Anywhere.

SOLUTIONS
A SYBASE COMPANY

Adaptive Server” Anywhere
Programming Guide

Last modified: October 2002
Part Number: 38130-01-0802-01



Copyright © 1989-2002 Sybase, Inc. Portions copyright © 2001-2002 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, nreehanicalptical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary @f IBgbas

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Aataptive S
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise iz éylaatiice

Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,

APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Library, APT-Translator, ASEP, Backup Server, BayCam, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), CleayCtianect
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Dafaakapeline
Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Worgbench, Di
Connect Anywhere, DirectConnect, Distribution Director, Dynamo, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAAR ,EC
ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterg8sevElien
Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Archéegtises \¥ork
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Vaééether, E
Financial Fusion, Financial Fusion Server, First Impression, Formula One, Gateway Manager, GeoPoint, iAnywhere, iAnyvibiese Solut
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, Instizielgx,!
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, MainframeContetankiain
Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet, ML Query, MobiCATS, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASSl09&)Si
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business InterchangenOpen Clie
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnetipr@pen Solu
Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket PowerBuilder,
PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft,
Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Entegsfselipsgce
Rapport, Relational Beans, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, RepbdiatioReport
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, S.W.I.F.T. Message Foresat Libra
SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script

SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere,

SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT, SQL Server/DBM, SQL SMART,
SQL Station, SQL Toolset, SQLJ, Stage Il Engineering, Startup.Com, STEP, SupportNow, Sybase Central, Sybase ClientfaepsgrSpbmse
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQlaBesktop, Sy
SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase Virtual Server ArchitectusreSybaseW
Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System Xl (logo), SystemTools, Tabular Data StreanpriSke Ent
Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model$envElient
Solutions, The Online Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning ImiaginBeatity,
UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeiber|Writer,

VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are
trademarks of Sybase, Inc. or its subsidiaries.

All other trademarks are property of their respective owners.
Last modified October 2002. Part number 38130-01-0802-01.



Contents

About This Manual...........coeueeiiiiii e vii
SQL Anywhere Studio documentation ............cccoccvveenineeenee viii
Documentation CONVENLIONS...........uuvieiieeiiiiiiieeeee e Xi
The Adaptive Server Anywhere sample database.................. Xiv
Finding out more and providing feedback..............ccccccvveeeen. XV

Programming Interface OVerview ............ccccoeeevvvvvivnncennnn. 1
The ODBC programming interface ........cccccceveeeviiiciiieeeee e, 2
The OLE DB programming interface..........cccoocveeeviieeeiiiieeeenns 3
The Embedded SQL programming interface .............ccococeeenee. 4
The JDBC programming interface ...........ccccocvveiniieeeiniieeeenn 5
The Open Client programming interface..........c.ccccovveeeiiinneee 6

Using SQL in ApplicationS ........cocoovvvviiiiiiieeeeceeeiceee e, 9
Executing SQL statements in applications ...........c.ccccvvveeeennn. 10
Preparing StatementS........ccveee i 12
INtrodUCLION 1O CUMSOIS ..ocivviiieiiiiiee et 15
WOrking With CUISOIS.....c.ccciiiiiiiiiieec e 19
ChOoOSING CUISON LYPES ....eeeeiiiiiieiiiiee ettt 24
Adaptive Server AnNywWhere CUrSOors........ccceevviveeeiiiieeesiiieeene 28
Describing reSUlt SEtS.......cvviiiiiiiieeiieee e 42
Controlling transactions in applications ...........ccccccveeviveeennn 44

Introduction to Java in the Database .............cccccciinne 49
INEFOAUCHION ..o e 50
Java inthe database Q & A ......ccvvviiieieiii e 53
A JAVA SEMINAT ..eiiiiiiieeiiiiee e eiiiee et et e et e e sbree e e sbeeee e 59
The runtime environment for Java in the
database ....oooooiii 69
Tutorial: A Java in the database exercise...........ccccceveeeviinnnee. 77

Using Java in the Database...........ccccccccie 85
INEFOAUCHION ..o 86
Java-enabling a database..........ccccccceeeiiiiiiiiiiee e, 89



