is recognized by the SQL
preprocessor and can be used in a DECLARE section. The host variable is
filled in by the database during the PREPARE statement, and need not be
initialized by the programmer.

None.

Any statement previously prepared with the same name is lost.

The statement is dropped after use only if you use WITH EXECUTE and the
execution is successful. You should ensure that you DROP the statement
after use in other circumstances. If you do not, the memory associated with
the statement is not reclaimed.

"DECLARE CURSOR statement [ESQL] [SP]" on page 379
"DESCRIBE statement [ESQL]" on page 392
"OPEN statement [ESQL] [SP]" on page 485
"EXECUTE statement [ESQL]" on page 414
"DROP STATEMENT statement [ESQL]" on page 405

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

The following statement prepares a simple query:

EXEC SQL PREPARE employee_statement FROM
’SELECT emp_lname FROM employee’;

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

497

PREPARE TO COMMIT statement
Use this statement to check whether a COMMIT can be performed
successfully.

PREPARE TO COMMIT

The PREPARE TO COMMIT statement tests whether a COMMIT can be
performed successfully. The statement will cause an error if a COMMIT is
impossible without violating the integrity of the database.

None.

None.

"COMMIT statement" on page 265
"ROLLBACK statement" on page 522

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

The following sequence of statements leads to an error because of foreign
key checking on the employee table.

EXECUTE IMMEDIATE
"SET OPTION wait_for_commit = ’on’";

EXECUTE IMMEDIATE "DELETE FROM employee
WHERE emp_id = 160";

EXECUTE IMMEDIATE "PREPARE TO COMMIT";

The following sequence of statements does not cause an error when the
delete statement is executed, even though it causes integrity violations. The
PREPARE TO COMMIT statement returns an error.

SET OPTION wait_for_commit= ’ON’;
DELETE
FROM department
WHERE dept_id = 100;
PREPARE TO COMMIT;

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

PRINT statement [T-SQL]

498

PRINT statement [T-SQL]
Use this statement to return a message to the client, or display a message in
the message window of the database server.

PRINT format-string [, arg-list]

The PRINT statement returns a message to the client window if you are
connected from an Open Client application or jConnect application. If you
are connected from an embedded SQL or ODBC application, the message is
displayed on the database server window.

The format string can contain placeholders for the arguments in the optional
argument list. These placeholders are of the form %nn!, where nn is an
integer between 1 and 20.

None.

None.

"MESSAGE statement" on page 483

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Supported by Adaptive Server Enterprise.

The following statement displays a message:

PRINT ’Display this message’

The following statement illustrates the use of placeholders in the PRINT
statement:

DECLARE @var1 INT, @var2 INT
SELECT @var1 = 3, @var2 = 5
PRINT ’Variable 1 = %1!, Variable 2 = %2!’, @var1, @var2

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

499

PUT statement [ESQL]
Use this statement to insert a row into the specified cursor.

PUT cursor-name
[USING DESCRIPTOR sqlda-name | FROM hostvar-list]
[INTO { DESCRIPTOR into-sqlda-name | into-hostvar-list }]
[ARRAY :nnn]

cursor-name : identifier or hostvar

sqlda-name : identifier

hostvar-list : may contain indicator variables

Inserts a row into the named cursor. Values for the columns are taken from
the first SQLDA or the host variable list, in a one-to-one correspondence
with the columns in the INSERT statement (for an INSERT cursor) or the
columns in the select list (for a SELECT cursor).

The PUT statement can be used only on a cursor over an INSERT or
SELECT statement that references a single table in the FROM clause, or that
references an updateable view consisting of a single base table.

If the sqldata pointer in the SQLDA is the null pointer, no value is specified
for that column. If the column has a DEFAULT VALUE associated with it,
that will be used; otherwise, a NULL value will be used.

The second SQLDA or host variable list contains the results of the PUT
statement.

The optional ARRAY clause can be used to carry out wide puts, which insert
more than one row at a time and which may improve performance. The value
nnn is the number of rows to be inserted. The SQLDA must contain nnn *
(columns per row) variables. The first row is placed in SQLDA variables 0
to (columns per row)-1, and so on.

Inserting into a cursor
For scroll (values sensitive) cursors, the inserted row will appear if the
new row matches the WHERE clause and the keyset cursor has not
finished populating. For dynamic cursors, if the inserted row matches the
WHERE clause, the row may appear. Insensitive cursors cannot be
updated.

$ For information on putting LONG VARCHAR or LONG BINARY
values into the database, see "SET statement" on page 531.

Must have INSERT permission.

Description

Syntax

Usage

Permissions

PUT statement [ESQL]

500

When the cursor was defined using a join of two or more tables, inserting a
row into the cursor may require the database server to insert a row into more
than one of the tables involved in the join.

"UPDATE statement" on page 575
"UPDATE (positioned) statement [ESQL] [SP]" on page 580
"DELETE statement" on page 388
"DELETE (positioned) statement [ESQL] [SP]" on page 390
"INSERT statement" on page 463

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

The following statement illustrates the use of PUT in Embedded SQL:

EXEC SQL PUT cur_employee FROM :emp_id, :emp_lname;

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

501

RAISERROR statement [T-SQL]
Use this statement to signal an error and to send a message to the client.

RAISERROR error-number [format-string] [, arg-list]

error-number The error-number is a five-digit integer greater than 17000.
The error number is stored in the global variable @@error.

format-string If format-string is not supplied or is empty, the error
number is used to locate an error message in the system tables. Adaptive
Server Enterprise obtains messages 17000-19999 from the SYSMESSAGES
table. In Adaptive Server Anywhere this table is an empty view, so errors in
this range should provide a format string. Messages for error numbers of
20000 or greater are obtained from the SYS.SYSUSERMESSAGES table.

In Adaptive Server Anywhere, the format-string length can be up to
255 bytes.

The extended values supported by the Adaptive Server Enterprise
RAISERROR statement are not supported in Adaptive Server Anywhere.

The format string can contain placeholders for the arguments in the optional
argument list. These placeholders are of the form %nn!, where nn is an
integer between 1 and 20.

Intermediate RAISERROR status and code information is lost after the
procedure terminates. If at return time an error occurs along with the
RAISERROR then the error information is returned and the RAISERROR
information is lost. The application can query intermediate RAISERROR
statuses by examining @@error global variable at different execution points.

The RAISERROR statement allows user-defined errors to be signaled and
sends a message on the client.

None.

None.

"CREATE TRIGGER statement [T-SQL]" on page 369
"ON_TSQL_ERROR option" on page 587 of the book ASA Database

Administration Guide
"CONTINUE_AFTER_RAISERROR option" on page 560 of the book ASA

Database Administration Guide

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Supported by Adaptive Server Enterprise.

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

RAISERROR statement [T-SQL]

502

The following statement raises error 23000, which is in the range for
user-defined errors, and sends a message to the client. Note that there is no
comma between the error-number and the format-string parameters. The
first item following a comma is interpreted as the first item in the argument
list.

RAISERROR 23000 ’Invalid entry for this column: %1!’,
@val

The next example uses RAISERROR to disallow connections.

create procedure DBA.login_check()
begin
 // Allow a maximum of 3 concurrent connections
 if(db_property(’ConnCount’) > 3) then

raiserror 28000
’User %1! is not allowed to connect -- there are

already %2! users logged on’,
current user,
cast(db_property(’ConnCount’) as int)-1;

 else
call sp_login_environment;

 end if;
end
go
grant execute on DBA.login_check to PUBLIC
go
set option PUBLIC.Login_procedure=’DBA.login_check’
go

$ For an alternate way to disallow connections, see
"LOGIN_PROCEDURE option" on page 578 of the book ASA Database
Administration Guide.

Example

Chapter 4 SQL Statements

503

READ statement [Interactive SQL]
Use this statement to read Interactive SQL statements from a file.

READ filename [parameters]

The READ statement reads a sequence of Interactive SQL statements from
the named file. This file can contain any valid Interactive SQL statement
including other READ statements. READ statements can be nested to any
depth. To find the command file, Interactive SQL will first search the current
directory, then the directories specified in the environment variable
SQLPATH, then the directories specified in the environment variable
PATH. If the named file has no file extension, Interactive SQL searches
each directory for the same file name with the extension SQL.

Parameters can be listed after the name of the command file. These
parameters correspond to the parameters named on the PARAMETERS
statement at the beginning of the statement file (see "PARAMETERS
statement [Interactive SQL]" on page 493). Interactive SQL substitutes the
corresponding parameter wherever the source file contains

{parameter-name}

where parameter-name is the name of the appropriate parameter.

The parameters passed to a command file can be identifiers, numbers, quoted
identifiers, or strings. When quotes are used around a parameter, the quotes
are put into the text during the substitution. Parameters which are not
identifiers, numbers, or strings (contain spaces or tabs) must be enclosed in
square brackets ([]). This allows for arbitrary textual substitution in the
command file.

If not enough parameters are passed to the command file, Interactive SQL
prompts for values for the missing parameters.

None.

None.

"PARAMETERS statement [Interactive SQL]" on page 493

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

The following are examples of the READ statement.

READ status.rpt ’160’

READ birthday.SQL [>= ’1988-1-1’] [<= ’1988-1-30’]

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

READTEXT statement [T-SQL]

504

READTEXT statement [T-SQL]
Use this statement to read text and image values from the database, starting
from a specified offset and reading a specified number of bytes.

READTEXT table-name.column-name
text-pointer offset size
[HOLDLOCK]

READTEXT is used to read image and text values from the database. You
cannot perform READTEXT operations on views.

SELECT permissions on the table.

None.

"WRITETEXT statement [T-SQL]" on page 591
"GET DATA statement [ESQL]" on page 437
"TEXTPTR function" on page 188

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Supported by Adaptive Server Enterprise.

Adaptive Server Enterprise supports the following clause, which is not
supported by Adaptive Server Anywhere:

USING { BYTES | CHARS | CHARACTERS }

These options are identical for all single-byte character sets. Adaptive
Server Anywhere uses bytes only, which is the Adaptive Server
Enterprise default setting.

Adaptive Server Enterprise also provides isolation level control in the
READTEXT statement. This is not supported in Adaptive Server
Anywhere.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

505

RELEASE SAVEPOINT statement
Use this statement to release a savepoint within the current transaction.

RELEASE SAVEPOINT [savepoint-name]

Release a savepoint. The savepoint-name is an identifier specified on a
SAVEPOINT statement within the current transaction. If savepoint-name is
omitted, the most recent savepoint is released.

Releasing a savepoint does not do any type of COMMIT. It simply removes
the savepoint from the list of currently active savepoints.

There must have been a corresponding SAVEPOINT within the current
transaction.

None.

"BEGIN TRANSACTION statement" on page 251
"COMMIT statement" on page 265
"ROLLBACK statement" on page 522
"ROLLBACK TO SAVEPOINT statement" on page 523
"SAVEPOINT statement" on page 525
"Savepoints within transactions" on page 93 of the book ASA SQL User’s

Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise. A similar
feature is available in an Adaptive Server Enterprise-compatible manner
using nested transactions.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

REMOTE RESET statement [SQL Remote]

506

REMOTE RESET statement [SQL Remote]
Use this statement in custom database-extraction procedures to start all
subscriptions for a remote user in a single transaction.

REMOTE RESET userid

This command starts all subscriptions for a remote user in a single
transaction. It sets the log_sent and confirm_sent values in
SYSREMOTEUSER table to the current position in the transaction log. It
also sets the created and started values in SYSSUBSCRIPTION to the
current position in the transaction log for all subscriptions for this remote
user. The statement does not do a commit. You must do an explicit commit
after this call.

In order to write an extraction process that is safe on a live database, the data
must be extracted at isolation level 3 in the same transaction as the
subscriptions are started.

This statement is an alternative to start subscription. START
SUBSCRIPTION has an implicit commit as a side effect, so that if a remote
user has several subscriptions, it is impossible to start them all in one
transaction using START SUBSCRIPTION.

Must have DBA authority.

No automatic commit is done by this statement.

"START SUBSCRIPTION statement [SQL Remote]" on page 554

♦ The following statement resets the subscriptions for remote user SamS:

REMOTE RESET SamS

Description

Syntax

Usage

Permissions

Side effects

See also

Example

Chapter 4 SQL Statements

507

REMOVE statement
Use this statement to remove a class or a jar file from a database. When a
class is removed it is no longer available for use as a column or variable
type.

The class or jar must already be installed.

REMOVE JAVA classes_to_remove

classes_to_remove :
 CLASS java_class_name [, java_class_name, …]
| JAR jar_name [, jar_name, …]

CLASS The java_class_name parameter is the name of one or more Java
class to be removed. These classes must be installed classes in the current
database.

JAR The jar_name is a character string value of maximum length 255.

Each jar_name must be equal to the jar_name of a retained jar in the current
database. Equality of jar_name is determined by the character string
comparison rules of the SQL system.

Removes a class or jar file from the database.

Must have DBA authority.

Not supported on Windows CE.

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise. A similar
feature is available in an Adaptive Server Enterprise-compatible manner
using nested transactions.

The following statement removes a Java class named Demo from the current
database.

REMOVE JAVA CLASS Demo

Description

Syntax

Parameters

Usage

Permissions

Standards and
compatibility

Example

REORGANIZE TABLE statement

508

REORGANIZE TABLE statement
Use this statement to defragment tables when a full rebuild of the database is
not possible due to the requirements for continuous access to the database.

REORGANIZE TABLE [owner.]table-name
[{ PRIMARY KEY
 | FOREIGN KEY foreign_key_name
 | INDEX index_name }
 | ORDER {ON | OFF}
]

PRIMARY KEY Reorganizes the primary key index for the table.

FOREIGN KEY Reorganizes the specified foreign key.

INDEX Reorganizes the specified index.

ORDER option With ORDER ON (the default), the data is ordered by
clustered index if one exists. If a clustered index does not exist, the data is
ordered by primary key values. With ORDER OFF, the data is ordered by
primary key.

$ For more information about clustered indexes, see "Using Clustered
Indexes" on page 58 of the book ASA SQL User’s Guide

Table fragmentation can impede performance. Use this statement to
defragment rows in a table, or to compress indexes which have become
sparse due to DELETEs. It may also reduce the total number of pages used to
store the table and its indexes, and it may reduce the number of levels in an
index tree. However, it will not result in a reduction of the total size of the
database file. It is recommended that you use the sa_table_fragmentation and
sa_index_density system procedures to select tables worth processing.

If an index or key is not specified, the reorganization process defragments
rows in the table by deleting and re-inserting groups of rows. For each group,
an exclusive lock on the table is obtained. Once the group has been
processed, the lock is released and re-acquired (waiting if necessary),
providing an opportunity for other connections to access the table.
Checkpoints are suspended while the group is being processed; once the
group is finished, a checkpoint may occur. The rows are processed in order
by primary key; if the table has no primary key, an error results. The
processed rows are re-inserted at the end of the table, resulting in the rows
being clustered by primary key at the end of the process. Note that the same
amount of work is required, regardless of how fragmented the rows initially
were.

Description

Syntax

Parameters

Usage

Chapter 4 SQL Statements

509

If an index or key is specified, the specified index is processed. This form of
the statement can only be used with databases created with Adaptive Server
Anywhere version 7.0 or above. For the duration of the operation, an
exclusive lock is held on the table and checkpoints are suspended. Any
attempts to access the table by other connections will block or fail,
depending on their setting of the BLOCKING option. The duration of the
lock is minimized by pre-reading the index pages prior to obtaining the
exclusive lock.

Since both forms of reorganization may modify many pages, the checkpoint
log can become large. For version 7.0 or earlier databases, this may result in
growth of the database file. For version 8.0 databases, this will result in only
a temporary increase in the database file size, since the checkpoint log is
deleted at shutdown and the file is truncated at that point. Also, more
contiguous allocation of table pages may result for version 8.0 databases.

Neither form of the statement is logged to the transaction log.

Must be either the owner of the table, or a user with DBA authority.

Prior to starting the reorganization, a checkpoint is done to try to maximize
the number of free pages.

The following example reorganizes the employee table according to the
primary key.

REORGANIZE TABLE employee
PRIMARY KEY

Permissions

Side effects

Example

RESIGNAL statement

510

RESIGNAL statement
Use this statement to resignal an exception condition.

RESIGNAL [exception-name]

Within an exception handler, RESIGNAL allows you to quit the compound
statement with the exception still active, or to quit reporting another named
exception. The exception will be handled by another exception handler or
returned to the application. Any actions by the exception handler before the
RESIGNAL are undone.

None.

None.

"SIGNAL statement" on page 548
"BEGIN statement" on page 248
"Using exception handlers in procedures and triggers" on page 553 of the

book ASA SQL User’s Guide
"RAISERROR statement [T-SQL]" on page 501

♦ SQL/92 Persistent stored module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Not supported in Adaptive Server Enterprise. Signaling of
errors in Transact-SQL procedures is carried out using the RAISERROR
statement.

The following fragment returns all exceptions except Column Not Found to
the application.

...
DECLARE COLUMN_NOT_FOUND EXCEPTION

FOR SQLSTATE ’52003’;
...
EXCEPTION
WHEN COLUMN_NOT_FOUND THEN
SET message=’Column not found’;
WHEN OTHERS THEN
RESIGNAL;

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

511

RESTORE DATABASE statement
Use this statement to restore a backed up database from an archive.

RESTORE DATABASE filename
FROM archive_root
[CATALOG ONLY |
[[RENAME dbspace_name TO new_dbspace_name] …]]

CATALOG ONLY clause Retrieve information about the named archive,
and place it in the backup history file (backup.syb), but do not restore any
data from the archive.

RENAME clause Specifies a new location to restore each dbspace to.

Each RESTORE DATABASE operation updates a history file called
backup.syb, which is a text file held in the same directory as your database
server executable file.

The RENAME clause provides a way to change the restore location for each
dbspace. The dbspace name in a RENAME clause cannot be SYSTEM or
TRANSLOG.

RESTORE DATABASE replaces the database that is being restored. If you
need incremental backups, use the image format of the BACKUP command
and save only the transaction log; however, image backups to tape are not
supported.

The permissions required to execute this statement are set on the server
command line, using the -gu option. The default setting is to require DBA
authority.

$ For more information, see "–gu server option" on page 143 of the book
ASA Database Administration Guide.

None.

"BACKUP statement" on page 245
"Backup and Data Recovery" on page 299 of the book ASA Database

Administration Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

♦ Windows CE Not supported on the Windows CE platform.

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

RESTORE DATABASE statement

512

The following example restores a database from a Windows NT tape drive.
The number of backslashes that are required depends on which database you
are connected to when you execute RESTORE DATABASE. The database
affects the setting of the ESCAPE_CHARACTER option. It is normally ON,
but is OFF in utility_db. When connected to any database other than
utility_db, the extra backslashes are required.

RESTORE DATABASE ’d:\\dbhome\\cust.db’
FROM ’\\\\.\\tape0’

Example

Chapter 4 SQL Statements

513

RESUME statement
Use this statement to resume execution of a cursor that returns result sets.

RESUME cursor-name

cursor-name : identifier or hostvar

This statement resumes execution of a procedure that returns result sets. The
procedure executes until the next result set (SELECT statement with no
INTO clause) is encountered. If the procedure completes and no result set is
found, the SQLSTATE_PROCEDURE_COMPLETE warning is set. This
warning is also set when you RESUME a cursor for a SELECT statement.

The cursor must have been previously opened.

None.

"DECLARE CURSOR statement [ESQL] [SP]" on page 379
"Returning results from procedures" on page 539 of the book ASA SQL

User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Following are Embedded SQL examples.

1. EXEC SQL RESUME cur_employee;

2. EXEC SQL RESUME :cursor_var;

Following is an Interactive SQL example.

CALL sample_proc();

RESUME ALL;

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

RETURN statement

514

RETURN statement
Use this statement to exit from a function or procedure unconditionally,
optionally providing a return value.

RETURN [expression]

A RETURN statement causes an immediate exit from a function or
procedure. If expression is supplied, the value of expression is returned as
the value of the function or procedure.

Statements following a RETURN statement are not executed.

Within a function, the expression should be of the same data type as the
function’s RETURNS data type.

Within a procedure, RETURN is used for Transact-SQL-compatibility, and
is used to return an integer error code.

None.

None.

"CREATE FUNCTION statement" on page 296
"CREATE PROCEDURE statement" on page 305
"BEGIN statement" on page 248

♦ SQL/92 Persistent stored module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Transact-SQL procedures use the RETURN statement to
return an integer error code.

The following function returns the product of three numbers:

CREATE FUNCTION product (
a numeric,
b numeric,
c numeric)

RETURNS numeric

BEGIN
RETURN (a * b * c);

END

Calculate the product of three numbers:

SELECT product (2, 3, 4)

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

515

product(2, 3, 4)

24

The following procedure uses the RETURN statement to avoid executing a
complex query if it is meaningless:

CREATE PROCEDURE customer_products
(in customer_id integer DEFAULT NULL)
RESULT (id integer, quantity_ordered integer)
BEGIN

IF customer_id NOT IN (SELECT id FROM customer)
OR customer_id IS NULL THEN

RETURN
ELSE

SELECT product.id,sum(
sales_order_items.quantity)

FROM product,
sales_order_items,
sales_order

WHERE sales_order.cust_id=customer_id
AND sales_order.id=sales_order_items.id
AND sales_order_items.prod_id=product.id
GROUP BY product.id

END IF
END

REVOKE statement

516

REVOKE statement
Use this statement to remove permissions for the specified users.

REVOKE special-priv, ... FROM userid, …

special-priv :
 CONNECT
 | DBA
 | INTEGRATED LOGIN
 | GROUP
 | MEMBERSHIP IN GROUP userid, …
 | RESOURCE

REVOKE table-priv, ... ON [owner.]table-name FROM userid, …

table-priv :
 ALL [PRIVILEGES]
 | ALTER
 | DELETE
 | INSERT
 | REFERENCES [(column-name, …)]
 | SELECT [(column-name, …)]
 | UPDATE [(column-name, …)]

REVOKE EXECUTE ON [owner.]procedure-name FROM userid, …

The REVOKE statement removes permissions given using the GRANT
statement. Form 1 revokes special user permissions. Form 2 revokes table
permissions. Form 3 revokes permission to execute a procedure.
REVOKE CONNECT removes a user ID from a database, and also destroys
any objects (tables, views, procedures, etc.) owned by that user and any
permissions granted by that user. REVOKE GROUP automatically
REVOKES MEMBERSHIP from all members of the group.

If you give a user GRANT option permission, then later revoke that
permission, you also revoke any permissions that user granted to others
while they had the GRANT option.

Must be the grantor of the permissions that are being revoked or have DBA
authority.

If you are revoking connect permissions or table permissions from another
user, the other user must not be connected to the database. You cannot
revoke connect permissions from DBO.

Automatic commit.

"GRANT statement" on page 443

Description

Syntax 1

Syntax 2

Syntax 3

Usage

Permissions

Side effects

See also

Chapter 4 SQL Statements

517

♦ SQL/92 Syntax 1 is a vendor extension. Syntax 2 is an entry-level
feature. Syntax 3 is a Persistent Stored Module feature.

♦ SQL/99 Syntax 1 is a vendor extension. Syntax 2 is a core feature.
Syntax 3 is a Persistent Stored Modules feature.

♦ Sybase Syntax 2 and 3 are supported by Adaptive Server Enterprise.
Syntax 1 is not supported by Adaptive Server Enterprise. User
management and security models are different for Adaptive Server
Anywhere and Adaptive Server Enterprise.

Prevent user Dave from updating the employee table.

REVOKE UPDATE ON employee FROM dave;

Revoke resource permissions from user Jim.

REVOKE RESOURCE FROM Jim;

Revoke integrated login mapping from user profile name Administrator.

REVOKE INTEGRATED LOGIN FROM Administrator;

Disallow the Finance group from executing the procedure sp_customer_list.

REVOKE EXECUTE ON sp_customer_list
FROM finance;

Drop user ID FranW from the database.

REVOKE CONNECT FROM FranW

Standards and
compatibility

Example

REVOKE CONSOLIDATE statement [SQL Remote]

518

REVOKE CONSOLIDATE statement
[SQL Remote]

Use this statement to stop a consolidated database from receiving
SQL Remote messages from this database.

REVOKE CONSOLIDATE FROM userid, …

CONSOLIDATE permissions must be granted at a remote database for the
user ID representing the consolidated database. The REVOKE
CONSOLIDATE statement removes the consolidated database user ID from
the list of users receiving messages from the current database.

Must have DBA authority.

Automatic commit. Drops all subscriptions for the user.

"REVOKE PUBLISH statement [SQL Remote]" on page 519
"REVOKE REMOTE statement [SQL Remote]" on page 520
"REVOKE REMOTE DBA statement [SQL Remote]" on page 521
"GRANT CONSOLIDATE statement [SQL Remote]" on page 447
"sp_revoke_consolidate procedure" on page 434 of the book SQL Remote

User’s Guide

♦ The following statement revokes consolidated status from the user ID
condb:

REVOKE CONSOLIDATE FROM condb

Description

Syntax

Usage

Permissions

Side effects

See also

Example

Chapter 4 SQL Statements

519

REVOKE PUBLISH statement [SQL Remote]
Use this statement to terminate the identification of the named user ID as the
CURRENT publisher.

REVOKE PUBLISH FROM userid

Each database in a SQL Remote installation is identified in outgoing
messages by a publisher user ID. The current publisher user ID can be found
using the CURRENT PUBLISHER special constant. The following query
identifies the current publisher:

SELECT CURRENT PUBLISHER

The REVOKE PUBLISH statement ends the identification of the named user
ID as the publisher.

You should not REVOKE PUBLISH from a database while the database has
active SQL Remote publications or subscriptions.

Issuing a REVOKE PUBLISH statement at a database has several
consequences for a SQL Remote installation:

♦ You will not be able to insert data into any tables with a CURRENT
PUBLISHER column as part of the primary key. Any outgoing
messages will not be identified with a publisher user ID, and so will not
be accepted by recipient databases.

If you change the publisher user ID at any consolidated or remote database in
a SQL Remote installation, you must ensure that the new publisher user ID is
granted REMOTE permissions on all databases receiving messages from the
database. This will generally require all subscriptions to be dropped and
recreated.

Must have DBA authority.

Automatic commit.

"GRANT PUBLISH statement [SQL Remote]" on page 449
"REVOKE REMOTE statement [SQL Remote]" on page 520
"REVOKE REMOTE DBA statement [SQL Remote]" on page 521
"REVOKE CONSOLIDATE statement [SQL Remote]" on page 518
"sp_publisher procedure" on page 413 of the book SQL Remote User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

REVOKE PUBLISH FROM publisher_ID

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

REVOKE REMOTE statement [SQL Remote]

520

REVOKE REMOTE statement [SQL Remote]
Use this statement to stop a user from being able to receive SQL Remote
messages from this database.

REVOKE REMOTE FROM userid, …

REMOTE permissions are required for a user ID to receive messages in a
SQL Remote replication installation. The REVOKE REMOTE statement
removes a user ID from the list of users receiving messages from the current
database.

Must have DBA authority.

Automatic commit. Drops all subscriptions for the user.

"REVOKE PUBLISH statement [SQL Remote]" on page 519
"GRANT REMOTE statement [SQL Remote]" on page 450
"REVOKE REMOTE DBA statement [SQL Remote]" on page 521
"REVOKE CONSOLIDATE statement [SQL Remote]" on page 518
"sp_revoke_remote procedure" on page 435 of the book SQL Remote User’s

Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

REVOKE REMOTE FROM SamS

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

521

REVOKE REMOTE DBA statement [SQL Remote]
Use this statement to provide DBA privileges to a user ID, but only when
connected from the Message Agent.

REVOKE REMOTE DBA
FROM userid, …

REMOTE DBA authority enables the Message Agent to have full access to
the database in order to make any changes contained in the messages, while
avoiding security problems associated with distributing DBA user IDs
passwords.

This statement revokes REMOTE DBA authority from a user ID.

Must have DBA authority.

Automatic commit.

"REVOKE PUBLISH statement [SQL Remote]" on page 519
"REVOKE REMOTE statement [SQL Remote]" on page 520
"GRANT REMOTE DBA statement [SQL Remote]" on page 452
"REVOKE CONSOLIDATE statement [SQL Remote]" on page 518
"The Message Agent and replication security" on page 249 of the book SQL

Remote User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Description

Syntax 1

Usage

Permissions

Side effects

See also

Standards and
compatibility

ROLLBACK statement

522

ROLLBACK statement
Use this statement to end a transaction and undo any changes made since the
last COMMIT or ROLLBACK.

ROLLBACK [WORK]

A transaction is the logical unit of work done on one database connection to
a database between COMMIT or ROLLBACK statements. The ROLLBACK
statement ends the current transaction and undoes all changes made to the
database since the previous COMMIT or ROLLBACK.

None.

Closes all cursors not opened WITH HOLD.

"COMMIT statement" on page 265
"ROLLBACK TO SAVEPOINT statement" on page 523

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Adaptive Server Enterprise.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

523

ROLLBACK TO SAVEPOINT statement
To cancel any changes made since a SAVEPOINT.

ROLLBACK TO SAVEPOINT [savepoint-name]

The ROLLBACK TO SAVEPOINT statement will undo any changes that
have been made since the SAVEPOINT was established. Changes made
prior to the SAVEPOINT are not undone; they are still pending.

The savepoint-name is an identifier that was specified on a SAVEPOINT
statement within the current transaction. If savepoint-name is omitted, the
most recent savepoint is used. Any savepoints since the named savepoint are
automatically released.

There must have been a corresponding SAVEPOINT within the current
transaction.

None.

"BEGIN TRANSACTION statement" on page 251
"COMMIT statement" on page 265
"RELEASE SAVEPOINT statement" on page 505
"ROLLBACK statement" on page 522
"SAVEPOINT statement" on page 525
"Savepoints within transactions" on page 93 of the book ASA SQL User’s

Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Savepoints are not supported by Adaptive Server Enterprise.
To implement similar features in an Adaptive Server
Enterprise-compatible manner, you can use nested transactions.

$ For more information on nested transactions, see "BEGIN
TRANSACTION statement" on page 251.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

ROLLBACK TRIGGER statement

524

ROLLBACK TRIGGER statement
Use this statement to undo any changes made in a trigger.

ROLLBACK TRIGGER [WITH raiserror-statement]

The ROLLBACK TRIGGER statement rolls back the work done in a trigger,
including the data modification that caused the trigger to fire.

Optionally, a RAISERROR statement can be issued. If a RAISERROR
statement is issued, an error is returned to the application. If no
RAISERROR statement is issued, no error is returned.

If a ROLLBACK TRIGGER statement is used within a nested trigger and
without a RAISERROR statement, only the innermost trigger and the
statement which caused it to fire are undone.

None.

None

"CREATE TRIGGER statement" on page 362
"ROLLBACK statement" on page 522
"ROLLBACK TO SAVEPOINT statement" on page 523
"RAISERROR statement [T-SQL]" on page 501

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Supported by Adaptive Server Enterprise.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

525

SAVEPOINT statement
Use this statement to establish a savepoint within the current transaction.

SAVEPOINT [savepoint-name]

Establish a savepoint within the current transaction. The savepoint-name is
an identifier that can be used in a RELEASE SAVEPOINT or ROLLBACK
TO SAVEPOINT statement. All savepoints are automatically released when
a transaction ends. See "Savepoints within transactions" on page 93 of the
book ASA SQL User’s Guide.

Savepoints that are established while a trigger or atomic compound statement
is executing are automatically released when the atomic operation ends.

None.

None.

"RELEASE SAVEPOINT statement" on page 505
"ROLLBACK TO SAVEPOINT statement" on page 523

♦ SQL/92 Vendor extension.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Not supported in Adaptive Server Enterprise. To implement
similar features in an Adaptive Server Enterprise-compatible manner,
you can use the SAVE TRANSACTION statement.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

SELECT statement

526

SELECT statement
Use this statement to retrieve information from the database.

SELECT [ALL | DISTINCT] [FIRST | TOP n] select-list
[INTO { hostvar-list | variable-list }]
[FROM table-expression]
[WHERE search-condition]
[GROUP BY group-by-list]
[HAVING search-condition]
[ORDER BY { expression | integer } [ASC | DESC], …]
[FOR { UPDATE [cursor-concurrency] | READ ONLY }]

select-list :
{ column-name | expression } [[AS] alias-name], …| *

group-by-list :
{ column-name | alias-name | function | expression }, …

cursor-concurrency : BY { VALUES | TIMESTAMP | LOCK }

ALL or DISTINCT All (the default) returns all rows that satisfy the clauses
of the SELECT statement. If DISTINCT is specified, duplicate output rows
are eliminated. Many statements take significantly longer to execute when
DISTINCT is specified, so you should reserve DISTINCT for cases where it
is necessary.

FIRST or TOP You can explicitly retrieve only the first row of a query or
the first n rows of a query. These keywords are principally for use with
ORDER BY queries. Do not use FIRST or TOP in derived table queries,
view definitions, or subqueries that are part of a quantified predicate
involving IN, ANY, SOME, or ALL.

$ For more information about the use of FIRST and TOP, see
"Restrictions on use of FIRST and TOP" on page 221 of the book ASA SQL
User’s Guide.

select list The select list is a list of expressions, separated by commas,
specifying what will be retrieved from the database. An asterisk (*) means
select all columns of all tables in the FROM clause.

Aggregate functions are allowed in the select list (see "SQL Functions" on
page 93). Subqueries are also allowed in the select list (see "Expressions" on
page 15). Each subquery must be within parentheses.

Alias names can be used throughout the query to represent the aliased
expression.

Description

Syntax

Parameters

Chapter 4 SQL Statements

527

An alias must be defined before it can be referenced in the select list. This
behavior was introduced in Adaptive Server Anywhere version 7.0.2. So,
for example, prior to version 7.0.2, SELECT x+1 as y, 1 as x was a valid
SELECT clause. With 7.0.2, that formulation is not valid, and must be
rewritten as SELECT 1 as x, x+1 as y.

Alias names are also displayed by Interactive SQL at the top of each column
of output from the SELECT statement. If the optional alias name is not
specified after an expression, Interactive SQL will display the expression
itself.

INTO hostvar-list This clause is used in Embedded SQL only. It specifies
where the results of the SELECT statement will go. There must be one host
variable item for each item in the select list. Select list items are put into the
host variables in order. An indicator host variable is also allowed with each
host variable, so the program can tell if the select list item was NULL.

INTO variable-list This clause is used in procedures and triggers only. It
specifies where the results of the SELECT statement will go. There must be
one variable for each item in the select list. Select list items are put into the
variables in order.

FROM clause Rows are retrieved from the tables and views specified in
the table expression. A SELECT statement with no FROM clause can be
used to display the values of expressions not derived from tables.
For example,

SELECT @@version

displays the value of the global variable @@version. This is equivalent to:
SELECT @@version
FROM DUMMY

$ For more information, see "FROM clause" on page 433.

WHERE clause This clause specifies which rows will be selected from
the tables named in the FROM clause. It can be used to do joins between
multiple tables, as an alternative to the ON phrase (which is part of the
FROM clause).

$ For more information, see "Search conditions" on page 24 and "FROM
clause" on page 433.

GROUP BY clause You can group by columns, alias names, or functions.
The result of the query contains one row for each distinct set of values in the
named columns, aliases, or functions. All NULL-containing rows are treated
as a single set. The resulting rows are often referred to as groups since there
is one row in the result for each group of rows from the table list. Aggregate
functions can then be applied to these groups to get meaningful results.

SELECT statement

528

When GROUP BY is used, the select-list, HAVING clause, and ORDER BY
clause must not reference any identifier that is not named in the GROUP BY
clause. The exception is that the select-list and HAVING clause may contain
aggregate functions.

HAVING clause This clause selects rows based on the group values and
not on the individual row values. The HAVING clause can only be used if
either the statement has a GROUP BY clause or the select list consists solely
of aggregate functions. Any column names referenced in the HAVING
clause must either be in the GROUP BY clause or be used as a parameter to
an aggregate function in the HAVING clause.

ORDER BY clause This clause sorts the results of a query. Each item in
the ORDER BY list can be labeled as ASC for ascending order (the default)
or DESC for descending order. If the expression is an integer n, then the
query results will be sorted by the nth item in the select list.

The only way to ensure that rows are returned in a particular order is to use
ORDER BY. In the absence of an ORDER BY clause, Adaptive Server
Anywhere returns rows in whatever order is most efficient. This means that
the appearance of result sets may vary depending on when you last accessed
the row and other factors.

In embedded SQL, the SELECT statement is used for retrieving results from
the database and placing the values into host variables via the INTO clause.
The SELECT statement must return only one row. For multiple row queries,
you must use cursors.

FOR clause This clause specifies whether updates are allowed through a
cursor opened on the query.

If you do not use a FOR clause in the SELECT statement, the updatability is
specified by the API. For ODBC and OLE DB, the default is read only. For
JDBC, Open Client, and embedded SQL, the default is update.

This clause overrides the embedded SQL DECLARE CURSOR statement.
However, it may be overridden by the concurrency setting in other
programming interfaces. In ODBC and OLE DB, the read-only default
setting overrides the FOR clause, but if you change the default to something
other than read only, the FOR clause is not overridden. In JDBC and Open
Client, the current setting always overrides the FOR clause, whether or not it
is the default (updatable cursors).

Statement updatability is dependent on the setting of the
ANSI_UPDATE_CONSTRAINTS database option. Other characteristics of
the statement are also considered, including whether the statement contains a
DISTINCT, GROUP BY, HAVING, UNION, aggregate functions, joins, or
non-updatable views.

Chapter 4 SQL Statements

529

$ For more information about cursor sensitivity, see "Adaptive Server
Anywhere cursors" on page 28 of the book ASA Programming Guide.

$ For more information about ODBC concurrency, see the discussion of
SQLSetStmtAttr in "Choosing a cursor characteristics" on page 272 of the
book ASA Programming Guide.

$ For more information about the ANSI_UPDATE_CONSTRAINTS
database option, see "ANSI_UPDATE_CONSTRAINTS option" on
page 552 of the book ASA Database Administration Guide.

The SELECT statement is used for retrieving results from the database.

A SELECT statement can be used in Interactive SQL to browse data in the
database, or to export data from the database to an external file.

A SELECT statement can also be used in procedures and triggers or in
embedded SQL. The SELECT statement with an INTO clause is used for
retrieving results from the database when the SELECT statement only
returns one row. For multiple row queries, you must use cursors.

A SELECT statement can also be used to return a result set from a
procedure.

Must have SELECT permission on the named tables and views.

None.

"Expressions" on page 15
"FROM clause" on page 433
"Search conditions" on page 24
"UNION operation" on page 569
"Joins: Retrieving Data from Several Tables" on page 227 of the book ASA

SQL User’s Guide

♦ SQL/92 Entry-level feature. The complexity of the SELECT statement
means that you should check individual clauses against the standard.

♦ SQL/99 Core feature. The complexity of the SELECT statement
means that you should check individual clauses against the standard.

♦ Sybase Supported by Adaptive Server Enterprise, with some
differences in syntax.

How many employees are there?

SELECT count(*)
FROM employee

List all customers and the total value of their orders.

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

SELECT statement

530

SELECT company_name,
CAST(sum(sales_order_items.quantity *
product.unit_price) AS INTEGER) VALUE

FROM customer
JOIN sales_order
JOIN sales_order_items
JOIN product

GROUP BY company_name
ORDER BY VALUE DESC

The following statement shows an Embedded SQL SELECT statement:

SELECT count(*) INTO :size
FROM employee

Chapter 4 SQL Statements

531

SET statement
Use this statement to assign a value to a SQL variable.

SET identifier = expression

The SET statement assigns a new value to a variable. The variable must have
been previously created using a CREATE VARIABLE statement or
DECLARE statement, or it must be an OUPUT parameter for a procedure.
The variable name can optionally use the Transact-SQL convention of an @
sign preceding the name. For example,

SET @localvar = 42

A variable can be used in a SQL statement anywhere a column name is
allowed. If a column name exists with the same name as the variable, the
variable value is used.

Variables are local to the current connection, and disappear when you
disconnect from the database or use the DROP VARIABLE statement. They
are not affected by COMMIT or ROLLBACK statements.

Variables are necessary for creating large text or binary objects for INSERT
or UPDATE statements from embedded SQL programs because
embedded SQL host variables are limited to 32,767 bytes.

None.

None.

"CREATE VARIABLE statement" on page 370
"DECLARE statement" on page 378
"DROP VARIABLE statement" on page 413
"Expressions" on page 15

♦ SQL/92 Persistent stored module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Not supported. In Adaptive Server Enterprise, variables are
assigned using the SELECT statement with no table, a Transact-SQL
syntax that is also supported by Adaptive Server Anywhere. The SET
statement is used to set database options in Adaptive Server Enterprise.

The following code fragment inserts a large text value into the database.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

SET statement

532

EXEC SQL BEGIN DECLARE SECTION;
DECL_VARCHAR(500) buffer;
/* Note: maximum DECL_VARCHAR size is 32765 */
EXEC SQL END DECLARE SECTION;

EXEC SQL CREATE VARIABLE hold_blob LONG VARCHAR;
EXEC SQL SET hold_blob = ’’;
for(;;) {

/* read some data into buffer ... */
size = fread(buffer, 1, 5000, fp);
if(size <= 0) break;
/* Does not work if data contains null chars */
EXEC SQL SET hold_blob = hold_blob || :buffer;

}
EXEC SQL INSERT INTO some_table VALUES(1, hold_blob);
EXEC SQL DROP VARIABLE hold_blob;

The following code fragment inserts a large binary value into the database.

EXEC SQL BEGIN DECLARE SECTION;
DECL_BINARY(5000) buffer;
EXEC SQL END DECLARE SECTION;

EXEC SQL CREATE VARIABLE hold_blob LONG BINARY;
EXEC SQL SET hold_blob = ’’;
for(;;) {

/* read some data into buffer ... */
size = fread(&(buffer.array), 1, 5000, fp);
if(size <= 0) break;
buffer.len = size;
/* add data to blob using concatenation */
EXEC SQL SET hold_blob = hold_blob || :buffer;

}
EXEC SQL INSERT INTO some_table VALUES (1, hold_blob);
EXEC SQL DROP VARIABLE hold_blob;

Chapter 4 SQL Statements

533

SET statement [T-SQL]
Use this statement to set database options for the current connection in an
Adaptive Server Enterprise-compatible manner.

SET option-name option-value

The available options are as follows:

Option name Option value

ANSINULL ON | OFF

ANSI_PERMISSIONS ON | OFF

CLOSE_ON_ENDTRANS ON | OFF

DATEFIRST 1 | 2 | 3 | 4 | 5 | 6 | 7

QUOTED_IDENTIFIER ON | OFF

ROWCOUNT integer

SELF_RECURSION ON | OFF

STRING_RTRUNCATION ON | OFF

TEXTSIZE integer

TRANSACTION ISOLATION LEVEL 0 | 1 | 2 | 3

Database options in Adaptive Server Anywhere are set using the SET
OPTION statement. However, Adaptive Server Anywhere also provides
support for the Adaptive Server Enterprise SET statement for options that are
particularly useful for compatibility.

The following options can be set using the Transact-SQL SET statement in
Adaptive Server Anywhere as well as in Adaptive Server Enterprise:

♦ SET ANSINULL { ON | OFF } The default behavior for comparing
values to NULL in Adaptive Server Anywhere and Adaptive Server
Enterprise is different. Setting ANSINULL to OFF provides
Transact-SQL compatible comparisons with NULL.

♦ SET ANSI_PERMISSIONS { ON | OFF } The default behavior in
Adaptive Server Anywhere and Adaptive Server Enterprise regarding
permissions required to carry out an UPDATE or DELETE containing a
column reference is different. Setting ANSI_PERMISSIONS to OFF
provides Transact-SQL-compatible permissions on UPDATE and
DELETE.

Description

Syntax

Usage

SET statement [T-SQL]

534

♦ SET CLOSE_ON_ENDTRANS { ON | OFF } The default behavior in
Adaptive Server Anywhere and Adaptive Server Enterprise for closing
cursors at the end of a transaction is different. Setting
CLOSE_ON_ENDTRANS to OFF provides Transact-SQL compatible
behavior.

♦ SET DATEFIRST { 1 | 2 | 3 | 4 | 5 | 6 | 7 } The default is 7, which
means that the first day of the week is by default Sunday. To set this
option permanently, see "FIRST_DAY_OF_WEEK option" on page 568
of the book ASA Database Administration Guide.

♦ SET QUOTED_IDENTIFIER { ON | OFF } Controls whether strings
enclosed in double quotes are interpreted as identifiers (ON) or as literal
strings (OFF). For information about this option, see "Setting options for
Transact-SQL compatibility" on page 395 of the book ASA SQL User’s
Guide.

♦ SET ROWCOUNT integer The Transact-SQL ROWCOUNT option
limits the number of rows fetched for any cursor to the specified integer.
This includes rows fetched by re-positioning the cursor. Any fetches
beyond this maximum return a warning. The option setting is considered
when returning the estimate of the number of rows for a cursor on an
OPEN request.

SET ROWCOUNT also limits the number of rows affected by a
searched UPDATE or DELETE statement to integer. This might be
used, for example, to allow COMMIT statements to be performed at
regular intervals to limit the size of the rollback log and lock table. The
application (or procedure) would need to provide a loop to cause the
update/delete to be re-issued for rows that are not affected by the first
operation. A simple example is given below:

begin
declare @count integer
set rowcount 20
while(1=1) begin

update employee set emp_lname=’new_name’
where emp_lname <> ’old_name’
/* Stop when no rows changed */
select @count = @@rowcount
if @count = 0 break
print string(’Updated ’,

@count,’ rows; repeating...’)
commit

end
set rowcount 0

end

Chapter 4 SQL Statements

535

In Adaptive Server Anywhere, if the ROWCOUNT setting is greater
than the number of rows that Interactive SQL can display,
Interactive SQL may do some extra fetches to reposition the cursor.
Thus, the number of rows actually displayed may be less than the
number requested. Also, if any rows are re-fetched due to truncation
warnings, the count may be inaccurate.

A value of zero resets the option to get all rows.

♦ SET SELF_RECURSION { ON | OFF } The self_recursion option is
used within triggers to enable (ON) or prevent (OFF) operations on the
table associated with the trigger from firing other triggers.

♦ SET STRING_RTRUNCATION { ON | OFF } The default behavior in
Adaptive Server Anywhere and Adaptive Server Enterprise when
non-space characters are truncated on assigning SQL string data is
different. Setting STRING_RTRUNCATION to ON provides
Transact-SQL-compatible string comparisons.

♦ SET TEXTSIZE Specifies the maximum size (in bytes) of text or image
type data to be returned with a select statement. The @@textsize global
variable stores the current setting. To reset to the default size (32K), use
the command:

set textsize 0

♦ SET TRANSACTION-ISOLATION-LEVEL { 0 | 1 | 2 | 3 } Sets the
locking isolation level for the current connection, as described in
"Isolation levels and consistency" on page 94 of the book ASA SQL
User’s Guide. For Adaptive Server Enterprise, only 1 and 3 are valid
options. For Adaptive Server Anywhere, any of 0, 1, 2, or 3 is a valid
option.

In addition, the SET statement is allowed by Adaptive Server Anywhere for
the PREFETCH option, for compatibility, but has no effect.

None.

None.

"SET OPTION statement" on page 539
"Setting options for Transact-SQL compatibility" on page 395 of the book

ASA SQL User’s Guide
"Compatibility options" on page 544 of the book ASA Database

Administration Guide

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Adaptive Server Anywhere supports a subset of the Adaptive
Server Enterprise database options.

Permissions

Side effects

See also

Standards and
compatibility

SET CONNECTION statement [Interactive SQL] [ESQL]

536

SET CONNECTION statement [Interactive SQL]
[ESQL]

Use this statement to change the active database connection.

SET CONNECTION [connection-name]

connection-name :
identifier, string, or hostvar

The SET CONNECTION statement changes the active database connection
to connection-name. The current connection state is saved, and will be
resumed when it again becomes the active connection. If connection-name
is omitted and there is a connection that was not named, that connection
becomes the active connection.

When cursors are opened in embedded SQL, they are associated with the
current connection. When the connection is changed, the cursor names of the
previously active connection become inaccessible. These cursors remain
active and in position, and become accessible when the associated
connection becomes active again.

None.

None.

"CONNECT statement [ESQL] [Interactive SQL]" on page 268
"DISCONNECT statement [ESQL] [Interactive SQL]" on page 396

♦ SQL/92 Interactive SQL use is a vendor extension. Embedded SQL is
a Full level feature.

♦ SQL/99 Interactive SQL is a vendor extension. Embedded SQL is a
core feature.

♦ Sybase Supported by Open Client/Open Server.

The following example is in Embedded SQL.

EXEC SQL SET CONNECTION :conn_name;

From Interactive SQL, set the current connection to the connection named
conn1.

SET CONNECTION conn1;

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

537

SET DESCRIPTOR statement [ESQL]
Use this statement to describe the variables in a SQL descriptor area and to
place data into the descriptor area.

SET DESCRIPTOR descriptor-name
{ COUNT = { integer | hostvar }
| VALUE { integer | hostvar } assignment [, …] }

assignment :
{ TYPE | SCALE | PRECISION | LENGTH | INDICATOR }
 = { integer | hostvar }
| DATA = hostvar

The SET DESCRIPTOR statement is used to describe the variables in a
descriptor area, and to place data into the descriptor area.

The SET … COUNT statement sets the number of described variables within
the descriptor area. The value for count must not exceed the number of
variables specified when the descriptor area was allocated.

The value { integer | hostvar } specifies the variable in the descriptor area
upon which the assignment(s) will be performed.