Installing Java classes into a database ..............ccccceeveeeeenneee, 94

Creating columns to hold Java objects..........ccccvveveeeeivicinnen, 99
Inserting, updating, and deleting Java objects...................... 101
Querying Java ODJECES ........cueeeiiiiiiiiiiee e 106
Comparing Java fields and objects..........cccoviiiiiiiieeiinnnnnee. 108
Special features of Java classes in the database................. 111
How Java objects are Stored...........cccccevvvveeiniiiee e, 118
Java database design ........cocuveveiiiiieiiiie e 121
Using computed columns with Java classes ...........ccccccoue. 124
Configuring memory for Java.........cccccceeeeiiiciiieeeee e 127
Data Access Using JDBC..........ccccceeeeiiiieeeeicceeeeiiin, 129
JDBC OVEIVIEW. ....eitiiiieie e ettt e e e e e e e e e e 130
Using the jConnect JIDBC driVer .........cccovcveieiiiiiieeiieee e 136
Using the JDBC-ODBC bridge........c.coevviiviiiniiiieiiiieeeeeen 141
Establishing JDBC cONNECtioNS...........cooviiiiiiiiiiiee e 143
Using JDBC t0 access data........ccooovveeeriiirieeiiiiee e 150
Creating distributed applications............ccccocvveeiiiieeeiiiieeene 158
Embedded SQL Programming.........ccccevvvviiivicienneneeennn. 163
INEFOAUCHION ... 164
Sample embedded SQL programs .......ccccoeecvvvveeeeeeiiivnneenenn 171
Embedded SQL data types.........ceevriieieiiiiiieiiiieee e 177
Using host variables............oooiiiiiiii e 181
The SQL Communication Area (SQLCA) ......cccoecvveiiiieeennnn. 188
Fetching data ..........ccoveiiiiiiii e 193
Static and dynamic SQL .....c.eeeiiiiiiiiiiiiiee e 202
The SQL descriptor area (SQLDA) ......c.eeeiiiiieeiiiiieeeiiieeene 206
Sending and retrieving long values.............cccccvveeeevicciiieennn, 214
Using stored ProCeAUIES.........c.uuvveveeeiiiiiirieee e e e vesnieer e e e e e 220
Embedded SQL programming techniques...........cccccceeeeueeeee. 224
The SQL PreprOCESSOr.....cc.uvviieieeeeeiiciirreereeesesnnrreereeeesanannes 226
Library function reference .........cccccccvevciiieeee s 230
Embedded SQL command summary........cccccoeeevvveereeesnnnnnnn. 247
ODBC ProgrammiNg ..........eeeeeeeeeeeeeeeieeeeaaeaeaaaanaaaaaaannnes 251
Introduction t0 ODBC........ccoiiiiiiiiiiiee e 252
Building ODBC appliCations...........ccccvveiiiiiienniiiee e 254
ODBC SAMPIES ..veeviieee i 258
ODBC handles .......cooiiiiiieiiiiiee e 260
Connecting to a data SOUICe..........cccvveveeeeeveiiiiiieeeee e 263

Executing SQL statements .......ccccceeveeeieviiiiieece e, 267



10

11

12

Working with result Sets ..., 272

Calling stored proCedures .......cccccevvvvvvieieeeee e e e 276
HanNdling €ITOrS.......coiuiiiiiieee e 278
The Database Tools Interface .......ccccccceeeeiiiiiiieiiieeeeinnns 283
Introduction to the database tools interface...........ccccccceee. 284
Using the database tools interface...........ccocccvveeeiiiiiniiinnen. 285
DBTOO0IS fUNCLONS ......vviieiiiiie e 293
DBTOOIS SITUCLUIES......eeieiiiiiieiiiiiee st 304
DBTools enumeration types........ccccvvveeeeeeesiicinieeeee e siieeeens 334
The OLE DB and ADO Programming Interfaces.......... 337
Introductionto OLE DB ........oooooiiiiiiii 338
ADO programming with Adaptive Server
ANYWRNEIE ..o 340
Supported OLE DB interfaces........ccccovvveeeiiiieieiiiieee e 347
The Open Client Interface .....cccooeevveeeiiiiiiiiicicie e, 353
What you need to build Open Client applications................. 354
Data type MapPiNgS ....eeeeiiieeeeiiiiee ettt 355
Using SQL in Open Client applications..........ccccccoecciveeeeennn. 357
Known Open Client limitations of Adaptive Server
ANYWRNETE ..o 360

Three-tier Computing and Distributed Transactions... 361

INEFOAUCHION .o e 362
Three-tier computing architecture..........ccccceeeeeviiiciiieeeeeenins 363
Using distributed transactions..........cccccceevvvecvvieeeeeeseecvveeen, 367
Using EAServer with Adaptive Server Anywhere ................. 369
Deploying Databases and Applications ....................... 373
DeploymeNt OVEIVIEW.........ueveiiiiiieeeiiee et 374
Understanding installation directories and file
NBITIES L.ttt ettt e et e et e e e e et e ee s e e e e e eernbareeeeeeennns 376
Using InstallShield objects and templates for
(o =T o [0, 4= | S5 SRR 380
Using a silent installation for deployment .............cccooeunvneee. 382
Deploying client applications...........ccccceeevriiciiieeeee e, 385
Deploying administration tools...........ccccceevviiiviieiee e, 395
Deploying database SErvers .......ccccccccevvvicciviieeee e esciiene e 396

Deploying embedded database applications...........cccccec... 398



13 SQL Preprocessor Error MeSSages........ceevvveieeeeeeeeneenn. 401
SQL Preprocessor error messages indexed by

Error MEeSSAJE VAIUE ......ceiiiiiiii ittt 402
SQLPP EITOIS....coiiiiiiiiiiiiiii 406
INAEX i 423

Vi



About This Manual

Subject

Audience

This book describes how to build and deploy database applications using the
C, C++, and Java programming languages. Users of tools such as Visual
Basic and PowerBuilder can use the programming interfaces provided by
those tools.

This manual isintended for application developers writing programs that
work directly with one of the Adaptive Server Anywhere interfaces.

Y ou do not need to read this manual if you are using a development tool such
as PowerBuilder or Visua Basic, each of which hasits own database
interface on top of ODBC.

vii



SQL Anywhere Studio documentation

Thisbook is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere Studio documentation set

viii

The SQL Anywhere Studio documentation set consists of the following
books:

¢

Introducing SQL Anywhere Studio Thisbook provides an overview
of the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

What’'s New in SQL Anywhere Studio Thisbook isfor users of
previous versions of the software. It lists new featuresin this and
previous rel eases of the product and describes upgrade procedures.

Adaptive Server Anywhere Getting Started Thisbook isfor people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere database-
management system and introductory material on designing, building,
and working with databases.

Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases.

Adaptive Server Anywhere SQL User’'s Guide Thisbook describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

Adaptive Server Anywhere SQL Reference Manual Thisbook
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

Adaptive Server Anywhere Programming Guide Thisbook
describes how to build and deploy database applications using the C,
C++, and Java programming languages. Users of tools such as Visual
Basic and PowerBuilder can use the programming interfaces provided
by those tools.



¢ Adaptive Server Anywhere Error Messages  Thisbook provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

¢ Adaptive Server Anywhere C2 Security Supplement  Adaptive
Server Anywhere 7.0 was awarded a TCSEC (Trusted Computer System
Evaluation Criteria) C2 security rating from the U.S. Government. This
book may be of interest to those who wish to run the current version of
Adaptive Server Anywhere in a manner eguivalent to the C2-certified
environment. The book does not include the security features added to
the product since certification.

¢  MobiLink Synchronization User’'s Guide Thisbook describes all
aspects of the MobiLink data synchronization system for mobile
computing, which enables sharing of data between a single Oracle,
Sybase, Microsoft or IBM database and many Adaptive Server
Anywhere or Ultral ite databases.

¢ SQL Remote User's Guide Thisbook describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

¢ UltraLite User’s Guide Thisbook describes how to build database
applications for small devices such as handheld organizers using the
UltraL ite deployment technology for Adaptive Server Anywhere
databases.

4 UltraLite User’s Guide for PenRight! MobileBuilder Thisbook isfor
users of the PenRight! MobileBuilder development tool. It describes
how to use UltralL ite technology in the MobileBuilder programming
environment.

¢ SQL Anywhere Studio Help Thisbook is provided online only. It
includes the context-sensitive help for Sybase Central, Interactive SQL,
and other graphical tools.

In addition to this documentation set, SQL Modeler and InfoMaker include
their own online documentation.

Documentation formats

SQL Anywhere Studio provides documentation in the following formats:



Online books The online books include the complete SQL Anywhere
Studio documentation, including both the printed books and the context-
sensitive help for SQL Anywhere tools. The online books are updated
with each maintenance release of the product, and are the most complete
and up-to-date source of documentation.

To access the online books on Windows operating systems, choose
Startd Programs] Sybase SQL Anywhere 800 Online Books. Y ou can
navigate the online books using the HTML Help table of contents,
index, and search facility in the |eft pane, and using the links and menus
in the right pane.

To access the online books on UNIX operating systems, run the
following command at a command prompt:

dbbooks

Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in the pdf docs directory.
Y ou can choose to install them when running the setup program.

Printed books The following books are included in the
SQL Anywhere Studio box:

¢ Introducing SQL Anywhere Sudio.
¢ Adaptive Server Anywhere Getting Started.

¢ SQL Anywhere Studio Quick Reference. Thisbook is available only
in printed form.

The complete set of books is available as the SQL Anywhere
Documentation set from Sybase sales or from e-Shop, the Sybase online
store, at http://e-shop.sybase.com/cgi-bin/eshop.storefront/.



Documentation conventions

This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions

The following conventions are used in the SQL syntax descriptions:

¢

Keywords All SQL keywords are shown like the words ALTER
TABLE in the following example:

ALTER TABLE [ owner.]table-name

Placeholders Itemsthat must be replaced with appropriate identifiers
or expressions are shown like the words owner and table-name in the
following example.

ALTER TABLE [ owner.]table-name

Repeating items  Lists of repeating items are shown with an element
of thelist followed by an ellipsis (three dots), like column-constraint in
the following example:

ADD column-definition [ column-constraint, ... ]

One or more list elements are allowed. If more than one is specified,
they must be separated by commas.

Optional portions Optional portions of a statement are enclosed by
sguare brackets.

RELEASE SAVEPOINT [ savepoint-name ]

These square brackets indicate that the savepoint-nameis optional. The
sguare brackets should not be typed.

Options  When none or only one of alist of items can be chosen,
vertical bars separate the items and the list is enclosed in square
brackets.

[ ASC | DESC ]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

Alternatives  When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces.

[ QUOTES { ON | OFF }]

Xi



If the QUOTES option is chosen, one of ON or OFF must be provided.
The brackets and braces should not be typed.

¢ Oneor more options |If you choose more than one, separate your
choices with commas.

{ CONNECT, DBA, RESOURCE }

Graphic icons

The following icons are used in this documentation:

Xii



Icon

Meaning

9

¢ O

API

A client application.

A database server, such as Sybase Adaptive Server
Anywhere or Adaptive Server Enterprise.

An UltraLite application and database server. In
Ultral ite, the database server and the application are
part of the same process.

A database. In some high-level diagrams, the icon
may be used to represent both the database and the
database server that managesit.

Replication or synchronization middleware. These
assist in sharing data among databases. Examples are
the MobiLink Synchronization Server, SQL Remote
Message Agent, and the Replication Agent (Log
Transfer Manager) for use with Replication Server.

A Sybase Replication Server.