Type checking is performed when doing SET … DATA, to ensure that the
variable in the descriptor area has the same type as the host variable.

If an error occurs, the code is returned in the SQLCA.

None.

None.

"ALLOCATE DESCRIPTOR statement [ESQL]" on page 203
"DEALLOCATE DESCRIPTOR statement [ESQL]" on page 376
"The SQL descriptor area (SQLDA)" on page 206 of the book ASA

Programming Guide

♦ SQL/92 Intermediate-level feature.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Supported by Open Client/Open Server.

The following example sets the type of the column with position col_num in
sqlda.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

SET DESCRIPTOR statement [ESQL]

538

void set_type(SQLDA *sqlda, int col_num, int new_type)
{
 EXEC SQL BEGIN DECLARE SECTION;
 int new_type1 = new_type;
 int col = col_num;
 EXEC SQL END DECLARE SECTION;

EXEC SQL SET DESCRIPTOR sqlda VALUE :col TYPE =
:new_type1;
}

For a longer example, see "ALLOCATE DESCRIPTOR statement [ESQL]"
on page 203.

Chapter 4 SQL Statements

539

SET OPTION statement
Use this statement to change the values of database options.

SET [EXISTING] [TEMPORARY] OPTION
 [userid.| PUBLIC.]option-name = [option-value]

userid : identifier | string | hostvar

option-name : identifier | string | hostvar

option-value : hostvar (indicator allowed)
| string
| identifier
| number

The SET OPTION statement is used to change options that affect the
behavior of the database server. Setting the value of an option can change the
behavior for all users or only for an individual user. The scope of the change
can be either temporary or permanent.

The classes of options are:

♦ General database options

♦ Transact-SQL compatibility

♦ Replication database options

$ For a listing and description of all available options, see "Database
Options" on page 535 of the book ASA Database Administration Guide.

You can set options at three levels of scope: public, user, and temporary. A
temporary option takes precedence over other options, and user options take
precedence over public options. If you set a user level option for the current
user, the corresponding temporary option gets set as well.

If you use the EXISTING keyword, option values cannot be set for an
individual user ID unless there is already a PUBLIC user ID setting for that
option.

If you specify a user ID, the option value applies to that user (or, for a group
user ID, the members of that group). If you specify PUBLIC, the option
value applies to all users who don’t have an individual setting for the option.
By default, the option value applies to the currently logged on user ID that
issued the SET OPTION statement..

For example, the following statement applies an option change to the user
DBA, if DBA is the user issuing the SQL statement:

SET OPTION login_mode = mixed

Description

Syntax

Usage

SET OPTION statement

540

However the following statement applies the change to the PUBLIC user ID,
a user group to which all users belong.

SET OPTION Public.login_mode = standard

Only users with DBA privileges have the authority to set an option for the
PUBLIC user ID.

In embedded SQL, database options can be set only temporarily.

Users can use the SET OPTION statement to change the values for their own
user ID. Setting the value of an option for a user id other then your own is
permitted only if you have DBA authority.

Adding the TEMPORARY keyword to the SET OPTION statement changes
the duration that the change takes effect. By default, the option value is
permanent: it will not change until it is explicitly changed using the SET
OPTION statement.

When the SET TEMPORARY OPTION statement is not qualified with a
user ID, the new option value is in effect only for the current connection.

When SET TEMPORARY OPTION is used for the PUBLIC user ID, the
change is in place for as long as the database is running. When the database
is shut down, TEMPORARY options for the PUBLIC group revert back to
their permanent value.

Setting temporary options for the PUBLIC user ID offers a security benefit.
For example, when the LOGIN_MODE option is enabled, the database relies
on the login security of the system on which it is running. Enabling it
temporarily means that a database relying on the security of a Windows
domain will not be compromised if the database is shut down and copied to a
local machine. In that case, the temporary enabling of the LOGIN_MODE
option reverts to its permanent value, which could be Standard, a mode
where integrated logins are not permitted.

If option-value is omitted, the specified option setting will be deleted from
the database. If it was a personal option setting, the value will revert back to
the PUBLIC setting. If a TEMPORARY option is deleted, the option setting
will revert back to the permanent setting.

Caution
Changing option settings while fetching rows from a cursor is not
supported, as it can lead to ill-defined behavior. For example, changing
the DATE_FORMAT setting while fetching from a cursor would lead to
different date formats among the rows in the result set. Do not change
option settings while fetching rows.

None required to set your own options.Permissions

Chapter 4 SQL Statements

541

DBA authority is required to set database options for another user or
PUBLIC.

If TEMPORARY is not specified, an automatic commit is performed.

"Database options" on page 541 of the book ASA Database Administration
Guide

"Compatibility options" on page 544 of the book ASA Database
Administration Guide

"Replication options" on page 547 of the book ASA Database Administration
Guide

"SET OPTION statement [Interactive SQL]" on page 542

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise. Adaptive
Server Anywhere does support some Adaptive Server Enterprise options
using the SET statement.

Set the date format option to on:

SET OPTION public.date_format = ’Mmm dd yyyy’;

Set the date format option to off:

SET OPTION public.date_format =;

Set the wait_for_commit option to on:

SET OPTION wait_for_commit = ’on’;

Following are two Embedded SQL examples.

1. EXEC SQL SET OPTION :user.:option_name = :value;

2. EXEC SQL SET TEMPORARY OPTION Date_format =
’mm/dd/yyyy’;

Side effects

See also

Standards and
compatibility

Example

SET OPTION statement [Interactive SQL]

542

SET OPTION statement [Interactive SQL]
Use this statement to change the values of Interactive SQL options.

SET [TEMPORARY] OPTION
[userid. | PUBLIC.]option-name = [option-value]

userid : identifier, string or hostvar

option-name : identifier, string or hostvar

option-value : hostvar (indicator allowed), string, identifier, or number

SET PERMANENT

SET

SET PERMANENT (syntax 2) stores all current Interactive SQL options in
the SYSOPTIONS system table. These settings are automatically established
every time Interactive SQL is started for the current user ID.

Syntax 3 displays all of the current option settings. If there are temporary
options set for Interactive SQL or the database server, these will be
displayed; otherwise, the permanent option settings are displayed.

"Interactive SQL options" on page 548 of the book ASA Database
Administration Guide

Description

Syntax 1

Syntax 2

Syntax 3

Usage

See Also

Chapter 4 SQL Statements

543

SET REMOTE OPTION statement [SQL Remote]
Use this statement to set a message control parameter for a SQL Remote
message link.

SET REMOTE link-name OPTION
[userid.| PUBLIC.]link-option-name = link-option-value

link-name:
file | ftp | mapi | smtp | vim

link-option-name:
common-option | file-option | ftp-option
| mapi-option | smtp-option | vim-option

common-option:
debug | output_log_send_on_error
| output_log_send_limit | output_log_send_now

file-option:
directory

ftp-option:
active_mode | host | password | port | root_directory | user

mapi-option:
 force_download | ipm_receive | ipm_send | profile

smtp-option:
 local_host | pop3_host | pop3_password | pop3_userid
| smtp_host | top_supported

vim-option:
 password | path | receive_all | send_vim_mail | userid

link-option-value:
string

userid If no userid is specified, then the current publisher is assumed.

Option values The option values are message-link dependent. For more
information, see the following locations:

♦ "The file message system" on page 220 of the book SQL Remote User’s
Guide.

♦ "The ftp message system" on page 221 of the book SQL Remote User’s
Guide.

♦ "The MAPI message system" on page 226 of the book SQL Remote
User’s Guide.

♦ "The SMTP message system" on page 223 of the book SQL Remote
User’s Guide.

Description

Syntax

Parameters

SET REMOTE OPTION statement [SQL Remote]

544

♦ "The VIM message system" on page 227 of the book SQL Remote
User’s Guide.

The Message Agent saves message link parameters when the user enters
them in the message link dialog box when the message link is first used. In
this case, it is not necessary to use this statement explicitly. This statement is
most useful when preparing a consolidated database for extracting many
databases.

The option names are case sensitive. The case sensitivity of option values
depends on the option: Boolean values are case insensitive, while the case
sensitivity of passwords, directory names, and other strings depend on the
cases sensitivity of the file system (for directory names), or the database (for
user IDs and passwords).

Must have DBA authority. The publisher can set their own options.

Automatic commit.

"sp_link_option procedure" on page 400 of the book SQL Remote User’s
Guide

"Troubleshooting errors at remote sites" on page 232 of the book SQL
Remote User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

The following statement sets the FTP host to ftp.mycompany.com for the ftp
link for user myuser:

SET REMOTE FTP OPTION myuser.host = ’ftp.mycompany.com’

Usage

Permissions

Side effects

See also

Standards and
compatibility

Examples

Chapter 4 SQL Statements

545

SET SQLCA statement [ESQL]
Use this statement to tell the SQL preprocessor to use a SQLCA other than
the default, global sqlca.

SET SQLCA sqlca

sqlca : identifier or string

The SET SQLCA statement tells the SQL preprocessor to use a SQLCA
other than the default global sqlca. The sqlca must be an identifier or string
that is a C language reference to a SQLCA pointer.

The current SQLCA pointer is implicitly passed to the database interface
library on every embedded SQL statement. All embedded SQL statements
that follow this statement in the C source file will use the new SQLCA.

This statement is necessary only when you are writing code that is reentrant
(see "SQLCA management for multi-threaded or reentrant code" on page 190
of the book ASA Programming Guide). The sqlca should reference a local
variable. Any global or module static variable is subject to being modified by
another thread.

None.

None.

"SQLCA management for multi-threaded or reentrant code" on page 190 of
the book ASA Programming Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Open Client/Open Server.

The owning function could be found in a Windows DLL. Each application
that uses the DLL has its own SQLCA.

an_SQL_code FAR PASCAL ExecuteSQL(an_application *app,
char *com)
{

EXEC SQL BEGIN DECLARE SECTION;
char *sqlcommand;
EXEC SQL END DECLARE SECTION;
EXEC SQL SET SQLCA "&app->.sqlca";
sqlcommand = com;
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL EXECUTE IMMEDIATE :sqlcommand;

return(SQLCODE);
}

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

SETUSER statement

546

SETUSER statement
Use this statement to allow a database administrator to impersonate another
user, and to enable connection pooling.

{ SET SESSION AUTHORIZATION | SETUSER }
[[WITH OPTIONS] userid]

WITH OPTIONS By default, only permissions (including group
membership) are altered. If WITH OPTIONS is specified, the database
options in effect are changed to the current database options of userid.

The SETUSER statement is provided to make database administration easier.
It enables a user with DBA authority to impersonate another user of the
database.

SETUSER can also be used from an application server to take advantage of
connection pooling. Connection pooling cuts down the number of distinct
connections that need to be made, which can improve performance.

SETUSER with no user ID undoes all earlier SETUSER statements.

The SETUSER statement cannot be used inside a procedure, trigger, event
handler or batch.

There are several uses for the SETUSER statement, including the following:

♦ Creating objects You can use SETUSER to create a database object
that is to be owned by another user.

♦ Permissions checking By acting as another user, with their
permissions and group memberships, a DBA can test the permissions
and name resolution of queries, procedures, views, and so on.

♦ Providing a safer environment for administrators The DBA has
permission to carry out any action in the database. If you wish to ensure
that you do not accidentally carry out an unintended action, you can use
SETUSER to switch to a different user ID with fewer permissions.

Must have DBA authority.

"EXECUTE statement [SP]" on page 416
"GRANT statement" on page 443
"REVOKE statement" on page 516
"SET OPTION statement" on page 539

♦ SQL/92 SET SESSION AUTHORIZATION is SQL 92 compliant.
SETUSER is a vendor extension.

♦ SQL/99 SET SESSION AUTHORIZATION is a core feature.
SETUSER is a vendor extension.

Description

Syntax

Parameters

Usage

Permissions

See also

Standards and
compatibility

Chapter 4 SQL Statements

547

♦ Sybase Adaptive Server Enterprise supports SETUSER, but not the
WITH OPTIONS keywords.

The following statements, executed by a user named DBA, change the user
ID to be Joe, then Jane, and then back to DBA.

SETUSER ’Joe’
// ... operations...
SETUSER WITH OPTIONS ’Jane’
// ... operations...
SETUSER

Example

SIGNAL statement

548

SIGNAL statement
Use this statement to signal an exception condition.

SIGNAL exception-name

SIGNAL allows you to raise an exception. See "Using exception handlers in
procedures and triggers" on page 553 of the book ASA SQL User’s Guide for
a description of how exceptions are handled.

exception-name The name of an exception declared using a DECLARE
statement at the beginning of the current compound statement. The exception
must correspond to a system-defined SQLSTATE or a user-defined
SQLSTATE. User-defined SQLSTATE values must be in the range 99000
to 99999.

None.

None.

"DECLARE statement" on page 378
"RESIGNAL statement" on page 510
"BEGIN statement" on page 248
"Using exception handlers in procedures and triggers" on page 553 of the

book ASA SQL User’s Guide

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase SIGNAL is not supported by Adaptive Server Enterprise.

The following compound statement declares and signals a user-defined
exception. If you execute this example from Interactive SQL, the message is
displayed in the Messages pane.

BEGIN
DECLARE myexception EXCEPTION
FOR SQLSTATE ’99001’;
SIGNAL myexception;
EXCEPTION

WHEN myexception THEN
MESSAGE ’My exception signaled’
TO CLIENT;

END

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

549

START DATABASE statement
Use this statement to start a database on the current database server.

START DATABASE database-file
[AS database-name]
[ON engine-name]
[AUTOSTOP { ON | OFF }]
[KEY key]

START DATABASE clause The database-file parameter is a string. If a
relative path is supplied in database-file, it is relative to the database server
starting directory.

AS clause If database-name is not specified, a default name is assigned to
the database. This default name is the root of the database file. For example,
a database in file C:\Database Files\asademo.db would be given the default
name of asademo.

ON clause This clause is supported from Interactive SQL only. In
Interactive SQL, if engine-name is not specified, the default database is the
first started server among those currently running.

AUTOSTOP clause The default setting for the AUTOSTOP clause is ON.
With AUTOSTOP set to ON, the database is unloaded when the last
connection to it is dropped. If AUTOSTOP is set to OFF, the database is not
unloaded.

In Interactive SQL, you can use YES or NO as alternatives to ON and OFF.

KEY clause If the database is strongly encrypted, enter the KEY value
(password) using this clause

Starts a specified database on the current database server.

The START DATABASE statement does not connect the current application
to the specified database: an explicit connection is still needed.

Interactive SQL supports the ON clause, which allows the database to be
started on a database server other than the current.

The required permissions are specified by the database server -gd option.
This option defaults to all on the personal database server, and DBA on the
network server.

None

"STOP DATABASE statement" on page 558
"CONNECT statement [ESQL] [Interactive SQL]" on page 268

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

START DATABASE statement

550

"–gd server option" on page 139 of the book ASA Database Administration
Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Start the database file C:\Database Files\sample_2.db on the current server.

START DATABASE ’c:\database files\sample_2.db’

From Interactive SQL, start the database file c:\Database Files\sample_2.db
as sam2 on the server named sample.

START DATABASE ’c:\database files\sample_2.db’
AS sam2
ON sample

Standards and
compatibility

Example

Chapter 4 SQL Statements

551

START ENGINE statement [Interactive SQL]
Use this statement to start a database server.

START ENGINE AS engine-name [STARTLINE command-string]

The START ENGINE statement starts a database server. If you wish to
specify a set of options for the server, use the STARTLINE keyword
together with a command string. Valid command strings are those that
conform to the database server description in "The database server" on
page 120 of the book ASA Database Administration Guide.

None

None

"STOP ENGINE statement" on page 559
"The database server" on page 120 of the book ASA Database Administration

Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Start a database server, named sample, without starting any databases on it.

START ENGINE AS sample

The following example shows the use of a STARTLINE clause.

START ENGINE AS eng1 STARTLINE ’dbeng8 -c 8M’

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

START JAVA statement

552

START JAVA statement
Use this statement to start the Java VM.

START JAVA

The START JAVA statement starts the Java VM. The main use is to load the
Java VM at a convenient time so that when the user starts to use Java
functionality there is no initial pause while the Java VM is loaded.

Java in the database must be installed and the database must be Java-enabled.

None

"STOP JAVA statement" on page 560

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Start the Java VM.

START JAVA

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

553

START LOGGING statement [Interactive SQL]
Use this statement to start logging executed SQL statements to a log file.

START LOGGING filename

The START LOGGING statement starts copying all subsequent executed
SQL statements to the log file that you specify. If the file does not exist,
Interactive SQL creates it. Logging continues until you explicitly stop the
logging process with the STOP LOGGING statement, or until you end the
current Interactive SQL session. You can also start and stop logging by
clicking SQL➤Start Logging and SQL➤Stop Logging.

None.

None.

"STOP LOGGING statement [Interactive SQL]" on page 561

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Start logging to a file called filename.SQL, located in the c: directory.

START LOGGING ’c:\filename.SQL’

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

START SUBSCRIPTION statement [SQL Remote]

554

START SUBSCRIPTION statement [SQL Remote]
Use this statement to start a subscription for a user to a publication.

START SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR subscriber-id, …

publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value A string that is compared to the subscription
expression of the publication. The value is required here because each
subscriber may have more than one subscription to a publication.

subscriber-id The user ID of the subscriber to the publication. This user
must have a subscription to the publication.

A SQL Remote subscription is said to be started when publication updates
are being sent from the consolidated database to the remote database.

The START SUBSCRIPTION statement is one of a set of statements that
manage subscriptions. The CREATE SUBSCRIPTION statement defines the
data that the subscriber is to receive. The SYNCHRONIZE
SUBSCRIPTION statement ensures that the consolidated and remote
databases are consistent with each other. The START SUBSCRIPTION
statement is required to start messages being sent to the subscriber.

Data at each end of the subscription must be consistent before a subscription
is started. It is recommended that you use the database extraction utility to
manage the creation, synchronization, and starting of subscriptions. If you
use the database extraction utility, you do not need to execute an explicit
START SUBSCRIPTION statement. Also, the Message Agent starts
subscriptions once they are synchronized.

Must have DBA authority.

Automatic commit.

"CREATE SUBSCRIPTION statement [SQL Remote]" on page 324
"REMOTE RESET statement [SQL Remote]" on page 506
"SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]" on page 564
"sp_subscription procedure" on page 436 of the book SQL Remote User’s

Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

555

♦ Sybase Not applicable.

The following statement starts the subscription of user SamS to the
pub_contact publication.

START SUBSCRIPTION TO pub_contact
FOR SamS

Example

START SYNCHRONIZATION DELETE statement [MobiLink]

556

START SYNCHRONIZATION DELETE statement
[MobiLink]

Use this statement to restart logging of deletes for MobiLink
synchronization.

START SYNCHRONIZATION DELETE

Ordinarily, Adaptive Server Anywhere automatically logs any changes made
to tables or columns that are part of a synchronization template and uploads
these changes to the consolidated database during the next synchronization.
You can temporarily suspend automatic logging of delete operations using
the STOP SYNCHRONIZATION DELETE statement. The START
SYNCHRONIZATION DELETE statement allows you to restart the
automatic logging.

When a STOP SYNCHRONIZATION DELETE statement is executed, none
of the delete operations executed on that connection will be synchronized.
The effect continues until a START SYNCHRONIZATION DELETE
statement is executed. The effects do not nest; that is, subsequent execution
of stop synchronization delete after the first will have no additional effect.
A single START SYNCHRONIZATION DELETE statement restarts the
logging, regardless of the number of STOP SYNCHRONIZATION
DELETE statements preceding it.

Must have DBA authority.

None.

"STOP SYNCHRONIZATION DELETE statement [MobiLink]" on
page 563

"StartSynchronizationDelete method" on page 142 of the book UltraLite
User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

The following sequence of SQL statements illustrates how to use START
SYNCHRONIZATION DELETE and STOP SYNCHRONIZATION
DELETE.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

557

-- Prevent deletes from being sent
-- to the consolidated database
STOP SYNCHRONIZATION DELETE;

-- Remove all records older than 1 month
-- from the remote database,
-- NOT the consolidated database
DELETE FROM PROPOSAL
WHERE last_modified < months(CURRENT TIMESTAMP, -1)

-- Re-enable all deletes to be sent
-- to the consolidated database
-- DO NOT FORGET to start this
START SYNCHRONIZATION DELETE;

-- Commit the entire operation,
-- otherwise rollback everything
-- including the stopping of the deletes
commit;

STOP DATABASE statement

558

STOP DATABASE statement
Use this statement to stop a database on the current database server.

STOP DATABASE database-name
[ON engine-name]
[UNCONDITIONALLY]

STOP DATABASE clause The database-name is the name of a database
(other than the current database) running on the current server.

ON clause This clause is supported in Interactive SQL only. If
engine-name is not specified in Interactive SQL, all running engines will be
searched for a database of the specified name.

When not using this statement in Interactive SQL, the database is stopped
only if it is started on the current database server.

UNCONDITIONALLY keyword Stop the database even if there are
connections to the database. By default, the database is not stopped if there
are connections to it.

The STOP DATABASE statement stops a specified database on the current
database server.

The required permissions are specified by the database server -gk option.
This option defaults to all on the personal database server, and DBA on the
network server.

You cannot use STOP DATABASE on the database to which you are
currently connected.

None

"START DATABASE statement" on page 549
"DISCONNECT statement [ESQL] [Interactive SQL]" on page 396
"–gd server option" on page 139 of the book ASA Database Administration

Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Stop the database named sample on the current server.

STOP DATABASE sample

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

559

STOP ENGINE statement
Use this statement to stop a database server.

STOP ENGINE [engine-name] [UNCONDITIONALLY]

STOP ENGINE clause The engine-name can be used in Interactive SQL
only. If you are not running this statement in Interactive SQL, the current
database server is stopped.

UNCONDITIONALLY keyword If you are the only connection to the
database server, you do not need to use UNCONDITIONALLY. If there are
other connections, the database server stops only if you use the
UNCONDITIONALLY keyword.

The STOP ENGINE statement stops the specified database server. If the
UNCONDITIONALLY keyword is supplied, the database server is stopped
even if there are connections to the server. By default, the database server
will not be stopped if there are connections to it.

The permissions to shut down a server depend on the -gk setting on the
database server command line. The default setting is all for the personal
server, and DBA for the network server.

None

"START ENGINE statement [Interactive SQL]" on page 551
"–gk server option" on page 140 of the book ASA Database Administration

Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Stop the current database server, as long as there are no other connections.

STOP ENGINE

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

STOP JAVA statement

560

STOP JAVA statement
Use this statement to stop the Java VM.

STOP JAVA

The STOP JAVA statement unloads the Java VM when it is not in use. The
main use is to economize on the use of system resources.

Java in the database must be installed and the database must be Java-enabled.

None

"START JAVA statement" on page 552

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Stop the Java VM.

STOP JAVA

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

561

STOP LOGGING statement [Interactive SQL]
Use this statement to stop logging of SQL statements in the current session.

STOP LOGGING

The STOP LOGGING statement stops the database server from writing each
SQL statement you execute to a log file. You can start logging with the
START LOGGING statement. You can also start and stop logging by
clicking SQL➤Start Logging and SQL➤Stop Logging.

None.

None.

"START LOGGING statement [Interactive SQL]" on page 553

The following example stops the current logging session.

STOP LOGGING

Description

Syntax

Usage

Permissions

Side effects

See also

Example

STOP SUBSCRIPTION statement [SQL Remote]

562

STOP SUBSCRIPTION statement [SQL Remote]
Use this statement to stop a subscription for a user to a publication.

STOP SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR subscriber-id, …

publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value A string that is compared to the subscription
expression of the publication. The value is required here because each
subscriber may have more than one subscription to a publication.

subscriber-id The user ID of the subscriber to the publication. This user
must have a subscription to the publication.

A SQL Remote subscription is said to be started when publication updates
are being sent from the consolidated database to the remote database.

The STOP SUBSCRIPTION statement prevents any further messages being
sent to the subscriber. The START SUBSCRIPTION statement is required to
restart messages being sent to the subscriber. However, you should ensure
that the subscription is properly synchronized before restarting: that no
messages have been missed.

Must have DBA authority.

Automatic commit.

"DROP SUBSCRIPTION statement [SQL Remote]" on page 407
"SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]" on page 564

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

The following statement starts the subscription of user SamS to the
pub_contact publication.

STOP SUBSCRIPTION TO pub_contact
FOR SamS

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

563

STOP SYNCHRONIZATION DELETE statement
[MobiLink]

Use this statement to temporarily stop logging of deletes for MobiLink
synchronization.

STOP SYNCHRONIZATION DELETE

Ordinarily, Adaptive Server Anywhere automatically logs any changes made
to tables or columns that are part of a synchronization template and uploads
these changes to the consolidated database during the next synchronization.
This statement allows you to temporarily suspend logging of changes to an
Adaptive Server Anywhere remote database.

When a STOP SYNCHRONIZATION DELETE statement is executed, none
of the subsequent delete operations executed on that connection will be
synchronized. The effect continues until a START SYNCHRONIZATION
DELETE statement is executed. The effects do not nest; that is, subsequent
execution of stop synchronization delete after the first will have no additional
effect. A single START SYNCHRONIZATION DELETE statement restarts
the logging, regardless of the number of STOP SYNCHRONIZATION
DELETE statements preceding it.

This command can be useful to make corrections to a remote database, but
should be used with caution as it effectively disables MobiLink
synchronization.

Must have DBA authority.

None.

"StartSynchronizationDelete method" on page 142 of the book UltraLite
User’s Guide

"StopSynchronizationDelete method" on page 142 of the book UltraLite
User’s Guide

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

$ For an example, see "START SYNCHRONIZATION DELETE
statement [MobiLink]" on page 556.

Description

Syntax

Usage

Permissions

Side Effects

See also

Standards and
compatibility

Example

SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]

564

SYNCHRONIZE SUBSCRIPTION statement
[SQL Remote]

Use this statement to synchronize a subscription for a user to a publication.

SYNCHRONIZE SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR remote-user, …

publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value A string that is compared to the subscription
expression of the publication. The value is required here because each
subscriber may have more than one subscription to a publication.

remote-user The user ID of the subscriber to the publication. This user
must have a subscription to the publication.

A SQL Remote subscription is said to be synchronized when the data in the
remote database is consistent with that in the consolidated database, so that
publication updates sent from the consolidated database to the remote
database will not result in conflicts and errors.

To synchronize a subscription, a copy of the data in the publication at the
consolidated database is sent to the remote database. The SYNCHRONIZE
SUBSCRIPTION statement does this through the message system. It is
recommended that where possible you use the database extraction utility
instead to synchronize subscriptions without using a message system.

Must have DBA authority.

Automatic commit.

"CREATE SUBSCRIPTION statement [SQL Remote]" on page 324
"START SUBSCRIPTION statement [SQL Remote]" on page 554

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

The following statement synchronizes the subscription of user SamS to the
pub_contact publication.

SYNCHRONIZE SUBSCRIPTION
TO pub_contact
FOR SamS

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

565

SYSTEM statement [Interactive SQL]
Use this statement to launch an executable file from within Interactive SQL.

SYSTEM ’ [path] filename ’

Launches the specified executable file.

♦ The SYSTEM statement must be entirely contained on one line.

♦ Comments are not allowed at the end of a SYSTEM statement.

♦ Enclose the path and filename in single quotation marks.

None.

None.

"CONNECT statement [ESQL] [Interactive SQL]" on page 268

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

The following statement launches the Notepad program, assuming that the
Notepad executable is in your path.

SYSTEM ’notepad.exe’

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

TRIGGER EVENT statement

566

TRIGGER EVENT statement
Use this statement to trigger a named event. The event may be defined for
event triggers or be a scheduled event.

TRIGGER EVENT event-name [(parm = value, …)]

parm = value When a triggering condition causes an event handler to
execute, the database server can provide context information to the event
handler using the event_parameter function. The TRIGGER EVENT
statement allows you to explicitly supply these parameters, in order to
simulate a context for the event handler.

Actions are tied to particular trigger conditions or schedules by a CREATE
EVENT statement. You can use the TRIGGER EVENT statement to force
the event handler to execute, even when the scheduled time or trigger
condition has not occurred. TRIGGER EVENT does not execute disabled
event handlers.

Must have DBA authority.

None.

"ALTER EVENT statement" on page 211
"CREATE EVENT statement" on page 285

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

Chapter 4 SQL Statements

567

TRUNCATE TABLE statement
Use this statement to delete all rows from a table, without deleting the table
definition.

TRUNCATE TABLE [owner.]table-name

The TRUNCATE TABLE statement deletes all rows from a table. It is
equivalent to a DELETE statement without a WHERE clause, except that no
triggers are fired as a result of the TRUNCATE TABLE statement and each
individual row deletion is not entered into the transaction log.

After a TRUNCATE TABLE statement, the table structure and all of the
indexes continue to exist until you issue a DROP TABLE statement. The
column definitions and constraints remain intact, and triggers and
permissions remain in effect.

The TRUNCATE TABLE statement is entered into the transaction log as a
single statement, like data definition statements. Each deleted row is not
entered into the transaction log.

If the TRUNCATE_WITH_AUTO_COMMIT option is set to ON (the
default), and all the following criteria are satisfied, a fast form of table
truncation is executed:

♦ There are no foreign keys either to or from the table.

♦ The TRUNCATE TABLE statement is not executed within a trigger.

♦ The TRUNCATE TABLE statement is not executed within an atomic
statement.

If a fast truncation is carried out, then a COMMIT is carried out before and
after the operation.

Must be the table owner, or have DBA authority, or have ALTER
permissions on the table.

For base tables, the TRUNCATE TABLE statement requires exclusive
access to the table, as the operation is atomic (either all rows are deleted, or
none are). This means that any cursors that were previously opened and that
reference the table being truncated must be closed and a COMMIT or
ROLLBACK must be issued to release the reference to the table.

For temporary tables, each user has their own copy of the data, and exclusive
access is not required.

Delete triggers are not fired by the TRUNCATE TABLE statement.

If TRUNCATE_WITH_AUTO_COMMIT is set to ON, then a COMMIT is
performed before and after the table is truncated.

Description

Syntax

Usage

Permissions

Side effects

TRUNCATE TABLE statement

568

Individual deletions of rows are not entered into the transaction log, so the
TRUNCATE TABLE operation is not replicated. Do not use this statement
in SQL Remote replication or on a MobiLink remote database.

If the table contains a column defined as DEFAULT AUTOINCREMENT or
DEFAULT GLOBAL AUTOINCREMENT, TRUNCATE TABLE resets the
next available value for the column.

"DELETE statement" on page 388
"TRUNCATE_WITH_AUTO_COMMIT option" on page 605 of the book

ASA Database Administration Guide

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Supported by Adaptive Server Enterprise.

Delete all rows from the department table.

TRUNCATE TABLE department

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

569

UNION operation
Use this statement to combine the results of two or more select statements.

select-without-order-by
 UNION [ALL] select-without-order-by
[UNION [ALL] select-without-order-by] …
[ORDER BY integer [ASC | DESC], …]

The results of several SELECT statements can be combined into a larger
result using UNION. The component SELECT statements must each have
the same number of items in the select list, and cannot contain an
ORDER BY clause.

The results of UNION ALL are the combined results of the component
SELECT statements. The results of UNION are the same as UNION ALL,
except that duplicate rows are eliminated. Eliminating duplicates requires
extra processing, so UNION ALL should be used instead of UNION where
possible.

If corresponding items in two select lists have different data types, Adaptive
Server Anywhere will choose a data type for the corresponding column in
the result and automatically convert the columns in each component
SELECT statement appropriately.

If ORDER BY is used, only integers are allowed in the order by list. These
integers specify the position of the columns to be sorted.

The column names displayed are the same column names that are displayed
for the first SELECT statement.

Must have SELECT permission for each of the component SELECT
statements.

None.

"SELECT statement" on page 526

♦ SQL/92 Entry-level.

♦ SQL/99 Core feature.

♦ Sybase Supported by Adaptive Server Enterprise, which also supports
a COMPUTE clause.

List all distinct surnames of employees and customers.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

UNION operation

570

SELECT emp_lname
FROM Employee
UNION
SELECT lname
FROM Customer

Chapter 4 SQL Statements

571

UNLOAD statement
Use this statement to export data from a database into an external
ASCII-format file.

UNLOAD select-statement TO filename-string [unload-option …]

unload-option :
 DELIMITED BY string
| ESCAPE CHARACTER character
| ESCAPES {ON | OFF}
| FORMAT {ASCII | BCP}
| HEXADECIMAL {ON | OFF}
| ORDER {ON | OFF}
| QUOTES {ON | OFF}

filename-string The filename to which the data is to be unloaded.
Because it is the database server that executes the statements, filenames
specify files on the database server machine. Relative filenames specify files
relative to the database server’s starting directory. To unload data onto a
client machine, see "OUTPUT statement [Interactive SQL]" on page 488.

The UNLOAD statement allows the result set of a query to be exported to a
comma-delimited file. The result set is not ordered unless the query itself
contains an ORDER BY clause.

When unloading result set columns with binary data types, UNLOAD writes
hexadecimal strings, of the form \xnnnn where n is a hexadecimal digit.

$ For a description of the unload-option parameters, see "UNLOAD
TABLE statement" on page 573.

When unloading and reloading a database that has proxy tables, you must
create an external login to map the local user to the remote user, even if the
user has the same password on both the local and remote databases. If you do
not have an external login, the reload may fail because you cannot connect to
the remote server.

$ For more information about external logins, see "Working with external
logins" on page 465 of the book ASA SQL User’s Guide.

The permissions required to execute an UNLOAD statement are set on the
database server command line, using the –gl option.

$ For more information, see "–gl server option" on page 141 of the book
ASA Database Administration Guide.

None. The query is executed at the current isolation level.

"UNLOAD TABLE statement" on page 573

Description

Syntax

Parameters

Usage

Permissions

Side effects

See also

UNLOAD statement

572

"OUTPUT statement [Interactive SQL]" on page 488

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase UNLOAD is not supported by Adaptive Server Enterprise.

Standards and
compatibility

Chapter 4 SQL Statements

573

UNLOAD TABLE statement
Use this statement to export data from a database table into an external
ASCII-format file.

UNLOAD [FROM] TABLE [owner.]table-name TO filename-string
[unload-option …]

unload-option :
 DELIMITED BY string
| ESCAPE CHARACTER character
| ESCAPES {ON | OFF}
| FORMAT {ASCII | BCP}
| HEXADECIMAL {ON | OFF}
| ORDER {ON | OFF}
| QUOTES {ON | OFF}

filename-string The filename to which the data is to be unloaded.
Because it is the database server that executes the statements, filenames
specify files on the database server machine. Relative filenames specify files
relative to the database server’s starting directory. To unload data onto a
client machine, see "OUTPUT statement [Interactive SQL]" on page 488.

ESCAPES option With ESCAPES on (the default), backslash-character
combinations are used to identify special characters where necessary on
export.

FORMAT option Outputs data in either ASCII format or in BCP out
format.

HEXADECIMAL option By default, HEXADECIMAL is ON. Binary
column values are written as 0xnnnnnn…, where each n is a hexadecimal
digit. It is important to use HEXADECIMAL ON when dealing with
multi-byte character sets.

The HEXADECIMAL option can be used only with the FORMAT ASCII
option.

ORDER option With ORDER ON (the default), the exported data is
ordered by clustered index if one exists. If a clustered index does not exist,
the exported data is ordered by primary key values. With ORDER OFF, the
data is exported in the same order you see when selecting from the table
without an ORDER BY clause.

Exporting is slower with ORDER ON. However, reloading using the LOAD
TABLE statement is quicker because of the simplicity of the indexing step.

$ For more information on clustered indexes, see "Using Clustered
Indexes" on page 58 of the book ASA SQL User's Guide.

Description

Syntax

Parameters

UNLOAD TABLE statement

574

QUOTES option With QUOTES turned on (the default), single quotes are
placed around all exported strings.

The UNLOAD TABLE statement allows efficient mass exporting from a
database table into an ASCII file. UNLOAD TABLE is more efficient than
the Interactive SQL statement OUTPUT, and can be called from any client
application.

UNLOAD TABLE places an exclusive lock on the whole table.

When unloading columns with binary data types, UNLOAD TABLE writes
hexadecimal strings, of the form \xnnnn where n is a hexadecimal digit.

For descriptions of the FORMAT, DELIMITED BY, and ESCAPE
CHARACTER options, see "LOAD TABLE statement" on page 472.

The permissions required to execute an UNLOAD statement are set on the
database server command line, using the –gl option.

$ For more information, see "–gl server option" on page 141 of the book
ASA Database Administration Guide.

None.

"LOAD TABLE statement" on page 472
"OUTPUT statement [Interactive SQL]" on page 488
"UNLOAD statement" on page 571

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase UNLOAD TABLE is not supported by Adaptive Server
Enterprise. Similar functionality is provided by the Adaptive Server
Enterprise bulk copy utility (bcp).

Usage

Permissions

Side effects

See also

Standards and
compatibility

Chapter 4 SQL Statements

575

UPDATE statement
Use this statement to modify existing rows in database tables.

UPDATE [FIRST | TOP n] table-list SET set-item, …
[FROM table-list]
[WHERE search-condition]
[ORDER BY expression [ASC | DESC], …]

UPDATE table-list
SET set-item, …
[VERIFY (column-name, …) VALUES (expression, …)]
[WHERE search-condition]
[ORDER BY expression [ASC | DESC], …]

UPDATE table
PUBLICATION publication
{ SUBSCRIBE BY expression
| OLD SUBSCRIBE BY expression NEW SUBSCRIBE BY expression
 }
WHERE search-condition

set-item :
 column-name [.field-name…] = expression
| column-name[.field-name…].method-name([expression])
| @variable-name = expression

UPDATE clause The table is either a base table, a temporary table, or a
view. Views can be updated unless the SELECT statement defining the view
contains a GROUP BY clause or aggregate function, or involves a UNION
operation.

FIRST or TOP clause Primarily for use with the ORDER BY clause, this
clause allows you to update only a certain subset of the rows that satisfy the
WHERE clause. You cannot use a variable as input with FIRST or TOP.

SET clause If you are updating Java columns, you can use field-name to
update the value of a public field in the column. Alternatively, you can use a
method to set the value. The following clause updates name field of the
JProd column using a method:

SET JProd.setName(’Tank Top’)

If you are updating non-Java columns, the SET clause is of the following
form:

SET column-name = expression, ...

and/or

SET @variable-name = expression, ...

Description

Syntax 1

Syntax 2

Syntax 3

Parameters

UPDATE statement

576

Each named column is set to the value of the expression on the right hand
side of the equal sign. There are no restrictions on the expression. If the
expression is a column-name, the old value is used. When assigning a
variable, the variable must already be declared, and its name must begin with
the "at" sign (@). Variable and column assignments can be mixed together,
and any number can be used. If a name on the left side of an assignment in
the SET list matches a column in the updated table as well as the variable
name, the statement will update the column.

Following is an example of part of an UPDATE statement. It assigns a
variable in addition to updating the table:

UPDATE T SET @var = expression1, col1 = expression2
WHERE…

This is equivalent to:

SELECT @var = expression1
FROM T
WHERE… ;
UPDATE T SET col1 = expression2
WHERE…

FROM clause The optional FROM clause allows tables to be updated
based on joins. If the FROM clause is present, the WHERE clause qualifies
the rows of the FROM clause. Data is updated only in the table list of the
UPDATE clause.

If a FROM clause is used, it is important to qualify the table name the same
way in both parts of the statement. If a correlation name is used in one place,
the same correlation name must be used elsewhere. Otherwise, an error is
generated.

This clause is allowed only if ANSI_UPDATE_CONSTRAINTS is set to
OFF. See "ANSI_UPDATE_CONSTRAINTS option" on page 552 of the
book ASA Database Administration Guide.

$ For a full description of joins, see "Joins: Retrieving Data from Several
Tables" on page 227 of the book ASA SQL User’s Guide.

$ For more information, see "FROM clause" on page 433.

WHERE clause If a WHERE clause is specified, only rows satisfying the
search condition are updated. If no WHERE clause is specified, every row is
updated.

ORDER BY clause Normally, the order in which rows are updated does
not matter. However, in conjunction with the FIRST or TOP clause the order
can be significant.

Chapter 4 SQL Statements

577

You must not update columns that appear in the ORDER BY clause unless
you set the ANSI_UPDATE_CONSTRAINTS option to OFF. See
"ANSI_UPDATE_CONSTRAINTS option" on page 552 of the book ASA
Database Administration Guide.

Case sensitivity Character strings inserted into tables are always stored in
the same case as they are entered, regardless of whether the database is case
sensitive or not. A CHAR data type column updated with a string Value is
always held in the database with an upper case V and the remainder of the
letters lower case. SELECT statements return the string as Value. If the
database is not case sensitive, however, all comparisons make Value the
same as value, VALUE, and so on. Further, if a single-column primary key
already contains an entry Value, an INSERT of value is rejected, as it would
make the primary key not unique.

Updates that leave a row unchanged If the new value does not differ
from the old value, no change is made to the data. However, BEFORE
UPDATE triggers fire any time an UPDATE occurs on a row, whether or not
the new value differs from the old value. AFTER UPDATE triggers fire only
if the new value is different from the old value.

Syntax 1 of the UPDATE statement modifies values in rows of one or more
tables. Syntax 2 and 3 are applicable only to SQL Remote.

Syntax 2 is intended for use with SQL Remote only, in single-row updates
executed by the Message Agent. The VERIFY clause contains a set of values
that are expected to be present in the row being updated. If the values do not
match, any RESOLVE UPDATE triggers are fired before the UPDATE
proceeds. The UPDATE does not fail simply because the VERIFY clause
fails to match.

Syntax 3 of the UPDATE statement is used to implement a specific
SQL Remote feature, and is to be used inside a BEFORE trigger.

It provides a full list of SUBSCRIBE BY values any time the list changes. It
is placed in SQL Remote triggers so that the database server can compute the
current list of SUBSCRIBE BY values. Both lists are placed in the
transaction log.

The Message Agent uses the two lists to make sure that the row moves to any
remote database that did not have the row and now needs it. The Message
Agent also removes the row from any remote database that has the row and
no longer needs it. A remote database that has the row and still needs it is not
be affected by the UPDATE statement.

For publications created using a subquery in a SUBSCRIBE BY clause, you
must write a trigger containing syntax 3 of the UPDATE statement in order
to ensure that the rows are kept in their proper subscriptions.

Usage

UPDATE statement

578

Syntax 3 of the UPDATE statement allows the old SUBSCRIBE BY list and
the new SUBSCRIBE BY list to be explicitly specified, which can make
SQL Remote triggers more efficient. In the absence of these lists, the
database server computes the old SUBSCRIBE BY list from the publication
definition. Since the new SUBSCRIBE BY list is commonly only slightly
different from the old SUBSCRIBE BY list, the work to compute the old list
may be done twice. By specifying both the old and new lists, you can avoid
this extra work.

The SUBSCRIBE BY expression is either a value or a subquery.

Syntax 3 of the UPDATE statement makes an entry in the transaction log,
but does not change the database table.

Must have UPDATE permission for the columns being modified.

None.

"DELETE statement" on page 388
"INSERT statement" on page 463
"FROM clause" on page 433
"Joins: Retrieving Data from Several Tables" on page 227 of the book ASA

SQL User’s Guide

♦ SQL/92 Syntax 1 is an entry-level feature, except for the FROM and
ORDER BY clauses, which are vendor extensions. Syntax 2 and 3 are
vendor extensions for use only with SQL Remote.

♦ SQL/99 Syntax 1 is a core feature, except for the FROM and ORDER
BY clauses, which are vendor extensions. Syntax 2 and 3 are vendor
extensions for use only with SQL Remote.

To enforce SQL/92 compatibility, ensure that the
ANSI_UPDATE_CONSTRAINTS option is set to STRICT.

$ For more information, see "ANSI_UPDATE_CONSTRAINTS
option" on page 552 of the book ASA Database Administration Guide.

♦ Sybase Subject to the expressions being compatible, the syntax of the
UPDATE statement (syntax 1) is compatible between Adaptive Server
Enterprise and Adaptive Server Anywhere. Syntax 2 and 3 are not
supported.

Transfer employee Philip Chin (employee 129) from the sales department to
the marketing department.

UPDATE employee
SET dept_id = 400
WHERE emp_id = 129;

Sales orders currently start at ID 2001. Renumber all existing sales orders by
subtracting 2000 from the ID.

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

579

UPDATE sales_order AS orders
SET orders.id = orders.id - 2000
ORDER BY items.id ASC

This update is possible only if the foreign key of the sales_order_items table
(referencing the primary key sales_order.id) is defined with the action ON
UPDATE CASCADE. The sales_order_items table is then updated as well.

$ For more information on foreign key properties, see "ALTER TABLE
statement" on page 233 and "CREATE TABLE statement" on page 350.

UPDATE (positioned) statement [ESQL] [SP]

580

UPDATE (positioned) statement [ESQL] [SP]
Use this statement to modify the data at the current location of a cursor.

UPDATE WHERE CURRENT OF cursor-name
{ USING DESCRIPTOR sqlda-name | FROM hostvar-list }

UPDATE table-list
SET set-item, …
WHERE CURRENT OF cursor-name

hostvar-list : indicator variables allowed

set-item :
 column-name [.field-name…] = expression
| column-name [.field-name…].method-name([expression])

sqlda-name : identifier

SET clause The columns that are referenced in set-item must be in the
base table that is updated. They cannot refer to aliases, nor to columns from
other tables or views. If the table you are updating is given a correlation
name in the cursor specification, you must use the correlation name in the
SET clause.

The expression on the right side of the SET clause may use constants,
variables, expressions from the select list of the query, or combinations of
the above using operators such as +, -, …, COALESCE, IF, and so on. The
expression cannot contain aggregate functions, subqueries, or subselects.

This form of the UPDATE statement updates the current row of the specified
cursor. The current row is defined to be the last row successfully fetched
from the cursor, and the last operation on the cursor must not have been a
positioned DELETE statement.

For syntax 1, columns from the SQLDA or values from the host variable list
correspond one-to-one with the columns returned from the specified cursor.
If the sqldata pointer in the SQLDA is the null pointer, the corresponding
select list item is not updated.

In syntax 2, the requested columns are set to the specified values for the row
at the current row of the specified query. The columns do not need to be in
the select list of the specified open cursor. This format can be prepared.

The USING DESCRIPTOR, FROM hostvar-list, and hostvar formats are for
embedded SQL only.

Must have UPDATE permission on the columns being modified.

None.

"DELETE statement" on page 388

Description

Syntax 1

Syntax 2

Parameters

Usage

Permissions

Side effects

See also

Chapter 4 SQL Statements

581

"DELETE (positioned) statement [ESQL] [SP]" on page 390
"UPDATE statement" on page 575

♦ SQL/92 Entry-level feature. The range of cursors that can be updated
may contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS
option is set to OFF.

♦ SQL/99 Core feature. The range of cursors that can be updated may
contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS
option is set to OFF.

♦ Sybase Embedded SQL use is supported by Open Client/Open Server,
and procedure and trigger use is supported in Adaptive Server
Anywhere.

The following is an example of an UPDATE statement
WHERE CURRENT OF cursor:

UPDATE Employee
SET emp_lname = ’Jones’

WHERE CURRENT OF emp_cursor;

Standards and
compatibility

Example

UPDATE statement [SQL Remote]

582

UPDATE statement [SQL Remote]
Use this statement to modify data in the database.

UPDATE table-list
SET column-name = expression, …
[VERIFY (column-name, …) VALUES (expression, …)]
[WHERE search-condition]
[ORDER BY expression [ASC | DESC], …]

UPDATE table
PUBLICATION publication
{ SUBSCRIBE BY expression |

OLD SUBSCRIBE BY expression
NEW SUBSCRIBE BY expression }

WHERE search-condition

expression: value | subquery

Syntax 1 and Syntax 2 are applicable only to SQL Remote.

Syntax 2 with no OLD and NEW SUBSCRIBE BY expressions must be
used in a BEFORE trigger.

Syntax 2 with OLD and NEW SUBSCRIBE BY expressions can be used
anywhere.

The UPDATE statement is used to modify rows of one or more tables. Each
named column is set to the value of the expression on the right hand side of
the equal sign. There are no restrictions on the expression. Even
column-name can be used in the expression—the old value will be used.

If no WHERE clause is specified, every row will be updated. If a WHERE
clause is specified, then only those rows which satisfy the search condition
will be updated.

Normally, the order that rows are updated doesn't matter. However, in
conjunction with the NUMBER(*) function, an ordering can be useful to get
increasing numbers added to the rows in some specified order. Also, if you
wish to do something like add 1 to the primary key values of a table, it is
necessary to do this in descending order by primary key, so that you do not
get duplicate primary keys during the operation.

Views can be updated provided the SELECT statement defining the view
does not contain a GROUP BY clause, an aggregate function, or involve a
UNION operation.

Description

Syntax 1

Syntax 2

Usage

Chapter 4 SQL Statements

583

Character strings inserted into tables are always stored in the case they are
entered, regardless of whether the database is case sensitive or not. Thus a
character data type column updated with a string Value is always held in the
database with an upper-case V and the remainder of the letters lower case.
SELECT statements return the string as Value. If the database is not
case-sensitive, however, all comparisons make Value the same as value,
VALUE, and so on. Further, if a single-column primary key already contains
an entry Value, an INSERT of value is rejected, as it would make the
primary key not unique.

The optional FROM clause allows tables to be updated based on joins. If the
FROM clause is present, the WHERE clause qualifies the rows of the FROM
clause. Data is updated only in the table list immediately following the
UPDATE keyword.