A programming interface.

Xiii



The Adaptive Server Anywhere sample database

Xiv

Many of the exampl es throughout the documentation use the Adaptive
Server Anywhere sample database.

The sample database is held in afile named asademo.db, and is located in
your SQL Anywhere directory.

The sample database represents a small company. It contains internal
information about the company (employees, departments, and finances) as
well as product information and sales information (sales orders, customers,
and contacts). All information in the database is fictional.

The following figure shows the tables in the sample database and how they

relate to each other.

id pﬂr.lju?nt(eger sales_order_items g empl<o3lfe.
name char(15) id <pk.fk> integer %er id e :z?;g
description char(30) - line_id <pk> smallint emp fnaFne char(20)
size char(18) id = prod_id | prod_id <fk> integer empilname char(20)
color char(6) quantity integer dept_id <fk>  integer
quantity integer ship_date date stre(;! char(40)
unit_price numeric(15,2) city char(20)
d=id state char(4)
emp_id = sales_rep | zip_code char(9)
phone char(10)
customer status char(1)
ss_number char(11)
id <pk> integer sales_order salary numeric(20,3)
fname char(15) id <pk> integer start_date date '
Iname char(20) cust_id <fk>  integer termination date date
address char(35) | g order_date date birth date date
city char(20) id=cust_id | fin_code_id  <fk> char(2) bene health ins char(1)
state char(2) region char(7) bene_life_ins char(1)
zip char(10) sales_rep <fk> integer bene_day_ care char(1)
phone char(12) T sex char(1)
company_name char(35) code = fin_code_id
fin_code
<pk> 2)
contact % <ol Z:::éo) dept_id = dept_id
id <ple  integer description char(50) emp_id = dept_head_id
last_name char(15)
first_name char(15)
title char(2) code = code
street char(30) !
city char(20) fin_data
state char(2) year <pk>  char(4) department
zip char(5) quarter  <pk>  char(2) dept_id <pk> integer
phone char(10) code <pkfk> char(2) dept_name char(40)
fax char(10) amount numeric(9) dept_head_id <fk> integer




Finding out more and providing feedback

We would like to receive your opinions, suggestions, and feedback on this
documentation.

Y ou can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on the forums.sybase.com news server.

The newsgroups include the following:

¢ sybase.public.sglanywhere.general.

¢ sybase.public.sglanywhere.linux.

¢ sybase.public.sglanywhere.mobilink.

¢ sybase.public.sglanywhere.product_futures_discussion.
¢ sybase.public.sglanywhere.replication.

.

sybase.public.sglanywhere.ultralite.

Newsgroup disclaimer

iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor isiAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on
the newsgroup service when they have time available. They offer their
help on a volunteer basis and may not be available on aregular basisto
provide solutions and information. Their ability to help is based on their
workload.

XV



XVi



CHAPTER 1
Programming Interface Overview

About this chapter This chapter introduces each of the programming interfaces for Adaptive
Server Anywhere. Any client application uses one of these interfaces to
communicate with the database.

Contents .
Topic Page

The ODBC programming interface 2
The OLE DB programming interface 3
The Embedded SQL programming interface 4
The JDBC programming interface 5

6

The Open Client programming interface



The ODBC programming interface

The ODBC programming interface

ODBC (Open Database Connectivity) is a standard call level interface (CLI)
developed by Microsoft. It is based on the SQL Access Group CLI
specification. ODBC applications can run against any data source that
provides an ODBC driver. Y ou should use ODBC if you would like your
application to be portable to other data sources that have ODBC drivers.
Also, if you prefer working with an API, use ODBC.

ODBC isalow-level interface—about the same as Embedded SQL. Almost
all the Adaptive Server Anywhere functionality is available with this
interface. ODBC is available as a DLL under Windows operating systems
with the exception of Windows CE. It is provided as a library for UNIX.

The primary documentation for ODBC is the Microsoft ODBC Software
Development Kit. The current book provides some additional notes specific
to Adaptive Server Anywhere for ODBC developers.

&~ ODBC is described in "ODBC Programming" on page 251



Chapter 1 Programming Interface Overview

The OLE DB programming interface

OLE DB is aset of Component Object Model (COM) interfaces developed
by Microsoft, which provide applications with uniform access to data stored
in diverse information sources and which a so provide the ability to
implement additional database services. These interfaces support the amount
of DBMS functionality appropriate to the data store, enabling it to share its
data.

ADO is an object model for programmatically accessing, editing, and
updating awide variety of data sources through OLE DB system interfaces.
ADO is also developed by Microsoft. Most developers using the OLE DB
programming interface do so by writing to the ADO API rather than directly
tothe OLE DB API.

Adaptive Server Anywhere includes an OLE DB provider for OLE DB and
ADO programmers.

The primary documentation for OLE DB and ADO programming is the
Microsoft Developer Network. The current book provides some additional
notes specific to Adaptive Server Anywhere for OLE DB and ADO
developers.

& For moreinformation, see "The OLE DB and ADO Programming
Interfaces’ on page 337



The Embedded SQL programming interface

The Embedded SQL programming interface

Embedded SQL is a system in which SQL commands are embedded right in
aC or C++ sourcefile. A preprocessor translates these statements into calls
to aruntime library. Embedded SQL isan ISO/ANSI and IBM standard.

Embedded SQL is portable to other databases and other environments, and is
functionally equivalent in all operating environments. It provides all of the
functionality available in the product. Embedded SQL is quite easy to work
with, although it takes a little getting used to the idea of Embedded SQL
statements (rather than function calls) in C code.

&~ Embedded SQL is described in "Embedded SQL Programming” on
page 163.



Chapter 1 Programming Interface Overview

The JDBC programming interface

JDBC isacall-level interface for Java applications. Developed by Sun
Microsystems, JDBC provides Java programmers with a uniform interface to
awide range of relational databases, and provides a common base on which
higher level tools and interfaces can be built. JDBC is now a standard part of
Javaand isincluded in the JDK.

SQL Anywhere Studio includes a pure Java JDBC driver, named Sybase
jConnect. It also includes a JIDBC-ODBC bridge. Both are described in
"Data Access Using JDBC" on page 129. For information on choosing a
driver, see "Choosing a JDBC driver" on page 131.

In addition to using JDBC as a client side application programming interface,
you can aso use JDBC inside the database server to access datafrom Javain
the database. For that reason JDBC is documented as part of the Javain the
database documentation.

& JDBCisnot described in this book. For a description of JDBC, see
"Data Access Using JDBC" on page 129.



The Open Client programming interface

The Open Client programming interface

When to use Open
Client

Sybase Open Client provides customer applications, third-party products,
and other Sybase products with the interfaces needed to communicate with
Adaptive Server Anywhere and other Open Servers.

Y ou should consider using the Open Client interface if you are concerned
with Adaptive Server Enterprise compatibility or if you are using other
Sybase products that support the Open Client interface, such as Replication
Server.

&~ The Open Client interface is described in "The Open Client Interface”
on page 353. &~ For more information about the Open Client interface, see
"Adaptive Server Anywhere as an Open Server" on page 105 of the book
ASA Database Administration Guide.

Open Client architecture

Client Library and
DB-Library

Network services

Open Client can be thought of as comprising two components: programming
interfaces and network services.

Open Client provides two core programming interfaces for writing client
applications: DB-Library and Client-Library.

Open Client DB-Library provides support for older Open Client applications,
and is a completely separate programming interface from Client-Library.
DB-Library is documented in the Open Client DB-Library/C Reference
Manual, provided with the Sybase Open Client product.

Client-Library programs also depend on CS-Library, which provides routines
that are used in both Client-Library and Server-Library applications.
Client-Library applications can also use routines from Bulk-Library to
facilitate high-speed data transfer.

Both CS-Library and Bulk-Library areincluded in the Sybase Open Client,
available separately.

Open Client network services include Sybase Net-Library, which provides
support for specific network protocols such as TCP/IP and DECnet. The
Net-Library interface isinvisible to application programmers. However, on
some platforms, an application may need a different Net-Library driver for
different system network configurations. Depending on your host platform,
the Net-Library driver is specified either by the system’s Sybase
configuration or when you compile and link your programs.

& Instructions for driver configuration can be found in the Open
Client/Server Configuration Guide.



Chapter 1 Programming Interface Overview

& Ingtructions for building Client-Library programs can be found in the
Open Client/Server Programmer’s Supplement.



The Open Client programming interface




CHAPTER 2

Using SQL in Applications

About this chapter Many aspects of database application development depend on your
application development tool, database interface, and programming
language, but there are some common problems and principles that affect
multiple aspects of database application devel opment.

This chapter describes some principles and techniques common to most or all
interfaces and provides pointers for more information. It does not provide a
detailed guide for programming using any one interface.

Contents Topic Page
Executing SQL statements in applications 10
Preparing statements 12
Introduction to cursors 15
Working with cursors 19
Choosing cursor types 24
Adaptive Server Anywhere cursors 28
Describing result sets 42
Controlling transactions in applications 44



Executing SQL statements in applications

Executing SQL statements in applications

10

The way you include SQL statements in your application depends on the
application development tool and programming interface you use.

¢

ODBC If you are writing directly to the ODBC programming interface,
your SQL statements appear in function calls. For example, the
following C function call executes a DELETE statement:

SQ.ExecDirect ( stnt,
"DELETE FROM enpl oyee
WHERE enp_id = 105",
SQ_NTS );

JDBC If you are using the JDBC programming interface, you can
execute SQL statements by invoking methods of the statement object.
For example,

st nt . execut eUpdat e(
"DELETE FROM enpl oyee
WHERE enp_id = 105" );

Embedded SQL If you are using embedded SQL, you prefix your C
language SQL statements with the keyword EXEC SQL. The codeis
then run through a preprocessor before compiling. For example,

EXEC SQ. EXECUTE | MVEDI ATE
" DELETE FROM enpl oyee
WHERE enp_id = 105’ ;

Sybase Open Client If you use the Sybase Open Client interface, your
SQL statements appear in function calls. For example, the following pair
of calls executes a DELETE statement:

ret = ct_command(cnd, CS_LANG CQ\D,
"DELETE FROM enpl oyee
WHERE enp_i d=105"
CS_NULLTERM
CS_UNUSED) ;
ret = ct_send(cnd);

Application Development Tools Application development tools such
as the members of the Sybase Enterprise Application Studio family
provide their own SQL objects, which use either ODBC (PowerBuilder)
or JDBC (Power J) under the covers.