If a FROM clause is used, it is important to qualify the table name that is
being updated the same way in both parts of the statement. If a correlation
name is used in one place, the same correlation name must be used in the
other. Otherwise, an error is generated.

Syntax 1 is intended for use with SQL Remote only, in single-row updates
executed by the Message Agent. The VERIFY clause contains a set of values
that are expected to be present in the row being updated. If the values do not
match, any RESOLVE UPDATE triggers are fired before the UPDATE
proceeds. The UPDATE does not fail if the VERIFY clause fails to match.

Syntax 2 is intended for use with SQL Remote only. If no OLD and NEW
expressions are used, it must be used inside a BEFORE trigger so that it has
access to the relevant values. The purpose is to provide a full list of subscribe
by values any time the list changes. It is placed in SQL Remote triggers so
that the database server can compute the current list of SUBSCRIBE BY
values. Both lists are placed in the transaction log.

The Message Agent uses the two lists to make sure that the row moves to any
remote database that did not have the row and now needs it. The Message
Agent also removes the row from any remote database that has the row and
no longer needs it. A remote database that has the row and still needs it is not
be affected by the UPDATE statement.

Syntax 2 of the UPDATE statement allows the old SUBSCRIBE BY list and
the new SUBSCRIBE BY list to be explicitly specified, which can make
SQL Remote triggers more efficient. In the absence of these lists, the
database server computes the old SUBSCRIBE BY list from the publication
definition. Since the new SUBSCRIBE BY list is commonly only slightly
different from the old SUBSCRIBE BY list, the work to compute the old list
may be done twice. By specifying both the old and new lists, this extra work
can be avoided.

UPDATE statement [SQL Remote]

584

The OLD and NEW SUBSCRIBE BY syntax is especially useful when many
tables are being updated in the same trigger with the same subscribe by
expressions. This can dramatically increase performance.

The SUBSCRIBE BY expression is either a value or a subquery.

Syntax 2 of the UPDATE statement is used to implement a specific
SQL Remote feature, and is to be used inside a BEFORE trigger.

For publications created using a subquery in a subscription expression, you
must write a trigger containing syntax 2 of the UPDATE statement in order
to ensure that the rows are kept in their proper subscriptions.

$ For a full description of this feature, see "Territory realignment in the
Contact example" on page 106 of the book SQL Remote User’s Guide.

Syntax 2 of the UPDATE statement makes an entry in the transaction log,
but does not change the database table.

Must have UPDATE permission for the columns being modified.

None.

"CREATE TRIGGER statement [SQL Remote]" on page 366

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Transfer employee Philip Chin (employee 129) from the sales
department to the marketing department.

UPDATE employee
VERIFY(dept_id) VALUES(300)
SET dept_id = 400
WHERE emp_id = 129

Permissions

Side effects

See also

Standards and
compatibility

Examples

Chapter 4 SQL Statements

585

VALIDATE INDEX statement
Use this statement to validate an index.

VALIDATE INDEX [[owner.]table-name.] { index-name | table-name }

Ensures that every row referenced in the index actually exists in the table.
For foreign key indexes, it also ensures that the corresponding row exists in
the primary table. This check complements the validity checking carried out
by the VALIDATE TABLE statement.

index-name | table-name If you supply a table-name instead of an
index-name, the primary key index is validated.

Must be the owner of the table on which the index is created, have DBA
authority, or have REMOTE DBA authority (SQL Remote).

None.

"CREATE INDEX statement" on page 300
"VALIDATE TABLE statement" on page 586
"The Validation utility" on page 526 of the book ASA Database

Administration Guide

Description

Syntax

Usage

Permissions

Side effects

See also

VALIDATE TABLE statement

586

VALIDATE TABLE statement
Use this statement to validate a table in the database.

VALIDATE TABLE [owner.]table-name
[WITH { DATA | EXPRESS | FULL | INDEX } CHECK]

WITH DATA CHECK If you have LONG BINARY, LONG VARCHAR,
TEXT, or IMAGE entries, they may span more than one database page. In
addition to the default checks, this option instructs the database server to
check all pages used by each entry.

WITH EXPRESS CHECK In addition to the default and WITH DATA
checks, check that the number of rows in the table matches the number of
entries in the index. This option does not perform individual index lookups
for each row. This option can significantly improve performance when
validating large databases with a small cache.

WITH FULL CHECK In addition to the default checks, carry out a DATA
CHECK and an INDEX CHECK.

WITH INDEX CHECK In addition to the default checks, validate each
index on the table. For information on index validation, see "VALIDATE
INDEX statement" on page 585.

With no additional options, VALIDATE TABLE scans every row of a table.
For each entry that is in an index, it checks the validity of the database page
that the entry starts on, and checks that an entry for the row exists in the
proper index. The VALIDATE TABLE statement also ensures, for each
index in the table, that the number of rows referenced by the index is not
greater than the number of rows in the table.

This default validation is sufficient for most purposes. Options are provided
for additional validation, which may be helpful in unusual circumstances.
Depending on the contents of your database, these additional checks may
significantly extend the time required to validate.

If the table is corrupt, an error is reported. If you do have errors reported, you
can drop all of the indexes and keys on a table and recreate them. Any
foreign keys to the table will also need to be recreated. Another solution to
errors reported by VALIDATE TABLE is to unload and reload your entire
database. You should use the -u option of DBUNLOAD so that it will not
try to use a possibly corrupt index to order the data.

Must be the owner of the table, have DBA authority, or have REMOTE DBA
authority (SQL Remote).

None.

Description

Syntax

Parameters

Usage

Permissions

Side effects

Chapter 4 SQL Statements

587

"The Validation utility" on page 526 of the book ASA Database
Administration Guide

"VALIDATE INDEX statement" on page 585
"sa_validate system procedure" on page 720

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase VALIDATE TABLE is not supported in Adaptive Server
Enterprise. The procedure dbcc checktable provides a similar function.

♦ WITH EXPRESS CHECK option This option is only supported for
databases created with Adaptive Server Anywhere version 7.0 or later.

See also

Standards and
compatibility

WAITFOR statement

588

WAITFOR statement
Use this statement to delay processing for the current connection for a
specified amount of time or until a given time.

WAITFOR { DELAY time | TIME time }

time: string

If DELAY is used, processing is suspended for the given interval. If TIME is
specified, processing is suspended until the server time reaches the time
specified.

If the current server time is greater than the time specified, processing is
suspended until that time on the following day.

WAITFOR provides an alternative to the following statement, and may be
useful for customers who choose not to license Java in the database:

call java.lang.Thread.sleep(<time_to_wait_in_millisecs>
)

In many cases, scheduled events are a better choice than using WAITFOR
TIME, because scheduled events execute on their own connection.

None

The implementation of this statement uses a worker thread while it is
waiting. This uses up one of the threads specified by the -gn database option
(the default is 20 threads).

"CREATE EVENT statement" on page 285

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase This statement is also implemented by Adaptive Server
Enterprise.

The following example waits for three seconds:

WAITFOR DELAY ’00:00:03’

The following example waits for 0.5 seconds (500 milliseconds):

WAITFOR DELAY ’00:00:00:500’

The following example waits until 8 PM:

WAITFOR TIME ’20:00’

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Examples

Chapter 4 SQL Statements

589

WHENEVER statement [ESQL]
Use this statement to specify error handling in embedded SQL programs.

WHENEVER { SQLERROR | SQLWARNING | NOTFOUND }
GOTO label | STOP | CONTINUE | { C-code; }

label : identifier

The WHENEVER statement is used to trap errors, warnings and exceptional
conditions encountered by the database when processing SQL statements.
The statement can be put anywhere in an embedded SQL program and does
not generate any code. The preprocessor will generate code following each
successive SQL statement. The error action remains in effect for all
embedded SQL statements from the source line of the WHENEVER
statement until the next WHENEVER statement with the same error
condition, or the end of the source file.

Errors based on source position
The error conditions are in effect based on positioning in the C language
source file, not based on when the statements are executed.

The default action is CONTINUE.

Note that this statement is provided for convenience in simple programs.
Most of the time, checking the sqlcode field of the SQLCA (SQLCODE)
directly is the easiest way to check error conditions. In this case, the
WHENEVER statement would not be used. If fact, all the WHENEVER
statement does is cause the preprocessor to generate an if (SQLCODE) test
after each statement.

None.

None.

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

The following are examples of the WHENEVER statement:

EXEC SQL WHENEVER NOTFOUND GOTO done;
EXEC SQL WHENEVER SQLERROR

{
PrintError(&sqlca);
return(FALSE);

};

Description

Syntax

Usage

Permissions

Side effects

Standards and
compatibility

Example

WHILE statement [T-SQL]

590

WHILE statement [T-SQL]
Use this statement to provide repeated execution of a statement or compound
statement.

WHILE search-condition-statement

The WHILE conditional affects the execution of only a single SQL
statement, unless statements are grouped into a compound statement between
the keywords BEGIN and END.

The BREAK statement and CONTINUE statement can be used to control
execution of the statements in the compound statement. The BREAK
statement terminates the loop, and execution resumes after the END keyword
marking the end of the loop. The CONTINUE statement causes the WHILE
loop to restart, skipping any statements after the CONTINUE.

None.

None.

"LOOP statement" on page 481

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Supported by Adaptive Server Enterprise.

The following code illustrates the use of WHILE:

WHILE (SELECT AVG(unit_price) FROM product) < $30
BEGIN

UPDATE product
SET unit_price = unit_price + 2
IF (SELECT MAX(unit_price) FROM product) > $50

BREAK
END

The BREAK statement breaks the WHILE loop if the most expensive
product has a price above $50. Otherwise, the loop continues until the
average price is greater than or equal to $30.

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

Chapter 4 SQL Statements

591

WRITETEXT statement [T-SQL]
Permits non-logged, interactive updating of an existing text or image
column.

WRITETEXT table-name.column-name
text_pointer [WITH LOG] data

Updates an existing text or image value. The update is not recorded in the
transaction log, unless the WITH LOG option is supplied. You cannot carry
out WRITETEXT operations on views.

None.

WRITETEXT does not fire triggers, and by default WRITETEXT operations
are not recorded in the transaction log.

"READTEXT statement [T-SQL]" on page 504
"TEXTPTR function" on page 188

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Supported by Adaptive Server Enterprise.

The following code fragment illustrates the use of the WRITETEXT
statement. The SELECT statement in this example returns a single row. The
example replaces the contents of the column_name column on the specified
row with the value newdata.

EXEC SQL create variable textpointer binary(16);
EXEC SQL set textpointer =

(SELECT textptr(column_name)
FROM table_name WHERE id = 5);

EXEC SQL writetext table_name.column_name
textpointer ’newdata’;

Description

Syntax

Usage

Permissions

Side effects

See also

Standards and
compatibility

Example

WRITETEXT statement [T-SQL]

592

593

P A R T T W O

System Objects

This part describes system tables, views, and procedures.

594

595

C H A P T E R 5

System Tables

The structure of every database is described in a number of system tables.

The system tables are owned by the SYS user ID. The contents of these
tables can be changed only by the database system. The UPDATE, DELETE,
and INSERT commands cannot be used to modify the contents of these
tables. Further, the structure of these tables cannot be changed using the
ALTER TABLE and DROP commands.

This chapter contains descriptions of each of the system tables. Several of the
columns have only two possible values. Usually these values are "Y" and
"N" for "yes" and "no" respectively. These columns are designated by
"(Y/N)".

Topic Page

DUMMY system table 598

SYSARTICLE system table 599

SYSARTICLECOL system table 600

SYSATTRIBUTE system table 601

SYSATTRIBUTENAME system table 602

SYSCAPABILITY system table 603

SYSCAPABILITYNAME system table 604

SYSCOLLATION system table 605

SYSCOLLATIONMAPPINGS system table 606

SYSCOLPERM system table 607

SYSCOLSTAT system table 608

SYSCOLUMN system table 609

SYSDOMAIN system table 611

SYSEVENT system table 612

SYSEVENTTYPE system table 614

SYSEXTENT system table 615

About this chapter

Contents

DUMMY system table

596

SYSEXTERNLOGINS system table 616

SYSFILE system table 617

SYSFKCOL system table 618

SYSFOREIGNKEY system table 619

SYSGROUP system table 621

SYSINDEX system table 622

SYSINFO system table 624

SYSIXCOL system table 626

SYSJAR system table 627

SYSJARCOMPONENT system table 628

SYSJAVACLASS system table 629

SYSLOGIN system table 631

SYSOPTBLOCK system table 632

SYSOPTION system table 633

SYSOPTJOINSTRATEGY system table 634

SYSOPTORDER system table 635

SYSOPTQUANTIFIER system table 636

SYSOPTREQUEST system table 637

SYSOPTREWRITE system table 638

SYSOPTSTAT system table 639

SYSPROCEDURE system table 640

SYSPROCPARM system table 642

SYSPROCPERM system table 644

SYSPUBLICATION system table 645

SYSREMOTEOPTION system table 646

SYSREMOTEOPTIONTYPE system table 647

SYSREMOTETYPE system table 648

SYSREMOTEUSER system table 649

SYSSCHEDULE system table 651

SYSSERVERS system table 653

SYSSQLSERVERTYPE system table 654

SYSSUBSCRIPTION system table 655

Chapter 5 System Tables

597

SYSSYNC system table 656

SYSTABLE system table 657

SYSTABLEPERM system table 660

SYSTRIGGER system table 662

SYSTYPEMAP system table 665

SYSUSERMESSAGES system table 666

SYSUSERPERM system table 667

SYSUSERTYPE system table 669

Other system tables 671

DUMMY system table

598

DUMMY system table

Column name Column type Column
constraint

Table
constraints

dummy_col INTEGER NOT NULL

The DUMMY table is provided as a read-only table that always has exactly
one row. This can be useful for extracting information from the database, as
in the following example that gets the current user ID and the current date
from the database.

SELECT USER, today(*) FROM SYS.DUMMY

Use of FROM SYS.DUMMY in the FROM clause is optional. If no table is
specified in the FROM clause, the table is assumed to be SYS.DUMMY. The
above example could be written as follows:

SELECT USER, today(*)

dummy_col This column is not used. It is present because a table cannot
be created with no columns.

Chapter 5 System Tables

599

SYSARTICLE system table

Column name Column type Column
constraint

Table constraints

publication_id UNSIGNED
INT

NOT NULL Primary key, foreign key
references
SYSPUBLICATION

table_id UNSIGNED
INT

NOT NULL Primary key, foreign key
references SYSTABLE

where_expr LONG
VARCHAR

subscribe_by_expr LONG
VARCHAR

query CHAR(1) NOT NULL

Each row of SYSARTICLE describes an article in a SQL Remote
publication.

publication_id The publication of which this article is a part.

table_id Each article consists of columns and rows from a single table.
This column contains the table ID for this table.

where_expr For articles that contain a subset of rows defined by a
WHERE clause, this column contains the search condition.

subscribe_by_expr For articles that contain a subset of rows defined by
a SUBSCRIBE BY expression, this column contains the expression.

SYSARTICLECOL system table

600

SYSARTICLECOL system table

Column name Column
type

Column
constraint

Table constraints

publication_id UNSIGNED
INT

NOT NULL Primary Key, foreign key
references SYSARTICLE

table_id UNSIGNED
INT

NOT NULL Primary Key, foreign key
references SYSARTICLE,
SYSCOLUMN

column_id UNSIGNED
INT

NOT NULL Primary Key, foreign key
references SYSCOLUMN

Each row identifies a column in an article.

publication_id A unique identifier for the publication of which the
column is a part.

table_id The table to which the column belongs.

column_id The column identifier, from the SYSCOLUMN system table.

Chapter 5 System Tables

601

SYSATTRIBUTE system table

Column name Column
type

Column
constraint

object_type CHAR(1) NOT NULL

object_id UNSIGNED
INT

NOT NULL

attribute_id UNSIGNED
INT

NOT NULL

sub_object_id1 UNSIGNED
INT

sub_object_id2 UNSIGNED
INT

attribute_value LONG
VARCHAR

SYSATTRIBUTE and SYSATTRIBUTENAME were created so that new
information about database objects could be added to the system tables
without changing the schema. For version 8.0.1, they only contain
information about the new attribute PCTFREE, which applies to tables. Each
row of SYSATTRIBUTE describes one system object, such as a particular
table. Rows are added when the attribute is specified; for example, every
table with a PCTFREE setting is added to SYSATTRIBUTE.

object_type The type of object that the attribute describes. For example, T
refers to a table.

object_id The id of the particular object. For example, when object_type
is T, the object_id is the table_id from SYSTABLE.

attribute_id The attribute that is being described. For example, 1 is
PCTFREE. A descriptive name for each attribute ID is stored in
SYSATTRIBUTENAME.

sub_object_id1 Additional information about the attribute, or NULL if
there is none. For the PCTFREE attribute, this column is NULL.

sub_object_id2 Additional information about the attribute, or NULL if
there is none. For the PCTFREE attribute, this column is NULL.

attribute_value The value of the attribute. For example, for the
PCTFREE attribute the value of this field is the percentage of free space left
in each table page.

SYSATTRIBUTENAME system table

602

SYSATTRIBUTENAME system table

Column name Column
type

Column
constraint

attribute_id UNSIGNED
INT

NOT NULL

attribute_name CHAR(128) NOT NULL

This table provides attribute names for the attribute IDs that are used in
SYSATTRIBUTE.

object_type The type of object that the attribute describes.

attribute_id The ID of the attribute.

attribute_name The name of the attribute.

Chapter 5 System Tables

603

SYSCAPABILITY system table

Column name Column
type

Column
constraint

Table constraints

capid INTEGER NOT NULL Primary key. Foreign key
references
SYSCAPABILITYNAME

srvid INTEGER NOT NULL Primary key. Foreign key
references SYSSERVERS

capvalue CHAR(128) NOT NULL

Each row identifies a capability of a remote server.

capid The capability, as listed in SYSCAPABILITYNAME.

srvid The server to which the capability applies, as listed in
SYSSERVERS.

capvalue The value of the capability.

SYSCAPABILITYNAME system table

604

SYSCAPABILITYNAME system table

Column name Column
type

Column
constraint

Table constraints

capid INTEGER NOT NULL Primary key

capname CHAR(128) NOT NULL

Each row identifies a capability.

capid The capability ID.

capname The name of the capability.

Chapter 5 System Tables

605

SYSCOLLATION system table

Column name Column type Column
constraint

Table
constraint

collation_id SMALLINT NOT NULL Primary key

collation_label CHAR(10) NOT NULL

collation_name CHAR(128) NOT NULL

collation_order BINARY(1280) NOT NULL

This table contains the collation sequences available to Adaptive Server
Anywhere. There is no way to modify the contents of this table.

collation_id A unique number identifying the collation sequence. The
collation sequence with collation_id 2 is the sequence used in previous
versions of Adaptive Server Anywhere, and is the default when a database is
created.

collation_label A string identifying the collation sequence. The collation
sequence to be used is selected when the database is created, by specifying
the collation label with the -z option.

collation_name The name of the collation sequence.

collation_order An array of bytes defining how each of the 256 character
codes are treated for comparison purposes. All string comparisons translate
each character according to the collation order table before comparing the
characters. For the different ASCII code pages, the only difference is how
accented characters are sorted. In general, an accented character is sorted as
if it were the same as the nonaccented character.

SYSCOLLATIONMAPPINGS system table

606

SYSCOLLATIONMAPPINGS system table

Column name Column type Column
constraint

Table
Constraints

collation_label CHAR(10) NOT NULL Primary key

collation_name CHAR(128) NOT NULL

cs_label CHAR(128)

so_case_label CHAR(128)

so_caseless_label CHAR(128)

jdk_label CHAR(128)

collation_label A string identifying the collation sequence. The collation
sequence to be used is selected when the database is created, by specifying
the collation label with the -z option.

collation_name The collation name used to describe the character set
encoding.

cs_label The GPG character set mapping label.

so_case_label The collation sort order for case-sensitive GPG character
set mapping.

so_caseless_label The collation sort order for case-insensitive GPG
character set mapping.

jdk_label The JDK character set label.

For newly-created databases, this table contains only one row with the
database collation mapping. For databases created with version 7.x or earlier
of Adaptive Server Anywhere, this table includes collation mappings for all
built-in collations.

Chapter 5 System Tables

607

SYSCOLPERM system table

Column name Column type Column
constraint

Table constraint

table_id UNSIGNED INT NOT NULL Primary key, foreign
key references
SYSCOLUMN

grantee UNSIGNED INT NOT NULL Primary key, foreign
key references
SYSUSERPERM.user_
id

grantor UNSIGNED INT NOT NULL Primary key, foreign
key references
SYSUSERPERM.user_
id

column_id UNSIGNED INT NOT NULL Primary key, foreign
key references
SYSCOLUMN

privilege_type SMALLINT NOT NULL Primary key

is_grantable CHAR(1) NOT NULL

The GRANT statement can give UPDATE permission to individual columns
in a table. Each column with UPDATE permission is recorded in one row of
SYSCOLPERM.

table_id The table number for the table containing the column.

grantee The user number of the user ID that is given UPDATE permission
on the column. If the grantee is the user number for the special PUBLIC
user ID, the UPDATE permission is given to all user IDs.

grantor The user number of the user ID that grants the permission.

column_id This column number, together with the table_id, identifies the
column for which UPDATE permission has been granted.

privilege_type The number in this column indicates the kind of column
permission (REFERENCES, SELECT or UPDATE).

is_grantable (Y/N) Indicates if the permission on the column was granted
WITH GRANT OPTION.

SYSCOLSTAT system table

608

SYSCOLSTAT system table

Column
name

Column type Column
constraint

Table constraints

table_id UNSIGNED INT NOT NULL Primary key

column_id UNSIGNED INT NOT NULL Primary key

format_id SMALL INT NOT NULL

update_time TIMESTAMP NOT NULL

density FLOAT NOT NULL

max_steps SMALL INT NOT NULL

actual_steps SMALL INT NOT NULL

step_values LONG BINARY

frequencies LONG BINARY

This table stores the column statistics that are stored as histograms and used
by the optimizer. The contents of this table are best retrieved using the
sa_get_histogram stored procedure.

table_id A number that uniquely identifies the table or view to which this
column belongs.

column_id A number that uniquely identifies the column.

format_id Internal field used to determine the format of the rest of the
row.

update_time The time of the last update of this row.

density An estimate of the weighted average selectivity of a single value
for the column, not counting the selectivity of large single value selectivities
stored in the row.

max_steps The maximum number of steps allowed in the histogram.

actual_steps The number of steps actually used at this time.

step_values Boundary values of the histogram steps.

frequencies Selectivities of histogram steps.

Chapter 5 System Tables

609

SYSCOLUMN system table

Column
name

Column type Column
constraint

Table constraints

table_id UNSIGNED INT NOT NULL Primary key, foreign key
references
SYSTABLE.table_id

column_id UNSIGNED INT NOT NULL Primary key

pkey CHAR(1) NOT NULL

domain_id SMALLINT NOT NULL foreign key references
SYSDOMAIN.domain_id

nulls CHAR(1) NOT NULL

width SMALLINT NOT NULL

scale SMALLINT NOT NULL

unused INTEGER NOT NULL

max_identity BIGINT NOT NULL

column_name CHAR(128) NOT NULL

remarks LONG
VARCHAR

"default" LONG
VARCHAR

"check" LONG
VARCHAR

user_type SMALLINT Foreign key references
SYSUSERTYPE.type_id

format_str CHAR(128)

column_type CHAR(1) NOT NULL

remote_name VARCHAR(128)

remote_type UNSIGNED INT

Each column in every table or view is described by one row in
SYSCOLUMN.

table_id A number that uniquely identifies the table or view to which this
column belongs.

SYSCOLUMN system table

610

column_id Each table starts numbering columns at 1. The order of column
numbers determines the order that columns are displayed in the command

SELECT * FROM TABLE

pkey (Y/N) Indicate whether this column is part of the primary key for the
table.

domain_id The data type for the column, indicated by a data type number
listed in the SYSDOMAIN table.

nulls (Y/N) Indicates whether the NULL value is allowed in this column.

width The length of a string column, the precision of numeric columns or
the number of bytes of storage for any other data type.

scale The number of digits after the decimal point for numeric data type
columns, and zero for all other data types.

unused Not used.

max_identity The largest value of the column, if it is an
AUTOINCREMENT, IDENTITY, or GLOBAL AUTOINCREMENT
column.

column_name The name of the column.

remarks A comment string.

default The default value for the column. This value is only used when an
INSERT statement does not specify a value for the column.

check Any CHECK condition defined on the column.

user_type If the column is defined on a user-defined data type, the data
type is held here.

format_str Currently unused.

column_type The type of column. Contains C for a computed column and
R for other columns.

remote_name The name of the remote column.

remote_type The type of the remote column. This value is defined by the
remote server or interface.

Chapter 5 System Tables

611

SYSDOMAIN system table

Column name Column type Column
constraint

Table
constraints

domain_id SMALLINT NOT NULL Primary key

domain_name CHAR(128) NOT NULL

type_id SMALLINT NOT NULL

precision SMALLINT

Each of the predefined data types (sometimes called domains) is assigned a
unique number. The SYSDOMAIN table is provided for informational
purposes, to show the association between these numbers and the appropriate
data types. This table is never changed.

domain_id The unique number assigned to each data type. These numbers
cannot be changed.

domain_name A string containing the data type normally found in the
CREATE TABLE command, such as char or integer.

type_id The ODBC data type. This corresponds to "data_type" in the
Transact-SQL-compatibility dbo.SYSTYPES table.

precision The number of significant digits that can be stored using this
data type. The column value is NULL for non-numeric data types.

SYSEVENT system table

612

SYSEVENT system table

Column name Column type Column
constraint

Table
constraints

event_id INTEGER NOT NULL Primary key

creator UNSIGNED INT NOT NULL

event_name VARCHAR(128) NOT NULL

enabled CHAR(1) NOT NULL

location CHAR(1) NOT NULL

event_type_id INTEGER

action LONG VARCHAR

external_action LONG VARCHAR

condition LONG VARCHAR

remarks LONG VARCHAR

source LONG VARCHAR

Each row in SYSEVENT describes an event created with CREATE EVENT.

event_id The unique number assigned to each event.

creator The user number of the owner of the event. The name of the user
can be found by looking in SYSUSERPERM.

event_name The name of the event.

enabled (Y/N) Indicates whether or not the event is allowed to fire.

location The location where the event is to fire:

♦ C = consolidated

♦ R = remote

♦ A = all

event_type_id For system events, the event type as listed in
SYSEVENTTYPE.

action The event handler definition.

external_action Not used.

Chapter 5 System Tables

613

condition The WHERE condition used to control firing of the event
handler.

remarks A comment string.

source This column contains the original source for the event handler if
the preserve_source_format option is ON. It is used to maintain the
appearance of the original text. For more information, see
"PRESERVE_SOURCE_FORMAT option" on page 593 of the book ASA
Database Administration Guide.

SYSEVENTTYPE system table

614

SYSEVENTTYPE system table

Column name Column type Column
constraint

Table
constraints

event_type_id INTEGER NOT NULL Primary key

name VARCHAR(128) NOT NULL

description LONG VARCHAR

This table lists the system event types which can be referenced by CREATE
EVENT.

event_type_id The unique number assigned to each event type.

name The name of the system event type.

description A description of the system event type.

Chapter 5 System Tables

615

SYSEXTENT system table

Column name Column type Column
constraint

Table
constraint

file_id SMALLINT NOT NULL Primary key,
foreign key
references
SYSFILE

extent_id SMALLINT NOT NULL Primary key

first_page INTEGER NOT NULL

last_page INTEGER NOT NULL

file_name LONG VARCHAR NOT NULL

This table is not used.

SYSEXTERNLOGINS system table

616

SYSEXTERNLOGINS system table

Column name Column type Column
constraint

Table
constraints

user_id UNSIGNED INT NOT NULL Primary key.
Foreign key to
SYSUSERPERM

srvid INTEGER NOT NULL Primary key.
Foreign key to
SYSSERVERS

remote_login VARCHAR(128)

remote_password VARBINARY(128)

Each row describes an external login for remote data access.

user_id The user ID on the local database.

srvid The remote server, as listed in SYSSERVERS.

remote_login The login name for this user, for the remote server.

remote_password The password for this user, for the remote server.

Chapter 5 System Tables

617

SYSFILE system table

Column name Column type Column
constraint

Table
constraint

file_id SMALLINT NOT NULL Primary key

file_name LONG VARCHAR NOT NULL Unique index

dbspace_name CHAR(128) NOT NULL

store_type CHAR(8) NOT NULL

Every database consists of one or more operating system files. Each file is
recorded in SYSFILE.

file_id Each file in a database is assigned a unique number. This file
identifier is the primary key for SYSFILE. All system tables are stored in
file_id 0.

file_name The database name is stored when a database is created. This
name is for informational purposes only.

dbspace_name Every file has a dbspace name that is unique. It is used in
the CREATE TABLE command.

store_type This field is for internal use.

SYSFKCOL system table

618

SYSFKCOL system table

Column name Column
type

Column
constraint

Table constraints

foreign_table_id UNSIGNED
INT

NOT NULL Primary key. Foreign key
references
SYSCOLUMN.table_id.
Foreign key references
SYSFOREIGNKEY

foreign_key_id SMALLINT NOT NULL Primary key, foreign key
references
SYSFOREIGNKEY.
foregin_key_id

foreign_column_id UNSIGNED
INT

NOT NULL Primary key, Foreign key
references SYSCOLUMN
column_id

primary_column_id UNSIGNED
INT

NOT NULL

Each row of SYSFKCOL describes the association between a foreign
column in the foreign table of a relationship and the primary column in the
primary table.

foreign_table_id The table number of the foreign table.

foreign_key_id The key number of the FOREIGN KEY for the foreign
table. Together, foreign_table_id and foreign_key_id uniquely identify one
row in SYSFOREIGNKEY. The table number for the primary table can be
obtained from that row (using the SYSFOREIGNKEY table).

foreign_column_id This column number and the foreign_table_id
identify the foreign column description in SYSCOLUMN.

primary_column_id This column number and the primary_table_id
obtained from SYSFOREIGNKEY identify the primary column description
in SYSCOLUMN.

Chapter 5 System Tables

619

SYSFOREIGNKEY system table

Column name Column type Column
constraint

Table constraints

foreign_table_id UNSIGNED INT NOT NULL Primary key, foreign
key references
SYSTABLE.table_id.
Unique index

foreign_key_id SMALLINT NOT NULL Primary key

primary_table_id UNSIGNED INT NOT NULL foreign key
references
SYSTABLE.table_id

root INTEGER NOT NULL

check_on_commit CHAR(1) NOT NULL

nulls CHAR(1) NOT NULL

role CHAR(128) NOT NULL Unique index

remarks LONG
VARCHAR

primary_index_id UNISGNED INT NOT NULL

fk_not_enforced CHAR(1) NOT NULL

hash_limit SMALLINT NOT NULL

A foreign key is a relationship between two tables—the foreign table and the
primary table. Every foreign key is defined by one row in
SYSFOREIGNKEY and one or more rows in SYSFKCOL.
SYSFOREIGNKEY contains general information about the foreign key
while SYSFKCOL identifies the columns in the foreign key and associates
each column in the foreign key with a column in the primary key of the
primary table.

foreign_table_id The table number of the foreign table.

foreign_key_id Each foreign key has a foreign key number that is unique
with respect to:

♦ The key number of all other foreign keys for the foreign table

♦ The key number of all foreign keys for the primary table

♦ The index number of all indexes for the foreign table

primary_table_id The table number of the primary table.

SYSFOREIGNKEY system table

620

root Foreign keys are stored in the database as B-trees. The root identifies
the location of the root of the B-tree in the database file.

check_on_commit (Y/N) Indicates whether INSERT and UPDATE
commands should wait until the next COMMIT command to check if foreign
keys are valid. A foreign key is valid if, for each row in the foreign table, the
values in the columns of the foreign key either contain the NULL value or
match the primary key values in some row of the primary table.

nulls (Y/N) Indicates whether the columns in the foreign key are allowed
to contain the NULL value. Note that this setting is independent of the nulls
setting in the columns contained in the foreign key.

role The name of the relationship between the foreign table and the
primary table. Unless otherwise specified, the role name will be the same as
the name of the primary table. The foreign table cannot have two foreign
keys with the same role name.

remarks A comment string.

primary_index_id The index_id of the primary key, or root if the primary
key is part of a combined index.

fk_not_enforced (Y/N) Is N if one of the tables is remote.

hash_limit Contains information about physical index representation.

Chapter 5 System Tables

621

SYSGROUP system table

Column
name

Column type Column
constraint

Table constraints

group_id UNSIGNED INT NOT NULL Primary key, foreign key
references
SYSUSERPERM.user_id

group_member UNSIGNED INT NOT NULL Primary key, foreign key
references
SYSUSERPERM.user_id

There is one row in SYSGROUP for every member of every group. This
table describes a many-to-many relationship between groups and members.
A group may have many members, and a user may be a member of many
groups.

group_id The user number of group.

group_member The user number of a member.

SYSINDEX system table

622

SYSINDEX system table

Column
name

Column type Column
constraint

Table constraints

table_id UNSIGNED INT NOT NULL Primary key, Unique index.
Foreign key references
SYSTABLE

index_id UNSIGNED INT NOT NULL Primary key

root INTEGER NOT NULL

file_id SMALLINT NOT NULL

"unique" CHAR(1) NOT NULL

creator UNSIGNED INT NOT NULL Foreign key references
SYSUSERPERM.user_id

index_name CHAR(128) NOT NULL Unique index

hash_limit SMALLINT NOT NULL

index_owner CHAR(4) NOT NULL

index_type CHAR(4) NOT NULL

remarks LONG,
VARCHAR

Each index in the database is described by one row in SYSINDEX. Each
column in the index is described by one row in SYSIXCOL.

table_id Uniquely identifies the table to which this index applies.

index_id Each index for one particular table is assigned a unique index
number.

root Indexes are stored in the database as B-trees. The root identifies the
location of the root of the B-tree in the database file.

file_id The index is completely contained in the file with this file_id (see
SYSFILE).

unique Indicate whether the index is a unique index ("Y"), a non-unique
index ("N"), or a unique constraint ("U"). A unique index prevents two rows
in the indexed table from having the same values in the index columns.

creator The user number of the creator of the index. This user is always
the same as the creator of the table identified by table_id.

Chapter 5 System Tables

623

index_name The name of the index. A user ID cannot have two indexes
with the same name in tables that it owns.

index_owner The owner. This field is always SA.

index_type The type. This field is always SA.

remarks A comment string.

SYSINFO system table

624

SYSINFO system table

Column name Column type Column
constraint

Table
constraints

page_size INTEGER NOT NULL

encryption CHAR(1) NOT NULL

blank_padding CHAR(1) NOT NULL

case_sensitivity CHAR(1) NOT NULL

default_collation CHAR(10)

database_version SMALLINT NOT NULL

classes_version CHAR(10)

This table indicates the database characteristics, as defined when the
database was created. It always contains only one row.

page_size The page size specified, in bytes. The default value is 1024.

encryption (Y/N) Indicates whether the -e switch was used with DBINIT.

blank_padding (Y/N) Indicates whether the database was created to use
blank padding for string comparisons in the database (-b switch was used
with dbinit).

case_sensitivity (Y/N) Indicates whether the database is created as case
sensitive. Case sensitivity affects value comparisons, but not table and
column name comparisons. For example, if a database is case sensitive, table
names such as SYSCATALOG can be specified in either case, but in a case-
sensitive database ’abc’ = ’ABC’ is not true.

default_collation A string corresponding to the collation_label in
SYSCOLLATE, which also corresponds to the collation sequence specified
with DBINIT. The default value corresponds to the multilingual collation
sequence (code page 850), which was the default prior to Watcom SQL 3.2.
The collation sequence is used for all string comparisons, including searches
for character strings as well as column and table name comparison.

database_version A small integer value indicating the database format.
As newer versions become available, new features may require that the
format of the database file change. The version number Adaptive Server
Anywhere software to determine if this database was created with a newer
version of the software and thus, cannot be understood by the software in
use.

Chapter 5 System Tables

625

classes_version A small string describing the current version of the
SYS.JAVA.CLASSES library that is currently installed on your computer.

SYSIXCOL system table

626

SYSIXCOL system table

Column name Column type Column
constraint

Table constraints

table_id UNSIGNED
INT

NOT NULL Primary key. Foreign
key references
SYSCOLUMN. Foreign
key references
SYSINDEX.

index_id UNSIGNED
INT

NOT NULL Primary key. Foreign
key references
SYSINDEX

sequence SMALLINT NOT NULL Primary key

column_id UNSIGNED
INT

NOT NULL Foreign key references
SYSCOLUMN

"order" CHAR(1) NOT NULL

Every index has one row in SYSIXCOL for each column in the index.

table_id Identifies the table to which the index applies.

index_id Identifies in which index this column is used. Together, table_id
and index_id identify one index described in SYSINDEX.

sequence Each column in an index is assigned a unique number starting
at 0. The order of these numbers determines the relative significance of the
columns in the index. The most important column has sequence number 0.

column_id The column number identifies which column is indexed.
Together, table_id and column_id identify one column in SYSCOLUMN.

order (A/D) Indicate whether this column in the index is kept in ascending
or descending order.

Chapter 5 System Tables

627

SYSJAR system table

Column name Column type Column
constraint

Table
constraints

jar_id INTEGER NOT NULL Primary key

creator UNSIGNED INT NOT NULL

jar_name LONG
VARCHAR

NOT NULL Unique index

jar_file LONG
VARCHAR

create_time TIMESTAMP NOT NULL

update_time TIMESTAMP NOT NULL

remarks LONG
VARCHAR

jar_id A field containing the id of the jar file. This field also references
the SYSJAR system table.

creator The is of the creator of the jar file.

jar_name The name of the jar file.

jar_file The file name of the jar file.

create_time The time the jar file was created.

update_time The time the jar file was last updated.

remarks A comment field.

SYSJARCOMPONENT system table

628

SYSJARCOMPONENT system table

Column name Column type Column
constraint

Table
constraints

component_id INTEGER NOT NULL Primary key

jar_id INTEGER Foreign key
references
SYSJAR

component_name LONG VARCHAR

component_type CHAR(1)

create_time TIMESTAMP NOT NULL

contents LONG BINARY

remarks LONG VARCHAR

component_id The primary key containing the id of the component.

jar_id A field containing the ID number of the jar. This field also
references the SYSJAR system table.

component_name The name of the component.

component_type The type of the component.

create_time A field containing the creation time of the component.

contents The byte code of the jar file.

remarks A comment field.

Chapter 5 System Tables

629

SYSJAVACLASS system table

Column name Column type Column
constraint

Table
constraints

class_id INTEGER NOT NULL Primary key

replaced_by INTEGER Foreign key
references
SYSJAVACLAS
SES. class_id

creator UNSIGNED INT NOT NULL Foreign key
references
SYSUSERPER
M.user_id

jar_id INTEGER

type_id SMALLINT Foreign key
references
SYSUSERTYPE

class_name LONG
VARCHAR

NOT NULL

public CHAR(1) NOT NULL

component_id INTEGER Foreign key
references
SYSJARCOMP
ONENT

create_time TIMESTAMP NOT NULL

update_time TIMESTAMP NOT NULL

class_descriptor LONG BINARY

remarks LONG
VARCHAR

The SYSJAVACLASS system table contains all information related to Java
classes.

class_id This field contains the id of the java class. Also the primary key
for the table.

replaced_by A field that references the primary key field, class_id.

creator This field contains the user_id of the creator of the class. This
field references the user_id field in the SYSUSERPERM system table to
obtain the name of the user.

SYSJAVACLASS system table

630

jar_id This field contains the id of the jar file from which the class came.

type_id This field contains the id of the user type. This field references
the SYSUSERTYPE system table to obtain the id of the user.

class_name This field contains the name of the Java class.

public This field determines whether or not the class is public or private.

component_id This field, which references the SYSJARCOMPONENT
system table contains the id of the component.

create_time Contains the creation time of the component.

update_time Contains the last update time of the component.

class_descriptor The byte code of the jar file.

remarks Contains a comment string.

Chapter 5 System Tables

631

SYSLOGIN system table

Column name Column type Column
constraint

Table
constraints

integrated_login_id CHAR(128) NOT NULL Primary key

login_uid UNSIGNED
INT

NOT NULL Foreign key
references
SYSUSERPERM.
user_id

Remarks LONG
VARCHAR

This table contains all the User Profile names that can be used to connect to
the database using an integrated logon. As a security measure, only users
with DBA authority can view the contents of this table.

integrated_login_id A string value containing the User Profile name that
is used to map to a user ID in the database. When a user successfully logs on
using this User Profile name, and the database is enabled to accept integrated
logons, the user can connect to the database without providing a user ID or
password.

login_uid A foreign key to the system table SYSUSERPERM.

remarks A comment string

SYSOPTBLOCK system table

632

SYSOPTBLOCK system table
This table is reserved for system use.

Chapter 5 System Tables

633

SYSOPTION system table

Column name Column type Column
constraint

Table
constraints

user_id UNSIGNED INT NOT NULL Primary key,
foreign key
references
SYSUSERPER
M

"option" CHAR(128) NOT NULL Primary key

"setting" LONG
VARCHAR

NOT NULL

Options settings are stored in the SYSOPTION table by the SET command.
Each user can have their own setting for each option. In addition, settings for
the PUBLIC user ID define the default settings to be used for user IDs that
do not have their own setting.

user_id The user number to whom this option setting applies.

option The name of the option.

setting The current setting for the named option.

SYSOPTJOINSTRATEGY system table

634

SYSOPTJOINSTRATEGY system table
This table is reserved for system use.

Chapter 5 System Tables

635

SYSOPTORDER system table
This table is reserved for system use.

SYSOPTQUANTIFIER system table

636

SYSOPTQUANTIFIER system table
This table is reserved for system use.

Chapter 5 System Tables

637

SYSOPTREQUEST system table
This table is reserved for system use.

SYSOPTREWRITE system table

638

SYSOPTREWRITE system table
This table is reserved for system use.

Chapter 5 System Tables

639

SYSOPTSTAT system table
This table stores information about the cost model. It is reserved for system
use.

SYSPROCEDURE system table

640

SYSPROCEDURE system table

Column name Column type Column
constraint

Table constraints

proc_id UNSIGNED INT NOT NULL Primary key

creator UNSIGNED INT NOT NULL Unique index. Foreign
key references
SYSUSERPERM.user
_id

proc_name CHAR(128) NOT NULL

proc_defn LONG VARCHAR

remarks LONG VARCHAR

replicate CHAR(1) NOT NULL

srvid INTEGER Foreign key references
SYSSERVERS

source LONG VARCHAR

Each procedure in the database is described by one row in
SYSPROCEDURE.

proc_id Each procedure is assigned a unique number (the procedure
number), which is the primary key for SYSPROCEDURE.

creator This user number identifies the owner of the procedure. The name
of the user can be found by looking in SYSUSERPERM.

proc_name The name of the procedure. One creator cannot have two
procedures with the same name.

proc_defn The command that was used to create the procedure.

remarks A comment string.

replicate (Y/N) Indicates whether the procedure is a primary data source
in a Replication Server installation.

srvid If a procedure on a remote database server, indicates the remote
server.

Chapter 5 System Tables

641

source This column contains the original source for the procedure if the
preserve_source_format option is ON. It is used to maintain the appearance
of the original text. For more information, see
"PRESERVE_SOURCE_FORMAT option" on page 593 of the book ASA
Database Administration Guide.

SYSPROCPARM system table

642

SYSPROCPARM system table

Column name Column type Column
constraint

Table constraint

proc_id UNSIGNED INT NOT NULL Primary key, foreign
key references
SYSPROCEDURE

parm_id SMALLINT NOT NULL Primary key

parm_type SMALLINT NOT NULL

parm_mode_in CHAR(1) NOT NULL

parm_mode_out CHAR(1) NOT NULL

domain_id SMALLINT NOT NULL Foreign key
references
SYSDOMAIN

width SMALLINT NOT NULL

scale SMALLINT NOT NULL

parm_name CHAR(128) NOT NULL

remarks LONG
VARCHAR

"default" LONG
VARCHAR

user_type INTEGER

Each parameter to a procedure in the database is described by one row in
SYSPROCEDURE.

proc_id Uniquely identifies the procedure to which this parameter
belongs.

parm_id Each procedure starts numbering parameters at 1. The order of
parameter numbers corresponds to the order in which they were defined.

parm_type The type of parameter will be one of the following:

♦ Normal parameter (variable)

♦ Result variable - used with a procedure that return result sets

♦ SQLSTATE error value

♦ SQLCODE error value

Chapter 5 System Tables

643

parm_mode_in (Y/N) Indicates whether this parameter supplies a value to
the procedure (IN or INOUT parameters).

parm_mode_out (Y/N) Indicates whether this parameter returns a value
from the procedure (OUT or INOUT parameters).

domain_id Identifies the data type for the parameter, by the data type
number listed in the SYSDOMAIN table.

width Contains the length of a string parameter, the precision of a numeric
parameter, or the number of bytes of storage for any other data types.

scale The number of digits after the decimal point for numeric data type
parameters, and zero for all other data type.

parm_name The name of the procedure parameter.

remarks A comment string.

default Unused.

user_type The user type of the parameter.

SYSPROCPERM system table

644

SYSPROCPERM system table

Column name Column type Column
constraint

Table constraints

proc_id UNSIGNED
INT

NOT NULL Primary key. Foreign
key references
SYSPROCEDURE

grantee UNSIGNED
INT

NOT NULL Primary key. Foreign
key references
SYSUSERPERM.user
_id

Only users who have been granted permission can call a procedure. Each row
of the SYSPROCPERM table corresponds to one user granted permission to
call one procedure.

proc_id The procedure number uniquely identifies the procedure for
which permission has been granted.

grantee The user number of the user ID receiving the permission.

Chapter 5 System Tables

645

SYSPUBLICATION system table

Column name Column type Column
constraint

Table constraints

publication_id UNSIGNED
INT

NOT NULL Primary key

creator UNSIGNED
INT

NOT NULL Unique index. Foreign
key references
SYSUSERPERM.user_
id

publication_name CHAR(128) NOT NULL Unique index

remarks LONG
VARCHAR

type CHAR(1) NOT NULL

Each row describes a SQL Remote publication.

publication_id A unique identifying number for the publication.

creator The owner of the publication.

publication_name The name of the publication, which must be a valid
identifier.

remarks Descriptive comments.

type This column is deprecated.

SYSREMOTEOPTION system table

646

SYSREMOTEOPTION system table
Each row describes the values of a SQL Remote message link parameter.

Column Data type Column
Constraint

Table constraints

option_id UNSIGNED INT NOT NULL Primary key

user_id UNSIGNED INT NOT NULL Primary key

"setting" VARCHAR(255) NOT NULL

option_id An identification number for the message link parameter.

user_id The user ID for which the parameter is set.

setting The value of the message link parameter.

Function

Columns

Chapter 5 System Tables

647

SYSREMOTEOPTIONTYPE system table
Each row describes one of the SQL Remote message link parameters.

Column Data type Column
constraint

Table
constraints

option_id UNSIGNED INT NOT NULL Primary key

type_id UNSIGNED INT NOT NULL

"option" VARCHAR(128) NOT NULL

option_id An identification number for the message link parameter.

type_id An identification number for the message type that uses this
parameter.

option The name of the message link parameter.

Function

Columns

SYSREMOTETYPE system table

648

SYSREMOTETYPE system table

Column name Column type Column
constraint

Table
constraints

type_id SMALLINT NOT NULL Primary key

type_name CHAR(128) NOT NULL Unique index

publisher_address LONG
VARCHAR

NOT NULL

remarks LONG
VARCHAR

The SYSREMOTETYPE system table contains information about
SQL Remote.

type_id Identifies which of the of the message systems supported by
SQL Remote is to be used to send messages to this user.

type_name The name of the message system supported by SQL Remote.

publisher_address The address of the remote database publisher.

remarks Descriptive comments.

Chapter 5 System Tables

649

SYSREMOTEUSER system table

Column name Column type Column
constraint

Table constraints

user_id UNSIGNED INT NOT NULL Primary key, foreign
key references
SYSUSERPERM

consolidate CHAR(1) NOT NULL

type_id SMALLINT NOT NULL Foreign key references
SYSREMOTETYPE

address LONG
VARCHAR

NOT NULL

frequency CHAR(1) NOT NULL Unique index

send_time TIME Unique index

log_send NUMERIC(20,0) NOT NULL

time_sent TIMESTAMP

log_sent NUMERIC(20,0) NOT NULL

confirm_sent NUMERIC(20,0) NOT NULL

send_count INTEGER NOT NULL

resend_count INTEGER NOT NULL

time_received TIMESTAMP

log_received NUMERIC(20,0) NOT NULL

confirm_received NUMERIC(20,0)

receive_count INTEGER NOT NULL

rereceive_count INTEGER NOT NULL

Each row describes a userid with REMOTE permissions (a subscriber),
together with the status of SQL Remote messages that were sent to and from
that user.

user_id The user number of the user with REMOTE permissions.

consolidate (Y/N) Indicates whether the user was granted
CONSOLIDATE permissions (Y) or REMOTE permissions (N).

type_id Identifies which of the of the message systems supported by
SQL Remote is used to send messages to this user.

SYSREMOTEUSER system table

650

address The address to which SQL Remote messages are to be sent. The
address must be appropriate for the address_type.

frequency How frequently SQL Remote messages are sent.

send_time The next time messages are to be sent to this user.

log_send Messages are sent only to subscribers for whom log_send is
greater than log_sent.

time_sent The time the most recent message was sent to this subscriber.

log_sent The log offset for the most recently sent operation.

confirm_sent The log offset for the most recently confirmed operation
from this subscriber.

send_count How many SQL Remote messages have been sent.

resend_count Counter to ensure that messages are applied only once at
the subscriber database.

time_received The time when the most recent message was received from
this subscriber.

log_received The log offset in the subscriber’s database for the operation
that was most recently received at the current database.

confirm_received The log offset in the subscriber’s database for the most
recent operation for which a confirmation message has been sent.

receive_count How many messages have been received.

rereceive_count Counter to ensure that messages are applied only once at
the current database.

Chapter 5 System Tables

651

SYSSCHEDULE system table

Column name Column type Column
constraint

Table
constraints

event_id INTEGER NOT NULL Primary key

sched_name VARCHAR(128) NOT NULL Primary key

recurring TINYINT NOT NULL

start_time TIME NOT NULL

stop_time TIME

start_date DATE

days_of_week TINYINT

days_of_month UNSIGNED INT

interval_units CHAR(10)

interval_amt INTEGER

Each row in SYSSCHEDULE describes the times at which an event is to
fire, as specified by the SCHEDULE clause of CREATE EVENT.

event_ id The unique number assigned to each event.

sched_name The name associated with a schedule.

recurring (0/1) Indicates if the schedule is repeating.

start_time The schedule start time.

stop_time The schedule stop time if BETWEEN was used.

start_date The first date on which the event is scheduled to execute.

days_of_week A bit mask indicating the days of the week on which the
event is scheduled:

♦ x01 = Sunday

♦ x02 = Monday

♦ x04 = Tuesday

♦ x08 = Wednesday

♦ x10 = Thursday

♦ x20 = Friday

SYSSCHEDULE system table

652

♦ x40 = Saturday

days_of_month A bit mask indicating the days of the month on which the
event is scheduled:

♦ x01 = first day

♦ x02 = second day

♦ x40000000 = 31st day

♦ x80000000 = last day of month

interval_units The interval unit specified by EVERY:

♦ HH = hours

♦ NN = minutes

♦ SS = seconds

interval_amt The period specified by EVERY.

Chapter 5 System Tables

653

SYSSERVERS system table

Column name Column type Column
constraint

Table
Constraints

srvid INTEGER NOT NULL Primary key

srvname VARCHAR(128) NOT NULL

srvclass LONG
VARCHAR

NOT NULL

srvinfo LONG
VARCHAR

srvreadonly CHAR(1) NOT NULL

Each row describes a remote server.

srvid An identifier for the remote server.

srvname The name of the remote server.

srvclass The server class, as specified in the CREATE SERVER
statement.

srvinfo Server information.

srvreadonly Y if the server is read only, and N otherwise.

SYSSQLSERVERTYPE system table

654

SYSSQLSERVERTYPE system table

Column name Column
type

Column
constraint

Table constraints

ss_user_type SMALLINT NOT NULL Primary key

ss_domain_id SMALLINT NOT NULL

ss_type_name VARCHAR
(30)

NOT NULL

primary_sa_domain_id SMALLINT NOT NULL

primary_sa_user_type SMALLINT

This table contains information relating to compatibility with Adaptive
Server Enterprise.

ss_user_type A UNSIGNED INT field describing the Adaptive Server
Enterprise user type

ss_domain_id A UNSIGNED INT field describing the Adaptive Server
Enterprise domain id.

ss_type_name Contains the Adaptive Server Enterprise type name.

primary_sa_domain_id A UNSIGNED INT field containing the
Adaptive Server Anywhere primary domain id.

primary_sa_user_type A UNSIGNED INT field containing the Adaptive
Server Anywhere primary user type.

Chapter 5 System Tables

655

SYSSUBSCRIPTION system table

Column name Column type Column
constraint

Table constraints

publication_id UNSIGNED INT NOT NULL Primary key, foreign
key references
SYSPUBLICATION

user_id UNSIGNED INT NOT NULL Primary key, foreign
key references
SYSREMOTEUSER

subscribe_by CHAR(128) NOT NULL Primary key

created NUMERIC(20,0) NOT NULL

started NUMERIC(20,0)

Each row describes a subscription from one user ID (which must have
REMOTE permissions) to one publication.

publication_id The identifier for the publication to which the user ID is
subscribed.

user_id The user number that is subscribed to the publication.

subscribe_by The value of the SUBSCRIBE BY expression, if any, for
the subscription.

created The offset in the transaction log at which the subscription was
created.

started The offset in the transaction log at which the subscription was
started.

SYSSYNC system table

656

SYSSYNC system table

Column name Column type Column
constraint

Table
constraints

sync_id UNSIGNED INT NOT NULL Primary key

type CHAR(1) NOT NULL

publication_id UNSIGNED INT

progress NUMERIC(20,0)

site_name CHAR(128)

option LONG VARCHAR

server_connect LONG VARCHAR

server_conn_type LONG VARCHAR

last_download_time TIMESTAMP

This table contains information relating to MobiLink synchronization.

sync_id A SMALLINT field uniquely identifying the row.

type A CHAR(1) field describing the type of synchronization object:
’D’ means definition, ’T’ means template, and ’S’ means site.

publication_id A publication_id found in the SYSPUBLICATIONS table.

progress The log offset of the last successful upload.

site_name A CHAR(128) field that holds a MobiLink user id.

option A LONG VARCHAR that holds any synchronization options.

server_connect A LONG VARCHAR field that holds the address or
URL of the MobiLink synchronization server.

server_conn_type A LONG VARCHAR field identifying the
communication protocol, such as TCP/IP, to use when synchronizing.

last_download_time A TIMESTAMP field that indicates the last time a
download stream was received from the MobiLink synchronization server..

Chapter 5 System Tables

657

SYSTABLE system table

Column name Column
type

Column
constraint

Table constraints

table_id UNSIGNED
INT

NOT NULL Primary key

file_id SMALLINT NOT NULL Foreign key references
SYSFILE

count UNSIGNED
BIGINT

NOT NULL

first_page INTEGER NOT NULL

last_page INTEGER NOT NULL

primary_root INTEGER NOT NULL

creator UNSIGNED
INT

NOT NULL Unique index. Foreign
key references
SYSUSERPERM.user_
id

first_ext_page INTEGER NOT NULL

last_ext_page INTEGER NOT NULL

table_page_count INTEGER NOT NULL

ext_page_count INTEGER NOT NULL

table_name CHAR(128) NOT NULL Unique index

table_type CHAR(10) NOT NULL

view_def LONG
VARCHAR

remarks LONG
VARCHAR

replicate CHAR(1) NOT NULL

existing_obj CHAR(1)

remote_location LONG
VARCHAR

remote_objtype CHAR(1)

SYSTABLE system table

658

Column name Column
type

Column
constraint

Table constraints

srvid INTEGER Foreign key references
SYSSERVERS

server_type CHAR(4) NOT NULL

primary_hash_limit SMALL
INT

NOT NULL

page_map_start INTEGER NOT NULL

source LONG
VARCHAR

Each row of SYSTABLE describes one table or view in the database.

table_id Each table or view is assigned a unique number (the table
number) which is the primary key for SYSTABLE.

file_id Indicates which database file contains the table. The file_id is a
FOREIGN KEY for SYSFILE.

count The number of rows in the table is updated during each successful
CHECKPOINT. This number is used by Adaptive Server Anywhere when
optimizing database access. The count is always 0 for a view.

first_page Each database is divided into a number of fixed-size pages.
This value identifies the first page that contains information for this table,
and is used internally to find the start of this table. The first_page is always
0 for a view.

last_page The last page that contains information for this table. The
last_page is always 0 for a view. For global temporary tables, 0 indicates
that the table was created using ON COMMIT PRESERVE ROWS while 1
indicates that the table was created using ON COMMIT DELETE ROWS.

primary_root Primary keys are stored in the database as B-trees. The
primary_root locates the root of the B-tree for the primary key for the table.
It will be 0 for a view and for a table with no primary key.

creator The user number of the owner of the table or view. The name of
the user can be found by looking in SYSUSERPERM.

first_ext_page The first page used for storing row extensions and blobs.

last_ext_page The last page used for storing row extensions and blobs.
The pages are maintained as a doubly-linked list.

table_page_count The total number of main pages used by this table.

Chapter 5 System Tables

659

ext_page_count The total number of extension (blob) pages used by this
table.

table_name The name of the table or view. One creator cannot have two
tables or views with the same name.

table_type This column is BASE for base tables, VIEW for views, and be
GBL TEMP for global temporary tables. No entry is created for local
temporary tables.

view_def For a view, this column contains the CREATE VIEW command
that was used to create the view. For a table, this column contains any
CHECK constraints for the table.

remarks A comment string.

replicate (Y/N) Indicates whether the table is a primary data source in a
Replication Server installation.

existing_obj (Y/N) Indicates whether the table previously existed or not.

remote_location Indicates the storage location of the remote object.

remote_objtype Indicates the type of remote object: ’T’ if table; ’V’ if
view; ’R’ if rpc; ’B’ if JavaBean.

srvid The unique ID for the server.

server_type The location of the data for the table. It is either SA or
OMNI.

primary_hash_limit The hash size for the primary key index for this
table.

page_map_start The start of the page map maintained for this table. Page
maps are used to facilitate blocked I/O during sequential scans.

source This column contains the original source for the procedure if the
preserve_source_format option is ON. It is used to maintain the appearance
of the original text. For more information, see
"PRESERVE_SOURCE_FORMAT option" on page 593 of the book ASA
Database Administration Guide.

SYSTABLEPERM system table

660

SYSTABLEPERM system table

Column name Column type Column
constraint

Table
constraints

stable_id UNSIGNED INT NOT NULL Primary key,
foreign key
references
SYSTABLE
table_id

grantee UNSIGNED INT NOT NULL Primary key,
foreign key
references
SYSUSERPERM
.user_id

grantor UNSIGNED INT NOT NULL Primary key,
foreign key
references
SYSUSERPERM
.user_id

ttable_id UNSIGNED INT NOT NULL Foreign key
references
SYSTABLE
table_id

selectauth CHAR(1) NOT NULL

insertauth CHAR(1) NOT NULL

deleteauth CHAR(1) NOT NULL

updateauth CHAR(1) NOT NULL

updatecols CHAR(1) NOT NULL

alterauth CHAR(1) NOT NULL

referenceauth CHAR(1) NOT NULL

Permissions given by the GRANT command are stored in
SYSTABLEPERM. Each row in this table corresponds to one table, one
user ID granting the permission (grantor) and one user ID granted the
permission (grantee).

There are several types of permission that can be granted. Each permission
can have one of the following three values.

♦ N No, the grantee has not been granted this permission by the grantor.

♦ Y Yes, the grantee has been given this permission by the grantor.

Chapter 5 System Tables

661

♦ G The grantee has been given this permission and can grant the same
permission to another user (with grant options).

Permissions
The grantee might have been given permission for the same table by
another grantor. If so, this information would be recorded in a different
row of SYSTABLEPERM.

stable_id The table number of the table or view to which the permissions
apply.

grantor The user number of the user ID granting the permission.

grantee The user number of the user ID receiving the permission.

ttable_id In the current version of Adaptive Server Anywhere, this table
number is always the same as stable_id.

selectauth (Y/N/G) Indicates whether SELECT permission has been
granted.

insertauth (Y/N/G) Indicates whether INSERT permission has been
granted.

deleteauth (Y/N/G) Indicates whether DELETE permission has been
granted.

updateauth (Y/N/G) Indicates whether UPDATE permission has been
granted for all columns in the table. (Only UPDATE permission can be given
on individual columns. All other permissions are for all columns in a table.)

updatecols (Y/N) Indicates whether UPDATE permission has only been
granted for some of the columns in the table. If updatecols has the value Y,
there will be one or more rows in SYSCOLPERM granting update
permission for the columns in this table.

alterauth (Y/N/G) Indicates whether ALTER permission has been granted.

referenceauth (Y/N/G) Indicates whether REFERENCE permission has
been granted.

SYSTRIGGER system table

662

SYSTRIGGER system table

Column name Column type Column
constraint

Table constraints

trigger_id UNSIGNED INT NOT NULL Primary key

table_id UNSIGNED INT NOT NULL Foreign key
references
SYSTABLE.table_id

event CHAR(1) NOT NULL Unique

trigger_time CHAR(1) NOT NULL Unique

trigger_order SMALLINT Unique

foreign_table_id UNSIGNED INT Unique. Foreign key
references
SYSFOREIGNKEY

foreign_key_id SMALLINT Unique. Foreign key
references
SYSFOREIGNKEY

referential_action CHAR(1)

trigger_name CHAR(128) Unique

trigger_defn LONG
VARCHAR

NOT NULL

remarks LONG
VARCHAR

source LONG
VARCHAR

Each trigger in the database is described by one row in SYSTRIGGER. The
table also contains triggers that are automatically created by the database for
foreign key definitions which have a referential triggered action (such as ON
DELETE CASCADE).

trigger_id Each trigger is assigned a unique number (the trigger
number), which is the primary key for SYSTRIGGER.

table_id The table number uniquely identifies the table to which this
trigger belongs.

event The event or events that cause the trigger to fire. This
single-character value corresponds to the trigger event that was specified
when the trigger was created.

Chapter 5 System Tables

663

♦ A INSERT, DELETE

♦ B INSERT, UPDATE

♦ C UPDATE

♦ D DELETE

♦ E DELETE, UPDATE

♦ I INSERT

♦ U UPDATE

♦ M INSERT, DELETE, UPDATE

trigger_time The time at which the trigger will fire. This single-character
value corresponds to the trigger time that was specified when the trigger was
created.

♦ A AFTER

♦ B BEFORE

trigger_order The order in which the trigger will fire. This determines the
order that triggers are fired when there are triggers of the same type (insert,
update, or delete) that fire at the same time (before or after).

foreign_table_id The table number of the table containing a foreign key
definition which has a referential triggered action (such as ON DELETE
CASCADE).

foreign_key_id The foreign key number of the foreign key for the table
referenced by foreign_table_id.

referential_action The action defined by a foreign key. This single-
character value corresponds to the action that was specified when the foreign
key was created.

♦ C CASCADE

♦ D SET DEFAULT

♦ N SET NULL

♦ R RESTRICT

trigger_name The name of the trigger. One table cannot have two triggers
with the same name.

trigger_defn The command that was used to create the trigger.

remarks A comment string.

SYSTRIGGER system table

664

source This column contains the original source for the procedure if the
preserve_source_format option is ON. It is used to maintain the appearance
of the original text. For more information, see
"PRESERVE_SOURCE_FORMAT option" on page 593 of the book ASA
Database Administration Guide.

Chapter 5 System Tables

665

SYSTYPEMAP system table

Column name Column type Column
constraint

Table constraints

ss_user_type SMALLINT NOT NULL

sa_domain_id SMALLINT NOT NULL Foreign key references
SYSDOMAIN

sa_user_type SMALLINT

nullable CHAR(1)

The SYSTYPEMAP system table contains the compatibility mapping values
for the SYSSQLSERVERTYPE system table.

ss_user_type Contains the Adaptive Server Enterprise user type.

sa_domain_id Contains the Adaptive Server Anywhere 6.0 domain_id.

sa_user_type Contains the Adaptive Server Anywhere 6.0 user type.

nullable This field describes whether or not the type can or cannot be null.

SYSUSERMESSAGES system table

666

SYSUSERMESSAGES system table

Column name Column type Column
constraint

Table
constraints

error INTEGER NOT NULL Unique index

uid UNSIGNED INT NOT NULL

description VARCHAR(255) NOT NULL

langid SMALLINT NOT NULL Unique index

Each row holds a user-defined message for an error condition.

error A unique identifying number for the error condition.

uid The user number that defined the message.

description The message corresponding to the error condition.

langid Reserved.

Chapter 5 System Tables

667

SYSUSERPERM system table

Column name Column type Column
constraint

Table
constraints

user_id UNSIGNED INT NOT NULL Primary key

user_name CHAR(128) NOT NULL

password BINARY(36)

resourceauth CHAR(1) NOT NULL

dbaauth CHAR(1) NOT NULL

scheduleauth CHAR(1) NOT NULL

publishauth CHAR(1) NOT NULL

remotedbaauth CHAR(1) NOT NULL

user_group CHAR(1) NOT NULL

remarks LONG
VARCHAR

DBA permissions required
SYSUSERPERM contains passwords, so DBA permissions are required
to SELECT from it.

Each row of SYSUSERPERM describes one user ID.

user_id Each new user ID is assigned a unique number (the user
number), which is the primary key for SYSUSERPERM.

user_name A string containing a unique name for the user ID.

password The password for the user ID. The password contains the
NULL value for the special user IDs SYS and PUBLIC. This prevents
anyone from connecting to these user IDs.

resourceauth (Y/N) Indicates whether the user has RESOURCE
authority. Resource authority is required to create tables.

dbaauth (Y/N) Indicates whether the user has DBA (database
administrator) authority. DBA authority is very powerful, and should be
restricted to as few user IDs as possible for security purposes.

scheduleauth (Y/N) Indicates whether the user has SCHEDULE
authority. This is currently not used.

SYSUSERPERM system table

668

publishauth (Y/N) Indicates whether the user has the SQL Remote
publisher authority.

remotedbaauth (Y/N) Indicates whether the user has the SQL Remote
remote DBA authority.

user_group (Y/N) Indicates whether the user is a group.

remarks A comment string.

When a database is initialized, the following user IDs are created:

♦ SYS The creator of all the system tables.

♦ PUBLIC A special user ID used to record PUBLIC permissions.

♦ DBA The database administrator user ID is the only usable user ID in
an initialized system. The initial password is SQL.

There is no way to connect to the SYS or PUBLIC user IDs.

Chapter 5 System Tables

669

SYSUSERTYPE system table

Column name Column
type

Column
constraint

Table constraints

type_id SMALLINT NOT NULL Primary key

creator UNSIGNED
INT

NOT NULL Foreign key references
SYSUSERPERM.user_id

domain_id SMALLINT NOT NULL Foreign key references
SYSDOMAIN

nulls CHAR(1) NOT NULL

width SMALLINT NOT NULL

scale SMALLINT NOT NULL

type_name CHAR(128) NOT NULL Unique

"default" LONG
VARCHAR

"check" LONG
VARCHAR

format_str CHAR(128)

super_type_id SMALLINT Foreign key references
SYSUSERTYPE.type_id

Each row holds a description of a user-defined data type.

type_id A unique identifying number for the user-defined data type.

creator The user number of the owner of the data type.

domain_id The data type on which this user defined data type is based,
indicated by a data type number listed in the SYSDOMAIN table.

nulls (Y/N) Indicates whether the user-defined data type allows nulls.

width The length of a string column, the precision of a numeric column, or
the number of bytes of storage for any other data type.

scale The number of digits after the decimal point for numeric data type
columns, and zero for all other data types.

type_name The name for the data type, which must be a valid identifier.

default The default value for the data type.

SYSUSERTYPE system table

670

check The CHECK condition for the data type.

format_str Currently unused.

Chapter 5 System Tables

671

Other system tables
Following is information about system tables used by Java in the database
and SQL Remote.

Java system tables

The system tables that are used for Java in the database are listed below.
Foreign key relations between tables are indicated by arrows: the arrow leads
from the foreign table to the primary table.

JAR_ID = JAR_ID

COMPONENT_ID = COMPONENT_ID

CLASS_ID = REPLACED_BY

SYSJAVACLASS
CLASS_ID <pk> smallint
REPLACED_BY <fk> smallint
JAR_ID smallint
CLASS_NAME long varchar
PUBLIC char(1)
COMPONENT_ID <fk> smallint
CREATE_TIME timestamp
UPDATE_TIME timestamp
CLASS_DESCRIPTOR long binary
REMARKS long varchar

SYSJAR
JAR_ID <pk> smallint
CREATOR smallint
JAR_NAME long varchar
JAR_FILE long varchar
CREATE_TIME timestamp
UPDATE_TIME timestamp
REMARKS long varchar

SYSJARCOMPONENT
COMPONENT_ID <pk> smallint
JAR_ID <fk> smallint
COMPONENT_NAME long varchar
COMPONENT_TYPE char(1)
CREATE_TIME timestamp
CONTENTS long binary
REMARKS long varchar

Other system tables

672

SQL Remote system tables

$ For information about the SQL Remote system tables, see
"SQL Remote system tables" on page 332 of the book SQL Remote User’s
Guide.

673

C H A P T E R 6

System Views

This chapter lists predefined views for the system tables.

Topic Page

Introduction 674

Views for Transact-SQL Compatibility 679

About this chapter

Contents

Introduction

674

Introduction
The system tables described in "System Tables" on page 595 use numbers to
identify tables, user IDs, and so forth. While this is efficient for internal use,
it makes these tables difficult for people to interpret. A number of predefined
system views are provided that present the information in the system tables
in a more readable format.

System view definitions

Detailed information about system views, including the view definition, is
available in Sybase Central:

♦ To view system views, right-click a connected database, choose Filter
Objects by Owner, and select SYS.

♦ Open the Views folder for the database.

♦ You can see the view definition by right-clicking the view and choosing
Edit. To display the data, open the View folder in the left pane and select
a view; the view appears in the right pane.

SYSARTICLECOLS system view

Presents a readable version of the table SYSARTICLECOL.

SYSARTICLES system view

Presents a readable version of the table SYSARTICLE.

SYSCAPABILITIES system view

Presents a readable version of the table SYSCAPABILITY and
SYSCAPABILITYNAME.

SYSCATALOG system view

Lists all the tables and views from SYSTABLE in a readable format.

SYSCOLAUTH system view

Presents column update permission information in SYSCOLPERM in a more
readable format.

Chapter 6 System Views

675

SYSCOLSTATS system view

Presents information in SYSCOLSTAT in a more readable format.

SYSCOLUMNS system view

Presents a readable version of the table SYSCOLUMN.

SYSFOREIGNKEYS system view

Presents foreign key information from SYSFOREIGNKEY and SYSFKCOL
in a more readable format.

SYSGROUPS system view

Presents group information from SYSGROUP in a more readable format.

SYSINDEXES system view

Presents index information from SYSINDEX and SYSIXCOL in a more
readable format.

SYSOPTIONS system view

Presents option settings contained in the table SYSOPTION in a more
readable format.

SYSOPTORDERS system view

This view is reserved for system use.

SYSOPTPLAN system view

This view is reserved for system use.

SYSOPTSTRATEGIES system view

This view is reserved for system use.

SYSPROCAUTH system view

Presents the procedure authorities from SYSUSERPERM in a more readable
format.

Introduction

676

SYSPROCPARMS system view

Presents the procedure parameters from SYSPROCPARM in a more
readable format.

SYSPUBLICATIONS system view

Presents the user name from the SYSUSERPERM table for all creators and
displays the publication name and remarks from the SYSPUBLICATION
table in a more readable format.

SYSREMOTEOPTIONS system view

Presents the data from SYSREMOTEOPTION and
SYSREMOTEOPTIONTYPE in a more readable format.

SYSREMOTETYPES system view

Presents the procedure remote types from the SYSREMOTETYPES in a
more readable format.

SYSREMOTEUSERS system view

Presents the information from SYSREMOTEUSER in a more readable
format.

SYSSUBSCRIPTIONS system view

Presents subscription information, such as the publication name, creation
time, and start time from the SYSPUBLICATION table in a more readable
format.

SYSSYNCDEFINITIONS system view

A view of synchronization definitions for MobiLink synchronization. This
view is deprecated.

SYSSSYNCPUBLICATIONDEFAULTS system view

A view of default synchronization settings associated with publications
involved in MobiLink synchronization.

Chapter 6 System Views

677

SYSSSYNCS system view

A union of SYSSYNCHPUBLICATIONDEFAULTS,
SYSSYNCHUSERS and SYSSYNCHSUBSCRIPTIONS.

SYSSYNCSITES system view

A view of synchronization sites for MobiLink synchronization. This view is
deprecated.

SYSSYNCSUBSCRIPTIONS system view

A view of synchronization settings associated with MobiLink
synchronization subscriptions.

SYSSYNCTEMPLATES system view

A view of synchronization settings associated with MobiLink
synchronization templates. This view is deprecated.

SYSSYNCUSERS system view

A view of synchronization settings associated with MobiLink
synchronization users.

SYSTABAUTH system view

Presents table permission information from SYSTABLEPERM in a more
readable format.

SYSTRIGGERS system view

Lists all the triggers from SYSTRIGGER in a readable format.

SYSUSERAUTH system view

Presents all the information in the table SYSUSERPERM except for user
numbers. Because this view displays passwords, this system view does not
have PUBLIC select permission. (All other system views have PUBLIC
select permission.)

Introduction

678

SYSUSERLIST system view

Presents all of the information in SYSUSERAUTH except passwords.

SYSUSEROPTIONS system view

Presents permanent option settings that are in effect for each user. If a user
has no setting for an option, this view displays the public setting for the
option.

SYSUSERPERMS system view

Contains exactly the same information as the table SYSUSERPERM, except
the password is omitted. All users have read access to this view, but only the
DBA has access to the underlying table (SYSUSERPERM).

SYSVIEWS system view

Lists views along with their definitions.

Chapter 6 System Views

679

Views for Transact-SQL Compatibility
Adaptive Server Enterprise and Adaptive Server Anywhere have different
system catalogs, reflecting the different uses for the two products.

In Adaptive Server Enterprise, a single master database contains a set of
system tables, which information that applies to all databases on the server.
Many databases may exist within the master database, and each has
additional system tables associated with it.

In Adaptive Server Anywhere, each database exists independently, and
contains its own system tables. There is no master database that contains
system information on a collection of databases. Each server may run several
databases at a time, dynamically loading and unloading each database as
needed.

The Adaptive Server Enterprise and Adaptive Server Anywhere system
catalogs are different. The Adaptive Server Enterprise system tables and
views are owned by the special user dbo, and exist partly in the master
database, partly in the sybsecurity database, and partly in each individual
database; the Adaptive Server Anywhere system tables and views are owned
by the special user SYS and exist separately in each database.

To assist in preparing compatible applications, Adaptive Server Anywhere
provides a set of views owned by the special user dbo, which correspond to
the Adaptive Server Enterprise system tables and views. Where architectural
differences make the contents of a particular Adaptive Server Enterprise
table or view meaningless in a Adaptive Server Anywhere context, the view
is empty, containing just the column names and data types.

The following tables list the Adaptive Server Enterprise system tables and
their implementation in the Adaptive Server Anywhere system catalog. The
owner of all tables is dbo in each DBMS.

Table name Description Data?

sysalternates One row for each user mapped to a database user No

syscolumns One row for each column in a table or view, and
for each parameter in a procedure

Yes

syscomments One or more rows for each view, rule, default,
trigger, and procedure, giving the SQL definition
statement

Yes

sysconstraints One row for each referential or check constraint
associated with a table or column

No

sysdepends One row for each procedure, view, or table that
is referenced by a procedure, view, or trigger

No

Tables existing in
each Adaptive
Server Enterprise
database

Views for Transact-SQL Compatibility

680

Table name Description Data?

sysindexes One row for each clustered or nonclustered
index, one row for each table with no indexes,
and an additional row for each table containing
text or image data.

Yes

syskeys One row for each primary, foreign, or common
key; set by the user (not maintained by Adaptive
Server Enterprise)

No

syslogs Transaction log No

sysobjects One row for each table, view, procedure, rule,
trigger default, log, or (in tempdb only)
temporary object

Contains
compatible
data only

sysprocedures One row for each view, rule, default, trigger, or
procedure, giving the internal definition

No

sysprotects User permissions information No

sysreferences One row for each referential integrity constraint
declared on a table or column

No

sysroles Maps server-wide roles to local database groups No

syssegments One row for each segment (named collection of
disk pieces)

No

systhresholds One row for each threshold defined for the
database

No

systypes One row for each system-supplied or user-
defined data type

Yes

sysusermessages One row for each user-defined message Yes (this is
an Adaptive
Server
Anywhere
system table)

sysusers One row for each user allowed in the database Yes

Table name Description Data?

syscharsets One row for each character set or sort order No

sysconfigures One row for each user-settable configuration
parameter

No

syscurconfigs Information about configuration parameters
currently being used by the server

No

sysdatabases One row for each database on the server No

Tables existing in
the Adaptive
Server Enterprise
master database

Chapter 6 System Views

681

Table name Description Data?

sysdevices One row for each tape dump device, disk
dump device, disk for databases, or disk
partition for databases

No

sysengines One row for each server currently online No

syslanguages One row for each language (except U.S.
English) known to the server

No

syslocks Information about active locks No

sysloginroles One row for each server login that possesses a
system-defined role

No

syslogins One row for each valid user account Yes

sysmessages One row for each system error or warning No

sysprocesses Information about server processes No

sysremotelogins One row for each remote user No

sysservers One row for each remote server No

syssrvroles One row for each server-wide role No

sysusages One row for each disk piece allocated to a
database

No

Table name Description Data?

sysaudits One row for each audit record No

sysauditoptions One row for each global audit option No

Tables existing in
the Adaptive
Server Enterprise
sybsecurity
database

Views for Transact-SQL Compatibility

682

683

C H A P T E R 7

System Procedures and Functions

This chapter documents the system-supplied catalog stored procedures in
Adaptive Server Anywhere databases, used to retrieve system information.
The chapter also documents system-supplied extended procedures, including
procedures for sending e-mail messages on a MAPI e-mail system.

Topic Page

System procedure overview 684

System and catalog stored procedures 685

System extended stored procedures 728

Adaptive Server Enterprise system and catalog procedures 737

About this chapter

Contents

System procedure overview

684

System procedure overview
Adaptive Server Anywhere includes the following kinds of system
procedures:

♦ Catalog stored procedures, for displaying system information in tabular
form.

♦ Extended stored procedures for MAPI e-mail support and other
functions.

♦ Transact-SQL system and catalog procedures.

$ For a list of these system procedures see "Adaptive Server
Enterprise system and catalog procedures" on page 737.

♦ System functions that are implemented as stored procedures.

$ For information see "System functions" on page 101.

This chapter documents the catalog stored procedures and the extended
stored procedures for MAPI e-mail support and other external functions.

System procedure and function definitions

Detailed information about system procedures and functions is available in
Sybase Central:

♦ To view system procedures and functions, right-click a connected
database, choose Filter Objects by Owner, and select DBO.

♦ Open the Procedures & Functions folder for the database.

♦ You can see the procedure definition by right-clicking the procedure and
choosing Edit.

Chapter 7 System Procedures and Functions

685

System and catalog stored procedures
System and catalog stored procedures are owned by the user ID dbo. Some
of these procedures are for internal system use. This section documents only
those not intended solely for system and internal use. You cannot call
external functions on Windows CE.

sa_audit_string system procedure

Adds a string to the transaction log.

sa_audit_string (string)

DBA authority required

None

"AUDITING option" on page 553 of the book ASA Database Administration
Guide

"Auditing database activity" on page 393 of the book ASA Database
Administration Guide

If auditing is turned on, this system procedure adds a comment into the audit
log. The string can be a maximum of 200 bytes long.

The following call adds a comment into the audit log:

CALL sa_audit_string(’Auditing test’)

sa_check_commit system procedure

Checks for outstanding referential integrity violations before a commit.

sa_check_commit(out_table_name, out_key_name)

None

None

"WAIT_FOR_COMMIT option" on page 608 of the book ASA Database
Administration Guide

"CREATE TABLE statement" on page 350

If the database option WAIT_FOR_COMMIT is ON, or if a foreign key is
defined using CHECK ON COMMIT in the CREATE TABLE statement,
you can update the database in such a way as to violate referential integrity,
as long as these violations are resolved before the changes are committed.

Function

Syntax

Permissions

Side effects

See also

Description

Examples

Function

Syntax

Permissions

Side effects

See also

Description

System and catalog stored procedures

686

You can use the sa_check_commit system procedure to check whether there
are any outstanding referential integrity violations before attempting to
commit your changes.

The returned parameters indicate the name of a table containing a row that is
currently violating referential integrity, and the name of the corresponding
foreign key index.

The following set of commands can be executed from Interactive SQL. It
deletes rows from the department table in the sample database, in such a way
as to violate referential integrity. The call to sa_check_commit checks which
tables and keys have outstanding violations, and the rollback cancels the
change:

SET TEMPORARY OPTION WAIT_FOR_COMMIT=’ON’
go
DELETE FROM department
go
CREATE VARIABLE tname VARCHAR(128)
CREATE VARIABLE keyname VARCHAR(128)
go
CALL sa_check_commit(tname, keyname)
go
SELECT tname, keyname
go
ROLLBACK
go

sa_conn_activity system procedure

Returns the most recently-prepared SQL statement for each connection to
databases on the server.

sa_conn_activity

None

None

The sa_conn_activity procedure returns a result set consisting of the most
recently-prepared SQL statement for each connection. This procedure is
useful when the database server is busy and you want to obtain information
about what SQL statement is prepared for each connection. This feature can
be used as an alternative to request-level logging.

$ For information on the property these values are derived from, see
"Connection-level properties" on page 618 of the book ASA Database
Administration Guide.

Examples

Function

Syntax

Permissions

Side effects

Description

Chapter 7 System Procedures and Functions

687

sa_conn_compression_info system procedure

Summarizes compression rates.

sa_conn_compression_info ([connection-id])

None

None

The sa_conn_compression_info procedure returns a result set consisting of
the following connection properties for the supplied connection. If no
connection-id is supplied, this system procedure returns information for all
current connections to databases on the server. Parameters include:

Type A string identifying whether the compression statistics that follow
represent either one Connection, or all connections to the Server.

ConnNumber An integer representing a connection ID. Returns NULL if
the Type is Server.

CompressionEnabled A string representing whether or not compression
is enabled for the connection. Returns Null if Type is Server, or YES/NO if
Type is Connection.

TotalBytes An integer representing the total number of actual bytes both
sent and received.

TotalBytesUncomp An integer representing the number of bytes that
would have been sent and received if compression was disabled.

CompRate A numeric (5,2) representing the overall compression rate.
For example, a value of 0 indicates that no compression occurred. A value
of 75 indicates that the data was compressed by 75%, or down to one quarter
of its original size.

CompRateSent A numeric (5,2) representing the compression rate for
data sent to the client.

CompRateReceived A numeric (5,2) representing the compression rate
for data received from the client.

TotalPackets An integer representing the total number of actual packets
both sent and received.

TotalPacketsUncomp An integer representing the total number of
packets that would have been sent and received if compression was disabled.

ComPktRate A numeric (5,2) representing the overall compression rate of
packets.

Function

Syntax

Permissions

Side effects

Description

System and catalog stored procedures

688

CompPktRateSent A numeric (5,2) representing the compression rate of
packets sent to the client.

CompPktRateReceived A numeric (5,2) representing the compression
rate of packets received from the client.

$ For information on the properties these values are derived from, see
"Connection-level properties" on page 618 of the book ASA Database
Administration Guide.

sa_conn_info system procedure

Reports connection property information.

sa_conn_info ([connection-id])

None

None

Returns a result set consisting of the following connection properties for the
supplied connection. If no connection-id is supplied, information for all
current connections to databases on the server is returned.

♦ Number

♦ Name

♦ Userid

♦ DBNumber

♦ LastReqTime

♦ ProcessTime

♦ Port

♦ ReqType

♦ CommLink

♦ NodeAddr

♦ LastIdle

♦ CurrTaskSwitch

♦ BlockedOn

♦ UncmtOps

♦ LockName

Function

Syntax

Permissions

Side effects

Description

Chapter 7 System Procedures and Functions

689

In a block situation, the BlockedOn value returned by this procedure allows
you to check which users are blocked, and who they are blocked on. The
sa_locks procedure can be used to display the locks held by the blocking
connection; and if A holds locks on several tables you can match the
LockName value between sa_locks and sa_conn_info.

$ For information on these properties, see "Connection-level properties"
on page 618 of the book ASA Database Administration Guide.

sa_conn_properties system procedure

Reports connection property information.

sa_conn_properties ([connection-id])

None

None

"sa_conn_properties_by_conn system procedure" on page 689
"sa_conn_properties_by_name system procedure" on page 690
"System functions" on page 101
"Connection-level properties" on page 618 of the book ASA Database

Administration Guide

Returns the connection id as Number, and the PropNum, PropName,
PropDescription, and Value for each available connection property.

If no connection-id is supplied, properties for all current connections to the
server are returned.

sa_conn_properties_by_conn system procedure

Reports connection property information.

sa_conn_properties_by_conn ([property-name])

None

None

"sa_conn_properties system procedure" on page 689
"Connection-level properties" on page 618 of the book ASA Database

Administration Guide

Function

Syntax

Permissions

Side effects

See also

Description

Function

Syntax

Permissions

Side effects

See also

System and catalog stored procedures

690

This is a variant on the sa_conn_properties system procedure, and returns the
same result columns. It returns results only for connection properties that
match the property-name string. You can use wildcards in property-name, as
the comparison uses a LIKE operator. The result set is sorted by connection
number and property name.

$ For a list of available connection properties, see "Connection-level
properties" on page 618 of the book ASA Database Administration Guide.

♦ The following statement returns the AnsiNull option setting for all
connections:

CALL sa_conn_properties_by_conn(’ansinull’)

♦ The following statement returns the ANSI-related option settings for all
connections:

CALL sa_conn_properties_by_conn(’ansi%’)

sa_conn_properties_by_name system procedure

Reports connection property information.

sa_conn_properties_by_name ([connection-id])

None

None

"sa_conn_properties system procedure" on page 689
"Connection-level properties" on page 618 of the book ASA Database

Administration Guide

This is a variant on the sa_conn_properties system procedure, and returns the
same result columns. The information is sorted by property name and
connection number.

$ For a list of available connection properties, see "System functions" on
page 101.

sa_db_info system procedure

Reports database property information.

sa_db_info ([database-id])

None

None

Description

Example

Function

Syntax

Permissions

Side effects

See also

Description

Function

Syntax

Permissions

Side effects

Chapter 7 System Procedures and Functions

691

"sa_db_properties system procedure" on page 691
"Database-level properties" on page 630 of the book ASA Database

Administration Guide

Returns a single row containing the Number, Alias, File, ConnCount,
PageSize, and LogName for the specified database.

♦ The following statement returns a single row describing the current
database:

CALL sa_db_info

Sample values are as follows:

Property Value

Number 0

Alias asademo

File C:\program
files\Sybase\SQL Anywhere
8\asademo.db

ConnCount 1

PageSize 1024

LogName C:\program
files\Sybase\SQL Anywhere
8\asademo.log

sa_db_properties system procedure

Reports database property information.

sa_db_properties ([database-id])

None

None

"sa_db_info system procedure" on page 690
"Database-level properties" on page 630 of the book ASA Database

Administration Guide

Returns the database ID number and the Number, PropNum, PropName,
PropDescription, and Value for each available database property.

See also

Description

Example

Function

Syntax

Permissions

Side effects

See also

Description

System and catalog stored procedures

692

sa_disk_free_space system procedure

Reports information about space available for a dbspace, transaction log,
transaction log mirror, and/or temporary file.

sa_disk_free_space ([string])

string can be one of dbspace-name, log, mirror, or temp.

If there is a dbspace called log, mirror, or temp, you can prefix the keyword
with an underscore. For example, use _log to get information about the log
file when a dbspace exists called log.

If string is not specified or is null, then the result set contains one row for
each dbspace, plus one row for each of the transaction log, transaction log
mirror, and temporary file, if they exist. If string is specified, then exactly
one or zero rows will be returned (zero if no such dbspace exists, or if "log"
or "mirror" is specified and there is no log or mirror file).

DBA authority required

None

The result set has two columns: dbspace or file name; and the number of free
bytes on the volume.

sa_eng_properties system procedure

Reports database server property information.

sa_eng_properties

None

None

"Server-level properties" on page 625 of the book ASA Database
Administration Guide

Returns the PropNum, PropName, PropDescription, and Value for each
available server property.

$ For a list of available engine properties, see "System functions" on
page 101.

♦ The following statement returns a set of available server properties

CALL sa_eng_properties()

Function

Syntax

Parameters

Permissions

Side effects

Description

Function

Syntax

Permissions

Side effects

See also

Description

Example

Chapter 7 System Procedures and Functions

693

PropNum PropName ...

1 IdleWrite ...

2 IdleChkPt ...

...

sa_flush_cache system procedure

Empties all pages in the database server cache.

sa_flush_cache ()

DBA authority required

None

Database administrators can use this procedure to empty the contents of the
database server cache. This is of use in performance measurement to ensure
repeatable results.

sa_flush_statistics system procedure

Saves all cost model statistics in the database server cache.

sa_flush_statistics ()

DBA authority required

None

Database administrators can use this procedure to ensure that cost model
statistics in the database server cache that have been created and/or gathered
but not yet saved to disk are flushed out with immediate effect. Under
normal operation it should not be necessary to execute this procedure
because the server automatically writes out statistics to disk on a periodic
basis.

sa_get_dtt system procedure

Reports the current value of the Disk Transfer Time (DTT) model, which is
part of the cost model.

sa_get_dtt (file-id)

Function

Syntax

Permissions

Side effects

Description

Function

Syntax

Permissions

Side effects

Description

Function

Syntax

System and catalog stored procedures

694

None.

None.

You can obtain the file-id from the system table SYSFILE.

This procedure retrieves data from the system table SYSOPTSTAT. It is
intended for internal diagnostic purposes.

sa_get_histogram system procedure

Retrieves the histogram for a column.

sa_get_histogram (column, table [, owner])

SELECT permission required.

None.

"The Histogram utility" on page 461 of the book ASA Database
Administration Guide

"ESTIMATE function" on page 130
"ESTIMATE_SOURCE function" on page 131

This procedure retrieves data from the system table SYSCOLSTAT. It is
intended for internal diagnostic purposes. It is recommended that you view
histograms using the Histogram utility.

To determine the selectivity of a predicate over a string column, you should
use the ESTIMATE or ESTIMATE_SOURCE functions. For string columns,
both sa_get_histogram and the Histogram utility retrieve nothing from
SYSCOLSTAT.

sa_get_request_profile system procedure

Analyses the request-level log to determine the execution times of similar
statements.

sa_get_request_profile ([request-log-filename [, connection-id]])

DBA authority required.

Automatic commit.

"sa_get_request_times system procedure" on page 695
"sa_statement_text system procedure" on page 718
"sa_server_option system procedure" on page 716

Permissions

Side effects

Description

Function

Syntax

Permissions

Side effects

See also

Description

Function

Syntax

Permissions

Side effects

See also

Chapter 7 System Procedures and Functions

695

This procedure calls sa_get_request_times to process a log file, and then
summarizes the results into the global temporary table
satmp_request_profile. This table contains the statements from the log along
with how many times each was executed, and their total, average, and
maximum execution times. The table can be sorted in various ways to
identify targets for performance optimization efforts.

If you do not specify a log file, the default is the current log file that is
specified at the command prompt with -zo, or that has been specified by

sa_server_option(’request_level_log_file’, filename)

If a connection id is specified, it is used to filter information from the log so
that only requests for that connection are retrieved.

sa_get_request_times system procedure

Analyses the request-level log to determine statement execution times.

sa_get_request_times ([request-log-filename [, connection-id]])

DBA authority required.

Automatic commit.

"sa_get_request_profile system procedure" on page 694
"sa_statement_text system procedure" on page 718
"sa_server_option system procedure" on page 716

This procedure reads the specified request-level log and populates the global
temporary table satmp_request_time with the statements from the log and
their execution times.

For statements such as inserts and updates, the execution time is
straightforward. For queries, the time is calculated for preparing the
statement to dropping it, including describing it, opening a cursor, fetching
rows, and closing the cursor. For most queries, this is an accurate reflection
of the amount of time taken. In cases where the cursor is left open while
other actions are performed, the time appears as a large value but is not a true
indication that the query is costly.

If you do not specify a log file, the default is the current log file that is
specified at the command prompt with -zo, or that has been specified by

sa_server_option(’request_level_log_file’, filename)

If a connection id is specified, it is used to filter information from the log so
that only requests for that connection are retrieved.

Description

Function

Syntax

Permissions

Side effects

See also

Description

System and catalog stored procedures

696

sa_get_server_messages system procedure

Allows you to return the server’s message window as a result set.

sa_get_server_messages (integer)

None.

None.

This procedure takes an integer parameter which specifies the starting line
number to display, and returns a row for that line and for all subsequent
lines. If the starting line is negative, the result set starts at the first available
line. The result set includes the line number, message text, and message time.

sa_index_density system procedure

Reports information about the amount of fragmentation within database
indexes.

sa_index_density ([table_name [, owner_name]])

DBA authority required

None

"Index fragmentation" on page 170 of the book ASA SQL User’s Guide

Database administrators can use this procedure to obtain information about
the degree of fragmentation in a database’s indexes.

The procedure returns a result set containing the table name, the index name,
the number of leaf pages, and the index’s density. The density is a fraction
between 0 and 1.

If you do not specify parameters, the information for all tables appears.
Otherwise, the procedure examines only the named table.

The Interactive SQL Results pane shows you a result set for the table as
follows:

TableName, IndexName, LeafPages, Density

Density is a fraction between 0 and 1. For indexes with a high number of leaf
pages, higher density values are desirable.

Function

Syntax

Permissions

Side effects

Description

Function

Syntax

Permissions

Side effects

See also

Description

Chapter 7 System Procedures and Functions

697

sa_index_levels system procedure

To assist in performance tuning by reporting the number of levels in an
index.

sa_index_levels ([table_name [, owner_name])

DBA authority required

None

"CREATE INDEX statement" on page 300
"Using indexes" on page 146 of the book ASA SQL User’s Guide

The number of levels in the index tree determines the number of I/O
operations needed to access a row using the index. Indexes with a small
number of levels are more efficient than indexes with a large number of
levels.

The procedure returns a result set containing the table name, the index name,
and the number of levels in the index.

If no arguments are supplied, levels are returned for all indexes in the
database. If only table_name is supplied, levels for all indexes on that table
are supplied. If table_name is NULL and an owner_name is given, only
levels for indexes on tables owned by that user are returned.

sa_java_loaded_classes system procedure

To list the classes currently loaded by the database virtual machine.

sa_java_loaded_classes ()

None

None

"Installing Java classes into a database" on page 94 of the book ASA
Programming Guide.

Returns a result set containing all the names of the Java classes currently
loaded by the database Java virtual machine.

When the virtual machine is first called, it loads a number of classes. If you
call sa_java_loaded_classes without using any Java in the database features
beforehand, it returns this set of classes.

The procedure can be useful to diagnose missing classes. It can also be used
to identify which classes from a particular jar are used by a given
application.

Function

Syntax

Permissions

Side effects

See also

Description

Function

Syntax

Permissions

Side effects

See also

Description

System and catalog stored procedures

698

sa_locks system procedure

Displays all locks in the database.

sa_locks ([connection,] [[owner.]table_name,] [max_locks])

DBA authority required

None

"How locking works" on page 121 of the book ASA SQL User’s Guide

The sa_locks procedure returns a result set containing information about all
the locks in the database.

The input parameters are as follows:

connection An integer representing a connection ID. The procedure
returns lock information only about the specified connection. The default
value is zero, in which case information is returned about all connections.

table_name A char(128) parameter representing a table name. The
procedure returns information only about the specified tables. The default
value is NULL, in which case information is returned about all tables.

If you do not include owner, it is assumed that the table is owned by the
caller of the procedure.

max_locks An integer parameter representing the maximum number of
locks for which to return information. The default value is 1000. The value -
1 means return all lock information.

The information returned for each lock includes the following:

connection ID The connection ID that has the lock.

user name The user connected through connection ID.

table name The table on which the lock is held.

lock type The lock type is a string of characters indicating the type of
lock. For lock_names other than NULL, these characters are:

♦ S Shared

♦ E Exclusive

♦ P Phantom

♦ A Anti-phantom

Function

Syntax

Permissions

Side effects

See also

Description

Chapter 7 System Procedures and Functions

699

All locks listed have exactly one of S or E specified, and may also have P, A,
or both. If a lock is a phantom or anti-phantom lock, a qualifier is added to
the lock type. The qualifier is as follows:

♦ T The lock is with respect to a sequential scan

♦ * The lock is with respect to all scans.

♦ nnn An index number. The lock is with respect to a particular index.

When the lock_name is NULL, the lock_types can be a combination of:

♦ S Shared schema lock

♦ E Exclusive schema lock

♦ AT Shared row lock

♦ PT Intent mode on a row lock

lock_name The LockName value identifying the lock. This value can be
matched with sa_conn_info output to determine the responsible locks in a
blocking situation.

Lock_names can be a row ID or can be NULL.

If the lock_name is NULL, then the row contains information about two
types of lock: a schema lock, and a lock on rows.

The schema lock means that other transactions are prevented from modifying
the table schema. This schema lock can be acquired in shared (S) or
exclusive (E) mode.

The row lock applies to the rows in the table. It can be acquired in shared
mode or intent mode. Shared mode is represented by lock_type AT, and
intent mode by lock_type PT. If acquired in share mode, other transactions
cannot modify the rows unless they acquire the lock in intent mode.
However, the lock can only be acquired in share mode if there are no
uncommitted modifications to the table by other transactions.

For example, if a connection has modified a table but not yet done a commit
or rollback, then sa_locks will return a NULL lock_name for the table, and a
lock_type of at least SPT. S indicates a shared lock on the schema of the
table and PT indicates an intent lock on the rows in the table.

$ For more information, see "Connection-level properties" on page 618
of the book ASA Database Administration Guide, and "sa_conn_info system
procedure" on page 688.

NULL lock_name

System and catalog stored procedures

700

sa_make_object system procedure

The sa_make_object procedure can be used in a SQL script to ensure that a
skeletal instance of an object exists before executing an ALTER statement
which provides the actual definition.

sa_make_object (
objtype,
objname,
[, owner [, tabname,])

object-type:
’procedure’ | ’function’ | ’view’ | ’trigger’

Resource authority is required to create or modify database objects.