& For more detailed information on how to include SQL in your
application, see your development tool documentation. If you are using
ODBC or JDBC, consult the software development kit for those interfaces.



Chapter 2 Using SQL in Applications

Applications inside
the server

& For adetailed description of embedded SQL programming, see
"Embedded SQL Programming" on page 163.

In many ways, stored procedures and triggers act as applications or parts of
applications running inside the server. Y ou can use many of the techniques
here in stored procedures also. Stored procedures use statements very similar
to embedded SQL statements.

& For more information about stored procedures and triggers, see "Using
Procedures, Triggers, and Batches' on page 507 of the book ASA SQL User’s
Guide.

Java classes in the database can use the JDBC interface in the same way as
Java applications outside the server. This chapter discusses some aspects of
JDBC. For other information on using JDBC, see "Data Access Using
JDBC" on page 129.

11



Preparing statements

Preparing statements

Reusing prepared
statements can
improve
performance

Do not prepare
statements that are
used only once

12

Each time a statement is sent to a database, the server must first prepar e the
statement. Preparing the statement can include:

¢ Parsing the statement and transforming it into an internal form.

¢ Verifying the correctness of all references to database objects by
checking, for example, that columns named in a query actually exist.

¢ Causing the query optimizer to generate an access plan if the statement
involvesjoins or subgueries.

¢ Executing the statement after all these steps have been carried out.

If you find yourself using the same statement repeatedly, for example,
inserting many rows into a table, repeatedly preparing the statement causes a
significant and unnecessary overhead. To remove this overhead, some
database programming interfaces provide ways of using prepared statements.
A prepared statement is a statement containing a series of placeholders.
When you want to execute the statement, all you haveto do is assign values
to the placeholders, rather than prepare the entire statement over again.

Using prepared statements is particularly useful when carrying out many
similar actions, such as inserting many rows.

Generally, using prepared statements requires the following steps:

1 Prepare the statement Inthisstep you generaly provide the
statement with some placeholder character instead of the values.

2 Repeatedly execute the prepared statement In this step you supply
values to be used each time the statement is executed. The statement
does not have to be prepared each time.

3 Drop the statement In thisstep you free the resources associated with
the prepared statement. Some programming interfaces handle this step
automatically.

In general, you should not prepare statementsif you'll only execute them
once. There is a dlight performance penalty for separate preparation and
execution, and it introduces unnecessary complexity into your application.

In some interfaces, however, you do need to prepare a statement to associate
it with a cursor.

& For information about cursors, see "Introduction to cursors' on page 15.



Chapter 2 Using SQL in Applications

The calls for preparing and executing statements are not a part of SQL, and
they differ from interface to interface. Each of the Adaptive Server
Anywhere programming interfaces provides a method for using prepared
statements.

How to use prepared statements

This section provides a brief overview of how to use prepared statements.
The general procedure is the same, but the details vary from interface to
interface. Comparing how to use prepared statements in different interfaces
illustrates this point.

To use a prepared statement ( generic ):

1 Prepare the statement.

2 Set up bound parameters, which will hold values in the statement.
3 Assign valuesto the bound parametersin the statement.

4  Execute the statement.

5 Repeat steps 3 and 4 as needed.

6

Drop the statement when finished. This step is not required in JDBC, as
Java's garbage collection mechanisms handle this for you.

To use a prepared statement (embedded SQL ):

1 Prepare the statement using the EXEC SQL PREPARE command.
2 Assignvaluesto the parametersin the statement.

3 Execute the statement using the EXE SQL EXECUTE command.
4

Free the resources associated with the statement using the EXEC SQL
DROP command.

To use a prepared statement ( ODBC ):

1 Prepare the statement using SQL Prepare.

2 Bind the statement parameters using SQL BindPar ameter .
3 Execute the statement using SQL Execute.

4 Drop the statement using SQL FreeStmt.

& For more information, see "Executing prepared statements' on
page 269 and the ODBC SDK documentation.

13



Preparing statements

14

% To use a prepared statement (JDBC):

1

Prepare the statement using the prepar eStatement method of the
connection object. This returns a prepared statement object.

Set the statement parameters using the appropriate set Type methods of
the prepared statement object. Here, Type is the data type assigned.

Execute the statement using the appropriate method of the prepared
statement object. For inserts, updates, and deletes thisisthe
executeUpdate method.

& For more information on using prepared statements in JDBC, see
"Using prepared statements for more efficient access' on page 155.

* To use a prepared statement ( Open Client ):

1

Prepare the statement using the ct_dynamic function, with a
CS_PREPARE type parameter.

Set statement parameters using ct_param.

Execute the statement using ct_dynamic withaCS_EXECUTE type
parameter.

Free the resources associated with the statement using ct_dynamic with
aCS_DEALLOC type parameter.

& For more information on using prepared statements in Open Client,
see "Using SQL in Open Client applications’ on page 357.



Chapter 2 Using SQL in Applications

Introduction to cursors

When you execute a query in an application, the result set consists of a
number of rows. In general, you do not know how many rows the application
is going to receive before you execute the query. Cursors provide a way of
handling query result setsin applications.

The way you use cursors, and the kinds of cursors available to you, depend
on the programming interface you use. JDBC 1.0 provides rudimentary
handling of result sets, while ODBC and embedded SQL have many
different kinds of cursors. Open Client cursors can only move forward
through aresult set.

With cursors, you can carry out the following tasks within any programming
interface:

¢ Loop over theresults of a query.

¢ Carry out inserts, updates, and deletes on the underlying data at any
point within aresult set.

In addition, some programming interfaces allow you to use special features
to tune the way result sets return to your application, providing substantial
performance benefits for your application.

& For more information on the kinds of cursors available through
different programming interfaces, see "Availability of cursors' on page 24.

What are cursors?

Cursor positions

A cursor isaname associated with aresult set. The result set is obtained
from a SELECT statement or stored procedure call.

A cursor isahandle on the result set. At any time, the cursor has a
well-defined position within the result set. With a cursor you can examine
and possibly manipulate the data one row at atime. Adaptive Server
Anywhere cursors support forward and backward movement through the
query results.

Cursors can be positioned in the following places:
¢ Beforethefirst row of the result set.

¢ Onarow intheresult set.

¢ After thelast row of the result set.

15



Introduction to cursors

Absolute row Absolute row

from start from end

0 Before first row -n-1
1 -n

2 -n+1

3 -n+2
n-2 -3
n-1 -2
n -1
n+1 After last row 0

Cursor position and result set are maintained in the database server. Rows are
fetched by the client for display and processing either one at atime or afew
at atime. The entire result set does not need to be delivered to the client.

Benefits of using cursors

Y ou do not need to use cursorsin database applications, but they do provide
anumber of benefits. These benefits follow from the fact that if you do not
use a cursor, the entire result set must be transferred to the client for
processing and display:

¢ Client-side memory For large results, holding the entire result set on
the client can lead to demanding memory requirements.

¢ Responsetime Cursorscan provide the first few rows before the
whole result set is assembled. If you do not use cursors, the entire result
set must be delivered before any rows are displayed by your application.

16



Chapter 2 Using SQL in Applications

Concurrency control  If you make updates to your data and do not use
cursorsin your application, you must send separate SQL statements to
the database server to apply the changes. This raises the possibility of
concurrency problemsif the result set has changed since it was queried
by the client. In turn, this raises the possibility of lost updates.

Cursors act as pointers to the underlying data, and so impose proper
concurrency constraints on any changes you make.

Steps in using cursors

Using a cursor in embedded SQL is different than using a cursor in other
interfaces.

+ To use acursor (embedded SQL ):

1

Prepare a statement.

Cursors generally use a statement handle rather than a string. Y ou need
to prepare a statement to have a handle available.

& For information on preparing a statement, see " Preparing
statements' on page 12.

Declare the cursor.

Each cursor refersto asingle SELECT or CALL statement. When you
declare a cursor, you state the name of the cursor and the statement it
refersto.

&> For more information, see "DECLARE CURSOR statement
[ESQL] [SP]" on page 379 of the book ASA SQL Reference Manual.

Open the cursor.

& For moreinformation, see "OPEN statement [ESQL] [SP]" on
page 485 of the book ASA SQL Reference Manual.

In the case of a CALL statement, opening the cursor executes the query
up to the point where the first row is about to be obtained.

Fetch results.

Although simple fetch operations move the cursor to the next row in the
result set, Adaptive Server Anywhere permits more complicated
movement around the result set. How you declare the cursor determines
which fetch operations are available to you.

17



Introduction to cursors

Prefetching rows

18

& For moreinformation, see"FETCH statement [ESQL] [SP]" on
page 424 of the book ASA SQL Reference Manual, and " Fetching data
on page 193.

Close the cursor.

When you have finished with the cursor, closeit. This frees any locks
held on the underlying data.

& For moreinformation, see "CLOSE statement [ESQL] [SP]" on
page 261 of the book ASA SQL Reference Manual.

Drop the statement.

To free the memory associated with the cursor and its associated
statement, you must free the statement.

&> For more information, see "DROP STATEMENT statement
[ESQL]" on page 405 of the book ASA SQL Reference Manual.

% To use acursor (ODBC, JDBC, Open Client):

1

Prepare and execute a statement.

Execute a statement using the usual method for the interface. Y ou can
prepare and then execute the statement, or you can execute the statement
directly.

Test to seeif the statement returns aresult set.

A cursor isimplicitly opened when a statement that creates aresult set is
executed. When the cursor is opened, it is positioned before the first row
of the result set.

Fetch results.

Although simple fetch operations move the cursor to the next row in the
result set, Adaptive Server Anywhere permits more complicated
movement around the result set.

Close the cursor.

When you have finished with the cursor, closeit to free associated
resources.

Free the statement.

If you used a prepared statement, freeit to reclaim memory.

In some cases the interface library may carry out performance optimizations
under the covers (such as prefetching results), so these stepsin the client
application may not correspond exactly to software operations.



Chapter 2 Using SQL in Applications

Working with cursors

This section describes how to carry out different kinds of operations using
CUrsors.

Cursor positioning

When acursor is opened, it is positioned before the first row. Y ou can move
the cursor position to an absolute position from the start or the end of the
query results, or to a position relative to the current cursor position. The
specifics of how you change cursor position, and what operations are
possible, is governed by the programming interface.

The number of row positions you can fetch in a cursor is governed by the
size of aninteger. Y ou can fetch rows numbered up to number 2147483646,
which is one less than the value that can be held in an integer. When using
negative numbers (rows from the end) you can fetch down to one more than
the largest negative value that can be held in an integer.