Automatic commit.

"ALTER FUNCTION statement" on page 213
"ALTER PROCEDURE statement" on page 214
"ALTER TRIGGER statement" on page 240
"ALTER VIEW statement" on page 241

This procedure is particularly useful in scripts or command files that are run
repeatedly to create or modify a database schema. A common problem in
such scripts is that the first time they are run, a CREATE statement must be
executed, but subsequent times an ALTER statement must be executed. This
procedure avoids the necessity of querying the system tables to find out
whether the object exists.

To use the procedure, follow it by an ALTER statement that contains the
entire object definition.

object-type The type of object being created. The parameter must be one
of ’procedure’, ’function’, ’view’, or ’trigger’.

objname The name of the object to be created.

owner The owner of the object to be created. The default value is
CURRENT USER.

tabname required only if objtype is ’trigger’, in which case it specifies the
name of the table on which the trigger is to be created.

The following statements ensure that a skeleton procedure definition is
created, define the procedure, and grant permissions on it. A command file
containing these instructions could be run repeatedly against a database
without error.

CALL sa_make_object(’procedure’,’myproc’);

Function

Syntax

Permissions

Side effects

See also

Description

Parameters

Example

Chapter 7 System Procedures and Functions

701

ALTER PROCEDURE myproc(in p1 int, in p2 char(30))
BEGIN
 // ...
END;
GRANT EXECUTE ON myproc TO public;

sa_migrate system procedure

Migrates a set of remote tables to an Adaptive Server Anywhere database.

sa_migrate (
local_table_owner,
server_name,
[table_name,]
[owner_name,]
[database_name,]
[migrate_data,]
[drop_proxy_tables]
[migrate_fkeys])

None

None

"sa_migrate_create_remote_table_list system procedure" on page 706
"sa_migrate_create_tables system procedure" on page 708
"sa_migrate_data system procedure" on page 709
"sa_migrate_create_remote_fks_list system procedure" on page 705
"sa_migrate_create_fks system procedure" on page 703
"sa_migrate_drop_proxy_tables system procedure" on page 710
"Migrating databases to Adaptive Server Anywhere" on page 449 of the

book ASA SQL User’s Guide

You can use this procedure to migrate tables to Adaptive Server Anywhere
from a remote Oracle, DB2, SQL Server, Adaptive Server Enterprise,
Adaptive Server Anywhere, or Access database. This procedure allows you
to migrate in one step a set of remote tables, including their foreign key
mappings, from the specified server. The sa_migrate stored procedure calls
the following stored procedures:

♦ sa_migrate_create_remote_table_list

♦ sa_migrate_create_tables

♦ sa_migrate_data

♦ sa_migrate_create_remote_fks_list

♦ sa_migrate_create_fks

♦ sa_migrate_drop_proxy_tables

Function

Syntax

Permissions

Side effects

See also

Description

System and catalog stored procedures

702

You might want to use these stored procedures instead of sa_migrate if you
need more flexibility. For example, if you are migrating tables with foreign
key relationships that are owned by different users, you cannot retain the
foreign key relationships if you use sa_migrate.

Before you can migrate any tables, you must first create a remote server to
connect to the remote database using the CREATE SERVER statement. You
may also need to create an external login to the remote database using the
CREATE EXTERNLOGIN statement.

$ For more information, see "CREATE SERVER statement" on page 321
and "CREATE EXTERNLOGIN statement" on page 294.

You can migrate all the tables from the remote database to an Adaptive
Server Anywhere database by specifying only the local_table_owner and
server_name parameters. However, if you specify only these two parameters,
all the tables that are migrated will belong to one owner in the target
Adaptive Server Anywhere database. If tables have different owners on the
remote database and you want them to have different owners on the Adaptive
Server Anywhere database, then you must migrate the tables for each owner
separately, specifying the local_table_owner and owner_name parameters
each time you call the sa_migrate procedure. In order to use this procedure,
you must have the necessary permissions to create tables for the local
Adaptive Server Anywhere user.

Caution
Do not specify NULL for both the table_name and owner_name
parameters.

Supplying NULL for both the table_name and owner_name parameters
migrates all the tables in the database, including system tables. As well,
tables that have the same name, but different owners in the remote database
all belong to one owner in the target database. It is recommended that you
migrate tables associated with one owner at a time.

local_table_owner The user on the target Adaptive Server Anywhere
database who owns the migrated tables. Use the GRANT CONNECT
statement to create this user. A value is required for this parameter.

$ For more information, see "GRANT statement" on page 443.

server_name The name of the remote server that is being used to connect
to the remote database. Use the CREATE SERVER statement to create this
server. A value is required for this parameter.

$ For more information, see "CREATE SERVER statement" on
page 321.

Parameters

Chapter 7 System Procedures and Functions

703

table_name If you are migrating a single table, specify the name of that
table using the table_name parameter. Otherwise, you should specify NULL
(the default) for this parameter. Do not specify NULL for both the
table_name and owner_name parameters.

owner_name If you are migrating only tables that belong to one owner,
specify the owner’s name using the owner_name parameter. Otherwise, you
should enter NULL (the default) for this parameter. Do not specify NULL
for both the table_name and owner_name parameters.

database_name The name of the remote database. You must specify the
database name if you want to migrate tables from only one database on the
remote server. Otherwise, enter NULL (the default) for this parameter.

migrate_data Specifies whether the data in the remote tables is migrated.
This parameter can be 0 (do not migrate data) or 1 (migrate data). By default,
data is migrated.

drop_proxy_tables Specifies whether the proxy tables created for the
migration process are dropped once the migration is complete. This
parameter can be 0 (proxy tables are not dropped) or 1 (proxy tables are
dropped). By default, the proxy tables are dropped.

migrate_fkeys Specifies whether the foreign key mappings are migrated.
ropped once the migration is complete. This parameter can be 0 (do not
migrate foreign key mappings) or 1 (migrate foreign key mappings). By
default, the foreign key mappings are migrated.

The following statement migrates all the tables belonging to user p_chin
from the remote database, including foreign key mappings; migrates the data
in the remote tables; and does not drop the proxy tables when migration is
complete. In this example, all the tables that are migrated belong to
local_user in the target Adaptive Server Anywhere database.

CALL sa_migrate(’local_user’, ’server_a’, NULL,
’p_chin’, NULL, 1, 1, 1)

The following statement migrates only the tables that belonging to user
remote_a from the remote database. In the target Adaptive Server Anywhere
database, these tables belong to the user local_a.

CALL sa_migrate(’local_a’, ’server_a’, NULL,
’remote_a’, NULL, 1, 0, 1)

sa_migrate_create_fks system procedure

Creates foreign keys for each table listed in the dbo.migrate_remote_fks_list
table.

Examples

Function

System and catalog stored procedures

704

sa_migrate_create_fks (local_table_owner)

None

None

"sa_migrate system procedure" on page 701

"sa_migrate_create_remote_table_list system procedure" on page 706

"sa_migrate_create_tables system procedure" on page 708

"sa_migrate_data system procedure" on page 709

"sa_migrate_create_remote_fks_list system procedure" on page 705

"sa_migrate_drop_proxy_tables system procedure" on page 710

"Migrating databases to Adaptive Server Anywhere" on page 449 of the
book ASA SQL User’s Guide

The sa_migrate_create_fks stored procedure is used with the other migration
stored procedures. These procedures must be executed in the following
order:

1 sa_migrate_create_remote_table_list

2 sa_migrate_create_tables

3 sa_migrate_data

4 sa_migrate_create_remote_fks_list

5 sa_migrate_create_fks

6 sa_migrate_drop_proxy_tables

This procedure creates foreign keys for each table that is listed in the
dbo.migrate_remote_fks_list table. The user specified by the
local_table_owner argument owns the foreign keys in the target database.

If the tables in the target Adaptive Server Anywhere database do not all have
the same owner, you must execute this procedure for each user who owns
tables for which you need to migrate foreign keys.

As an alternative, you can migrate all tables in one step using the sa_migrate
system procedure.

local_table_owner The user on the target Adaptive Server Anywhere
database who owns the migrated foreign keys. If you want to migrate tables
that belong to different user, you must execute this procedure for each user
whose tables you want to migrate. The local_table_owner is created using
the GRANT CONNECT statement. A value is required for this parameter.

$ For more information, see "GRANT statement" on page 443.

Syntax

Permissions

Side effects

See also

Description

Parameters

Chapter 7 System Procedures and Functions

705

The following statement creates foreign keys based on the
dbo.migrate_remote_fks_list table. The foreign keys belong to the user
local_a on the local Adaptive Sever Anywhere database.

CALL sa_migrate_create_fks(’local_a’)

sa_migrate_create_remote_fks_list system procedure

Populates the dbo.migrate_remote_fks_list table.

sa_migrate_create_remote_fks_list (server_name)

None

None

"sa_migrate system procedure" on page 701

"sa_migrate_create_remote_table_list system procedure" on page 706

"sa_migrate_create_tables system procedure" on page 708

"sa_migrate_data system procedure" on page 709

"sa_migrate_create_fks system procedure" on page 703

"sa_migrate_drop_proxy_tables system procedure" on page 710

"Migrating databases to Adaptive Server Anywhere" on page 449 of the
book ASA SQL User’s Guide

The sa_migrate_create_remote_fks_list stored procedure is used with the
other migration stored procedures. These procedures must be executed in the
following order:

1 sa_migrate_create_remote_table_list

2 sa_migrate_create_tables

3 sa_migrate_data

4 sa_migrate_create_remote_fks_list

5 sa_migrate_create_fks

6 sa_migrate_drop_proxy_tables

This procedure populates the dbo.migrate_remote_fks_list table with a list of
foreign keys that can be migrated from the remote database. You can delete
rows from this table for foreign keys that you do not want to migrate.

As an alternative, you can migrate all tables in one step using the sa_migrate
system procedure.

Example

Function

Syntax

Permissions

Side effects

See also

Description

System and catalog stored procedures

706

server_name The name of the remote server that is being used to connect
to the remote database. The remote server is created with the CREATE
SERVER statement. A value is required for this parameter.

$ For more information, see "CREATE SERVER statement" on
page 321.

The following statement creates a list of foreign keys that are in the remote
database.

CALL sa_migrate_create_remote_fks_list (’local_a’)

sa_migrate_create_remote_table_list system procedure

Populates the dbo.migrate_remote_table_list table.

sa_migrate_create_remote_table_list (
server_name,
[table_name,]
[owner_name,]
[database_name])

None

None

"sa_migrate system procedure" on page 701

"sa_migrate_create_tables system procedure" on page 708

"sa_migrate_data system procedure" on page 709

"sa_migrate_create_remote_fks_list system procedure" on page 705

"sa_migrate_create_fks system procedure" on page 703

"sa_migrate_drop_proxy_tables system procedure" on page 710

"Migrating databases to Adaptive Server Anywhere" on page 449 of the
book ASA SQL User’s Guide

The sa_migrate_create_remote_table_list stored procedure is used with the
other migration stored procedures. These procedures must be executed in the
following order:

1 sa_migrate_create_remote_table_list

2 sa_migrate_create_tables

3 sa_migrate_data

4 sa_migrate_create_remote_fks_list

Parameters

Example

Function

Syntax

Permissions

Side effects

See also

Description

Chapter 7 System Procedures and Functions

707

5 sa_migrate_create_fks

6 sa_migrate_drop_proxy_tables

This procedure populates the dbo.migrate_remote_table_list table with a list
of tables that can be migrated from the remote database. You can delete rows
from this table for remote tables that you do not want to migrate.

If you do not want all the migrated tables to have the same owner on the
target Adaptive Server Anywhere database, you must execute this procedure
for each user whose tables you want to migrate.

As an alternative, you can migrate all tables in one step using the sa_migrate
system procedure.

Caution
Do not specify NULL for both the table_name and owner_name
parameters.

 Supplying NULL for both the table_name and owner_name parameters
migrates all the tables in the database, including system tables. As well,
tables that have the same name, but different owners in the remote database
all belong to one owner in the target database. It is recommended that you
migrate tables associated with one owner at a time.

server_name The name of the remote server that is being used to connect
to the remote database. The remote server is created with the CREATE
SERVER statement. A value is required for this parameter.

$ For more information, see "CREATE SERVER statement" on
page 321.

table_name The name(s) of the tables that you want to migrate, or NULL
to migrate all the tables. The default is NULL. Do not specify NULL for
both the table_name and owner_name parameters.

owner_name The user who owns the tables on the remote database that
you want to migrate, or NULL to migrate all the tables. The default is
NULL. Do not specify NULL for both the table_name and owner_name
parameters

database_name The name of the remote database from which you want
to migrate tables or NULL. This parameter is NULL by default. When
migrating tables from Adaptive Server Enterprise and Microsoft SQL Server
databases, you must specify the database name.

The following statement creates a list of tables that belong to all the users on
the remote database.

Parameters

Examples

System and catalog stored procedures

708

CALL sa_migrate_create_remote_table_list(’local_a’,
NULL, NULL, NULL)

The following statement creates a list of tables that belong to the user
remote_a on the remote database.

CALL sa_migrate_create_remote_table_list(’local_a’,
NULL, ’remote_a’, NULL)

The following statement creates a list of tables that are in the database named
mydb.

CALL sa_migrate_create_remote_table_list(’local_a’,
NULL, NULL, ’mydb’)

sa_migrate_create_tables system procedure

Creates a proxy table and base table for each table listed in the
dbo.migrate_remote_table_list table.

sa_migrate_create_tables (local_table_owner)

None

None

"sa_migrate system procedure" on page 701

"sa_migrate_create_remote_table_list system procedure" on page 706

"sa_migrate_data system procedure" on page 709

"sa_migrate_create_remote_fks_list system procedure" on page 705

"sa_migrate_create_fks system procedure" on page 703

"sa_migrate_drop_proxy_tables system procedure" on page 710

"Migrating databases to Adaptive Server Anywhere" on page 449 of the
book ASA SQL User’s Guide

The sa_migrate_create_tables stored procedure is used with the other
migration stored procedures. These procedures must be executed in the
following order:

1 sa_migrate_create_remote_table_list

2 sa_migrate_create_tables

3 sa_migrate_data

4 sa_migrate_create_remote_fks_list

5 sa_migrate_create_fks

Function

Syntax

Permissions

Side effects

See also

Description

Chapter 7 System Procedures and Functions

709

6 sa_migrate_drop_proxy_tables

This procedure creates a base table and proxy table for each table listed in
the dbo.migrate_remote_table_list table (created using the
sa_migrate_create_remote_table_list procedure). These proxy tables and
base tables are owned by the user specified by the local_table_owner
argument. This procedure also creates the same primary key indexes and
other indexes for the new table that the remote table has in the remote
database.

If you do want all the migrated tables to have the same owner on the target
Adaptive Server Anywhere database, you must execute the
sa_migrate_create_remote_table_list procedure and the
sa_migrate_create_tables procedure for each user who will own migrated
tables.

As an alternative, you can migrate all tables in one step using the sa_migrate
system procedure.

local_table_owner The user on the target Adaptive Server Anywhere
database who owns the migrated tables. This user is created using the
GRANT CONNECT statement. A value is required for this parameter.

$ For more information, see "GRANT statement" on page 443.

The following statement creates a base tables and proxy tables on the target
Adaptive Server Anywhere database. These tables belong to the user local_a.

CALL sa_migrate_create_tables(’local_a’)

sa_migrate_data system procedure

Migrates data from the remote database tables to the target Adaptive Server
Anywhere database.

sa_migrate_data (local_table_owner)

None

None

"sa_migrate system procedure" on page 701

"sa_migrate_create_remote_table_list system procedure" on page 706

"sa_migrate_create_tables system procedure" on page 708

"sa_migrate_create_remote_fks_list system procedure" on page 705

"sa_migrate_create_fks system procedure" on page 703

"sa_migrate_drop_proxy_tables system procedure" on page 710

Parameters

Example

Function

Syntax

Permissions

Side effects

See also

System and catalog stored procedures

710

"Migrating databases to Adaptive Server Anywhere" on page 449 of the
book ASA SQL User’s Guide

The sa_migrate_data stored procedure is used with the other migration
stored procedures. These procedures must be executed in the following
order:

1 sa_migrate_create_remote_table_list

2 sa_migrate_create_tables

3 sa_migrate_data

4 sa_migrate_create_remote_fks_list

5 sa_migrate_create_fks

6 sa_migrate_drop_proxy_tables

This procedure migrates the data from the remote database to the Adaptive
Server Anywhere database for tables belonging to the user specified by the
local_table_owner argument.

When the tables on the target Adaptive Server Anywhere database do not all
have the same owner, you must execute this procedure for each user whose
tables have data that you want to migrate.

As an alternative, you can migrate all tables in one step using the sa_migrate
system procedure.

local_table_owner The user on the target Adaptive Server Anywhere
database who owns the migrated tables. This user is created using the
GRANT CONNECT statement. A value is required for this parameter.

$ For more information, see "GRANT statement" on page 443.

The following statement migrates data to the target Adaptive Server
Anywhere database for tables that belong to the user local_a.

CALL sa_migrate_data(’local_a’)

sa_migrate_drop_proxy_tables system procedure

Drops the proxy tables that were created for migration purposes.

sa_migrate_drop_proxy_tables (local_table_owner)

None

None

"sa_migrate system procedure" on page 701

Description

Parameters

Example

Function

Syntax

Permissions

Side effects

See also

Chapter 7 System Procedures and Functions

711

"sa_migrate_create_remote_table_list system procedure" on page 706

"sa_migrate_create_tables system procedure" on page 708

"sa_migrate_data system procedure" on page 709

"sa_migrate_create_remote_fks_list system procedure" on page 705

"sa_migrate_create_fks system procedure" on page 703

"Migrating databases to Adaptive Server Anywhere" on page 449 of the
book ASA SQL User’s Guide

The sa_migrate_drop_proxy_tables stored procedure is used with the other
migration stored procedures. These procedures must be executed in the
following order:

1 sa_migrate_create_remote_table_list

2 sa_migrate_create_tables

3 sa_migrate_data

4 sa_migrate_create_remote_fks_list

5 sa_migrate_create_fks

6 sa_migrate_drop_proxy_tables

This procedure drops the proxy tables that were created for the migration.
The user who owns these proxy tables is specified by the local_table_owner
argument.

If the migrated tables are not all owned by the same user on the target
Adaptive Server Anywhere database, you must call this procedure for each
user in order to drop all the proxy tables.

As an alternative, you can migrate all tables in one step using the sa_migrate
system procedure.

local_table_owner The user on the target Adaptive Server Anywhere
database who owns the proxy tables. This user is created using the GRANT
CONNECT statement. A value is required for this parameter.

$ For more information, see "GRANT statement" on page 443.

The following statement drops the proxy tables on the target Adaptive Server
Anywhere database that belong to the user local_a.

CALL sa_migrate_drop_proxy_tables(’local_a’)

Description

Parameters

Example

System and catalog stored procedures

712

sa_procedure_profile system procedure

Reports information about the execution time for each line within procedures
that have been executed in a database.

sa_procedure_profile ([p_object_name [, p_owner_name]
[, p_table_name]])

DBA authority required

None

"sa_server_option system procedure" on page 716
"sa_procedure_profile_summary system procedure" on page 713

Before you can profile your database, you must enable profiling.

$ For more information about enabling procedure profiling, see
"sa_server_option system procedure" on page 716.

The result set includes information about the execution times for individual
lines within procedures, and what percentage of the total procedure execution
time those lines use. The DBA can use this profiling information to fine-tune
slower procedures that may decrease performance. The procedure returns the
same information for stored procedures, functions, events, and triggers as the
Profile tab in Sybase Central.

The result set is as follows:

object_type The type of object. It can be:

P stored procedure

F function

E event

T trigger

object_name The name of the stored procedure, function, event, or
trigger.

owner_name The object’s owner.

table_name The table associated with a trigger (the value is NULL for
other object types).

line_num The line number within the procedure.

executions The number of times the line has been executed.

millisecs The time to execute the line, in milliseconds.

Function

Syntax

Permissions

Side effects

See also

Description

Chapter 7 System Procedures and Functions

713

percentage The percentage of the total execution time required for the
specific line.

By calling the procedures of interest before you begin a profiling session,
you eliminate the start-up time required for procedures to load and for the
database to access tables for the first time.

The procedure accepts three optional arguments:

p_object_name Selects a specific object.

p_owner_name Selects all objects belonging to one owner.

p_table_name Selects all triggers associated with the specified table.

If you specify more than one of these arguments, you must list them in the
order shown (p_object_name, p_owner_name, p_table_name). The
arguments are strings, and must be enclosed in quotes. The server returns
data for all procedures in the database if you do not include any arguments.

The following statement returns profiling information about the tr_manager
trigger:

CALL sa_procedure_profile (p_object_name = ’tr_manager’)

sa_procedure_profile_summary system procedure

Reports summary information about the execution times for all procedures
that have been executed in a database.

sa_procedure_profile_summary ([p_table_name [, p_owner_name]
[, p_object_name] [, p_object_type] [, p_ordering]])

DBA authority required

None

"sa_server_option system procedure" on page 716
"sa_procedure_profile_summary system procedure" on page 713

Before you can profile your database, you must enable profiling.

$ For more information about enabling procedure profiling, see
"sa_server_option system procedure" on page 716.

The procedure displays information about the usage frequency and efficiency
of stored procedures, functions, events, and triggers. You can use this
information to fine-tune slower procedures to improve database performance.
The procedure returns the same information for stored procedures, functions,
events, and triggers as the Profile tab in Sybase Central.

Parameters

Example

Function

Syntax

Permissions

Side effects

See also

Description

System and catalog stored procedures

714

The procedure returns the following results:

object_type The type of object. It can be:

P stored procedure

F function

E event

T trigger

object_name The name of the stored procedure, function, event, or
trigger.

owner_name The object’s owner.

table_name The table associated with a trigger (the value is NULL for
other object types).

executions The number of times each procedure has been executed.

millisecs The time to execute the procedure, in milliseconds.

By calling the procedures of interest before you begin a profiling session,
you eliminate the start-up time required for procedures to load and for the
database to access tables for the first time.

The procedure accepts five optional arguments:

p_object_name Selects a specific object.

p_owner_name Selects all objects belonging to one owner.

p_table_name Selects all triggers from a specified table.

p_object_type Selects the type of object to profile. It can be one of the
following:

P stored procedure

F function

E event

T trigger

p_ordering Determines the order of columns in the result set. If no value
is given, the results are listed from the longest execution time to the shortest
execution time. Values and the resulting order are:

P object_type, owner_name, object_name, table_name desc

N object_name, owner_name, table_name, object_type desc

Parameters

Chapter 7 System Procedures and Functions

715

O owner_name, object_type, object_name, table_name desc

T table_name, owner_name, object_name, object_type desc

E executions desc, object_name, owner_name, table_name,
object_type desc

If you specify more than one of these arguments, you must list them in the
order shown (p_object_name, p_owner_name, p_table_name, p_object_type,
p_ordering). If you specify any of these arguments, the procedure returns
only rows that match the parameters; otherwise, the server returns data for all
procedures in the database. Note that the argument values are strings, and
must be enclosed in quotes.

The following statement returns profiling information about all the triggers
owned by the DBA on the Product table:

CALL sa_procedure_profile_summary (p_owner_name = ’dba’,
p_table_name = ’Product’, p_object_type = ’T’)

sa_reset_identity system procedure

Allows the next available identity value to be set for a table. Use this to
change the autoincrement value for the next row.

sa_reset_identity ([table_name], [owner], [new_identity_value])

DBA authority required.

Causes a checkpoint to occur after the value has been updated.

The next value generated for a row inserted into the table will be
new_identity_value + 1.

No checking occurs on the new_identity_value to ensure that it does not
conflict with existing rows in the table. An invalid value could cause
subsequent inserts to fail.

The procedure accepts three arguments:

table_name identifies the table you want to set the identity value for.

owner identifies the owner of the table you want to set the identity value
for.

new_identity_value identifies the number from which you want to start
the value counting.

The following statement resets the identity value to 101:

CALL sa_reset_identity (’employee’, ’dba’, 100)

Example

Function

Syntax

Permissions

Side effects

Description

Parameters

Example

System and catalog stored procedures

716

sa_server_option system procedure

Overrides a server option while the server is running.

sa_server_option (option_name, option_value)

DBA authority required

None

Database administrators can use this procedure to override some database
server options without restarting the database server.

The options that can be reset are as follows:

Option name Values Default

Disable_connections ON or OFF OFF

Liveness_timeout integer, in seconds 120

Procedure_profiling ON, OFF, RESET,
CLEAR

OFF

Quitting_time valid date and time

Remember_last_statement ON or OFF OFF

Request_level_log_file Filename

Request_level_logging ALL, SQL, NONE NONE

disable_connections When set to ON, no other connections are allowed
to any databases on the database server.

liveness_timeout A liveness packet is sent periodically across a
client/server TCP/IP or SPX network to confirm that a connection is intact. If
the network server runs for a liveness_timeout period without detecting a
liveness packet, the communication is severed.

$ For more information, see "–tl server option" on page 151 of the book
ASA Database Administration Guide.

procedure_profiling Controls procedure profiling for stored procedures,
functions, events, and triggers. The profiling commands are also available in
the Database property sheet in Sybase Central.

♦ ON enables procedure profiling for the database you are currently
connected to.

♦ OFF disables procedure profiling and leaves the profiling data
available for viewing.

Function

Syntax

Permissions

Side effects

Description

Chapter 7 System Procedures and Functions

717

♦ RESET returns the profiling counters to zero, without changing the
ON or OFF setting.

♦ CLEAR returns the profiling counters to zero and disables procedure
profiling.

Once profiling is enabled, you can use the sa_procedure_profile_summary
and sa_procedure_profile stored procedures to retrieve profiling information
from the database.

$ For more information about procedure profiling, see "Profiling database
procedures" on page 172 of the book ASA SQL User’s Guide.

quitting_time Instruct the database server to shut down at the specified
time.

$ For more information, see "–tq time server option" on page 152 of the
book ASA Database Administration Guide.

remember_last_statement Instruct the database server to capture the
most recently-prepared SQL statement for each connection to databases on
the server. For stored procedure calls, only the outermost procedure call
appears, not the statements within the procedure.

You can obtain the current value of the remember_last_statement setting
using the LastStatement property function as follows:

select connection_property(’LastStatement’)

$ For more information, see "Server-level properties" on page 625 of the
book ASA Database Administration Guide and "–zl server option" on
page 156 of the book ASA Database Administration Guide.

request_level_log_file The name of the file used to record logging
information. A name of NULL stops logging to file.

Any backslash characters in the filename must be doubled, as this is a SQL
string.

$ For more information, see "–zo server option" on page 156 of the book
ASA Database Administration Guide.

request_level_logging Can be ALL, SQL, or NONE. ON and ALL are
equivalent. OFF and NONE are equivalent. This call turns on logging of
individual SQL statements sent to the database server, for use in
troubleshooting, in conjunction with the database server -zr and -zo
options. The settings request_level_debugging and request_level_logging
are equivalent.

When you set request_level_logging to OFF, the request-level log file is
closed.

System and catalog stored procedures

718

If you select SQL, only the following types of request are recorded:

♦ START DATABASE

♦ STOP ENGINE

♦ STOP DATABASE

♦ Statement preparation

♦ Statement execution

♦ EXECUTE IMMEDIATE statements

♦ Option settings

♦ COMMIT statements

♦ ROLLBACK statements

♦ PREPARE TO COMMIT operations

♦ Connections

♦ Disconnections

♦ Beginnings of transactions

♦ DROP STATEMENT statement

♦ Cursor explanations

♦ Cursor closings

♦ Cursor resume

♦ Errors

You can find the current value of the request_level_logging setting using the
RequestLogging property function.

$ For more information, see "–zr server option" on page 157 of the book
ASA Database Administration Guide, and "Server-level properties" on
page 625 of the book ASA Database Administration Guide.

The following statement disallows new connections to the database server.

CALL sa_server_option(’disable_connections’, ’ON’)

sa_statement_text system procedure

Formats a SELECT statement so that individual items appear on separate
lines. This is useful when viewing long statements from the request-level log,
in which all newline characters are removed.

sa_statement_text (select-statement)

Example

Function

Syntax

Chapter 7 System Procedures and Functions

719

None

None

"sa_get_request_times system procedure" on page 695
"sa_get_request_profile system procedure" on page 694

The select-statement that is entered must be a string (in single quotes).

sa_table_fragmentation system procedure

Reports information about the fragmentation of database tables.

sa_table_fragmentation ([table_name [, owner_name]])

DBA authority required

None

"Table fragmentation" on page 168 of the book ASA SQL User’s Guide
"Defragmenting tables" on page 169 of the book ASA SQL User’s Guide
"Rebuilding databases" on page 440 of the book ASA SQL User’s Guide
"REORGANIZE TABLE statement" on page 508

Database administrators can use this procedure to obtain information about
the fragmentation in a database’s tables. If no arguments are supplied,
densities are returned for all tables in the database.

The procedure returns a result set that contains the following columns:

♦ TableName Name of the table

♦ rows Number of rows in the table

♦ row_segments Number of row segments in the table

♦ segs_per_row Number of segments per row

When database tables become excessively fragmented, you can run
REORGANIZE TABLE or rebuild the database to reclaim disk space and
improve performance.

sa_table_page_usage system procedure

Reports information about the page usage of database tables

sa_table_page_usage

DBA authority required

Permissions

Side effects

See also

Description

Function

Syntax

Permissions

Side effects

See also

Description

Function

Syntax

Permissions

System and catalog stored procedures

720

None

"The Information utility" on page 463 of the book ASA Database
Administration Guide

The results include the same information provided by the Information utility.

$ For information on the Information utility, see "The Information utility"
on page 463 of the book ASA Database Administration Guide.

sa_validate system procedure

Validates all tables in a database.

sa_validate [tbl_name,] [owner_name,] [check_type]

DBA authority required

None

This procedure is equivalent to calling the VALIDATE TABLE statement
for each table in the database.

$ For information, see "VALIDATE TABLE statement" on page 586.

tbl_name Validate only the specified table. When NULL (the default),
validate all tables.

owner_name Validate only the tables owned by the specified user. When
NULL (the default), validate tables for all users.

check_type When NULL (the default), each table is checked using a
VALIDATE TABLE statement with no additional checks. The check_type
value can be one of the following:

♦ data Validate tables using WITH DATA CHECK.

♦ index Validate tables using WITH INDEX CHECK.

♦ full Validate tables using WITH FULL CHECK.

♦ express Validate tables using WITH EXPRESS CHECK.

All of the values for the tbl_name, owner_name, and check_type arguments
are strings and they must be enclosed in quotes.

The procedure returns a single column, named Messages. If all tables are
valid, the column contains No errors detected.

The following statement validates all of the tables owned by the DBA with
an index check:

Side effects

See also

Description

Function

Syntax

Permissions

Side effects

Description

Example

Chapter 7 System Procedures and Functions

721

CALL sa_validate (owner_name = ’DBA’, check_type =
’index’)

sp_login_environment system procedure

Sets connection options when users log in.

sp_login_environment

None

None

"LOGIN_PROCEDURE option" on page 578 of the book ASA Database
Administration Guide

sp_login_environment is the default procedure called by the
LOGIN_PROCEDURE database option.

It is recommended that you not edit this procedure. Instead, to change the
login environment, set the LOGIN_PROCEDURE option to point to a
different procedure.

Here is the text of the sp_login_environment procedure:

CREATE PROCEDURE dbo.sp_login_environment()
BEGIN
 IF connection_property(’CommProtocol’)=’TDS’ THEN
 CALL dbo.sp_tsql_environment()
 END IF
END

sp_remote_columns system procedure

Produces a list of the columns on a remote table and a description of their
data types.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

sp_remote_columns servername, tablename [, owner] [, database]

None

None

"Accessing Remote Data" on page 455 of the book ASA SQL User’s Guide
"Server Classes for Remote Data Access" on page 487 of the book ASA SQL

User’s Guide
"CREATE SERVER statement" on page 321

Function

Syntax

Permissions

Side effects

See also

Description

Function

Syntax

Permissions

Side effects

See also

System and catalog stored procedures

722

If you are entering a CREATE EXISTING statement and you are specifying
a column list, it may be helpful to get a list of the columns that are available
on a remote table. sp_remote_columns produces a list of the columns on a
remote table and a description of their data types. If you specify a database,
you must either specify an owner or provide the value null.

♦ Sybase Supported by Open Client/Open Server.

♦ The following example returns columns from the sysobjects table in the
production database on an Adaptive Server Enterprise server named
asetest. The owner is unspecified.

sp_remote_columns asetest, sysobjects,
null, production

sp_remote_exported_keys system procedure

Provides information about tables with foreign keys on a specified primary
key table.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

sp_remote_exported_keys @server_name, @sp_name [, @sp_owner]
[, @sp_qualifier]

None

None

"CREATE SERVER statement" on page 321
"Tables are related by foreign keys" on page 14 of the book ASA Getting

Started

This procedure provides information about the remote table that has a foreign
key on a particular primary key table. The sp_remote_exported_keys stored
procedure’s result set includes the database, owner, table, column, and name
for the both the primary and the foreign key, as well as the foreign key
sequence for the foreign key column. The result set may vary because of the
underlying ODBC and JDBC calls, but information about the table and
column for a foreign key is always returned.

To use the sp_remote_exported_keys stored procedure, your database must
be created or upgraded using version 7.0.2 or higher of Adaptive Server
Anywhere.

The procedure accepts four arguments:

Description

Standards and
compatibility
Example

Function

Syntax

Permissions

Side effects

See also

Description

Parameters

Chapter 7 System Procedures and Functions

723

@server_name identifies the server the primary key table is located on. A
value is required for this parameter.

@sp_name identifies the table containing the primary key. A value is
required for this parameter.

@sp_owner identifies the primary key table’s owner. This parameter is
optional.

@sp_qualifier identifies the database containing the primary key table.
This parameter is optional.

♦ To get information about the remote tables with foreign keys on the
sysobjects table, in the production database, in a server named asetest:

call sp_remote_exported_keys (@server_name=’asetest’,
@sp_name=’sysobjects’, @sp_qualifier=’production’)

sp_remote_imported_keys system procedure

Provides information about remote tables with primary keys that correspond
to a specified foreign key.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

sp_remote_imported_keys @server_name, @sp_name [, @sp_owner]
[, @sp_qualifier]

None

None

"CREATE SERVER statement" on page 321
"Tables are related by foreign keys" on page 14 of the book ASA Getting

Started

Foreign keys reference a row in a separate table that contains the
corresponding primary key. This procedure allows you to obtain a list of the
remote tables with primary keys that correspond to a particular foreign key
table. The sp_remote_imported_keys result set includes the database, owner,
table, column, and name for the both the primary and the foreign key, as well
as the foreign key sequence for the foreign key column. The result set may
vary because of the underlying ODBC and JDBC calls, but information
about the table and column for a primary key is always returned.

To use the sp_remote_imported_keys stored procedure, your database must
be created or upgraded using version 7.0.2 or higher of Adaptive Server
Anywhere.

Example

Function

Syntax

Permissions

Side effects

See also

Description

System and catalog stored procedures

724

The procedure accepts four arguments:

@server_name identifies the server the foreign key table is located on. A
value is required for this parameter.

@sp_name identifies the table containing the foreign key. A value is
required for this parameter.

@sp_owner identifies the foreign key table’s owner. This parameter is
optional.

@sp_qualifier identifies the database containing the foreign key table.
This parameter is optional.

♦ To get information about the tables with primary keys that correspond to
a foreign key on the sysobjects table, owned by fred, in the asetest
server:

call sp_remote_imported_keys (@server_name=’asetest’,
@sp_name=’sysobjects’, @sp_qualifier=’production’)

sp_remote_tables system procedure

Returns a list of the tables on a server.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

sp_remote_tables server_name [, table_name] [, table_owner]
[, table_qualifier] [, with_table_type]

None

None

"Accessing Remote Data" on page 455 of the book ASA SQL User’s Guide
"Server Classes for Remote Data Access" on page 487 of the book ASA SQL

User’s Guide
"CREATE SERVER statement" on page 321

It may be helpful when you are configuring your database server to get a list
of the remote tables available on a particular server. This procedure returns a
list of the tables on a server.

The procedure accepts five parameters:

server_name Selects the server the remote table is located on.

table_name Selects the remote table.

table_owner Selects the owner of the remote table.

Parameters

Example

Function

Syntax

Permissions

Side effects

See also

Description

Chapter 7 System Procedures and Functions

725

table_qualifier Selects the database.

with_table_type Selects the type of remote table. This argument is a bit
type and accepts two values, 0 (the default) and 1. You must enter the value
1 if you want the result set to include a column that lists table types.

The with_table_type argument is only available for databases created in
Adaptive Server Anywhere 7.0.2 and higher. If you use this argument with
an older database, the following error message is returned:

Wrong number of parameters to function ’sp_remote_tables’

If a table, owner, or database name is given, the list of tables will be limited
to only those that match the arguments.

♦ Sybase Supported by Open Client/Open Server.

♦ To get a list of all of the Microsoft Excel worksheets available from an
ODBC datasource named excel:

sp_remote_tables excel

♦ To get a list of all of the tables in the production database in an Adaptive
Server Enterprise server named asetest, owned by fred:

sp_remote_tables asetest, null, fred, production

sp_servercaps system procedure

Displays information about a remote server’s capabilities.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

sp_servercaps servername

None

None

"Accessing Remote Data" on page 455 of the book ASA SQL User’s Guide
"Server Classes for Remote Data Access" on page 487 of the book ASA SQL

User’s Guide
"CREATE SERVER statement" on page 321

Standards and
compatibility
Examples

Function

Syntax

Permissions

Side effects

See also

System and catalog stored procedures

726

This procedure displays information about a remote server’s capabilities.
Adaptive Server Anywhere uses this capability information to determine how
much of a SQL statement can be forwarded to a remote server. The system
tables which contain server capabilities are not populated until after Adaptive
Server Anywhere first connects to the remote server. This information comes
from SYSCAPABILITY and SYSCAPABILITYNAME. The servername
specified must be the same servername used in the CREATE SERVER
statement.

♦ Sybase Supported by Open Client/Open Server.

♦ To display information about the remote server testasa issue the
following stored procedure:

sp_servercaps testasa

sp_tsql_environment system procedure

Sets connection options when users connect from jConnect or Open Client
applications.

sp_tsql_environment

None

None

"sp_login_environment system procedure" on page 721
"LOGIN_PROCEDURE option" on page 578 of the book ASA Database

Administration Guide.

At startup, sp_login_environment is the default procedure called by the
LOGIN_PROCEDURE database option. If the connection uses the TDS
communications protocol (that is, if it is an Open Client or jConnect
connection), then sp_login_environment in turn calls sp_tsql_environment.

This procedure sets database options so that they are compatible with default
Sybase Adaptive Server Enterprise behavior.

If you wish to change the default behavior, it is recommended that you create
new procedures and alter your LOGIN_PROCEDURE option to point to
these new procedures.

♦ Here is the text of the sp_tsql_environment procedure:

CREATE PROCEDURE dbo.sp_tsql_environment()
BEGIN
 IF db_property(’IQStore’)=’OFF’ THEN
 -- ASA datastore
 SET TEMPORARY OPTION AUTOMATIC_TIMESTAMP=’ON’

Description

Standards and
compatibility
Example

Function

Syntax

Permissions

Side effects

See also

Description

Example

Chapter 7 System Procedures and Functions

727

 END IF;
 SET TEMPORARY OPTION ANSINULL=’OFF’;
 SET TEMPORARY OPTION TSQL_VARIABLES=’ON’;
 SET TEMPORARY OPTION ANSI_BLANKS=’ON’;
 SET TEMPORARY OPTION TSQL_HEX_CONSTANT=’ON’;
 SET TEMPORARY OPTION CHAINED=’OFF’;
 SET TEMPORARY OPTION QUOTED_IDENTIFIER=’OFF’;
 SET TEMPORARY OPTION ALLOW_NULLS_BY_DEFAULT=’OFF’;
 SET TEMPORARY OPTION FLOAT_AS_DOUBLE=’ON’;
 SET TEMPORARY OPTION ON_TSQL_ERROR=’CONTINUE’;
 SET TEMPORARY OPTION ISOLATION_LEVEL=’1’;
 SET TEMPORARY OPTION DATE_FORMAT=’YYYY-MM-DD’;
 SET TEMPORARY OPTION TIMESTAMP_FORMAT=’YYYY-MM-DD
HH:NN:SS.SSS’;
 SET TEMPORARY OPTION TIME_FORMAT=’HH:NN:SS.SSS’;
 SET TEMPORARY OPTION DATE_ORDER=’MDY’;
 SET TEMPORARY OPTION ESCAPE_CHARACTER=’OFF’
END

System extended stored procedures

728

System extended stored procedures
A set of system extended procedures are included in Adaptive Server
Anywhere databases. These procedures are owned by the dbo user ID.

The following sections describe each of the stored procedures.

Extended stored procedures for MAPI and SMTP

Adaptive Server Anywhere includes system procedures for sending
electronic mail using the Microsoft Messaging API standard (MAPI) or the
Internet standard Simple Mail Transfer Protocol (SMTP). These system
procedures are implemented as extended stored procedures: each procedure
calls a function in an external DLL.

In order to use the MAPI or SMTP stored procedures, a MAPI or SMTP e-
mail system must be accessible from the database server machine.

The stored procedures are:

♦ xp_startmail Starts a mail session in a specified mail account by
logging onto the MAPI message system

♦ xp_startsmtp Starts a mail session in a specified mail account by
logging onto the SMTP message system

♦ xp_sendmail Sends a mail message to specified users

♦ xp_stopmail Closes the MAPI mail session

♦ xp_stopsmtp Closes the SMTP mail session

The following procedure notifies a set of people that a backup has been
completed.

CREATE PROCEDURE notify_backup()
BEGIN

CALL xp_startmail(mail_user=’ServerAccount’,
mail_password=’ServerPassword’

);
CALL xp_sendmail(recipient=’IS Group’,

subject=’Backup’,
"message"=’Backup completed’
);

CALL xp_stopmail()
END

The mail system procedures are discussed in the following sections.

Chapter 7 System Procedures and Functions

729

xp_startmail system procedure

Starts an e-mail session under MAPI.

[[variable =] CALL] xp_startmail (
[mail_user = mail-login-name]
[, mail_password = mail-password]
)

Not supported on NetWare.

xp_startmail is a system stored procedure that starts an e-mail session.

The mail-login-name and mail-password values are strings containing the
MAPI login name and password to be used in the mail session.

If you are using Microsoft Exchange, the mail_login_name argument is an
Exchange profile name, and you should not include a password in the
procedure call.

The xp_startmail system procedure issues one of the following return codes:

Return code Meaning

0 Success

2 Failure

xp_startsmtp system procedure

Starts an e-mail session under SMTP.

[[variable =] CALL] xp_startsmtp (
smtp_sender = email_address
, smtp_server = smtp_server
[, smtp_port = port_number]
[, timeout = timeout]
)

Not supported on NetWare.

xp_startsmtp is a system stored procedure that starts a mail session for a
specified e-mail address by connecting to an SMTP server.

email_address is the e-mail address of the sender

smtp_server specifies which SMTP server to use, and is the server name or
IP address.

= port_number specifies the port number to connect to on the SMTP server.
The default is 25.

Function

Syntax

Permissions

Description

Return codes

Function

Syntax

Permissions

Description

System extended stored procedures

730

timeout specifies how long to wait, in seconds, for a response from the server
before aborting the current call to xp_sendmail. The default is 60 seconds.

xp_startsmtp starts a connection to a server. This connection will time out.
Therefore, it is recommended that you start SMTP just before you want to
execute xp_sendmail.

xp_sendmail over SMTP does not support attachments.

For a list of return codes, see "SMTP return codes" on page 731.

xp_sendmail system procedure

Sends an e-mail message.

[[variable =] CALL] xp_sendmail (
recipient = mail-address
[, subject = subject]
[, cc_recipient = mail-address]
[, bcc_recipient = mail-address]
[, "message" = message-body]
[, include_file = file-name]
)

Must have executed xp_startmail to start an e-mail session under MAPI, or
xp_startsmtp to start an e-mail session under SMTP.

Not supported on NetWare.

xp_sendmail is a system stored procedure that sends an e-mail message to the
specified recipients once a session has been started with xp_startmail. The
procedure accepts messages of any length.

The argument values are strings. The length of each argument is limited only
by the amount of available memory on your system. The message parameter
name requires double quotes around it because MESSAGE is a keyword.

xp_sendmail over SMTP does not support attachments.

The xp_sendmail system procedure issues one of the following return codes:

Return code Meaning

0 Success.

5 Failure (general).

11 Ambiguous recipient.

12 Attachment not found.

13 Disk full.

14 Insufficient memory.

Return codes

Function

Syntax

Permissions

Description

Return codes

MAPI return codes

Chapter 7 System Procedures and Functions

731

Return code Meaning

15 Invalid session.

16 Text too large.

17 Too many files.

18 Too many recipients.

19 Unknown recipient.

Return code Meaning

0 Success.

100 Socket error.

101 Socket timeout.

102 Unable to resolve the SMTP server hostname.

103 Unable to connect to the SMTP server.

104 Server error; response not understood. (For example, the
message is poorly formatted, or the server is not SMTP).

421 <domain> service not available, closing transmission
channel.

450 Requested mail action not taken: mailbox unavailable.

451 Requested action not taken: local error in processing.

452 Requested action not taken: insufficient system storage.

500 Syntax error, command unrecognized. (This may include
errors such as a command that is too long.)

501 Syntax error in parameters or arguments.

502 Command not implemented.

503 Bad sequence of commands.

504 Command parameter not implemented.

550 Requested action not taken: mailbox unavailable.
(For example, the mailbox is not found, there is no access,
or no relay is allowed.)

551 User not local; please try <forward-path>

552 Request mail action aborted: exceeded storage allocation.

553 Requested action not taken: mailbox name not allowed.
(For example, the mailbox syntax is incorrect.)

554 Transaction failed.

SMTP return codes

System extended stored procedures

732

The following call sends a message to the user ID Sales Group containing
the file prices.doc as a mail attachment:

CALL xp_sendmail(recipient=’Sales Group’,
subject=’New Pricing’,
include_file = ’C:\\DOCS\\PRICES.DOC’
)

xp_stopmail system procedure

Closes a MAPI e-mail session.

[variable =] [CALL] xp_stopmail ()

Not supported on NetWare.

xp_stopmail is a system stored procedure that ends an e-mail session.

The xp_stopmail system procedure issues one of the following return codes:

Return code Meaning

0 Success

3 Failure

xp_stopsmtp system procedure

Closes an SMTP e-mail session.

[variable =] [CALL] xp_stopsmtp ()

Not supported on NetWare

xp_stopsmtp is a system stored procedure that ends an e-mail session.

For a list of return codes, see "SMTP return codes" on page 731.

Other system extended stored procedures

The other system extended stored procedures included are:

♦ xp_cmdshell Executes a system command.

♦ xp_msver Returns a string containing version information.

♦ xp_sprintf Builds a string from a format string and a set of input
strings.

♦ xp_scanf Extracts substrings from an input string and a format string.

Example

Function

Syntax

Permissions

Description

Return codes

Function

Syntax

Permissions

Description

Return codes

Chapter 7 System Procedures and Functions

733

The following sections provide more detail on each of these procedures.

xp_cmdshell system procedure

Carries out an operating system command from a procedure.

[variable = CALL] xp_cmdshell (string [, ’no_output’])

None

xp_cmdshell executes a system command and then returns control to the
calling environment.

The default behavior for databases upgraded to 8.0.2 or later is to display
output. For older databases, an explicit parameter of a string other than
’no_output’ can be used to force output to be displayed.

The second parameter affects only Windows operating systems other than
Windows CE. For UNIX, no output is displayed regardless of the setting for
the second parameter. For NetWare, any commands executed are visible on
the server console; regardless of the setting for the second parameter.

The following statement lists the files in the current directory in the file
c:\temp.txt

xp_cmdshell(’dir > c:\\temp.txt’)

The following statement carries out the same operation, but does so without
displaying a command window.

xp_cmdshell(’dir > c:\\temp.txt’, ’no_output’)

xp_msver system procedure

Retrieves version and name information about the database server.

xp_msver (string)

The string must be one of the following, enclosed in string delimiters.

Function

Syntax

Permissions

Description

Example

Function

Syntax

System extended stored procedures

734

Argument Description

ProductName The name of the product (Sybase Adaptive Server
Anywhere)

ProductVersion The version number, followed by the build number. The
format is as follows:

8.0.0 (1200)

CompanyName Returns the following string:

Sybase Inc.

FileDescription Returns the name of the product, followed by the name of
the operating system.

LegalCopyright Returns a copyright string for the software

LegalTrademarks Returns trademark information for the software

None

"System functions" on page 101

xp_msver returns product, company, version, and other information.

♦ The following statement requests the version and operating system
description:

SELECT xp_msver(’ProductVersion’) Version,
xp_msver(’FileDescription’) Description

Sample output is as follows:

Version Description

8.0.0 (1912) Sybase Adaptive Server Anywhere
Windows NT

xp_read_file system procedure

Returns the contents of a file as a LONG BINARY variable.

[variable = CALL] xp_read_file (filename)

DBA authority required

"xp_write_file system procedure" on page 736

The function reads the contents of the named file, and returns the result as a
LONG BINARY value.

Permissions

See also

Description

Example

Function

Syntax

Permissions

See also

Description

Chapter 7 System Procedures and Functions

735

The filename is relative to the starting directory of the database server.

The function can be useful for inserting entire documents or images stored in
files into tables. If the file cannot be read, the function returns NULL.

The following statement inserts an image into a column named picture of the
table t1 (assuming all other columns can accept NULL):

INSERT INTO t1 (picture)
SELECT xp_read_file(’portrait.gif’)

xp_sprintf system procedure

Builds up a string from a format string and a set of input strings

[variable = CALL] xp_sprintf (out-string,
format-string
[input-string])

None

xp_sprintf builds up a string from a format string and a set of input strings.
The format-string can contain up to fifty string placeholders (%s). These
placeholders are filled in by the input-string arguments.

All arguments must be strings of less than 254 characters.

The following statements put the string Hello World! into the variable
mystring.

CREATE VARIABLE mystring CHAR(254) ;
xp_sprintf(mystring, ’Hello %s’, ’World!’)

xp_scanf system procedure

Extracts substrings from an input string and a format string.

[variable = CALL] xp_scanf (in-string, format-string [output-string])

None

xp_scanf extracts substrings from an input string and a format string. The
format-string can contain up to fifty string placeholders (%s). The values of
these placeholders are placed in the output-string variables.

All arguments must be strings of less than 254 characters.

♦ The following statements put the string World! into the variable
mystring.

CREATE VARIABLE mystring CHAR(254) ;
xp_scanf(’Hello World!’, ’Hello %s’, mystring)

Example

Function

Syntax

Permissions

Description

Example

Function

Syntax

Permissions

Description

Example

System extended stored procedures

736

xp_write_file system procedure

Writes data to a file from a SQL statement.

[variable = CALL] xp_write_file (filename, file_contents)

DBA authority required

"xp_read_file system procedure" on page 734

The function writes file_contents to the file filename. It returns 0 if
successful, and non-zero if it fails.

The filename is relative to the current working directory of the database
server. If the file already exists, its contents are overwritten.

This function can be useful for unloading long binary data into files.

Consider a table t1 that has the following columns:

♦ filename A filename relative to the server.

♦ picture A LONG BINARY column holding an image.

The following statement unloads the pictures into the named files:

SELECT xp_write_file(filename, picture)
FROM t1

Function

Syntax

Permissions

See also

Description

Example

Chapter 7 System Procedures and Functions

737

Adaptive Server Enterprise system and catalog
procedures

Adaptive Server Enterprise provides system and catalog procedures to carry
out many administrative functions and to obtain system information.
Adaptive Server Anywhere has implemented support for some of these
procedures.

System procedures are built-in stored procedures used for getting reports
from and updating system tables. Catalog stored procedures retrieve
information from the system tables in tabular form.

Adaptive Server Enterprise system procedures

The following list describes the Adaptive Server Enterprise system
procedures that are provided in Adaptive Server Anywhere.

While these procedures perform the same functions as they do in Adaptive
Server Enterprise and pre-Version 12 Adaptive Server IQ, they are not
identical. If you have preexisting scripts that use these procedures, you may
want to examine the procedures. To see the text of a stored procedure, you
can open it in Sybase Central or, in Interactive SQL, run the following
command.

sp_helptext procedure_name

You may need to reset the width of your Interactive SQL output to see the
full text, by selecting Command➤Options and entering a new Limit Display
Columns value.

System procedure Description

sp_addgroup group-name Adds a group to a database

sp_addlogin userid,
password[, defdb [,
deflanguage [, fullname]]]

Adds a new user account to a database

sp_addmessage message-
num, message_text [,
language]

Adds a user-defined message to
SYSUSERMESSAGES, for use by stored
procedure PRINT and RAISERROR calls

sp_addtype typename, data-
type [, "identity" | nulltype]

Creates a user-defined data type

sp_adduser login_name [,
name_in_db [, grpname]]

Adds a new user to a database

sp_changegroup new-group-
name, userid

Changes a user’s group or adds a user to a group

Adaptive Server Enterprise system and catalog procedures

738

System procedure Description

sp_dboption [dbname,
optname, {true | false}]

Displays or changes a database option

sp_dropgroup group-name Drops a group from a database

sp_droplogin userid Drops a user from a database

sp_dropmessage message-
number [, language]

Drops a user-defined message

sp_droptype typename Drops a user-defined data type

sp_dropuser userid Drops a user from a database

sp_getmessage message-
num, @msg-var output [,
language]

Retrieves a stored message string from
SYSUSERMESSAGES, for PRINT and
RAISERROR statements.

sp_helptext object-name Displays the text of a system procedure, trigger,
or view

sp_password caller_passwd,
new_passwd [, userid]

Adds or changes a password for a user ID

Adaptive Server Enterprise catalog procedures

Adaptive Server Anywhere implements a subset of the Adaptive Server
Enterprise catalog procedures. The implemented catalog procedures are
described in the following table.

Catalog procedure Description

sp_column_privileges Unsupported

sp_columns table-name [,
table-owner] [, table-
qualifier] [, column-name]

Returns the data types of the specified columns

sp_databases Unsupported

sp_datatype_info Unsupported

sp_fkeys pktable_name [,
pktable-owner][, pktable-
qualifier] [, fktable-name] [,
fktable_owner] [, fktable-
qualifier]

Returns foreign key information about the
specified table

sp_pkeys table-name [,
table_owner] [,
table_qualifier]

Returns primary key information about the
specified table

sp_server_info Unsupported

Chapter 7 System Procedures and Functions

739

Catalog procedure Description

sp_special_columns
table_name [, table-owner]
[, table-qualifier] [, col-type]

Returns the optimal set of columns that uniquely
identify a row in the specified table

sp_sproc_columns proc-
name [, proc_owner] [,
proc-qualifier] [, column-
name]

Returns information about a stored procedure’s
input and return parameters

sp_stored_procedures [sp-
name] [, sp-owner] [, sp-
qualifier]

Returns information about one or more stored
procedures

sp_statistics [table_name] [,
table_owner] [,
table_qualities] [,
index_name] [, is_unique]

Returns information about tables and their indexes

sp_tables table-name [, table-
owner] [, table-qualifier] [,
table-type]

Returns a list of objects that can appear in a
FROM clause for the specified table

Adaptive Server Enterprise system and catalog procedures

740

741

Index

– comment indicator, 47

%
% comment indicator, 47

% operator
modulo function, 156

&
&

bitwise operator, 13

/
/* comment indicator, 47

// comment indicator, 47

@
@@char_convert global variable

list of supported global variables, 43

@@client_csid global variable
list of supported global variables, 43

@@client_csname global variable
list of supported global variables, 43

@@connections global variable
list of supported global variables, 43

@@cpu_busy global variable
list of supported global variables, 43

@@dbts global variable
list of global variables, 41

@@error global variable
list of global variables, 41
list of supported global variables, 43

@@fetch_status global variable
list of global variables, 41

@@identity global variable
description, 46
list of global variables, 41
list of supported global variables, 43
triggers, 46

@@idle global variable
list of supported global variables, 43

@@io_busy global variable
list of supported global variables, 43

@@isolation global variable
list of global variables, 41
list of supported global variables, 43

@@langid global variable
list of supported global variables, 43

@@language global variable
list of supported global variables, 43

@@max_connections global variable
list of supported global variables, 43

@@maxcharlen global variable
list of supported global variables, 43

[–2

742

@@ncharsize global variable
list of supported global variables, 43

@@nestlevel global variable
list of supported global variables, 43

@@pack_received global variable
list of supported global variables, 43

@@pack_sent global variable
list of supported global variables, 43

@@packet_errors global variable
list of supported global variables, 43

@@procid global variable
list of global variables, 41
list of supported global variables, 43

@@rowcount global variable
list of global variables, 41
list of supported global variables, 43

@@servername global variable
list of global variables, 41
list of supported global variables, 43

@@spid global variable
list of supported global variables, 43

@@sqlstatus global variable
list of global variables, 41
list of supported global variables, 43

@@textsize global variable
list of supported global variables, 43

@@thresh_hysteresis global variable
list of supported global variables, 43

@@timeticks global variable
list of supported global variables, 43

@@total_errors global variable
list of supported global variables, 43

@@total_read global variable
list of supported global variables, 43

@@total_write global variable
list of supported global variables, 43

@@tranchained global variable
list of supported global variables, 43

@@trancount global variable
list of supported global variables, 43

@@transtate global variable
list of supported global variables, 43

@@version global variable
list of global variables, 41
list of supported global variables, 43

[
[ESQL]

statement indicators, 202

[Interactive SQL]
statement indicators, 202

[SP]
statement indicator, 202

[T-SQL]
statement indicators, 202

^
^

bitwise operator, 13

|
|

bitwise operator, 13

~
~

bitwise operator, 13

>
>> operator

Java methods and fields, 20

2
2000 compliance, 87

A–A

743

A
ABS function

SQL syntax, 104

ACOS function
SQL syntax, 104

actions
referential integrity, 358

ActiveSync
MobiLink clients using, 344

Adaptive Server Enterprise
converting stored procedures, 194
CREATE DATABASE statement, 275

adding
indexes, 300
Java classes, 467
messages, 304
servers, 321

ADDRESS clause
CREATE SYNCHRONIZATION USER, 335

addresses
publishers, 218

AES encryption algorithm
CREATE DATABASE statement, 275

aggregate functions
alphabetical list, 94

aliases
for columns, 526
in the DELETE statement, 388

ALL
conditions and SQL syntax, 25
keyword in SELECT statement, 526

ALLOCATE DESCRIPTOR statement
SQL syntax, 203

allocating
disk space, 209
memory for descriptor areas, 203

alphabetic characters
defined, 7

ALTER DATABASE statement
SQL syntax, 205

ALTER DBSPACE statement
SQL syntax, 209

ALTER EVENT statement
SQL syntax, 211

ALTER FUNCTION statement
SQL syntax, 213

ALTER PROCEDURE statement
SQL syntax, 214

ALTER PUBLICATION statement
SQL syntax, 216

ALTER REMOTE MESSAGE TYPE statement
SQL syntax, 218

ALTER SERVER statement
SQL syntax, 220

ALTER SYNCHRONIZATION DEFINITION
statement

SQL syntax, 222

ALTER SYNCHRONIZATION SITE statement
SQL syntax, 225

ALTER SYNCHRONIZATION SUBSCRIPTION
statement

SQL syntax, 227

ALTER SYNCHRONIZATION TEMPLATE
statement

SQL syntax, 229

ALTER SYNCHRONIZATION USER statement
SQL syntax, 231

ALTER TABLE statement
SQL syntax, 233

ALTER TRIGGER statement
SQL syntax, 240

ALTER VIEW statement
SQL syntax, 241

ALTER WRITEFILE statement
SQL syntax, 243

altering
databases, 205
dbspaces, 209
events, 211
functions, 213
granting permissions, 443
procedures, 214

B–B

744

publications, 216
remote message types, 218
remote server attributes, 220
tables, 233
triggers, 240
views, 241
write files, 243

ambiguous string to date conversions, 89

AND
logical operators, 11
three-valued logic, 31

ANSI
equivalency using the REWRITE function, 172

ANSI_PERMISSIONS
Adaptive Server Enterprise compatibility, 533

ANSINULL option
Adaptive Server Enterprise compatibility, 533

ANY
conditions and SQL syntax, 25

apostrophes
in SQL strings, 9

approximate data types
about, 56

archive backup
supported operating systems, 245

archives
creating database backups, 245
restoring databases from, 511

ARGN function
SQL syntax, 105

arithmetic
operators and SQL syntax, 12

arithmetic operators
compatibility with Adaptive Server Enterprise,

12

articles
system table for, 599, 600

asademo.db file
about, xviii

ASCII
function and SQL syntax, 105

ASIN function
SQL syntax, 106

assigning
logins for remote servers, 294
values to SQL variables, 531

AT clause
create existing table, 292

ATAN function
SQL syntax, 106

ATAN2 function
SQL syntax, 106

ATN2 function
SQL syntax, 106

attributes
altering remote server, 220

auditing
adding comments, 685

AUTO_COMMIT option
Interactive SQL option, 542

auto-dial
MobiLink clients using HTTP, 339
MobiLink clients using HTTPS, 342
MobiLink clients using TCP/IP, 337

autoincrement
resetting the value, 715

AUTOINCREMENT
@@identity, 46
about, 352
GET_IDENTITY function, 137

AVG function
SQL syntax, 107

B
backslashes

in SQL strings, 9

BACKUP statement
SQL syntax, 245

backups
creating, 245
creating events for, 285

C–C

745

restoring databases from, 511
to tape, 245

base tables
creating, 359

BEGIN DECLARE statement
SQL syntax, 377

BEGIN keyword
compatibility, 249

BEGIN statement
SQL syntax, 248

BEGIN TRANSACTION statement
SQL syntax, 251

beginning
user-defined transactions, 251

BETWEEN conditions
SQL syntax, 26

BIGINT data type
about, 56

binary data
getting from columns, 437

binary data types
about, 72
BINARY, 72
IMAGE, 73
LONG BINARY, 72
UNIQUEIDENTIFIER, 73
VARBINARY, 73

binary large objects
binary data types, 72
exporting, 736
GET DATA SQL statement, 437
getting from columns, 437
importing ASE generated BCP files, 474
inserting, 734
SET statement example, 532
transaction log considerations, 209

bind variables
describing cursors, 392
EXECUTE SQL statement, 414
OPEN statement, 485

BIT data type, 64

bitwise operators
SQL syntax, 13

blank padding
CREATE DATABASE statement, 275

BLOBs
binary data types, 72
exporting, 736
GET DATA SQL statement, 437
importing ASE generated BCP files, 474
inserting, 531, 734
SET statement example, 532
transaction log considerations, 209

block fetches
FETCH statement, 425
OPEN statement, 486

blocking
identifying, 688

blocks
identifying, 688
troubleshooting, 698

brackets
database objects, 7
SQL identifiers, 7

BREAK statement
Transact-SQL syntax, 590

buffer_size stream parameter
MobiLink clients using HTTP, 338
MobiLink clients using HTTPS, 341

bulk loading of tables, 472

bulk operations
unload, 571
unloading tables, 573

BYE statement
SQL syntax, 420

BYTE_LENGTH function
SQL syntax, 108

BYTE_SUBSTR function
SQL syntax, 108

C
cache

flushing, 693

calibrating the server, 205

C–C

746

CALL statement
in Transact-SQL, 418
SQL syntax, 254

calling
procedures, 254

capabilities
remote servers, 603, 604

CASCADE action
CREATE TABLE statement, 358

CASE expression
NULLIF function, 162
SQL syntax, 18

case sensitivity
and SQL LIKE conditions, 27
comparison operators, 10
in the catalog, 624
of Java data types, 80

CASE statement
SQL syntax, 256

CAST function
data type conversions, 82
SQL syntax, 109

catalog
system tables, 595

catalog procedures
list, 685

catalog procedures (ASE)
sp_column_privileges, 738
sp_columns, 738
sp_fkeys, 738
sp_pkeys, 738
sp_special_columns, 738
sp_sproc_columns, 738
sp_stored_procedures, 738
sp_tables, 738
Transact-SQL list, 737
Transact-SQL, list, 738

catalog system procedures
about, 683

CEILING function
SQL syntax, 110

certificate_company stream parameter
MobiLink clients using HTTP, 340
MobiLink clients using HTTPS, 343
MobiLink clients using TCP/IP, 337

certificate_name stream parameter
MobiLink clients using HTTP, 340
MobiLink clients using HTTPS, 343
MobiLink clients using TCP/IP, 337

certificate_unit stream parameter
MobiLink clients using HTTP, 340
MobiLink clients using HTTPS, 343
MobiLink clients using TCP/IP, 337

chained transaction mode, 251

changing
passwords, 443

CHAR data type
about, 53

CHAR function
SQL syntax, 110

CHAR_LENGTH function
SQL syntax, 111

character data
about, 52
Adaptive Server Enterprise compatibility, 53
strings, 9

CHARACTER data type
about, 53

character functions
alphabetical list, 99

character sets
SORTKEY function, 179
storage, 52

character strings
about, 9

CHARACTER VARYING data type
about, 53

CHARINDEX function
SQL syntax, 111

CHECK clause
search conditions, 24

CHECK conditions
about, 356

C–C

747

CHECK CONSTRAINTS option
LOAD TABLE statement, 473

CHECK ON COMMIT clause
referential integrity, 359

checkpoint logs
CHECKPOINT SQL statement, 259

CHECKPOINT statement
SQL syntax, 259

checkpointing
databases, 259

classes
installing Java in the database, 467
Java methods, 97
partially supported, 79
removing Java, 507
supported, 77
unsupported, 78

CLEAR statement
SQL syntax, 260

clearing
Interactive SQL panes, 260

client_port number
default for MobiLink clients using HTTPS, 341

client_port stream parameter
MobiLink clients using HTTP, 338
MobiLink clients using TCP/IP, 336

CLOSE ON ENDTRANS option
Adaptive Server Enterprise compatibility, 533

CLOSE statement
SQL syntax, 261

closing
connections, 400
cursors, 261
Interactive SQL, 420

COALESCE function
SQL syntax, 112

code pages
CREATE DATABASE statement, 274
data storage, 52
SYSCOLLATION system table, 605

col_length Adaptive Server Enterprise function, 101

col_name Adaptive Server Enterprise function, 101

collation sequences. See collations
and SQL LIKE conditions, 27
CREATE DATABASE statement, 274
SYSCOLLATION system table, 605

collations
SORTKEY function, 179

column long names, 393

column names
SQL syntax, 16

column names in expressions, 16

column statistics
selectivity estimates, 31
SYSCOLSTAT system table, 608
SYSCOLSTATS system view, 675
updating with CREATE STATISTICS, 323
updating with LOAD TABLE, 476

columns
aliases, 526
altering, 233
constraints, 76, 355
domains, 76
getting binary data from, 437
in the system tables, 609
permissions on, 607
renaming, 237
SYSCOLUMNS system view, 675
updating, 582
updating without logging, 591
user-defined data types, 76

combining
the result of multiple select statements, 569

command files
parameters for Interactive SQL, 493
reading SQL statements from, 503

commands
executing operating system, 565

COMMENT statement
SQL syntax, 263

comments
database objects, 263
SQL syntax, 47

commit
preparing for two-phase, 497

C–C

748

COMMIT statement
referential integrity, 685
SQL syntax, 265

committing
transactions, 265

common elements in SQL syntax, 200

communication protocols
MobiLink, 335

COMPARE function
SQL syntax, 112

comparing dates and times, 67

comparison operators
compatibility with Adaptive Server Enterprise,

10
data conversion, 82
SQL syntax, 10
Transact-SQL compatibility, 10

comparisons
search conditions, 24

compatibility
datetime, 65
NULLs, 49
Transact-SQL comparison operators, 10
Transact-SQL expressions, 21
Transact-SQL global variables, 40
Transact-SQL local variables, 38
T-SQL expressions and QUOTED IDENTIFIER

option, 22

compatibility of expressions, 21

compound statements
about, 248
compatibility, 249

compressed databases
creating, 271

compression
statistics, 687

concatenating strings
string operators, 12

concurrency
locking tables, 479

conditions
ALL, 25
ANY, 25
BETWEEN, 26
EXISTS, 29
IN, 29
IS NULL, 29
LIKE, 26
search, 24
SQL search conditions, 24
subqueries in, 25
three-valued logic, 31
truth value, 29

CONFIGURE statement
SQL syntax, 267

ConflictRetries synchronization option
MobiLink synchronization clients, 345

CONNECT authority
granting permissions, 443

CONNECT statement
SQL syntax, 268

connecting
creating events for, 285
to databases, 268

CONNECTION_PROPERTY function
SQL syntax, 113

connection-level variables
SQL syntax, 40

connections
creating events for failed, 285
disallowing with RAISERROR, 502
dropping, 400
dropping in Interactive SQL, 396
enabling pooling, 546
setting, 536
setting a maximum number, 502

console
displaying messages on, 483

CONSOLIDATE permissions
granting, 447
revoking, 518

consolidated databases
publishing, 519
revoking permissions, 518

C–C

749

constants
SQL strings, 9
SQL syntax, 16
Transact-SQL, 21

constants in expressions, 16

constraints
ALTER TABLE statement, 235
column, 355

CONTINUE statement
Transact-SQL syntax, 590

control statements
CALL SQL statement, 254
CASE SQL statement, 256
GOTO Transact-SQL statement, 442
IF SQL statement, 454
LEAVE SQL statement, 469
LOOP SQL statement, 481
Transact-SQL BREAK statement, 590
Transact-SQL CONTINUE statement, 590
Transact-SQL IF statement, 456
Transact-SQL WHILE statement, 590
WHILE SQL statement, 481

conventions
documentation, xv
SQL language syntax, 4

conversion
strings to dates, 65

conversion functions
alphabetical list, 94
data type, 94

CONVERT function
data type conversions, 82
SQL syntax, 114

converting ambiguous dates, 89

converting strings
about, 99

copyright
retrieving, 733

correlation names
in the DELETE statement, 388

COS function
SQL syntax, 116

cost model
calibrating the server, 205
recalibrating, 205

COT function
SQL syntax, 117

COUNT function
SQL syntax, 117

CREATE COMPRESSED DATABASE statement
SQL syntax, 271

CREATE DATABASE statement
SQL syntax, 273

CREATE DATATYPE statement
SQL syntax, 283

CREATE DBSPACE statement
SQL syntax, 278

CREATE DECRYPTED FILE statement
SQL syntax, 280

CREATE DOMAIN statement
SQL syntax, 283
using, 75

CREATE ENCRYPTED FILE statement
SQL syntax, 281

CREATE EVENT statement
SQL syntax, 285

CREATE EXISTING TABLE statement
proxy tables, 722, 725
SQL syntax, 291

CREATE EXPANDED DATABASE statement
SQL syntax, 271

CREATE EXTERNLOGIN statement
SQL syntax, 294

CREATE FUNCTION statement
SQL syntax, 296

CREATE INDEX statement
SQL syntax, 300
table use, 301

CREATE MESSAGE statement
Transact-SQL syntax, 304

CREATE PROCEDURE statement
SQL syntax, 305
Transact-SQL syntax, 312

C–C

750

CREATE PUBLICATION statement
SQL syntax, 314

CREATE REMOTE MESSAGE TYPE statement
SQL syntax, 317

CREATE SCHEMA statement
SQL syntax, 319

CREATE SERVER statement
SQL syntax, 321

CREATE STATISTICS statement
SQL syntax, 323

CREATE SUBSCRIPTION statement
SQL syntax, 324

CREATE SYNCHRONIZATION DEFINITION
statement

SQL syntax, 326

CREATE SYNCHRONIZATION SITE statement
SQL syntax, 328

CREATE SYNCHRONIZATION SUBSCRIPTION
statement

SQL syntax, 331

CREATE SYNCHRONIZATION TEMPLATE
statement

SQL syntax, 333

CREATE SYNCHRONIZATION USER statement
SQL syntax, 335

CREATE TABLE statement
Java classes, 81
remote tables, 351
SQL syntax, 350
Transact-SQL, 360

CREATE TRIGGER statement
SQL syntax, 362, 366
Transact-SQL syntax, 369

CREATE VARIABLE statement
SQL syntax, 370

CREATE VIEW statement
SQL syntax, 371

CREATE WRITEFILE statement
SQL syntax, 373

creating
backups of databases, 245
compressed databases, 271

cursors, 379
cursors in Transact-SQL, 384
data types, 75
database files, 278
databases, 273
domains, 75, 283
functions, 296
indexes, 300
local temporary tables, 386
messages, 304
proxy tables, 291, 351, 725
publications, 314
remote message types, 317
savepoints, 525
schemas, 319
servers, 321
SQL variables, 370, 378
stored procedures, 305
stored procedures in Transact SQL, 312
subscriptions, 324
tables, 350
triggers, 362, 366
triggers in Transact-SQL, 369
views, 371
write files, 373

CROSS JOIN
SQL syntax, 433

CSCONVERT function
SQL syntax, 118

CURRENT DATABASE
special value, 33

CURRENT DATE
special value, 33

CURRENT PUBLISHER, 449
special value, 33

CURRENT TIME
special value, 33

CURRENT TIMESTAMP
special value, 34

CURRENT USER
special value, 34

CURRENT UTC TIMESTAMP
special value, 34

D–D

751

cursors
closing, 261
deallocating, 375
declaring, 379
declaring in Transact-SQL, 384
deleting rows from, 390
describing, 392
describing behavior, 307
EXPLAIN statement syntax, 422
fetching rows from, 424
inserting rows using, 499
looping over, 429
opening, 485
preparing statements, 495
redescribing, 307
updatability set in SELECT statement, 528

curunreservedpgs Adaptive Server Enterprise
function, 101

D
data

exporting from tables into files, 488
importing into tables from files, 459
selecting rows, 526

data access plans
getting text specification, 422

data type conversion
about, 82
comparison operators, 82
Java-to-SQL, 84
SQL-to-Java, 85

data type conversion functions, 94

data types
about, 51
binary, 72
bit, 64
character, 52
compatibility, 65
converting for comparison operators, 82
converting Java and SQL, 84
creating, 283
date, 65
dropping user-defined, 397
in the system tables, 611, 669
Java class, 77
money, 63

numeric, 56
roundoff errors, 56
SQL conversion functions, 94
time, 65
UNIQUEIDENTIFIER, 73
user-defined, 669
user-defined domains, 75

data types in system tables, 616

data_pgs Adaptive Server Enterprise function, 101

database extraction
starting subscriptions during, 506

database files
dropping, 399
storing indexes in, 300

database objects
comments, 263
identifying, 7

database options
DATE_ORDER and unambiguous dates, 68
initial settings, 721, 726
QUOTED_IDENTIFIER and T-SQL

compatibility, 22
setting in Transact-SQL, 533
Transact-SQL compatibility, 726

database schema
about, 595

database servers
options, 716
starting, 551
stopping, 559

databases
backing up, 245
checkpointing, 259
connecting to, 268
creating, 273
creating compressed, 271
creating files, 278
dropping files, 399
files, 617
Java-enabling, 205
loading bulk data into, 472
migrating, 701
restoring from archives, 511
schema, 595
starting, 549
stopping, 558

D–D

752

structure, 595
system procedures, 683
system tables, 595
unloading data, 571
unloading tables, 573
upgrading, 205
validating, 720

datalength Adaptive Server Enterprise function, 101

DATALENGTH function
SQL syntax, 119

DATE data type
about, 69

DATE function
SQL syntax, 120

date functions
alphabetical list, 95

date parts
about, 96

date to string conversions, 90

DATE_ORDER option
ODBC, 68
using, 68

DATEADD function
SQL syntax, 120

DATEDIFF function
SQL syntax, 121

DATEFIRST option
Adaptive Server Enterprise compatibility, 533

DATEFORMAT function
SQL syntax, 123

DATENAME function
SQL syntax, 123

DATEPART function
SQL syntax, 124

dates, 65
ambiguous string conversions, 89, 90
comparing, 67
conversion functions, 95
conversion problems, 90
converting from strings, 65
inserting, 69
interpretation, 69

interpreting strings as dates, 67
queries, 66
retrieving, 69
sending to the database, 65
unambiguous specification of, 67
year 2000, 87

datetime
conversion functions, 95

DATETIME data type
about, 70

DATETIME function
SQL syntax, 124

DAY function
SQL syntax, 125

DAYNAME function
SQL syntax, 125

DAYS function
SQL syntax, 125

db_id Adaptive Server Enterprise function, 101

DB_ID function
SQL syntax, 127

db_name Adaptive Server Enterprise function, 101

DB_NAME function
SQL syntax, 127

DB_PROPERTY function
SQL syntax, 128

DBA authority
granting permissions, 443
in the system tables, 667

DBFreePercent event condition
about, 132

DBFreeSpace event condition
about, 132

DBSize event condition
about, 132

DBSPACE
SYSFILE system table, 617

dbspaces
altering, 209
creating, 278

D–D

753

determining available space for, 692
dropping, 397

DEALLOCATE DESCRIPTOR statement
SQL syntax, 376

DEALLOCATE statement
SQL syntax, 375

deallocating
cursors, 375
descriptor areas, 376

DECIMAL data type
about, 57

DECLARE CURSOR statement
SQL syntax, 379
Transact-SQL syntax, 384

DECLARE LOCAL TEMPORARY TABLE
statement

SQL syntax, 386

DECLARE statement
compound statements, 249
SQL syntax, 248, 378
Transact-SQL compatibility, 249

declaring
cursors, 379
cursors in Transact-SQL, 384
host variables in embedded SQL, 377
variables SQL, 378

decrypting
files, 280

DEFAULT TIMESTAMP columns, 355

default values
CURRENT DATABASE, 33
CURRENT DATE, 33
CURRENT PUBLISHER, 33
CURRENT TIME, 33
CURRENT TIMESTAMP, 34
CURRENT USER, 34
CURRENT UTC TIMESTAMP, 34
LAST USER, 35
SQLCODE, 35
SQLSTATE, 35
TIMESTAMP, 36
USER, 36
UTC TIMESTAMP, 37

defaults
autoincrement, 352

DEFAULTS option
LOAD TABLE statement, 473

definitions
altering tables, 233

defragmenting
REORGANIZE TABLE, 508

DEGREES function
SQL syntax, 128

DELETE (positioned) statement
SQL syntax, 390

DELETE statement
SQL syntax, 388

deleting
all rows from a table, 567
database files, 399
DBSPACEs, 397
domains, 397
events, 397
functions, 397
granting permissions, 443, 516
indexes, 397
Java classes, 507
optimizer statistics, 406
prepared statements, 405
procedures, 397
rows, 388
rows from cursors, 390
SQL variables, 413
tables, 397
triggers, 397
views, 397

DELETING condition
triggers, 30

DELIMITED BY option
LOAD TABLE statement, 473

delimited strings
compatibility with Adaptive Server Enterprise,

21

delimiting SQL strings, 7

denying
granting permissions, 443, 516

D–D

754

derived tables
FROM clause, 433

DESCRIBE statement
long column names, 393
SQL syntax, 392

describing
cursor behavior, 307
cursors, 392

descriptor
DESCRIBE statement, 392
FETCH SQL statement, 424
preparing statements, 495

descriptor areas
allocating memory for, 203
deallocating, 376
EXECUTE SQL statement, 414
getting information from, 439
setting, 537
UPDATE (positioned) statement, 580

DIFFERENCE function
SQL syntax, 129

DisablePolling synchronization option
MobiLink synchronization clients, 345

DISCONNECT statement
SQL syntax, 396

disconnecting
creating events for, 285

disk space
creating events for, 285
creating events for out of, 285

disk transfer time model
calibrating, 205
restoring the default, 205

displaying
messages, 483
messages in the message window, 498

DISTINCT keyword, 526

documentation
conventions, xv
conventions for SQL syntax, 200
SQL Anywhere Studio, xii

domains
about, 75
creating, 283
dropping, 397
Transact-SQL, 76

dot operator
and >>, 20

DOUBLE data type
about, 58

double quotes
database objects, 7
SQL identifiers, 7

DOW function
SQL syntax, 129

DownloadBufferSize synchronization option
MobiLink synchronization clients, 345

DROP CONNECTION statement
SQL syntax, 400

DROP DATABASE statement
SQL syntax, 399

DROP DATATYPE statement
SQL syntax, 397

DROP DBSPACE statement
SQL syntax, 397

DROP DOMAIN statement
SQL syntax, 397

DROP EVENT statement
SQL syntax, 397

DROP EXTERNLOGIN statement
SQL syntax, 401

DROP FUNCTION statement
SQL syntax, 397

DROP INDEX statement
SQL syntax, 397

DROP MESSAGE statement
SQL syntax, 397

DROP OPTIMIZER STATISTICS statement
SQL syntax, 406

DROP PROCEDURE statement
SQL syntax, 397

E–E

755

DROP PUBLICATION statement
SQL syntax, 402

DROP REMOTE MESSAGE TYPE statement
SQL syntax, 403

DROP SERVER statement
SQL syntax, 404

DROP statement
SQL syntax, 397

DROP STATEMENT statement
SQL syntax, 405

DROP STATISTICS statement
SQL syntax, 406

DROP SUBSCRIPTION statement
SQL syntax, 407

DROP SYNCHRONIZATION DEFINITION
statement

SQL syntax, 408

DROP SYNCHRONIZATION SITE statement
SQL syntax, 409

DROP SYNCHRONIZATION SUBSCRIPTION
statement

SQL syntax, 410

DROP SYNCHRONIZATION TEMPLATE
statement

SQL syntax, 411

DROP SYNCHRONIZATION USER statement
SQL syntax, 412

DROP TABLE statement
SQL syntax, 397

DROP TRIGGER statement
SQL syntax, 397

DROP VARIABLE statement
SQL syntax, 413

DROP VIEW statement
SQL syntax, 397

dropping
connections, 400
connections in Interactive SQL, 396
database files, 399
DBSPACEs, 397
domains, 397
events, 397

functions, 397
indexes, 397
logins for remote servers, 401
optimizer statistics, 406
prepared statements, 405
procedures, 397
publications, 402
remote message types, 403
remote servers, 404
SQL variables, 413
subscriptions, 407
tables, 397
triggers, 397
users, 516
views, 397

DUMMY system table
about, 598

DYNAMIC SCROLL cursors
declaring, 379

dynamic SQL
executing procedures in, 416

E
elements

SQL language syntax, 4

ELSE
CASE expression, 18
IF expressions, 17

e-mail
extended stored procedures, 728
system procedures, 730

embedded SQL
ALLOCATE DESCRIPTOR syntax, 203
BEGIN DECLARE statement syntax, 377
CLOSE statement syntax, 261
CONNECT statement syntax, 268
DEALLOCATE DESCRIPTOR statement

syntax, 376
DEALLOCATE statement syntax, 375
DECLARE CURSOR statement syntax, 379
DELETE (positioned) statement syntax, 390
DESCRIBE statement syntax, 392
DISCONNECT statement syntax, 396
DROP STATEMENT statement syntax, 405
END DECLARE statement syntax, 377

E–E

756

EXECUTE IMMEDIATE statement syntax, 416
EXECUTE statement syntax, 414
EXPLAIN statement syntax, 422
FETCH statement syntax, 424
GET DATA statement syntax, 437
GET DESCRIPTOR statement syntax, 439
GET OPTION statement syntax, 441
INCLUDE statement syntax, 458
OPEN statement syntax, 485
PREPARE statement syntax, 495
PUT statement syntax, 499
SET CONNECTION statement syntax, 536
SET DESCRIPTOR statement syntax, 537
SET SQLCA statement syntax, 545
WHENEVER statement syntax, 589

encrypting
files, 281

encryption
database files, 274

encryption algorithms
CREATE DATABASE statement, 275

END
CASE expression, 18

END DECLARE statement
SQL syntax, 377

END keyword
compatibility, 249

END LOOP statement
SQL syntax, 481

END statement
SQL syntax, 248

ENDIF
IF expressions, 17

ending
rolling back transactions, 522

engines
starting database, 551
stopping database, 559

error messages
ERRORMSG function, 129

ErrorLogSendLimit synchronization option
MobiLink synchronization clients, 345

ERRORMSG function
SQL syntax, 129

ErrorNumber event condition
about, 132

errors
creating events for, 285
raising in Transact-SQL, 501
signaling, 548
trapping in embedded SQL, 589
user-defined messages, 666

escape character
INPUT SQL statement, 459
OUTPUT SQL statement, 488

ESCAPE CHARACTER option
LOAD TABLE statement, 474

ESCAPES option
LOAD TABLE statement, 474

ESQL
statement indicators, 202

establishing
savepoints, 525

ESTIMATE function
SQL syntax, 130

ESTIMATE_SOURCE function
SQL syntax, 131

estimates
explicit selectivity estimates, 31

event conditions
list, 132

EVENT_CONDITION function
SQL syntax, 132

EVENT_CONDITION_NAME function
SQL syntax, 133

EVENT_PARAMETER function
SQL syntax, 134

events
altering, 211
creating and scheduling, 285
dropping, 397
scheduling, 211
triggering, 566

F–F

757

EXCEPTION statement
SQL syntax, 248

exceptions
resignaling, 510
signaling, 548

EXECUTE IMMEDIATE statement
SQL syntax, 416

EXECUTE permissions
granting, 443

EXECUTE statement
SQL syntax, 414
Transact-SQL syntax, 418

executing
operating system commands, 565
prepared statements, 414
resuming execution of procedures, 513
SQL statements from files, 503
stored procedures in Transact-SQL, 418

EXISTS conditions
SQL syntax, 29

EXIT statement
SQL syntax, 420

exiting
Interactive SQL, 420
procedures, 514

EXP function
SQL syntax, 135

EXPERIENCE_ESTIMATE function
SQL syntax, 135

EXPLAIN statement
SQL syntax, 422

EXPLANATION function
SQL syntax, 136

explicit selectivity estimates
about, 31

exporting
BLOBs, 736
Java data, 490
unloading result sets, 571
unloading tables, 573

exporting data
from tables into files, 488

expressions
CASE expressions, 18
column names, 16
compatibility with Adaptive Server Enterprise,

16
constants, 16
IF expressions, 17
Java expressions, 19
SQL operator precedence, 13
SQL syntax, 15
subqueries, 17
Transact-SQL compatibility, 21

external logins
assigning for remote servers, 294
dropping for remote servers, 401

F
FALSE conditions

IS FALSE conditions, 29
three-valued logic, 31

February 29
about, 89

feedback
documentation, xix
providing, xix

FETCH statement
SQL syntax, 424

fetching
rows from cursors, 424

FILE message type
about, 218

FILE messages
about, 317, 403

file size
creating events for, 285

files
allocating space for database, 209
creating database, 278
creating write, 373
decrypting, 280
encrypting, 281
exporting data from tables into, 488
importing data into tables from, 459

F–F

758

reading SQL statements from, 503
xp_read_file system procedure, 734
xp_write_file system procedure, 736

FireTriggers synchronization option
MobiLink synchronization clients, 345

FIRST clause
SELECT statement, 526

FLOAT data type
about, 58

FLOOR function
SQL syntax, 137

FOR clause
SELECT statement, 528

FOR statement
SQL syntax, 429

foreign keys
in the system tables, 618, 619
integrity constraints, 357
remote tables, 722, 723
role names, 357
system views, 675
unnamed, 357

foreign tables
in the system tables, 619

FORMAT option
LOAD TABLE statement, 474

FORWARD TO statement
SQL syntax, 431

fragmentation
tables, 508

frequency
of sending messages, 447, 450

FROM clause
SELECT statement, 527
SQL syntax, 433

FTP message type
about, 218

FTP messages
about, 317

functions
ABS function SQL syntax, 104
ACOS function SQL syntax, 104

aggregate, 94
altering, 213
ARGN function SQL syntax, 105
ASCII function SQL syntax, 105
ASIN function SQL syntax, 106
ATAN function SQL syntax, 106
ATAN2 function SQL syntax, 106
ATN2 function SQL syntax, 106
AVG function SQL syntax, 107
BYTE_LENGTH function SQL syntax, 108
BYTE_SUBSTR function SQL syntax, 108
CAST function SQL syntax, 109
CEILING function SQL syntax, 110
CHAR function SQL syntax, 110
CHAR_LENGTH function SQL syntax, 111
CHARINDEX function SQL syntax, 111
COALESCE function SQL syntax, 112
col_length Adaptive Server Enterprise function,

101
col_name Adaptive Server Enterprise function,

101
COMPARE function SQL syntax, 112
CONNECTION_PROPERTY function SQL

syntax, 113
CONVERT function SQL syntax, 114
COS function SQL syntax, 116
COT function SQL syntax, 117
COUNT function SQL syntax, 117
creating, 296
CSCONVERT function SQL syntax, 118
curunreservedpgs Adaptive Server Enterprise

function, 101
data type conversion SQL, 94
data_pgs Adaptive Server Enterprise function,

101
datalength Adaptive Server Enterprise function,

101
DATALENGTH function SQL syntax, 119
date and time, 95
DATE function SQL syntax, 120
DATEADD function SQL syntax, 120
DATEDIFF function SQL syntax, 121
DATEFORMAT function SQL syntax, 123
DATENAME function SQL syntax, 123
DATEPART function SQL syntax, 124
DATETIME function SQL syntax, 124
DAY function SQL syntax, 125
DAYNAME function SQL syntax, 125
DAYS function SQL syntax, 125
db_id Adaptive Server Enterprise function, 101
DB_ID function SQL syntax, 127

F–F

759

db_name Adaptive Server Enterprise function,
101

DB_NAME function SQL syntax, 127
DB_PROPERTY function SQL syntax, 128
DEGREES function SQL syntax, 128
DIFFERENCE function SQL syntax, 129
DOW function SQL syntax, 129
dropping, 397
ERRORMSG function SQL syntax, 129
ESTIMATE function SQL syntax, 130
ESTIMATE_SOURCE function SQL syntax,

131
EVENT_CONDITION function SQL syntax, 132
EVENT_CONDITION_NAME function SQL

syntax, 133
EVENT_PARAMETER function SQL syntax,

134
exiting from user-defined, 514
EXP function SQL syntax, 135
EXPERIENCE_ESTIMATE function SQL

syntax, 135
EXPLANATION function SQL syntax, 136
FLOOR function SQL syntax, 137
GET_IDENTITY function SQL syntax, 137
GETDATE function SQL syntax, 138
GRAPHICAL_PLAN function SQL syntax, 138
GRAPHICAL_ULPLAN function SQL syntax,

140
GREATER function SQL syntax, 141
HEXTOINT function SQL syntax, 141
host_id Adaptive Server Enterprise function, 101
host_name Adaptive Server Enterprise function,

101
HOUR function SQL syntax, 141
HOURS function SQL syntax, 142
IDENTITY function SQL syntax, 143
IFNULL function SQL syntax, 143
image SQL, 103
index_col Adaptive Server Enterprise function,

101
INDEX_ESTIMATE function SQL syntax, 144
INSERTSTR function SQL syntax, 144
INTTOHEX function SQL syntax, 145
ISDATE function SQL syntax, 145
ISNULL function SQL syntax, 146
ISNUMERIC function SQL syntax, 147
Java, 97
LCASE function SQL syntax, 147
lct_admin Adaptive Server Enterprise function,

101
LEFT function SQL syntax, 148

LENGTH function SQL syntax, 148
LESSER function SQL syntax, 149
LIST function SQL syntax, 149
LOCATE function SQL syntax, 150
LOG function SQL syntax, 151
LOG10 function SQL syntax, 152
LONG_ULPLAN function SQL syntax, 152
LOWER function SQL syntax, 153
LTRIM function SQL syntax, 153
MAX function SQL syntax, 154
MIN function SQL syntax, 154
MINUTE function SQL syntax, 155
MINUTES function SQL syntax, 155
miscellaneous, 97
MOD function SQL syntax, 156
MONTH function SQL syntax, 157
MONTHNAME function SQL syntax, 157
MONTHS function SQL syntax, 158
NEWID function SQL syntax, 159
NEXT_CONNECTION function SQL syntax,

160
NEXT_DATABASE function SQL syntax, 161
NOW function SQL syntax, 161
NULLIF function SQL syntax, 162
NUMBER function SQL syntax, 162
numeric, 98
object_id Adaptive Server Enterprise function,

101
object_name Adaptive Server Enterprise

function, 101
PATINDEX function SQL syntax, 164
PI function SQL syntax, 164
PLAN function SQL syntax, 165
POWER function SQL syntax, 166
proc_role Adaptive Server Enterprise function,

101
PROPERTY function SQL syntax, 167
PROPERTY_DESCRIPTION function SQL

syntax, 166
PROPERTY_NAME function SQL syntax, 167
PROPERTY_NUMBER function SQL syntax,

168
QUARTER function SQL syntax, 168
RADIANS function SQL syntax, 169
RAND function SQL syntax, 169
REMAINDER function SQL syntax, 170
REPEAT function SQL syntax, 170
REPLACE function SQL syntax, 171
REPLICATE function SQL syntax, 172
reserved_pgs Adaptive Server Enterprise

function, 101

G–G

760

returning values from user-defined, 514
REWRITE function SQL syntax, 172
RIGHT function SQL syntax, 174
ROUND function SQL syntax, 174
rowcnt Adaptive Server Enterprise function, 101
RTRIM function SQL syntax, 175
SECOND function SQL syntax, 175
SECONDS function SQL syntax, 176
SHORT_ULPLAN function SQL syntax, 177
show_role Adaptive Server Enterprise function,

101
SIGN function SQL syntax, 177
SIMILAR function SQL syntax, 178
SIN function SQL syntax, 179
SORTKEY function SQL syntax, 179
SOUNDEX function SQL syntax, 182
SPACE function SQL syntax, 183
SQLDIALECT function SQL syntax, 183
SQRT function SQL syntax, 184
STR function SQL syntax, 184
string, 99
STRING function SQL syntax, 185
STRTOUUID function SQL syntax, 185
STUFF function SQL syntax, 186
SUBSTR function SQL syntax, 186
SUBSTRING function SQL syntax, 186
SUM function SQL syntax, 187
suser_id Adaptive Server Enterprise function,

101
suser_name Adaptive Server Enterprise function,

101
system, 101
TAN function SQL syntax, 188
text SQL, 103
TEXTPTR function SQL syntax, 188
TODAY function SQL syntax, 189
TRACEBACK function SQL syntax, 189
Transact-SQL, 101
TRANSACTSQL function SQL syntax, 190
TRIM function SQL syntax, 190
TRUNCATE function SQL syntax, 190
TRUNCNUM function SQL syntax, 191
tsequal Adaptive Server Enterprise function, 101
types of function, 94
UCASE function SQL syntax, 192
UPPER function SQL syntax, 192
used_pgs Adaptive Server Enterprise function,

101
user_id Adaptive Server Enterprise function, 101
user_name Adaptive Server Enterprise function,

101

user-defined, 97
UUIDTOSTR function SQL syntax, 193
valid_name Adaptive Server Enterprise function,

101
valid_user Adaptive Server Enterprise function,

101
VAREXISTS function SQL syntax, 194
WATCOMSQL function SQL syntax, 194
WEEKS function SQL syntax, 195
YEARS function SQL syntax, 196
YMD function SQL syntax, 197

functions, numeric
ATAN, 106

G
GET DATA statement

SQL syntax, 437

GET DESCRIPTOR statement
SQL syntax, 439

GET OPTION statement
SQL syntax, 441

GET_IDENTITY function
SQL syntax, 137

GETDATE function
SQL syntax, 138

getting
binary data from columns, 437
information from descriptor areas, 439
option values, 441

global autoincrement
creating events for, 285

global temporary tables
creating, 350

global variables
@@char_convert, 43
@@client_csid, 43
@@client_csname, 43
@@connections, 43
@@cpu_busy, 43
@@dbts, 41
@@error, 41, 43
@@fetch_status, 41
@@identity, 41, 43, 46

H–H

761

@@idle, 43
@@io_busy, 43
@@isolation, 41, 43
@@langid, 43
@@language, 43
@@max_connections, 43
@@maxcharlen, 43
@@ncharsize, 43
@@nestlevel, 43
@@pack_received, 43
@@pack_sent, 43
@@packet_errors, 43
@@procid, 41, 43
@@rowcount, 41, 43
@@servername, 41, 43
@@spid, 43
@@sqlstatus, 41, 43
@@textsize, 43
@@thresh_hysteresis, 43
@@timeticks, 43
@@total_errors, 43
@@total_read, 43
@@total_write, 43
@@tranchained, 43
@@trancount, 43
@@transtate, 43
@@version, 41, 43
SQL syntax, 40
triggers and @@identity, 46

GLOBAL_DATABASE_ID option
CREATE TABLE statement, 353

globally unique identifiers
SQL syntax for NEWID function, 159

GOTO statement
Transact-SQL syntax, 442

GRANT CONNECT statement
SQL syntax, 443

GRANT CONSOLIDATE statement
SQL syntax, 447

GRANT DBA statement
SQL syntax, 443

GRANT GROUP statement
SQL syntax, 443

GRANT PUBLISH statement
SQL syntax, 449

GRANT REMOTE DBA statement
SQL syntax, 452

GRANT REMOTE statement
SQL syntax, 450

GRANT RESOURCE statement
SQL syntax, 443

GRANT statement
reviewing permissions, 607
SQL syntax, 443

granting
consolidate permissions, 447
permissions, 443
publish permissions, 449
remote DBA permissions, 452
remote permissions, 450

GRAPHICAL_PLAN function
SQL syntax, 138

GRAPHICAL_ULPLAN function
SQL syntax, 140

GREATER function
SQL syntax, 141

GROUP authority
granting permissions, 443

GROUP BY clause
SELECT statement, 527

grouping
statements, 248

GUIDs
SQL syntax for NEWID function, 159
SQL syntax for STRTOUUID function, 185
SQL syntax for UUIDTOSTR function, 193
UNIQUEIDENTIFIER data type, 73

H
handling

errors in embedded SQL, 589
errors in Transact-SQL, 501

HAVING clause
search conditions, 24
SELECT statement, 528

I–I

762

HELP statement
SQL syntax, 453

hexadecimal constants
about, 56

hexadecimal escape sequences
in SQL strings, 9

HEXTOINT function
SQL syntax, 141

histograms
selectivity estimates, 31
SYSCOLSTAT system table, 608
updating with CREATE STATISTICS, 323
updating with LOAD TABLE, 476

host stream parameter
MobiLink clients using HTTP, 338
MobiLink clients using HTTPS, 341
MobiLink clients using TCP/IP, 336

host variables
declaring in embedded SQL, 377
syntax, 200

host_id Adaptive Server Enterprise function, 101

host_name Adaptive Server Enterprise function, 101

hostvar
syntax, 200

HOUR function
SQL syntax, 141

HOURS function
SQL syntax, 142

how dates are stored, 87

HTTP
MobiLink clients using, 338

HTTPS
MobiLink clients using, 341

I
I/O

recalibrating the I/O cost model, 207

icons
used in manuals, xvi

identifiers
about, 7
maximum length in ASA, 7
SQL syntax, 7

IDENTITY column
@@identity, 46

IDENTITY function
SQL syntax, 143

idle server
creating events for, 285

IdleTime event condition
about, 132

IF expressions
search conditions, 24
SQL syntax, 17

IF statement
SQL syntax, 454
Transact-SQL syntax, 456

IF UPDATE clause
in triggers, 362, 366
in triggers in Transact-SQL, 369

IFNULL function
SQL syntax, 143

IgnoreHookErrors synchronization option
MobiLink synchronization clients, 345

IgnoreScheduling synchronization option
MobiLink synchronization clients, 345

IMAGE data type
about, 73

image SQL functions, 103

images
reading from the database, 504

importing data
into tables from files, 459

IN conditions
SQL syntax, 29

INCLUDE statement
SQL syntax, 458

Increment synchronization option
about, 345

index_col Adaptive Server Enterprise function, 101

I–I

763

INDEX_ESTIMATE function
SQL syntax, 144

indexes
automatically created, 301
compressing, 508
creating, 300
dropping, 397
foreign keys, 301
in the system tables, 622, 626
naming, 301
owner, 301
primary keys, 301
system views, 675
table use, 301
unique, 300
unique names, 301
validating, 585
views, 301

indicator variables
about, 200

indicators
comments, 47

initializing
databases, 273

INNER JOIN
SQL syntax, 433

INPUT statement
SQL syntax, 459

INSERT statement
SQL syntax, 463

inserting
multi-row, 414
rows in bulk, 472
rows into tables, 463
rows using cursors, 499
wide inserts, 414

inserting BLOBs, 734

INSERTING condition
triggers, 30

INSERTSTR function
SQL syntax, 144

INSTALL statement
SQL syntax, 467

installing
Java classes, 467

INT data type
about, 59

INTEGER data type
about, 59

INTEGRATED LOGIN permissions
granting, 443

integrity
constraints, 356

Interactive SQL
alphabetical list of all statements, 199
BYE statement syntax, 420
CLEAR statement syntax, 260
CONFIGURE statement syntax, 267
CONNECT statement syntax, 268
connecting to a database, 269
DISCONNECT statement syntax, 396
EXIT statement syntax, 420
HELP statement syntax, 453
INPUT statement syntax, 459
OUTPUT statement syntax, 488
PARAMETERS statement syntax, 493
procedure profiling, 716
QUIT statement syntax, 420
READ statement syntax, 503
return codes, 420
SET CONNECTION statement syntax, 536
SET OPTION statement syntax, 542
START ENGINE statement syntax, 551
START LOGGING statement syntax, 553
STOP LOGGING statement syntax, 561
SYSTEM statement syntax, 565

Interval event condition
about, 132

INTO clause
SELECT statement, 527

INTTOHEX function
SQL syntax, 145

invoking
procedures, 254

IS
logical operators, 11
three-valued logic, 31

J–J

764

IS FALSE conditions
SQL syntax, 29

IS NOT NULL conditions
SQL syntax, 29

IS NULL conditions
SQL syntax, 29

IS TRUE conditions
SQL syntax, 29

IS UNKNOWN conditions
SQL syntax, 29

ISDATE function
SQL syntax, 145

ISNULL function
SQL syntax, 146

ISNUMERIC function
SQL syntax, 147

isolation levels
cursors, 486

iterating
over cursors, 429

J
jar files

installing, 467
removing, 507

Java
converting Java and SQL, 84
method signatures, 309
SQL expressions, 19
supported classes, 77
system tables, 671
unsupported classes, 78
user-defined functions, 97

Java class creation wizard
using, 79

Java classes
built-in, 77
columns, 81
CREATE DATABASE statement, 276
data types, 77
installing, 79
loaded in the database, 697

troubleshooting, 697
user-defined, 77, 79

Java data types
case sensitivity, 80
converting from SQL, 85
converting to SQL, 84

Java Development Kit
preparing classes, 79

Java expressions
SQL syntax, 19

Java fields
referencing, 20

Java in the database
CREATE DATABASE statement, 276
enabling a database, 205
exporting, 490
installing classes, 467
OUTPUT statement, 490
removing classes, 507
upgrading databases, 205

Java to SQL data type conversion, 84

Java VM
starting, 552
stopping, 560

java.applet package
unsupported classes, 78

java.awt package
unsupported classes, 78

java.awt.datatransfer package
unsupported classes, 78

java.awt.event package
unsupported classes, 78

java.awt.image package
unsupported classes, 78

java.beans package
supported classes, 78

java.io package
supported classes, 78

java.io.File
partially supported classes, 79

java.io.FileDescriptor
partially supported classes, 79

K–K

765

java.io.FileInputStream
partially supported classes, 79

java.io.FileOutputStream
partially supported classes, 79

java.io.RandomAccessFile
partially supported classes, 79

java.lang package
supported classes, 78

java.lang.ClassLoader
partially supported classes, 79

java.lang.Compiler
partially supported classes, 79

java.lang.reflect package
supported classes, 78

java.lang.Runtime
partially supported classes, 79

java.lang.Thread
partially supported classes, 78

java.math package
supported classes, 78

java.net package
supported classes, 78

java.net.PlainDatagramSocketImpl
supported classes, 78

java.rmi package
supported classes, 78

java.rmi.dgc package
supported classes, 78

java.rmi.registry package
supported classes, 78

java.rmi.server package
supported classes, 78

java.security package
supported classes, 78

java.security.acl package
supported classes, 78

java.security.interfaces package
supported classes, 78

java.SQL package
supported classes, 78

java.text package
supported classes, 78

java.util package
supported classes, 78

java.util.zip package
supported classes, 78

java.util.zip.Deflater
partially supported classes, 79

java.util.zip.Inflater
partially supported classes, 79

Java/SQL data type conversion, 84

javax
Java in the database, 77

jConnect
CREATE DATABASE statement, 276

JDBC
data type conversion, 84
upgrading databases, 205

JDK
preparing classes, 79

join operators
compatibility with Adaptive Server Enterprise,

13

joins
ANSI equivalency, 172
deleting rows based on joins, 388
FROM clause syntax, 433
updates, 582
updates based on, 577, 583

Julian day, 125

K
keep_alive stream parameter

MobiLink clients using HTTP, 339
MobiLink clients using HTTPS, 342
MobiLink clients using TCP/IP, 336

KEY JOIN
SQL syntax, 433

keywords
SQL syntax, 4

L–L

766

L
labels

for statements, 201, 442

language elements
SQL syntax, 4

large binary objects
getting from columns, 437

large databases
index storage, 300

LAST USER
special value, 35

LCASE function
SQL syntax, 147

lct_admin Adaptive Server Enterprise function, 101

leap years
about, 89

LEAVE statement
SQL syntax, 469

LEFT function
SQL syntax, 148

LEFT OUTER JOIN
SQL syntax, 433

LENGTH function
SQL syntax, 148

LESSER function
SQL syntax, 149

LIKE conditions
and case-sensitivity, 27
and collations, 27
maximum pattern length, 27
SQL syntax, 26

limiting the number of rows returned, 526

LIST function
SQL syntax, 149

literal strings
SQL syntax, 9

liveness timeout
database server, 716

LOAD STATISTICS statement
SQL syntax, 471

LOAD TABLE statement
SQL syntax, 472

loading
bulk inserts, 472

local temporary tables
creating, 386

local variables
SQL syntax, 38

LOCATE function
SQL syntax, 150

LOCK TABLE statement
SQL syntax, 479

locking
blocks, 688
tables, 479

locks
displaying, 698

LockTables synchronization option
MobiLink synchronization clients, 345

log files
allocating space for, 209
analyzing the request-level log, 694, 695
determining available space for, 692

LOG function
SQL syntax, 151

LOG10 function
SQL syntax, 152

LogFreePercent event condition
about, 132

LogFreeSpace event condition
about, 132

logging
starting in Interactive SQL, 553
stopping in Interactive SQL, 561
updating columns without, 591

logical operators
compatibility with Adaptive Server Enterprise,

12
SQL syntax, 11
three-valued logic, 31

M–M

767

logins
assigning for remote servers, 294
dropping for remote servers, 401

LogSize event condition
about, 132

LONG BINARY data type
about, 72

long column names
retrieving, 393

LONG VARCHAR data type
about, 54

LONG_ULPLAN function
SQL syntax, 152

LOOP statement
SQL syntax, 481

looping
over cursors, 429

LOWER function
SQL syntax, 153

LTRIM function
SQL syntax, 153

M
MAPI

extended stored procedures, 728
return codes, 730

MAPI message type
about, 218

MAPI messages
about, 317, 403

mathematical expressions
arithmetic operators, 12

MAX function
SQL syntax, 154

MDSR encryption algorithm
CREATE DATABASE statement, 275

MEMBERSHIP clause
granting permissions, 443

memory
allocating for descriptor areas, 203

Memory synchronization option
MobiLink synchronization clients, 345

message control parameters
setting, 543

MESSAGE statement
SQL syntax, 483

messages
altering remote types, 218
creating, 304
creating remote types, 317
displaying, 483
dropping remote types, 403

messages windows
printing messages in, 498

method signatures
Java, 309

MIN function
SQL syntax, 154

MINUTE function
SQL syntax, 155

MINUTES function
SQL syntax, 155

MobiLink
creating publications, 314

MobiLinkPwd synchronization option
MobiLink synchronization clients, 345

MOD function
SQL syntax, 156

MONEY data type
about, 63

monitoring performance
execution time determination, 695

MONTH function
SQL syntax, 157

MONTHNAME function
SQL syntax, 157

MONTHS function
SQL syntax, 158

N–O

768

multi-byte character sets
unloading data, 474, 573

multi-row fetches
FETCH statement, 425
OPEN statement, 486

multi-row inserts, 414

N
names

column names, 16

NATURAL JOIN
SQL syntax, 433

nesting
user-defined transactions, 251

network_connect_timeout stream parameter
MobiLink clients using HTTP, 339
MobiLink clients using HTTPS, 342
MobiLink clients using TCP/IP, 337

network_leave_open stream parameter
MobiLink clients using HTTP, 339
MobiLink clients using HTTPS, 342
MobiLink clients using TCP/IP, 337

network_name stream parameter
MobiLink clients using HTTP, 339
MobiLink clients using HTTPS, 342
MobiLink clients using TCP/IP, 337

new line characters
in SQL strings, 9

NEWID function
SQL syntax, 159

NewMobiLinkPwd synchronization option
MobiLink synchronization clients, 345

newsgroups
technical support, xix

NEXT_CONNECTION function
SQL syntax, 160

NEXT_DATABASE function
SQL syntax, 161

NO SCROLL cursors
declaring, 379

NOT
logical operators, 11
three-valued logic, 31

NOW function
SQL syntax, 161

NULL
Adaptive Server Enterprise compatibility, 49
ISNULL function, 146
NULL value, 48
three-valued logic, 31, 48

NULLIF function, 19
about, 162

NUMBER function
SQL syntax, 162
updates, 576, 582

number of rows, 658

NUMERIC data type
about, 60

numeric functions
alphabetical list, 98

nusupported classes
java.awt.datatransfer, 78

O
object_id Adaptive Server Enterprise function, 101

object_name Adaptive Server Enterprise function,
101

ODBC
declaring static cursors, 379

OfflineDirectory synchronization option
MobiLink synchronization clients, 345

ON EXCEPTION RESUME clause
about, 307

ON phrase
search conditions, 24

ON_TSQL_ERROR option
and ON EXCEPTION RESUME clause, 307

OPEN statement
SQL syntax, 485

P–P

769

opening
cursors, 485

operating system
executing commands, 565

operator precedence
SQL syntax, 13

operators
about, 10
arithmetic operators, 12
bitwise operators, 13
comparison operators, 10
logical operators, 11
precedence of operators, 13
string operators, 12

optimization
defining existing tables and, 291

optimizer
CREATE STATISTICS statement, 323
explicit selectivity estimates, 31

optimizer plans
getting text specification, 422

optimizer statistics
dropping, 406

OPTION clause
CREATE SYNCHRONIZATION USER, 344

options
about, 539
getting values, 441
in the system tables, 633
initial settings, 721, 726
MobiLink synchronization clients, 344
overriding, 716
QUOTED_IDENTIFIER and T-SQL

compatibility, 22
setting, 539
setting in Interactive SQL, 267, 542
setting in Transact-SQL, 533
setting remote, 543
system views, 675, 678
Transact-SQL compatibility, 726

OR
logical operators, 11
three-valued logic, 31

ORDER BY clause, 528

order of operations
SQL operator precedence, 13

out of disk space
creating events for, 285

OUTPUT statement
Java data, 490
SQL syntax, 488

P
packages

installing Java classes, 467
removing Java classes, 507
supported, 77
unsupported, 78

page size
creating databases, 274

page usage
tables, 719

pages
viewing settings for PCTFREE, 601

parameters
for Interactive SQL command files, 493

PARAMETERS statement
SQL syntax, 493

partially supported classes
java.io.File, 79
java.io.FileDescriptor, 79
java.io.FileInputStream, 79
java.io.FileOutputStream, 79
java.io.RandomAccessFile, 79
java.lang.ClassLoader, 79
java.lang.Compiler, 79
java.lang.Runtime (exec/load/loadlibrary), 79
java.lang.Thread, 78
java.util.zip.Deflater, 79
java.util.zip.Inflater, 79

passthrough mode
starting, 494
stopping, 494

PASSTHROUGH statement
SQL syntax, 494

P–P

770

passwords
changing, 443
in the system tables, 667

PATINDEX function
SQL syntax, 164

pattern matching
and case-sensitivity, 27
and collations, 27
LIKE conditions, 26
maximum pattern length, 27
PATINDEX function, 164
wildcards, 164

PCTFREE setting
system tables, 601

performance
compression statistics, 687
pre-allocating space, 209
recalibrating the I/O cost model, 207
recalibrating the server, 205
updates, 583

permissions
CONSOLIDATE, 447
granting, 443
granting consolidate, 447
granting publish, 449
granting remote, 450
granting remote DBA, 452
in the system tables, 607, 660
revoking, 516
revoking consolidate, 518
revoking publish, 519
revoking remote, 520
revoking remote DBA, 521
SYSCOLAUTH system view, 674
system views, 677

persistent stream parameter
MobiLink clients using HTTP, 339
MobiLink clients using HTTPS, 342

PI function
SQL syntax, 164

PLAN function
SQL syntax, 165

plans
and cursors, 136, 138, 165
getting text specification, 422
SQL syntax, 136, 138, 165

PollingPeriod synchronization option
MobiLink synchronization clients, 345

pooling
enabling pooling of connections, 546

port stream parameter
MobiLink clients using HTTP, 340
MobiLink clients using HTTPS, 343
MobiLink clients using TCP/IP, 336

positioned DELETE statement
SQL syntax, 390

POWER function
SQL syntax, 166

precedence
SQL operator precedence, 13

predicates
ANY or ALL conditions, 25
comparison operators, 10
EXISTS conditions, 29
explicit selectivity estimates, 31
IS NULL conditions, 29
IS TRUE or FALSE conditions, 29
IS UNKNOWN conditions, 29
LIKE conditions, 26
SQL BETWEEN conditions, 26
SQL IN conditions, 29
SQL subqueries in, 25
SQL syntax, 24
three-valued logic, 31

PREPARE statement
SQL syntax, 495

PREPARE TO COMMIT statement
SQL syntax, 497

prepared statements
dropping, 405
executing, 414

preparing
for two-phase commit, 497
statements, 495

primary keys
generating unique values, 159
generating unique values using UUIDs, 159
in the system tables, 610, 658
integrity constraints, 357
order of columns, 357

P–P

771

remote tables, 722, 723
UUIDs and GUIDs, 159

primary tables
in the system tables, 619

PRINT statement
Transact-SQL syntax, 498

printing
messages in the message window, 498

proc_role Adaptive Server Enterprise function, 101

procedure profiling
disabling in Interactive SQL, 717
enabling in Interactive SQL, 716
in Interactive SQL, 716
summary of procedures, 712, 713
viewing in Interactive SQL, 712, 713

procedures, 495
altering, 214
catalog, list, 685
CREATE PROCEDURE SQL statement, 312
creating, 305
creating in Transact-SQL, 312
dropping, 397
executing in dynamic SQL, 416
executing stored in Transact-SQL, 418
exiting, 514
extended list, 728
external function calls, 296, 308
invoking, 254
raising errors in Transact-SQL, 501
replicating, 214
resuming execution of, 513
returning values from, 514
system, 683
Transact-SQL, list, 737
variable result sets, 306, 394

product name
retrieving, 733

properties
server, 167

PROPERTY function
SQL syntax, 167

PROPERTY_DESCRIPTION function
SQL syntax, 166

PROPERTY_NAME function
SQL syntax, 167

PROPERTY_NUMBER function
SQL syntax, 168

protocols
MobiLink clients using ActiveSync, 344
MobiLink clients using HTTP, 338
MobiLink clients using HTTPS, 341
MobiLink clients using TCP/IP, 336

proxy procedures
creating, 305

proxy tables
creating, 291, 351

proxy_host stream parameter
MobiLink clients using HTTP, 340
MobiLink clients using HTTPS, 343

proxy_port stream parameter
MobiLink clients using HTTP, 340
MobiLink clients using HTTPS, 343

PUBLIC group
in the system tables, 668

publications
altering, 216
creating, 314
designing, 584
dropping, 402
updates, 584
updating, 577

publish permissions
granting, 449
revoking, 519

publisher
address, 317, 403
GRANT PUBLISH statement, 449
remote, 450

publishers
addresses, 218

PURGE clause
FETCH statement, 425

PUT statement
SQL syntax, 499

putting
rows into cursors, 499

Q–R

772

Q
QUARTER function

SQL syntax, 168

QUIT statement
SQL syntax, 420

quitting
Interactive SQL, 420

quitting time
database server, 716

quotation marks
compatibility with Adaptive Server Enterprise,

21
database objects, 7
single vs. double, 21
SQL identifiers, 7

QUOTED_IDENTIFIER option
Adaptive Server Enterprise compatibility, 533
T-SQL expression compatibility, 22

QUOTES option
LOAD TABLE statement, 474

R
RADIANS function

SQL syntax, 169

RAISERROR statement
Transact-SQL syntax, 501

raising
errors in Transact-SQL, 501

RAND function
SQL syntax, 169

read only
locking tables, 479

READ statement
SQL syntax, 503

reading
text and image values from the database, 504

reading files
stored procedures, 734, 736

reading SQL statements from files, 503

READTEXT statement
Transact-SQL syntax, 504

REAL data type
about, 61

recalibrating the cost model, 205

recovery
LOAD TABLE, 476

redescribing cursors, 307

REFERENCES permissions
granting, 443

referential integrity
actions, 358
FROM clause, 433

relationships
in the system tables, 619

RELEASE SAVEPOINT statement
SQL syntax, 505

releasing
savepoints, 505

REMAINDER function
SQL syntax, 170

remember_last_statement
about, 716

remote data access
FORWARD TO statement, 431

remote DBA permissions
granting, 452
revoking, 521

remote message types
altering, 218
creating, 317
dropping, 403

remote options
setting, 543

remote permissions
granting, 450
revoking, 520

remote procedures
creating, 305, 308
creating in Transact SQL, 312

R–R

773

REMOTE RESET statement
SQL syntax, 506

remote servers
altering attributes, 220
assigning logins for, 294
capabilities, 603, 604, 725
creating tables, 350
dropping, 404
dropping logins for, 401
sending SQL statements to, 431

remote tables
columns, 721
creating, 351
foreign keys, 722, 723
listing, 724
primary keys, 722, 723

remote users
REVOKE REMOTE statement, 520

remoteoption table
about, 646

remoteoptiontype table
about, 647

REMOVE statement
SQL syntax, 507

removing
granting permissions, 443
Java classes, 507
permissions, 516

renaming
columns, 237
tables, 237

REORGANIZE TABLE statement
SQL syntax, 508

reorganizing
tables, 508

REPEAT function
SQL syntax, 170

REPLACE function
SQL syntax, 171

replacing objects
sa_make_object, 700

REPLICATE function
SQL syntax, 172

replicating
procedures, 214

request_level_debugging
about, 716

request_level_logging
about, 716

reserved words
SQL syntax, 4
using as identifiers, 22

reserved_pgs Adaptive Server Enterprise function,
101

RESIGNAL statement
SQL syntax, 510

resignaling
exceptions, 510

resource authority
in the system tables, 667

RESOURCE authority
granting permissions, 443

RESTORE DATABASE statement
SQL syntax, 511

restoring
databases from archives, 511

RESTRICT action
CREATE TABLE statement, 358

result sets
resuming execution of procedures, 513
shape of, 394
unloading, 571
variable, 306, 394, 495

RESUME statement
SQL syntax, 513

resuming
execution of procedures, 513

return codes
Interactive SQL, 420

RETURN statement
SQL syntax, 514

returning
values from procedures, 514

S–S

774

REVOKE CONSOLIDATE statement
SQL syntax, 518

REVOKE PUBLISH statement
SQL syntax, 519

REVOKE REMOTE DBA statement
SQL syntax, 521

REVOKE REMOTE statement
SQL syntax, 520

REVOKE statement
SQL syntax, 516

revoking
consolidate permissions, 518
permissions, 516
publish permissions, 519
remote DBA permissions, 521
remote permissions, 520

REWRITE function
SQL syntax, 172

RIGHT function
SQL syntax, 174

RIGHT OUTER JOIN
SQL syntax, 433

Rijndael encryption algorithm
CREATE DATABASE statement, 275

role names
about, 357
foreign keys, 358

ROLLBACK statement
SQL syntax, 522

ROLLBACK TO SAVEPOINT statement
SQL syntax, 523

ROLLBACK TRIGGER statement
SQL syntax, 524

rolling back
transactions, 522
transactions to savepoints, 523
triggers, 524

ROUND function
SQL syntax, 174

roundoff errors
about, 56

row limits, 526

rowcnt Adaptive Server Enterprise function, 101

ROWCOUNT option
Adaptive Server Enterprise compatibility, 533

row-level triggers, 363

rows
deleting all from a table, 567
deleting from cursors, 390
fetching from cursors, 424
inserting in bulk, 472
inserting into tables, 463
inserting using cursors, 499
limiting number returned, 526
selecting, 526
unloading, 571
updating, 575

RTRIM function
SQL syntax, 175

rules
SQL language syntax, 4

S
sa_audit_string system procedure

syntax, 685

sa_check_commit system procedure
syntax, 685

sa_conn_activity system procedure
syntax, 686

sa_conn_compression_info system procedure
syntax, 687

sa_conn_info system procedure
syntax, 688

sa_conn_properties system procedure
syntax, 689

sa_conn_properties_by_name system procedure
syntax, 690

sa_db_info system procedure
syntax, 690

sa_db_properties system procedure
syntax, 691

S–S

775

sa_disk_free_space system procedure
syntax, 692

sa_eng_properties system procedure
syntax, 692

sa_flush_cache system procedure
syntax, 693

sa_flush_statistics system procedure
syntax, 693

sa_get_dtt system procedure
syntax, 693

sa_get_histogram system procedure
syntax, 694

sa_get_request_profile system procedure
syntax, 694

sa_get_request_times system procedure
syntax, 695

sa_get_server_messages system procedure
syntax, 696

sa_index_density system procedure
syntax, 696

sa_index_levels system procedure
syntax, 697

sa_java_loaded_classes system procedure
syntax, 697

sa_locks system procedure
syntax, 698

sa_make_object system procedure
syntax, 700

sa_migrate system procedure
syntax, 701

sa_migrate_create_fks system procedure
syntax, 703

sa_migrate_create_remote_fks_list system
procedure

syntax, 705

sa_migrate_create_remote_table_list system
procedure

syntax, 706

sa_migrate_create_tables system procedure
syntax, 708

sa_migrate_data system procedure
syntax, 709

sa_migrate_drop_proxy_tables system procedure
syntax, 710

sa_procedure_profile system procedure
syntax, 712

sa_procedure_profile_summary system procedure
syntax, 713

sa_reset_identity system procedure
syntax, 715

sa_server_option system procedure
syntax, 716

sa_statement_text system procedure
syntax, 718

sa_table_fragmentation system procedure
syntax, 719

sa_table_page_usage system procedure
syntax, 719

sa_validate system procedure
syntax, 720

sample database
about asademo.db, xviii

SAVEPOINT statement
SQL syntax, 525

savepoints
creating, 525
releasing, 505
rolling back to savepoints, 523

Schedule synchronization option
MobiLink synchronization clients, 345

scheduled events
triggering, 566
WAITFOR statement, 588

scheduling
creating events, 285
events, 211
MobiLink synchronization clients, 347
WAITFOR, 588

schema
system tables, 595

S–S

776

schemas
creating, 319

ScriptSiteName synchronization option
MobiLink synchronization clients, 345

ScriptVersion synchronization option
MobiLink synchronization clients, 345

SCROLL cursors
declaring, 379

search conditions
ANY or ALL conditions, 25
EXISTS conditions, 29
explicit selectivity estimates, 31
IS NULL conditions, 29
IS TRUE or FALSE conditions, 29
IS UNKNOWN conditions, 29
LIKE conditions, 26
SQL BETWEEN conditions, 26
SQL IN conditions, 29
SQL syntax, 24
subqueries in, 25
three-valued logic, 31

SECOND function
SQL syntax, 175

SECONDS function
SQL syntax, 176

security
replication, 452, 521

security stream parameter
MobiLink clients using HTTP, 340
MobiLink clients using TCP/IP, 337

select lists
describing cursors, 392

SELECT permissions
granting, 443

SELECT statement
SQL syntax, 526

selecting
for unloading, 571
forming unions, 569
rows, 526

selectivity estimates
source of estimates, 131
user-defined, 31

SELF_RECURSION option
Adaptive Server Enterprise compatibility, 533

SEND AT clause, 447, 450
publish, 449

SEND EVERY clause, 447, 450

SendColumnNames synchronization option
MobiLink synchronization clients, 345

sending
SQL statements to remote servers, 431

sending and retrieving date values, 88

SendTriggers synchronization option
MobiLink synchronization clients, 345

servers
altering remote attributes, 220
creating, 321
creating events for idle, 285
dropping remote, 404
starting database, 551
stopping database, 559

SET CONNECTION statement
SQL syntax, 536

SET DEFAULT action
CREATE TABLE statement, 358

SET DESCRIPTOR statement
SQL syntax, 537

SET NULL action
CREATE TABLE statement, 358

SET OPTION statement
Interactive SQL syntax, 542
SQL syntax, 539
Transact-SQL syntax, 533

SET PERMANENT statement
Interactive SQL syntax, 542

SET REMOTE OPTION statement
SQL syntax, 543

SET SQLCA statement
SQL syntax, 545

SET statement
SQL syntax, 531
Transact-SQL syntax, 533

S–S

777

SET TEMPORARY OPTION statement
Interactive SQL syntax, 542
SQL syntax, 539

setting
connections, 536
descriptor areas, 537
options, 539
options in Interactive SQL, 267, 542
options in Transact-SQL, 533
remote options, 543
SQLCAs, 545
users, 546
values of SQL variables, 531

SETUSER statement
SQL syntax, 546

SHORT_ULPLAN function
SQL syntax, 177

show_role Adaptive Server Enterprise function, 101

SIGN function
SQL syntax, 177

SIGNAL statement
SQL syntax, 548

signaling
errors, 501, 548
exceptions, 510

signatures
Java methods, 309

SIMILAR function
SQL syntax, 178

SIN function
SQL syntax, 179

SMALLDATETIME data type
about, 70

SMALLINT data type
about, 61

SMTP
extended stored procedures, 728
return codes, 731

SOME conditions
SQL syntax, 25

sorting
in the system tables, 605
SORTKEY function, 179

SORTKEY function
SQL syntax, 179

SOUNDEX function
SQL syntax, 182

SP
statement indicators, 202

sp_addgroup system procedure, 737

sp_addlogin system procedure, 737

sp_addmessage system procedure, 304, 737

sp_addtype system procedure, 737

sp_adduser system procedure, 737

sp_changegroup system procedure, 737

sp_column_privileges
catalog procedure, 738

sp_column_privileges catalog procedure, 738

sp_columns catalog procedure, 738

sp_dboption system procedure, 737

sp_dropgroup system procedure, 737

sp_droplogin system procedure, 737

sp_dropmessage system procedure, 737

sp_droptype system procedure, 737

sp_dropuser system procedure, 737

sp_fkeys catalog procedure, 738

sp_getmessage system procedure, 737

sp_helptext system procedure, 737

sp_login_environment system procedure
syntax, 721

sp_password system procedure, 737

sp_pkeys catalog procedure, 738

sp_remote_columns system procedure
syntax, 721

sp_remote_exported_keys system procedure
syntax, 722

S–S

778

sp_remote_imported_keys system procedure
syntax, 723

sp_remote_tables system procedure
syntax, 724

sp_servercaps system procedure
syntax, 725

sp_special_columns catalog procedure, 738

sp_sproc_columns catalog procedure, 738

sp_stored_procedures catalog procedure, 738

sp_tables catalog procedure, 738

sp_tsql_environment system procedure
syntax, 726

SPACE function
SQL syntax, 183

special characters
in SQL strings, 9

special tables
about, 595

special values
CURRENT DATABASE, 33
CURRENT DATE, 33
CURRENT PUBLISHER, 33
CURRENT TIME, 33
CURRENT TIMESTAMP, 34
CURRENT USER, 34
CURRENT UTC TIMESTAMP, 34
LAST USER, 35
NULL, 48
SQL syntax, 33
SQLCODE, 35
SQLSTATE, 35
TIMESTAMP, 36
USER, 36
UTC TIMESTAMP, 37

SQL
alphabetical list of all statements, 199

SQL Anywhere Studio
documentation, xii

SQL descriptor area
INCLUDE statement, 458
inserting rows using cursors, 499

SQL descriptor areas
DESCRIBE statement, 392

SQL functions
ABS function syntax, 104
ACOS function syntax, 104
aggregate, 94
ARGN function syntax, 105
ASCII function syntax, 105
ASIN function syntax, 106
ATAN function syntax, 106
ATAN2 function syntax, 106
ATN2 function syntax, 106
AVG function syntax, 107
BYTE_LENGTH function syntax, 108
BYTE_SUBSTR function syntax, 108
CAST function syntax, 109
CEILING function syntax, 110
CHAR function syntax, 110
CHAR_LENGTH function syntax, 111
CHARINDEX function syntax, 111
COALESCE function syntax, 112
COMPARE function syntax, 112
CONNECTION_PROPERTY function syntax,

113
CONVERT function syntax, 114
COS function syntax, 116
COT function syntax, 117
COUNT function syntax, 117
CSCONVERT function syntax, 118
data type conversion, 94
DATALENGTH function syntax, 119
date and time, 95
DATE function syntax, 120
DATEADD function syntax, 120
DATEDIFF function syntax, 121
DATEFORMAT function syntax, 123
DATENAME function syntax, 123
DATEPART function syntax, 124
DATETIME function syntax, 124
DAY function syntax, 125
DAYNAME function syntax, 125
DAYS function syntax, 125
DB_ID function syntax, 127
DB_NAME function syntax, 127
DB_PROPERTY function syntax, 128
DEGREES function syntax, 128
DIFFERENCE function syntax, 129
DOW function syntax, 129
ERRORMSG function syntax, 129
ESTIMATE function syntax, 130

S–S

779

ESTIMATE_SOURCE function syntax, 131
EVENT_CONDITION function syntax, 132
EVENT_CONDITION_NAME function syntax,

133
EVENT_PARAMETER function syntax, 134
EXP function syntax, 135
EXPERIENCE_ESTIMATE function syntax,

135
EXPLANATION function syntax, 136
FLOOR function syntax, 137
GET_IDENTITY function syntax, 137
GETDATE function syntax, 138
GRAPHICAL_PLAN function syntax, 138
GRAPHICAL_ULPLAN function syntax, 140
GREATER function syntax, 141
HEXTOINT function syntax, 141
HOUR function syntax, 141
HOURS function syntax, 142
IDENTITY function syntax, 143
IFNULL function syntax, 143
image, 103
INDEX_ESTIMATE function syntax, 144
INSERTSTR function syntax, 144
INTTOHEX function syntax, 145
ISDATE function syntax, 145
ISNULL function syntax, 146
ISNUMERIC function syntax, 147
LCASE function syntax, 147
LEFT function syntax, 148
LENGTH function syntax, 148
LESSER function syntax, 149
LIST function syntax, 149
LOCATE function syntax, 150
LOG function syntax, 151
LOG10 function syntax, 152
LONG_ULPLAN function syntax, 152
LOWER function syntax, 153
LTRIM function syntax, 153
MAX function syntax, 154
MIN function syntax, 154
MINUTE function syntax, 155
MINUTES function syntax, 155
miscellaneous, 97
MOD function syntax, 156
MONTH function syntax, 157
MONTHNAME function syntax, 157
MONTHS function syntax, 158
NEWID function syntax, 159
NEXT_CONNECTION function syntax, 160
NEXT_DATABASE function syntax, 161
NOW function syntax, 161

NULLIF function syntax, 162
NUMBER function syntax, 162
numeric, 98
PATINDEX function syntax, 164
PI function syntax, 164
PLAN function syntax, 165
POWER function syntax, 166
PROPERTY function syntax, 167
PROPERTY_DESCRIPTION function syntax,

166
PROPERTY_NAME function syntax, 167
PROPERTY_NUMBER function syntax, 168
QUARTER function syntax, 168
RADIANS function syntax, 169
RAND function syntax, 169
REMAINDER function syntax, 170
REPEAT function syntax, 170
REPLACE function syntax, 171
REPLICATE function syntax, 172
REWRITE function syntax, 172
RIGHT function syntax, 174
ROUND function syntax, 174
RTRIM function syntax, 175
SECOND function syntax, 175
SECONDS function syntax, 176
SHORT_ULPLAN function syntax, 177
SIGN function syntax, 177
SIMILAR function syntax, 178
SIN function syntax, 179
SORTKEY function syntax, 179
SOUNDEX function syntax, 182
SPACE function syntax, 183
SQLDIALECT function syntax, 183
SQRT function syntax, 184
STR function syntax, 184
string, 99
STRING function syntax, 185
STRTOUUID function syntax, 185
STUFF function syntax, 186
SUBSTR function syntax, 186
SUBSTRING function syntax, 186
SUM function syntax, 187
system, 101
TAN function syntax, 188
text, 103
TEXTPTR function syntax, 188
TODAY function syntax, 189
TRACEBACK function syntax, 189
TRANSACTSQL function syntax, 190
TRIM function syntax, 190
TRUNCATE function syntax, 190

S–S

780

TRUNCNUM function syntax, 191
types of function, 94
UCASE function syntax, 192
UPPER function syntax, 192
user-defined, 97
UUIDTOSTR function syntax, 193
VAREXISTS function syntax, 194
WATCOMSQL function syntax, 194
WEEKS function syntax, 195
YEARS function syntax, 196
YMD function syntax, 197

SQL language elements
about, 3

SQL Remote
articles, 599, 600
creating publications, 314
creating subscriptions, 324
setting remote options, 543
system tables, 599, 600

SQL Remote system tables
remoteoption, 646
remoteoptiontype, 647

SQL statements
ALLOCATE DESCRIPTOR syntax, 203
alphabetical list of all statements, 199
ALTER DATABASE syntax, 205
ALTER DBSPACE syntax, 209
ALTER EVENT syntax, 211
ALTER FUNCTION syntax, 213
ALTER PROCEDURE syntax, 214
ALTER PUBLICATION syntax, 216
ALTER REMOTE MESSAGE TYPE syntax,

218
ALTER SERVER syntax, 220
ALTER SYNCHRONIZATION DEFINITION

syntax, 222
ALTER SYNCHRONIZATION SITE syntax,

225
ALTER SYNCHRONIZATION

SUBSCRIPTION syntax, 227
ALTER SYNCHRONIZATION TEMPLATE

syntax, 229
ALTER SYNCHRONIZATION USER syntax,

231
ALTER TABLE syntax, 233
ALTER TRIGGER syntax, 240
ALTER VIEW syntax, 241
ALTER WRITEFILE syntax, 243
BACKUP syntax, 245

BEGIN and END syntax, 248
BEGIN DECLARE syntax, 377
BEGIN TRANSACTION syntax, 251
BREAK Transact-SQL syntax, 590
BYE syntax, 420
CALL syntax, 254
CASE syntax, 256
CHECKPOINT syntax, 259
CLEAR syntax, 260
CLOSE syntax, 261
COMMENT syntax, 263
COMMIT syntax, 265
CONFIGURE syntax, 267
CONNECT syntax, 268
CONTINUE Transact-SQL syntax, 590
CREATE COMPRESSED DATABASE syntax,

271
CREATE DATABASE syntax, 273
CREATE DBSPACE syntax, 278
CREATE DECRYPTED FILE syntax, 280
CREATE DOMAIN syntax, 283
CREATE ENCRYPTED FILE syntax, 281
CREATE EVENT syntax, 285
CREATE EXISTING TABLE syntax, 291
CREATE EXPANDED DATABASE syntax,

271
CREATE EXTERNLOGIN syntax, 294
CREATE FUNCTION syntax, 296
CREATE INDEX syntax, 300
CREATE MESSAGE Transact-SQL syntax, 304
CREATE PROCEDURE syntax, 305
CREATE PROCEDURE Transact-SQL syntax,

312
CREATE PUBLICATION syntax, 314
CREATE REMOTE MESSAGE TYPE syntax,

317
CREATE SCHEMA syntax, 319
CREATE SERVER syntax, 321
CREATE STATISTICS syntax, 323
CREATE SUBSCRIPTION syntax, 324
CREATE SYNCHRONIZATION DEFINITION

syntax, 326
CREATE SYNCHRONIZATION SITE syntax,

328
CREATE SYNCHRONIZATION

SUBSCRIPTION syntax, 331
CREATE SYNCHRONIZATION TEMPLATE

syntax, 333
CREATE SYNCHRONIZATION USER syntax,

335
CREATE TABLE syntax, 350

S–S

781

CREATE TRIGGER syntax, 362, 366
CREATE TRIGGER Transact-SQL syntax, 369
CREATE VARIABLE syntax, 370
CREATE VIEW syntax, 371
CREATE WRITEFILE syntax, 373
DEALLOCATE DESCRIPTOR syntax, 376
DEALLOCATE syntax, 375
DECLARE CURSOR syntax, 379
DECLARE CURSOR Transact-SQL syntax, 384
DECLARE LOCAL TEMPORARY TABLE

syntax, 386
DECLARE syntax, 378
DELETE (positioned) syntax, 390
DELETE syntax, 388
DESCRIBE syntax, 392
DISCONNECT syntax, 396
documentation conventions, 200
DROP CONNECTION syntax, 400
DROP DATABASE syntax, 399
DROP DATATYPE syntax, 397
DROP DBSPACE syntax, 397
DROP DOMAIN syntax, 397
DROP EVENT syntax, 397
DROP EXTERNLOGIN syntax, 401
DROP FUNCTION syntax, 397
DROP INDEX syntax, 397
DROP MESSAGE syntax, 397
DROP PROCEDURE syntax, 397
DROP PUBLICATION syntax, 402
DROP REMOTE MESSAGE TYPE syntax, 403
DROP SERVER syntax, 404
DROP STATEMENT syntax, 405
DROP STATISTICS syntax, 406
DROP SUBSCRIPTION syntax, 407
DROP SYNCHRONIZATION DEFINITION

syntax, 408
DROP SYNCHRONIZATION SITE syntax, 409
DROP SYNCHRONIZATION SUBSCRIPTION

syntax, 410
DROP SYNCHRONIZATION TEMPLATE

syntax, 411
DROP SYNCHRONIZATION USER syntax,

412
DROP syntax, 397
DROP TABLE syntax, 397
DROP TRIGGER syntax, 397
DROP VARIABLE syntax, 413
DROP VIEW syntax, 397
END DECLARE syntax, 377
EXECUTE IMMEDIATE syntax, 416
EXECUTE syntax, 414

EXECUTE Transact-SQL syntax, 418
EXIT syntax, 420
EXPLAIN syntax, 422
FETCH syntax, 424
FOR syntax, 429
FORWARD TO syntax, 431
FROM clause syntax, 433
GET DATA syntax, 437
GET DESCRIPTOR syntax, 439
GET OPTION syntax, 441
GOTO Transact-SQL syntax, 442
GRANT CONSOLIDATE syntax, 447
GRANT PUBLISH syntax, 449
GRANT REMOTE DBA syntax, 452
GRANT REMOTE syntax, 450
GRANT syntax, 443
HELP syntax, 453
IF syntax, 454
IF Transact-SQL syntax, 456
INCLUDE syntax, 458
INPUT syntax, 459
INSERT syntax, 463
INSTALL syntax, 467
LEAVE syntax, 469
LOAD STATISTICS syntax, 471
LOAD TABLE syntax, 472
LOCK TABLE syntax, 479
LOOP syntax, 481
MESSAGE syntax, 483
OPEN syntax, 485
OUTPUT syntax, 488
PARAMETERS syntax, 493
PASSTHROUGH syntax, 494
PREPARE syntax, 495
PREPARE TO COMMIT syntax, 497
PRINT Transact-SQL syntax, 498
PUT syntax, 499
QUIT syntax, 420
RAISERROR Transact-SQL syntax, 501
READ syntax, 503
READTEXT Transact-SQL syntax, 504
RELEASE SAVEPOINT syntax, 505
REMOTE RESET syntax, 506
REMOVE syntax, 507
REORGANIZE TABLE syntax, 508
RESIGNAL syntax, 510
RESTORE DATABASE syntax, 511
RESUME syntax, 513
RETURN syntax, 514
REVOKE CONSOLIDATE syntax, 518
REVOKE PUBLISH syntax, 519

S–S

782

REVOKE REMOTE DBA syntax, 521
REVOKE REMOTE syntax, 520
REVOKE syntax, 516
ROLLBACK syntax, 522
ROLLBACK TO SAVEPOINT syntax, 523
ROLLBACK TRIGGER syntax, 524
SAVEPOINT syntax, 525
SELECT syntax, 526
sending to remote servers, 431
SET CONNECTION syntax, 536
SET DESCRIPTOR syntax, 537
SET OPTION syntax, 539, 542
SET OPTION Transact-SQL syntax, 533
SET REMOTE OPTION syntax, 543
SET SQLCA syntax, 545
SET syntax, 531
SET Transact-SQL syntax, 533
SETUSER syntax, 546
SIGNAL syntax, 548
START DATABASE syntax, 549
START ENGINE syntax, 551
START JAVA syntax, 552
START LOGGING syntax, 553
START SUBSCRIPTION syntax, 554
START SYNCHRONIZATION DELETE

syntax, 556
STOP DATABASE syntax, 558
STOP ENGINE syntax, 559
STOP JAVA syntax, 560
STOP LOGGING syntax, 561
STOP SUBSCRIPTION syntax, 562
STOP SYNCHRONIZATION DELETE syntax,

563
SYNCHRONIZE SUBSCRIPTION syntax, 564
SYSTEM syntax, 565
TRIGGER EVENT syntax, 566
TRUNCATE TABLE syntax, 567
UNION syntax, 569
UNLOAD syntax, 571
UNLOAD TABLE syntax, 573
UPDATE (positioned) syntax, 580
UPDATE syntax, 575, 582
VALIDATE INDEX syntax, 585
VALIDATE TABLE syntax, 586
WAITFOR syntax, 588
WHENEVER syntax, 589
WHILE syntax, 481
WHILE Transact-SQL syntax, 590
WRITETEXT Transact-SQL syntax, 591

SQL syntax
ALL conditions, 25
alphabetical list of all statements, 199
ANY conditions, 25
arithmetic operators, 12
BETWEEN conditions, 26
bitwise operators, 13
CASE expression, 18
column names, 16
comments, 47
comparison operators, 10
connection-level variables, 40
constants, 16
CURRENT DATABASE special value, 33
CURRENT DATE special value, 33
CURRENT PUBLISHER special value, 33
CURRENT TIME special value, 33
CURRENT TIMESTAMP special value, 34
CURRENT USER special value, 34
CURRENT UTC TIMESTAMP special value, 34
documentation conventions, 200
EXISTS conditions, 29
expressions, 15
functions, 94
global variables, 40
identifiers, 7
IF expressions, 17
IN conditions, 29
IS NULL conditions, 29
IS TRUE or FALSE conditions, 29
Java expressions, 19
keywords, 4
LAST USER special value, 35
LIKE conditions, 26
local variables, 38
logical operators, 11
NULL value, 48
operator precedence, 13
operators, 10
predicates, 24
reserved words, 4
search conditions, 24
SOME conditions, 25
special values, 33
SQLCODE special value, 35
SQLSTATE special value, 35
string operators, 12
strings, 9
subqueries, 17
subqueries in search conditions, 25
three-valued logic, 31

S–S

783

TIMESTAMP special value, 36
Transact-SQL expression compatibility, 21
USER special value, 36
UTC TIMESTAMP special value, 37
variables, 38

SQL to Java data type conversion, 85

SQL variables
creating, 370
declaring, 378
dropping, 413
setting values, 531

SQLCA
INCLUDE statement, 458

SQLCAs
setting, 545

SQLCODE
special value, 35

SQLDA
allocating memory for, 203
deallocating, 376
DESCRIBE SQL statement, 392
EXECUTE SQL statement, 414
getting information from, 439
INCLUDE statement, 458
inserting rows using cursors, 499
setting, 537
UPDATE (positioned) statement, 580

SQLDIALECT function
SQL syntax, 183

SQLSTATE
special value, 35

SQRT function
SQL syntax, 184

square brackets
database objects, 7
SQL identifiers, 7

START DATABASE statement
SQL syntax, 549

START ENGINE statement
Interactive SQL syntax, 551

START JAVA statement
SQL syntax, 552

START LOGGING statement
Interactive SQL syntax, 553

START SUBSCRIPTION statement
SQL syntax, 554

START SYNCHRONIZATION DELETE statement
SQL syntax, 556

starting
creating events for, 285
database servers, 551
databases, 549
Java VM, 552
logging in Interactive SQL, 553
passthrough mode, 494
subscriptions, 554
subscriptions during database extraction, 506

statement applicability indicators, 202

statement labels
about, 201
GOTO Transact-SQL statement, 442

statement syntax
alphabetical list of all statements, 199
BEGIN and END SQL statements, 248
documentation conventions, 200
FROM clause, 433

statement-level triggers, 363

statements
ALLOCATE DESCRIPTOR syntax, 203
ALTER DATABASE syntax, 205
ALTER DBSPACE syntax, 209
ALTER EVENT syntax, 211
ALTER FUNCTION syntax, 213
ALTER PROCEDURE syntax, 214
ALTER PUBLICATION syntax, 216
ALTER REMOTE MESSAGE TYPE syntax,

218
ALTER SERVER syntax, 220
ALTER SYNCHRONIZATION DEFINITION

syntax, 222
ALTER SYNCHRONIZATION SITE syntax,

225
ALTER SYNCHRONIZATION

SUBSCRIPTION syntax, 227
ALTER SYNCHRONIZATION TEMPLATE

syntax, 229
ALTER SYNCHRONIZATION USER syntax,

231

S–S

784

ALTER TABLE syntax, 233
ALTER TRIGGER syntax, 240
ALTER VIEW syntax, 241
ALTER WRITEFILE syntax, 243
BACKUP syntax, 245
BEGIN DECLARE statement SQL syntax, 377
BEGIN syntax, 248
BEGIN TRANSACTION syntax, 251
BREAK Transact-SQL syntax, 590
BYE syntax, 420
CALL syntax, 254
CASE syntax, 256
CHECKPOINT syntax, 259
CLEAR syntax, 260
CLOSE syntax, 261
COMMENT syntax, 263
COMMIT syntax, 265
CONFIGURE syntax, 267
CONNECT syntax, 268
CONTINUE Transact-SQL syntax, 590
CREATE COMPRESSED DATABASE syntax,

271
CREATE DATABASE syntax, 273
CREATE DBSPACE syntax, 278
CREATE DECRYPTED FILE syntax, 280
CREATE DOMAIN syntax, 283
CREATE ENCRYPTED FILE syntax, 281
CREATE EVENT syntax, 285
CREATE EXISTING TABLE syntax, 291
CREATE EXPANDED DATABASE statement

SQL syntax, 271
CREATE EXTERNLOGIN syntax, 294
CREATE FUNCTION syntax, 296
CREATE INDEX syntax, 300
CREATE MESSAGE Transact-SQL syntax, 304
CREATE PROCEDURE syntax, 305
CREATE PROCEDURE Transact-SQL syntax,

312
CREATE PUBLICATION syntax, 314
CREATE REMOTE MESSAGE syntax, 317
CREATE SCHEMA syntax, 319
CREATE SERVER syntax, 321
CREATE STATISTICS syntax, 323
CREATE SUBSCRIPTION syntax, 324
CREATE SYNCHRONIZATION DEFINITION

syntax, 326
CREATE SYNCHRONIZATION SITE syntax,

328
CREATE SYNCHRONIZATION

SUBSCRIPTION syntax, 331

CREATE SYNCHRONIZATION TEMPLATE
syntax, 333

CREATE SYNCHRONIZATION USER syntax,
335

CREATE TABLE syntax, 350
CREATE TRIGGER syntax, 362, 366
CREATE TRIGGER Transact-SQL syntax, 369
CREATE VARIABLE syntax, 370
CREATE VIEW syntax, 371
CREATE WRITEFILE syntax, 373
DEALLOCATE DESCRIPTOR syntax, 376
DEALLOCATE syntax, 375
DECLARE CURSOR syntax, 379
DECLARE CURSOR Transact-SQL syntax, 384
DECLARE LOCAL TEMPORARY TABLE

syntax, 386
DECLARE syntax, 378
DELETE (positioned) syntax, 390
DELETE syntax, 388
DESCRIBE syntax, 392
DISCONNECT syntax, 396
DROP CONNECTION syntax, 400
DROP DATABASE syntax, 399
DROP DATATYPE syntax, 397
DROP DBSPACE syntax, 397
DROP DOMAIN syntax, 397
DROP EVENT syntax, 397
DROP EXTERNLOGIN syntax, 401
DROP FUNCTION syntax, 397
DROP INDEX syntax, 397
DROP MESSAGE syntax, 397
DROP OPTIMIZER STATISTICS syntax, 406
DROP PROCEDURE syntax, 397
DROP PUBLICATION syntax, 402
DROP REMOTE MESSAGE TYPE syntax, 403
DROP SERVER syntax, 404
DROP STATEMENT syntax, 405
DROP SUBSCRIPTION syntax, 407
DROP SYNCHRONIZATION DEFINITION

syntax, 408
DROP SYNCHRONIZATION SITE syntax, 409
DROP SYNCHRONIZATION SUBSCRIPTION

syntax, 410
DROP SYNCHRONIZATION TEMPLATE

syntax, 411
DROP SYNCHRONIZATION USER syntax,

412
DROP syntax, 397
DROP TABLE syntax, 397
DROP TRIGGER syntax, 397
DROP VARIABLE syntax, 413

S–S

785

DROP VIEW syntax, 397
dropping prepared, 405
END DECLARE syntax, 377
EXECUTE IMMEDIATE syntax, 416
EXECUTE syntax, 414
EXECUTE Transact-SQL syntax, 418
executing prepared, 414
EXIT syntax, 420
EXPLAIN syntax, 422
FETCH syntax, 424
FOR syntax, 429
FORWARD TO syntax, 431
FROM clause, 433
GET DATA syntax, 437
GET DESCRIPTOR syntax, 439
GET OPTION syntax, 441
GOTO Transact-SQL syntax, 442
GRANT CONSOLIDATE syntax, 447
GRANT PUBLISH syntax, 449
GRANT REMOTE DBA syntax, 452
GRANT REMOTE syntax, 450
GRANT syntax, 443
grouping, 248
HELP syntax, 453
IF syntax, 454
IF Transact-SQL syntax, 456
INCLUDE syntax, 458
INPUT syntax, 459
INSERT syntax, 463
INSTALL syntax, 467
LEAVE syntax, 469
LOAD STATISTICS syntax, 471
LOAD TABLE syntax, 472
LOCK TABLE syntax, 479
LOOP syntax, 481
MESSAGE syntax, 483
OPEN syntax, 485
OUTPUT syntax, 488
PARAMETERS syntax, 493
PASSTHROUGH syntax, 494
PREPARE syntax, 495
PREPARE TO COMMIT syntax, 497
preparing, 495
PRINT Transact-SQL syntax, 498
PUT syntax, 499
QUIT syntax, 420
RAISERROR Transact-SQL syntax, 501
READ syntax, 503
READTEXT Transact-SQL syntax, 504
RELEASE SAVEPOINT syntax, 505
REMOTE RESET syntax, 506

REMOVE syntax, 507
REORGANIZE TABLE syntax, 508
RESIGNAL syntax, 510
RESTORE DATABASE syntax, 511
RESUME syntax, 513
RETURN syntax, 514
REVOKE CONSOLIDATE syntax, 518
REVOKE PUBLISH syntax, 519
REVOKE REMOTE DBA syntax, 521
REVOKE REMOTE syntax, 520
REVOKE syntax, 516
ROLLBACK syntax, 522
ROLLBACK TO SAVEPOINT syntax, 523
ROLLBACK TRIGGER syntax, 524
SAVEPOINT syntax, 525
SELECT syntax, 526
SET CONNECTION syntax, 536
SET DESCRIPTOR syntax, 537
SET OPTION syntax, 539, 542
SET REMOTE OPTION syntax, 543
SET SQLCA syntax, 545
SET syntax, 531
SET Transact-SQL syntax, 533
SETUSER syntax, 546
SIGNAL syntax, 548
START DATABASE syntax, 549
START ENGINE Interactive SQL syntax, 551
START JAVA syntax, 552
START LOGGING SQL syntax, 553
START SUBSCRIPTION syntax, 554
START SYNCHRONIZATION DELETE

syntax, 556
STOP DATABASE syntax, 558
STOP ENGINE syntax, 559
STOP JAVA syntax, 560
STOP LOGGING Interactive SQL syntax, 561
STOP SUBSCRIPTION syntax, 562
STOP SYNCHRONIZATION DELETE syntax,

563
SYNCHRONIZE SUBSCRIPTION syntax, 564
SYSTEM Interactive syntax, 565
TRIGGER EVENT syntax, 566
TRUNCATE TABLE syntax, 567
UNION syntax, 569
UNLOAD syntax, 571
UNLOAD TABLE syntax, 573
UPDATE (positioned) syntax, 580
UPDATE syntax, 575, 582
VALIDATE INDEX syntax, 585
VALIDATE TABLE syntax, 586
WAITFOR syntax, 588

S–S

786

WHENEVER embedded SQL syntax, 589
WHILE Transact-SQL syntax, 590
WRITETEXT Transact-SQL syntax, 591

static cursors
declaring, 379

statistics
CREATE STATISTICS statement, 323
dropping optimizer, 406
flushing, 693
loading, 471
SYSCOLSTAT system table, 608
updating with LOAD TABLE, 476

STOP DATABASE statement
SQL syntax, 558

STOP ENGINE statement
SQL syntax, 559

STOP JAVA statement
SQL syntax, 560

STOP LOGGING statement
Interactive SQL syntax, 561

STOP SUBSCRIPTION statement
SQL syntax, 562

STOP SYNCHRONIZATION DELETE statement
SQL syntax, 563

stopping
database servers, 559
Java VM, 560
logging in Interactive SQL, 561
passthrough mode, 494

stopping databases, 558

stopping subscriptions, 562

stored procedures
converting T-SQL, 194
creating, 305
creating in Transact SQL, 312
executing in dynamic SQL, 416
executing in Transact-SQL, 418
extended list, 728
external function calls, 296, 308
sa_audit_string, 685
sa_check_commit, 685
sa_conn_activity, 686
sa_conn_compression_info, 687
sa_conn_info, 688

sa_conn_properties, 689
sa_conn_properties_by_name, 690
sa_db_info, 690
sa_db_properties, 691
sa_disk_free_space, 692
sa_eng_properties, 692
sa_flush_cache, 693
sa_flush_statistics, 693
sa_get_dtt, 693
sa_get_histogram, 694
sa_get_request_profile, 694
sa_get_request_times, 695
sa_get_server_messages, 696
sa_index_density, 696
sa_index_levels, 697
sa_java_loaded_classes, 697
sa_locks, 698
sa_make_object, 700
sa_migrate, 701
sa_migrate_create_fks, 703
sa_migrate_create_remote_fks_list, 705
sa_migrate_create_remote_table_list, 706
sa_migrate_create_tables, 708
sa_migrate_data, 709
sa_migrate_drop_proxy_tables, 710
sa_procedure_profile, 712
sa_procedure_profile_summary, 713
sa_reset_identity, 715
sa_server_option, 716
sa_statement_text, 718
sa_table_fragmentation, 719
sa_table_page_usage, 719
sa_validate, 720
sp_login_environment, 721
sp_remote_columns, 721
sp_remote_exported_keys, 722
sp_remote_imported_keys, 723
sp_remote_tables, 724
sp_servercaps, 725
sp_tsql_environment, 726
system procedures, 683
viewing profiling data, 712, 713
xp_cmdshell, 733
xp_msver, 733
xp_read_file, 734
xp_scanf, 735
xp_sendmail, 730
xp_sprintf, 735
xp_startmail, 729
xp_startsmtp, 729
xp_stopmail, 732

S–S

787

xp_stopsmtp, 732
xp_write_file, 736

STR function
SQL syntax, 184

StreamCompression synchronization option
MobiLink synchronization clients, 345

STRING function
SQL syntax, 185

string functions
alphabetical list, 99

string operators
compatibility with Adaptive Server Enterprise,

13
SQL syntax, 12

STRING_RTRUNCATION option
Adaptive Server Enterprise compatibility, 533

strings
about, 9
ambiguous conversions to dates, 89, 90
changing the interpretation of delimited strings,

22
compatibility with Adaptive Server Enterprise, 9
converting to dates, 65
delimiter, 21
quotation marks, 21
replacing, 171
SQL functions, 99
Transact-SQL, 21

STRIP option
LOAD TABLE statement, 475

strong encryption
CREATE DATABASE statement, 275

STRTOUUID function
SQL syntax, 185

STUFF function
SQL syntax, 186

su
setting users, 546

subqueries
in SQL search conditions, 25
SQL syntax, 17

SUBSCRIBE BY clause, 314

subscriptions
creating, 324
dropping, 407
starting, 554
starting during database extraction, 506
stopping, 562
synchronizing, 564
updates, 584
updating, 577

SUBSTR function
SQL syntax, 186

SUBSTRING function
SQL syntax, 186

substrings
about, 186
replacing, 171

SUM function
SQL syntax, 187

sun classes
Java in the database, 77

sun.* packages
unsupported classes, 79

super types, 82

support
newsgroups, xix

supported classes
Java, 77
java.beans, 78
java.io, 78
java.lang, 78
java.lang.reflect, 78
java.math, 78
java.net, 78
java.net.PlainDatagramSocketImpl, 78
java.rmi, 78
java.rmi.dgc, 78
java.rmi.registry, 78
java.rmi.server, 78
java.security, 78
java.security.acl, 78
java.security.interfaces, 78
java.SQL, 78
java.text, 78
java.util, 78
java.util.zip, 78

S–S

788

suser_id Adaptive Server Enterprise function, 101

suser_name Adaptive Server Enterprise function,
101

Sybase Central
installing Java classes, 79

SYNCHRONIZE SUBSCRIPTION statement
SQL syntax, 564

synchronizing subscriptions, 564

syntax
ALL conditions, 25
ANY conditions, 25
arithmetic operators, 12
bitwise operators, 13
CASE expression, 18
column names, 16
comments, 47
comparison operators, 10
connection-level variables, 40
constants, 16
CURRENT DATABASE special value, 33
CURRENT DATE special value, 33
CURRENT PUBLISHER special value, 33
CURRENT TIMESTAMP special value, 34
CURRENT USER special value, 34
CURRENT UTC TIMESTAMP special value, 34
documentation conventions, 200
EXISTS conditions, 29
global variables, 40
IF expressions, 17
IN conditions, 29
IS NULL conditions, 29
IS TRUE or FALSE conditions, 29
Java expressions, 19
LAST USER special value, 35
LIKE conditions, 26
local variables, 38
logical operators, 11
NULL value, 48
predicates, 24
search conditions, 24
SOME conditions, 25
special values, 33
SQL BETWEEN conditions, 26
SQL CURRENT TIME special value, 33
SQL expressions, 15
SQL functions, 94
SQL identifiers, 7
SQL keywords, 4

SQL operator precedence, 13
SQL operators, 10
SQL reserved words, 4
SQL statements, 200
SQL subqueries, 17
SQL subqueries in search conditions, 25
SQL variables, 38
SQLCODE special value, 35
SQLSTATE special value, 35
string operators, 12
strings, 9
three-valued logic, 31
TIMESTAMP special value, 36
Transact-SQL expression compatibility, 21
USER special value, 36
UTC TIMESTAMP special value, 37

syntax conventions
SQL statements, 201

SYS
system tables, 595

SYS group
in the system tables, 668

SYSARTICLE system table
about, 599

SYSARTICLECOL system table
about, 600

SYSATTRIBUTE system table
about, 601

SYSATTRIBUTENAME system table
about, 602

SYSCAPABILITY system table
about, 603

SYSCAPABILITYNAME system table
about, 604

SYSCOLLATION system table
about, 605

SYSCOLLATIONMAPPINGS system table
about, 606

SYSCOLPERM system table
about, 607

SYSCOLSTAT system table, 608
loading the statistics, 471

S–S

789

SYSCOLUMN system table
about, 609

SYSDOMAIN system table
about, 611

SYSEVENT system table
about, 612

SYSEVENTTYPE system table
about, 614

SYSEXTENT system table
about, 615

SYSEXTERNLOGINS system table
about, 616

SYSFILE system table
about, 617

SYSFKCOL system table
about, 618

SYSFOREIGNKEY system table
about, 619

SYSGROUP system table
about, 621

SYSINDEX system table
about, 622

SYSINFO system table
about, 624

SYSIXCOL system table
about, 626

SYSJAR system table
about, 627

SYSJARCOMPONENT system table
about, 628

SYSJAVACLASS system table
about, 629

SYSLOGIN system table
about, 631

SYSOPTBLOCK system table, 632

SYSOPTION system table
about, 633

SYSOPTJOINSTRATEGY system table, 634

SYSOPTORDER system table, 635

SYSOPTQUANTIFIER system table, 636

SYSOPTREQUEST system table, 637

SYSOPTREWRITE system table, 638

SYSOPTSTAT system table, 639

SYSPROCEDURE system table
about, 640

SYSPROCPARM system table
about, 642

SYSPROCPERM system table
about, 644

SYSPUBLICATION system table
about, 645

SYSREMOTEOPTION system table
about, 646

SYSREMOTEOPTIONTYPE system table
about, 647

SYSREMOTETYPE system table
about, 648

SYSREMOTEUSER system table
about, 649

SYSSCHEDULE system table
about, 651

sysservers system table
remote servers for Component Integration

Services, 322, 348

SYSSERVERS system table
about, 653
adding servers, 321

SYSSQLSERVERTYPE system table
about, 654

SYSSUBSCRIPTION system table
about, 655

SYSSYNC system table
about, 656

SYSTABLE system table
about, 657

SYSTABLEPERM system table
about, 660

system and catalog stored procedures, 685

S–S

790

system calls
from stored procedures, 733
xp_cmdshell system procedure, 733

system catalog, 674
about, 595
Transact-SQL, 679

system functions
alphabetical list, 101
compatibility, 101

system procedures
about, 683
catalog list, 685
creating messages, 304
extended list, 728
overview, 684
sa_audit_string, 685
sa_check_commit, 685
sa_conn_activity, 686
sa_conn_compression_info, 687
sa_conn_info, 688
sa_conn_properties, 689
sa_conn_properties_by_name, 690
sa_db_info, 690
sa_db_properties, 691
sa_disk_free_space, 692
sa_eng_properties, 692
sa_flush_cache, 693
sa_flush_statistics, 693
sa_get_dtt, 693
sa_get_histogram, 694
sa_get_request_profile, 694
sa_get_request_times, 695
sa_get_server_messages, 696
sa_index_density, 696
sa_index_levels, 697
sa_java_loaded_classes, 697
sa_locks, 698
sa_make_object, 700
sa_migrate, 701
sa_migrate_create_fks, 703
sa_migrate_create_remote_fks_list, 705
sa_migrate_create_remote_table_list, 706
sa_migrate_create_tables, 708
sa_migrate_data, 709
sa_migrate_drop_proxy_tables, 710
sa_procedure_profile, 712
sa_procedure_profile_summary, 713
sa_reset_identity, 715
sa_server_option, 716

sa_statement_text, 718
sa_table_fragmentation, 719
sa_table_page_usage, 719
sa_validate, 720
sp_addgroup, 737
sp_addlogin, 737
sp_addmessage, 737
sp_addtype, 737
sp_adduser, 737
sp_changegroup, 737
sp_dboption, 737
sp_dropgroup, 737
sp_droplogin, 737
sp_dropmessage, 737
sp_droptype, 737
sp_dropuser, 737
sp_getmessage, 737
sp_helptext, 737
sp_login_environment, 721
sp_password, 737
sp_remote_columns, 721
sp_remote_exported_keys, 722
sp_remote_imported_keys, 723
sp_remote_tables, 724
sp_servercaps, 725
sp_tsql_environment, 726
Sybase Central, 684
Transact-SQL, 737
Transact-SQL list, 737
viewing definitions, 684
xp_cmdshell, 733
xp_msver, 733
xp_read_file, 734
xp_scanf, 735
xp_sendmail, 730
xp_sprintf, 735
xp_sstopsmtp, 732
xp_startmail, 729
xp_startsmtp, 729
xp_stopmail, 732
xp_write_file, 736

system procedures and functions
about, 683

SYSTEM statement
Interactive SQL syntax, 565

system tables
about, 595
DUMMY, 598
Java, 671

S–S

791

SYSARTICLE, 599
SYSARTICLECOL, 600
SYSATTRIBUTE, 601
SYSATTRIBUTENAME, 602
SYSCAPABILITY, 603
SYSCAPABILITYNAME, 604
SYSCOLLATE, 605
SYSCOLLATIONMAPPINGS, 606
SYSCOLPERM, 607
SYSCOLSTAT, 608
SYSCOLUMN, 609
SYSDOMAIN, 611
SYSEVENT, 612
SYSEVENTTYPE, 614
SYSEXTENT, 615
SYSEXTERNLOGINS, 616
SYSFILE, 617
SYSFKCOL, 618
SYSFOREIGNKEY, 619
SYSGROUP, 621
SYSINDEX, 622
SYSINFO, 624
SYSIXCOL, 626
SYSJAR, 627
SYSJARCOMPONENT, 628
SYSJAVACLASS, 629
SYSLOGIN, 631
SYSOPTBLOCK, 632
SYSOPTION, 633
SYSOPTJOINSTRATEGY, 634
SYSOPTORDER, 635
SYSOPTQUANTIFIER, 636
SYSOPTREQUEST, 637
SYSOPTREWRITEK, 638
SYSOPTSTAT, 639
SYSPROCEDURE, 640
SYSPROCPARM, 642
SYSPROCPERM, 644
SYSPUBLICATION, 645
SYSREMOTETYPE, 648
SYSREMOTEUSER, 649
SYSSCHEDULE, 651
SYSSERVERS, 653
SYSSQLSERVERTYPE, 654
SYSSUBSCRIPTION, 655
SYSSYNC, 656
SYSTABLE, 657
SYSTABLEPERM, 660
system views, 673
SYSTRIGGER, 662
SYSTYPEMAP, 665

SYSUSERMESSAGES, 666
SYSUSERPERM, 667
SYSUSERTYPE, 669
Transact-SQL, 679

system views
about, 673
definitions of, 674
Sybase Central, 674
SYSARTICLECOLS, 674
SYSARTICLES, 674
SYSCAPABILITIES, 674
SYSCATALOG, 674
SYSCOLAUTH, 674
SYSCOLSTATS, 675
SYSCOLUMNS, 675
SYSFOREIGNKEYS, 675
SYSGROUPS, 675
SYSINDEXES, 675
SYSOPTIONS, 675
SYSOPTORDERS, 675
SYSOPTPLAN, 675
SYSOPTSTRATEGIES, 675
SYSPROCAUTH, 675
SYSPROCPARMS, 676
SYSPUBLICATIONS, 676
SYSREMOTEOPTIONS, 676
SYSREMOTETYPES, 676
SYSREMOTEUSERS, 676
SYSSCYNCUSERS, 677
SYSSUBSCRIPTIONS, 676
SYSSYNCDEFINITIONS, 676
SYSSYNCPUBLICATIONDEFAULTS, 676
SYSSYNCS, 677
SYSSYNCSITES, 677
SYSSYNCSUBSCRIPTIONS, 677
SYSSYNCTEMPLATES, 677
SYSTABAUTH, 677
SYSTRIGGERS, 677
SYSUSERAUTH, 677
SYSUSERLIST, 678
SYSUSEROPTIONS, 678
SYSUSERPERMS, 678
SYSVIEWS, 678

SYSTRIGGER system table
about, 662

SYSTYPEMAP system table
about, 665

SYSUSERMESSAGES system table
about, 666

T–T

792

SYSUSERPERM system table
about, 667

SYSUSERTYPE system table
about, 669

T
table constraints, 356

table hints
FROM clause, 434

table list
FROM clause, 433

table number, 658

TableOrder synchronization option
MobiLink synchronization clients, 345

tables
altering, 233
bulk loading, 472
creating, 350
creating local temporary, 386
creating proxy, 291
dropping, 397
exporting data into files from, 488
importing data from files into, 459
inserting rows into, 463
locking, 479
renaming, 237
reorganizing, 508
replicating, 233
truncating, 567
unloading, 573
updating, 582
validating, 586

TAN function
SQL syntax, 188

tapes
creating database backups, 245

TCP/IP
MobiLink clients using, 336

technical support
newsgroups, xix

TempFreePercent event condition
about, 132

TempFreeSpace event condition
about, 132

temporary files
determining available space for, 692

temporary options
setting, 539
setting in Interactive SQL, 542

temporary tables
creating, 350, 359
declaring local, 386
Transact-SQL, 360
views disallowed on local, 371

TempSize event condition
about, 132

text
reading from the database, 504

TEXT data type
about, 54

text functions, 103

TEXTPTR function
SQL syntax, 188

TEXTSIZE option
Adaptive Server Enterprise compatibility, 533

THEN
IF expressions, 17

three-valued logic
NULL value, 48
SQL syntax, 31

time data type, 65

TIME data type
about, 71

time functions
alphabetical list, 95

times
comparing, 67
conversion functions, 95
queries, 66
sending to the database, 65

TIMESTAMP
special value, 36

timestamp column, 355

T–T

793

timestamp data type, 65

TIMESTAMP data type
about, 71

TINYINT data type
about, 61

TODAY function
SQL syntax, 189

TOP clause
SELECT statement, 526

TRACEBACK function
SQL syntax, 189

trademark information
retrieving, 733

TRANSACTION ISOLATION LEVEL option
Adaptive Server Enterprise compatibility, 533

transaction log
allocating space for, 209
backing up, 245
determining available space for, 692
TRUNCATE TABLE statement, 567

transaction log mirror
determining available space for, 692

transaction management
BEGIN TRANSACTION SQL statement, 251
in Transact-SQL, 251
Transact-SQL, 265

transaction modes
chained, 251
unchained, 251

transactions
beginning user-defined, 251
committing, 265
creating savepoints, 525
nesting user-defined, 251
rolling back, 522
rolling back to savepoints, 523

Transact-SQL
alphabetical list of all statements, 199
ANSI equivalency, 172
bit data type compatibility, 64
bitwise operators, 13
BREAK statement syntax, 590
catalog procedures, 738

comparison operators, 10
constants, 21
CONTINUE statement syntax, 590
converting stored procedures, 194
CREATE MESSAGE SQL statement syntax, 304
CREATE PROCEDURE statement syntax, 312
CREATE SCHEMA statement syntax, 319
CREATE TABLE statement syntax, 360
CREATE TRIGGER statement syntax, 369
datetime compatibility, 65
DECLARE CURSOR statement syntax, 384
DECLARE section, 249
domains, 76
EXECUTE statement syntax, 418
global variables, 40
GOTO statement syntax, 442
IF statement syntax, 456
local variables, 38, 39
money data types, 63
outer join operators, 13
PRINT statement syntax, 498
QUOTED_IDENTIFIER option, 22
RAISERROR statement syntax, 501
READTEXT statement syntax, 504
SET OPTION statement syntax, 533
SET statement syntax, 533
SQL expression compatibility, 21
strings, 21
system catalog, 679
system functions, 101
system procedures, 737
time compatibility, 65
user-defined data types, 76
WHILE statement syntax, 590
WRITETEXT statement syntax, 591

TRANSACTSQL function
SQL syntax, 190

trapping
errors in embedded SQL, 589

trigger conditions
distinguishing trigger actions, 30

TRIGGER EVENT statement
SQL syntax, 566

triggering
events, 566

triggers
@@identity global variable, 46
altering, 240

U–U

794

creating, 362, 366
creating in Transact-SQL, 369
dropping, 397
rolling back, 524
row-level, 363
statement-level, 363
TRUNCATE TABLE statement, 567
Watcom-SQL, 366

TRIM function
SQL syntax, 190

troubleshooting
locks, 698
logging operations, 716
non-standard disk drives, 207
request_level_logging, 716

TRUE conditions
IS TRUE conditions, 29
three-valued logic, 31

TRUNCATE function
SQL syntax, 190

TRUNCATE TABLE statement
SQL syntax, 567

truncating
tables, 567

TRUNCNUM function
SQL syntax, 191

trusted_certificates stream parameter
MobiLink clients using HTTP, 340
MobiLink clients using HTTPS, 343
MobiLink clients using TCP/IP, 337

tsequal Adaptive Server Enterprise function, 101

TSQL
statement indicators, 202

two-phase commit
preparing for, 497

TYPE clause
CREATE SYNCHRONIZATION USER, 335

type conversions
about, 82

types
about data types, 51

U
UCASE function

SQL syntax, 192

unchained transaction mode, 251

undoing
changes by rolling back transactions, 522

UNION statement
SQL syntax, 569

unions
of multiple select statements, 569

unique
constraint, 356

unique indexes, 300

UNIQUEIDENTIFIER
binary data type, 73

universally unique identifiers
SQL syntax for NEWID function, 159

UNKNOWN conditions
IS UNKNOWN conditions, 29

UNLOAD statement
SQL syntax, 571

UNLOAD TABLE statement
SQL syntax, 573

unloading
result sets, 571
tables, 573

unloading data
multi-byte character sets, 474, 573

unsupported classes
java.applet, 78
java.awt, 78
java.awt.event, 78
java.awt.image, 78
sun.*, 79

UPDATE
IF UPDATE clause, 362, 366
IF UPDATE clause in Transact-SQL, 369

UPDATE (positioned) statement
SQL syntax, 580

update column permission, 607

V–V

795

UPDATE permissions
granting, 443

UPDATE statement
SQL syntax, 575, 582

updateable views, 464

updates
based on joins, 577
joins, 583

updating
columns without logging, 591
publications and subscriptions, 577
rows, 575
tables and columns, 582

UPDATING condition
triggers, 30

upgrading
databases, 205

UPPER function
SQL syntax, 192

url_suffix stream parameter
MobiLink clients using HTTP, 341
MobiLink clients using HTTPS, 343

used_pgs Adaptive Server Enterprise function, 101

USER
special value, 36

user estimates
about, 31

user IDs
changing permissions and passwords, 443
creating, 443
in the system tables, 658, 667
revoking, 516
system views, 677

user number, 667

user_id Adaptive Server Enterprise function, 101

user_name Adaptive Server Enterprise function, 101

user-defined data types
about, 75
creating, 283
dropping, 397
Transact-SQL, 76

user-defined functions
alphabetical list, 97
creating, 296
exiting from, 514
Java, 97
returning values from, 514

users
dropping, 516
setting, 546

user-supplied selectivity estimates
about, 31

using the SQL statement reference, 200

ust files
creating, 179

UTC TIMESTAMP
special value, 37

UUIDs
SQL syntax for NEWID function, 159
SQL syntax for STRTOUUID function, 185
SQL syntax for UUIDTOSTR function, 193
UNIQUEIDENTIFIER data type, 73

UUIDTOSTR function
SQL syntax, 193

V
valid_name Adaptive Server Enterprise function,

101

valid_user Adaptive Server Enterprise function, 101

VALIDATE INDEX statement
SQL syntax, 585

VALIDATE TABLE statement
SQL syntax, 586

validating
databases, 720
indexes, 585
tables, 586

values
returning from procedures, 514

VARBINARY data type
about, 73

W–X

796

VARCHAR data type, 53

VAREXISTS function
SQL syntax, 194

variable result sets
from procedures, 306, 394, 495

variables
creating SQL, 370
declaring SQL, 378
dropping SQL, 413
getting from within a descriptor area, 439
global variables, 40
local variables, 38
setting values, 531
SQL syntax, 38

Verbose synchronization option
MobiLink synchronization clients, 345

version number
retrieving, 733

version stream parameter
MobiLink clients using HTTP, 341
MobiLink clients using HTTPS, 343

viewing
Interactive SQL procedure profiling data, 712,

713

views
altering, 241
creating, 371
dropping, 397
indexes, 301
system views, 678
updateable, 464

VIM message type
about, 218

VIM messages
about, 317, 403

VM
starting Java, 552
stopping Java, 560

W
WAITFOR statement

SQL syntax, 588

Watcom-SQL
DECLARE statement, 378

WATCOMSQL function
SQL syntax, 194

WEEKS function
SQL syntax, 195

WHEN
CASE expression, 18

WHENEVER statement
embedded SQL syntax, 589

WHERE clause
search conditions, 24
SELECT statement, 527

WHILE statement
SQL syntax, 481
Transact-SQL syntax, 590

wide inserts, 414

wildcards
LIKE conditions, 26
pattern matching, 164

WITH CHECKPOINT option
LOAD TABLE statement, 475

WITH HOLD clause
OPEN SQL statement, 485

wizards
Java class creation, 79

words
reserved, 4

write files
altering, 243
creating, 373

WRITETEXT statement
Transact-SQL syntax, 591

X
xp_cmdshell system procedure

syntax, 733

xp_msver system procedure
syntax, 733

Y–Y

797

xp_read_file system procedure
syntax, 734

xp_scanf system procedure
syntax, 735

xp_sendmail system procedure
syntax, 730

xp_sprintf system procedure
syntax, 735

xp_startmail system procedure
syntax, 729

xp_startsmtp system procedure
syntax, 729

xp_stopmail system procedure
syntax, 732

xp_stopsmtp system procedure
syntax, 732

xp_write_file system procedure
syntax, 736

Y
Y2K, 87

year 2000
compliance, 87

YEARS function
SQL syntax, 196

YMD function
SQL syntax, 197

Y–Y

798

	Adaptive Server Anywhere SQL Reference Manual
	About This Manual
	SQL Anywhere Studio documentation
	The SQL Anywhere Studio documentation set
	Documentation formats

	Documentation conventions
	Syntax conventions
	Graphic icons

	The Adaptive Server Anywhere sample database

	1. SQL Language Elements
	Keywords
	Reserved words

	Strings
	Operators
	Comparison operators
	Logical operators
	Arithmetic operators
	String operators
	Bitwise operators
	Join operators
	Operator precedence

	Expressions
	Constants in expressions
	Column names in expressions
	Subqueries in expressions
	IF expressions
	CASE expressions
	Java expressions
	Compatibility of expressions

	Search conditions
	Subqueries in search conditions
	ALL or ANY conditions
	BETWEEN conditions
	LIKE conditions
	IN conditions
	EXISTS conditions
	IS NULL conditions
	Truth value conditions
	Trigger operation conditions
	Three-valued logic
	Explicit selectivity estimates

	Special values
	CURRENT DATABASE special value
	CURRENT DATE special value
	CURRENT PUBLISHER special value
	CURRENT TIME special value
	CURRENT TIMESTAMP special value
	CURRENT USER special value
	CURRENT UTC TIMESTAMP special value
	LAST USER special value
	SQLCODE special value
	SQLSTATE special value
	TIMESTAMP special value
	USER special value
	UTC TIMESTAMP special value

	Variables
	Local variables
	Connection-level variables
	Global variables

	Comments
	NULL value

	2. SQL Data Types
	Character data types
	CHAR data type [Character]
	CHARACTER VARYING data type [Character]
	LONG VARCHAR data type [Character]
	TEXT data type [Character]

	Numeric data types
	BIGINT data type [Numeric]
	DECIMAL data type [Numeric]
	DOUBLE data type [Numeric]
	FLOAT data type [Numeric]
	INT or INTEGER data type [Numeric]
	NUMERIC data type [Numeric]
	REAL data type [Numeric]
	SMALLINT data type [Numeric]
	TINYINT data type [Numeric]

	Money data types
	MONEY data type [Money]
	SMALLMONEY data type [Money]

	Bit data type
	Date and time data types
	Sending dates and times to the database
	Retrieving dates and times from the database
	Comparing dates and times in the database
	Using unambiguous dates and times
	DATE data type [Date and Time]
	DATETIME data type [Date and Time]
	SMALLDATETIME data type [Date and Time]
	TIME data type [Date and Time]
	TIMESTAMP data type [Date and Time]

	Binary data types
	BINARY data type [Binary]
	LONG BINARY data type [BINARY]
	IMAGE data type [BINARY]
	UNIQUEIDENTIFIER data type [Binary]
	VARBINARY data type [BINARY]

	Domains
	Java class data types
	Supported Java packages
	Unsupported Java packages and classes
	Partially supported packages and classes
	User-defined Java classes
	Case sensitivity of Java class data types
	Using classes as data types

	Data type conversions
	Conversion when using comparison operators

	Java / SQL data type conversion
	Java to SQL data type conversion
	SQL to Java data type conversion

	Year 2000 compliance
	How dates are stored
	Sending and retrieving date values
	Leap years
	Ambiguous string to date conversions
	Date to string conversions

	3. SQL Functions
	Function types
	Aggregate functions
	Data type conversion functions
	Date and time functions
	Java and SQL user-defined functions
	Miscellaneous functions
	Numeric functions
	String functions
	System functions
	Text and image functions

	Alphabetical list of functions
	ABS function [Numeric]
	ACOS function [Numeric]
	ARGN function [Miscellaneous]
	ASCII function [String]
	ASIN function [Numeric]
	ATAN function [Numeric]
	ATN2 function [Numeric]
	AVG function [Aggregate]
	BYTE_LENGTH function [String]
	BYTE_SUBSTR function [String]
	CAST function [Data type conversion]
	CEILING function [Numeric]
	CHAR function [String]
	CHARINDEX function [String]
	CHAR_LENGTH function [String]
	COALESCE function [Miscellaneous]
	COMPARE function [String]
	CONNECTION_PROPERTY function [System]
	CONVERT function [Data type conversion]
	COS function [Numeric]
	COT function [Numeric]
	COUNT function [Aggregate]
	CSCONVERT function [STRING]
	DATALENGTH function [System]
	DATE function [Date and time]
	DATEADD function [Date and time]
	DATEDIFF function [Date and time]
	DATEFORMAT function [Date and time]
	DATENAME function [Date and time]
	DATEPART function [Date and time]
	DATETIME function [Date and time]
	DAY function [Date and time]
	DAYNAME function [Date and time]
	DAYS function [Date and time]
	DB_ID function [System]
	DB_NAME function [System]
	DB_PROPERTY function [System]
	DEGREES function [Numeric]
	DIFFERENCE function [String]
	DOW function [Date and time]
	ERRORMSG function [Miscellaneous]
	ESTIMATE function [Miscellaneous]
	ESTIMATE_SOURCE function [Miscellaneous]
	EVENT_CONDITION function [System]
	EVENT_CONDITION_NAME function [System]
	EVENT_PARAMETER function [System]
	EXP function [Numeric]
	EXPERIENCE_ESTIMATE function [Miscellaneous]
	EXPLANATION function [Miscellaneous]
	FLOOR function [Numeric]
	GET_IDENTITY function [Miscellaneous]
	GETDATE function [Date and time]
	GRAPHICAL_PLAN function [Miscellaneous]
	GRAPHICAL_ULPLAN function [Miscellaneous]
	GREATER function [Miscellaneous]
	HEXTOINT function [Data type conversion]
	HOUR function [Date and time]
	HOURS function [Date and time]
	IDENTITY function [Miscellaneous]
	IFNULL function [Miscellaneous]
	INDEX_ESTIMATE function [Miscellaneous]
	INSERTSTR function [String]
	INTTOHEX function [Data type conversion]
	ISDATE function [Data type conversion]
	ISNULL function [Data type conversion]
	ISNUMERIC function [Miscellaneous]
	LCASE function [String]
	LEFT function [String]
	LENGTH function [String]
	LESSER function [Miscellaneous]
	LIST function [Aggregate]
	LOCATE function [String]
	LOG function [Numeric]
	LOG10 function [Numeric]
	LONG_ULPLAN function [Miscellaneous]
	LOWER function [String]
	LTRIM function [String]
	MAX function [Aggregate]
	MIN function [Aggregate]
	MINUTE function [Date and time]
	MINUTES function [Date and time]
	MOD function [Numeric]
	MONTH function [Date and time]
	MONTHNAME function [Date and time]
	MONTHS function [Date and time]
	NEWID function [Miscellaneous]
	NEXT_CONNECTION function [System]
	NEXT_DATABASE function [System]
	NOW function [Date and time]
	NULLIF function [Miscellaneous]
	NUMBER function [Miscellaneous]
	PATINDEX function [String]
	PI function [Numeric]
	PLAN function [Miscellaneous]
	POWER function [Numeric]
	PROPERTY_DESCRIPTION function [System]
	PROPERTY function [System]
	PROPERTY_NAME function [System]
	PROPERTY_NUMBER function [System]
	QUARTER function [Date and time]
	RADIANS function [Numeric]
	RAND function [Numeric]
	REMAINDER function [Numeric]
	REPEAT function [String]
	REPLACE function [String]
	REPLICATE function [String]
	REWRITE function [Miscellaneous]
	RIGHT function [String]
	ROUND function [Numeric]
	RTRIM function [String]
	SECOND function [Date and time]
	SECONDS function [Date and time]
	SHORT_ULPLAN function [Miscellaneous]
	SIGN function [Numeric]
	SIMILAR function [String]
	SIN function [Numeric]
	SORTKEY function [String]
	SOUNDEX function [String]
	SPACE function [String]
	SQLDIALECT function [Miscellaneous]
	SQRT function [Numeric]
	STR function [String]
	STRING function [String]
	STRTOUUID function [STRING]
	STUFF function [String]
	SUBSTRING function [String]
	SUM function [Aggregate]
	TAN function [Numeric]
	TEXTPTR function [Text & Image]
	TODAY function [Date and time]
	TRACEBACK function [Miscellaneous]
	TRANSACTSQL function [Miscellaneous]
	TRIM function [String]
	TRUNCATE function [Numeric]
	TRUNCNUM function [Numeric]
	UCASE function [String]
	UPPER function [String]
	UUIDTOSTR function [STRING]
	VAREXISTS function [Miscellaneous]
	WATCOMSQL function [Miscellaneous]
	WEEKS function [Date and time]
	YEARS function [Date and time]
	YMD function [Date and time]

	4. SQL Statements
	Using the SQL statement reference
	Common elements in SQL syntax
	Syntax conventions
	Statement applicability indicators

	ALLOCATE DESCRIPTOR statement [ESQL]
	ALTER DATABASE statement
	ALTER DBSPACE statement
	ALTER EVENT statement
	ALTER FUNCTION statement
	ALTER PROCEDURE statement
	ALTER PUBLICATION statement
	ALTER REMOTE MESSAGE TYPE statement [SQL Remote]
	ALTER SERVER statement
	ALTER SYNCHRONIZATION DEFINITION statement (deprecated)
	ALTER SYNCHRONIZATION SITE statement [MobiLink] (deprecated)
	ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]
	ALTER SYNCHRONIZATION TEMPLATE statement [MobiLink] (deprecated)
	ALTER SYNCHRONIZATION USER statement [MobiLink]
	ALTER TABLE statement
	ALTER TRIGGER statement
	ALTER VIEW statement
	ALTER WRITEFILE statement
	BACKUP statement
	BEGIN statement
	BEGIN TRANSACTION statement
	CALL statement
	CASE statement
	CHECKPOINT statement
	CLEAR statement [Interactive SQL]
	CLOSE statement [ESQL] [SP]
	COMMENT statement
	COMMIT statement
	CONFIGURE statement [Interactive SQL]
	CONNECT statement [ESQL] [Interactive SQL]
	CREATE COMPRESSED DATABASE statement
	CREATE DATABASE statement
	CREATE DBSPACE statement
	CREATE DECRYPTED FILE statement
	CREATE ENCRYPTED FILE statement
	CREATE DOMAIN statement
	CREATE EVENT statement
	CREATE EXISTING TABLE statement
	CREATE EXTERNLOGIN statement
	CREATE FUNCTION statement
	CREATE INDEX statement
	CREATE MESSAGE statement [T-SQL]
	CREATE PROCEDURE statement
	CREATE PROCEDURE statement [T-SQL]
	CREATE PUBLICATION statement
	CREATE REMOTE MESSAGE TYPE statement [SQL Remote]
	CREATE SCHEMA statement
	CREATE SERVER statement
	CREATE STATISTICS statement
	CREATE SUBSCRIPTION statement [SQL Remote]
	CREATE SYNCHRONIZATION DEFINITION statement [MobiLink] (deprecated)
	CREATE SYNCHRONIZATION SITE statement [MobiLink] (deprecated)
	CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]
	CREATE SYNCHRONIZATION TEMPLATE statement [MobiLink] (deprecated)
	CREATE SYNCHRONIZATION USER statement [MobiLink]
	CREATE TABLE statement
	CREATE TRIGGER statement
	CREATE TRIGGER statement [SQL Remote]
	CREATE TRIGGER statement [T-SQL]
	CREATE VARIABLE statement
	CREATE VIEW statement
	CREATE WRITEFILE statement
	DEALLOCATE statement
	DEALLOCATE DESCRIPTOR statement [ESQL]
	Declaration section [ESQL]
	DECLARE statement
	DECLARE CURSOR statement [ESQL] [SP]
	DECLARE CURSOR statement [T-SQL]
	DECLARE LOCAL TEMPORARY TABLE statement
	DELETE statement
	DELETE (positioned) statement [ESQL] [SP]
	DESCRIBE statement [ESQL]
	DISCONNECT statement [ESQL] [Interactive SQL]
	DROP statement
	DROP DATABASE statement
	DROP CONNECTION statement
	DROP EXTERNLOGIN statement
	DROP PUBLICATION statement
	DROP REMOTE MESSAGE TYPE statement [SQL Remote]
	DROP SERVER statement
	DROP STATEMENT statement [ESQL]
	DROP STATISTICS statement
	DROP SUBSCRIPTION statement [SQL Remote]
	DROP SYNCHRONIZATION DEFINITION statement [MobiLink] (deprecated)
	DROP SYNCHRONIZATION SITE statement [MobiLink] (deprecated)
	DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]
	DROP SYNCHRONIZATION TEMPLATE statement [MobiLink] (deprecated)
	DROP SYNCHRONIZATION USER statement [MobiLink]
	DROP VARIABLE statement
	EXECUTE statement [ESQL]
	EXECUTE statement [SP]
	EXECUTE statement [T-SQL]
	EXIT statement [Interactive SQL]
	EXPLAIN statement [ESQL]
	FETCH statement [ESQL] [SP]
	FOR statement
	FORWARD TO statement
	FROM clause
	GET DATA statement [ESQL]
	GET DESCRIPTOR statement [ESQL]
	GET OPTION statement [ESQL]
	GOTO statement [T-SQL]
	GRANT statement
	GRANT CONSOLIDATE statement [SQL Remote]
	GRANT PUBLISH statement [SQL Remote]
	GRANT REMOTE statement [SQL Remote]
	GRANT REMOTE DBA statement [SQL Remote]
	HELP statement [Interactive SQL]
	IF statement
	IF statement [T-SQL]
	INCLUDE statement [ESQL]
	INPUT statement [Interactive SQL]
	INSERT statement
	INSTALL statement
	LEAVE statement
	LOAD STATISTICS statement
	LOAD TABLE statement
	LOCK TABLE statement
	LOOP statement
	MESSAGE statement
	OPEN statement [ESQL] [SP]
	OUTPUT statement [Interactive SQL]
	PARAMETERS statement [Interactive SQL]
	PASSTHROUGH statement [SQL Remote]
	PREPARE statement [ESQL]
	PREPARE TO COMMIT statement
	PRINT statement [T-SQL]
	PUT statement [ESQL]
	RAISERROR statement [T-SQL]
	READ statement [Interactive SQL]
	READTEXT statement [T-SQL]
	RELEASE SAVEPOINT statement
	REMOTE RESET statement [SQL Remote]
	REMOVE statement
	REORGANIZE TABLE statement
	RESIGNAL statement
	RESTORE DATABASE statement
	RESUME statement
	RETURN statement
	REVOKE statement
	REVOKE CONSOLIDATE statement [SQL Remote]
	REVOKE PUBLISH statement [SQL Remote]
	REVOKE REMOTE statement [SQL Remote]
	REVOKE REMOTE DBA statement [SQL Remote]
	ROLLBACK statement
	ROLLBACK TO SAVEPOINT statement
	ROLLBACK TRIGGER statement
	SAVEPOINT statement
	SELECT statement
	SET statement
	SET statement [T-SQL]
	SET CONNECTION statement [Interactive SQL] [ESQL]
	SET DESCRIPTOR statement [ESQL]
	SET OPTION statement
	SET OPTION statement [Interactive SQL]
	SET REMOTE OPTION statement [SQL Remote]
	SET SQLCA statement [ESQL]
	SETUSER statement
	SIGNAL statement
	START DATABASE statement
	START ENGINE statement [Interactive SQL]
	START JAVA statement
	START LOGGING statement [Interactive SQL]
	START SUBSCRIPTION statement [SQL Remote]
	START SYNCHRONIZATION DELETE statement [MobiLink]
	STOP DATABASE statement
	STOP ENGINE statement
	STOP JAVA statement
	STOP LOGGING statement [Interactive SQL]
	STOP SUBSCRIPTION statement [SQL Remote]
	STOP SYNCHRONIZATION DELETE statement [MobiLink]
	SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]
	SYSTEM statement [Interactive SQL]
	TRIGGER EVENT statement
	TRUNCATE TABLE statement
	UNION operation
	UNLOAD statement
	UNLOAD TABLE statement
	UPDATE statement
	UPDATE (positioned) statement [ESQL] [SP]
	UPDATE statement [SQL Remote]
	VALIDATE INDEX statement
	VALIDATE TABLE statement
	WAITFOR statement
	WHENEVER statement [ESQL]
	WHILE statement [T-SQL]
	WRITETEXT statement [T-SQL]

	5. System Tables
	DUMMY system table
	SYSARTICLE system table
	SYSARTICLECOL system table
	SYSATTRIBUTE system table
	SYSATTRIBUTENAME system table
	SYSCAPABILITY system table
	SYSCAPABILITYNAME system table
	SYSCOLLATION system table
	SYSCOLLATIONMAPPINGS system table
	SYSCOLPERM system table
	SYSCOLSTAT system table
	SYSCOLUMN system table
	SYSDOMAIN system table
	SYSEVENT system table
	SYSEVENTTYPE system table
	SYSEXTENT system table
	SYSEXTERNLOGINS system table
	SYSFILE system table
	SYSFKCOL system table
	SYSFOREIGNKEY system table
	SYSGROUP system table
	SYSINDEX system table
	SYSINFO system table
	SYSIXCOL system table
	SYSJAR system table
	SYSJARCOMPONENT system table
	SYSJAVACLASS system table
	SYSLOGIN system table
	SYSOPTBLOCK system table
	SYSOPTION system table
	SYSOPTJOINSTRATEGY system table
	SYSOPTORDER system table
	SYSOPTQUANTIFIER system table
	SYSOPTREQUEST system table
	SYSOPTREWRITE system table
	SYSOPTSTAT system table
	SYSPROCEDURE system table
	SYSPROCPARM system table
	SYSPROCPERM system table
	SYSPUBLICATION system table
	SYSREMOTEOPTION system table
	SYSREMOTEOPTIONTYPE system table
	SYSREMOTETYPE system table
	SYSREMOTEUSER system table
	SYSSCHEDULE system table
	SYSSERVERS system table
	SYSSQLSERVERTYPE system table
	SYSSUBSCRIPTION system table
	SYSSYNC system table
	SYSTABLE system table
	SYSTABLEPERM system table
	SYSTRIGGER system table
	SYSTYPEMAP system table
	SYSUSERMESSAGES system table
	SYSUSERPERM system table
	SYSUSERTYPE system table
	Other system tables
	Java system tables

	6. System Views
	Introduction
	Views for Transact-SQL Compatibility

	7. System Procedures and Functions
	System and catalog stored procedures
	sa_audit_string system procedure
	sa_check_commit system procedure
	sa_conn_activity system procedure
	sa_conn_compression_info system procedure
	sa_conn_info system procedure
	sa_conn_properties system procedure
	sa_conn_properties_by_conn system procedure
	sa_conn_properties_by_name system procedure
	sa_db_info system procedure
	sa_db_properties system procedure
	sa_disk_free_space system procedure
	sa_eng_properties system procedure
	sa_flush_cache system procedure
	sa_flush_statistics system procedure
	sa_get_dtt system procedure
	sa_get_histogram system procedure
	sa_get_request_profile system procedure
	sa_get_request_times system procedure
	sa_get_server_messages system procedure
	sa_index_density system procedure
	sa_index_levels system procedure
	sa_java_loaded_classes system procedure
	sa_locks system procedure
	sa_make_object system procedure
	sa_migrate system procedure
	sa_migrate_create_fks system procedure
	sa_migrate_create_remote_fks_list system procedure
	sa_migrate_create_remote_table_list system procedure
	sa_migrate_create_tables system procedure
	sa_migrate_data system procedure
	sa_migrate_drop_proxy_tables system procedure
	sa_procedure_profile system procedure
	sa_procedure_profile_summary system procedure
	sa_reset_identity system procedure
	sa_server_option system procedure
	sa_statement_text system procedure
	sa_table_fragmentation system procedure
	sa_table_page_usage system procedure
	sa_validate system procedure
	sp_login_environment system procedure
	sp_remote_columns system procedure
	sp_remote_exported_keys system procedure
	sp_remote_imported_keys system procedure
	sp_remote_tables system procedure
	sp_tsql_environment system procedure

	System extended stored procedures
	Extended stored procedures for MAPI and SMTP
	Other system extended stored procedures

	Adaptive Server Enterprise system and catalog procedures
	Adaptive Server Enterprise system procedures
	Adaptive Server Enterprise catalog procedures

	Index