Y ou can use special positioned update and delete operations to update or
delete the row at the current position of the cursor. If the cursor is positioned
before the first row or after the last row, aNo current row of cursor error is
returned.

Cursor positioning problems

Inserts and some updates to asensitive cursors can cause problems with
cursor positioning. Adaptive Server Anywhere does not put inserted rows
at a predictable position within a cursor unless thereis an ORDER BY
clause on the SELECT statement. In some cases, the inserted row does not
appear at al until the cursor is closed and opened again.

With Adaptive Server Anywhere, this occursif awork table had to be
created to open the cursor (see "Use of work tablesin query processing”
on page 160 of the book ASA SQL User’s Guide for a description).

The UPDATE statement may cause arow to movein the cursor. This
happens if the cursor has an ORDER BY clause that uses an existing
index (awork tableis not created). Using STATIC SCROLL cursors
alleviates these problems but requires more memory and processing.

19



Working with cursors

Configuring cursors on opening

Y ou can configure the following aspects of cursor behavior when you open
the cursor:

¢

Isolation level You can explicitly set the isolation level of operations
on a cursor to be different from the current isolation level of the
transaction. To do this, set the ISOLATION_LEVEL option.

& For more information, see"ISOLATION_LEVEL option” on
page 571 of the book ASA Database Administration Guide.

Holding By default, cursorsin embedded SQL close at the end of a
transaction. Opening a cursor WITH HOL D allows you to keep it open
until the end of a connection, or until you explicitly closeit. ODBC,
JDBC and Open Client leave cursors open at the end of transactions by
default.

Fetching rows through a cursor

20

The simplest way of processing the result set of a query using a cursor isto
loop through all the rows of the result set until there are no more rows.

« To loop through the rows of a result set:

1

2

Declare and open the cursor (embedded SQL), or execute a statement
that returns aresult set (ODBC, JDBC, Open Client).

Continue to fetch the next row until you get a Row Not Found error.

3 Closethe cursor.

How step 2 of this operation is carried out depends on the interface you use.
For example,

¢

ODBC SQLFetch, SQL ExtendedFetch, or SQL FetchScrall
advances the cursor to the next row and returns the data.

& For more information on using cursorsin ODBC, see "Working
with result sets" on page 272.

Embedded SQL The FETCH statement carries out the same
operation.

& For more information on using cursors in embedded SQL, see
"Using cursorsin embedded SQL" on page 194.

JDBC The next method of the ResultSet object advances the cursor
and returns the data.



Chapter 2 Using SQL in Applications

& For more information on using the ResultSet object in JDBC, see
"Queries using JDBC" on page 153.

¢ Open Client Thect_fetch function advances the cursor to the next
row and returns the data.

& For moreinformation on using cursors in Open Client applications,
see "Using cursors' on page 358.

Fetching multiple rows

Multiple-row
fetches

Using multiple-row
fetching

This section discusses how fetching multiple rows at atime can improve
performance.

Multiple-row fetching should not be confused with prefetching rows, which
is described in the next section. Multiple row fetching is performed by the
application, while prefetching is transparent to the application, and provides
asimilar performance gain.

Some interfaces provide methods for fetching more than one row at atime
into the next several fieldsin an array. Generaly, the fewer separate fetch
operations you execute, the fewer individual requests the server must
respond to, and the better the performance. A modified FETCH statement
that retrieves multiple-rowsis also sometimes called awide fetch. Cursors
that use multiple-row fetches are sometimes called block cursorsor fat
CUrsors.

¢ InODBC, you can set the number of rows that will be returned on each
call to SQL FetchScroll or SQL ExtendedFetch by setting the
SQL_ROWSET_SIZE attribute.

¢ Inembedded SQL, the FETCH statement uses an ARRAY clause to
control the number of rows fetched at atime.

¢ Open Client and JDBC do not support multi-row fetches. They do use
prefetching.

Fetching with scrollable cursors

ODBC and embedded SQL provide methods for using scrollable cursors and
dynamic scrollable cursors. These methods allow you to move several rows
forward at atime, or to move backwards through the result set.

The JDBC and Open Client interfaces do not support scrollable cursors.
Prefetching does not apply to scrollable operations. For example, fetching a
row in the reverse direction does not prefetch several previous rows.

21



Working with cursors

Modifying rows through a cursor

Cursors can do more than just read result sets from a query. You can also
modify datain the database while processing a cursor. These operations are
commonly called positioned update and delete operations, or PUT
operations if the action is an insert.

Not al query result sets allow positioned updates and deletes. If you carry
out a query on a non-updatable view, then no changes occur to the
underlying tables. Also, if the query involves ajoin, then you must specify
which table you wish to delete from, or which columns you wish to update,
when you carry out the operations.

Inserts through a cursor can only be executed if any non-inserted columnsin
the table allow NULL or have defaults.

ODBC, embedded SQL, and Open Client permit data modification using
cursors, but JDBC 1.1 does not. With Open Client, you can delete and update
rows, but you can only insert rows on a single-table query.

Which table are If you attempt a positioned delete through a cursor, the table from which
rows deleted from? rows are deleted is determined as follows:

1 If no FROM clauseisincluded in the delete statement, the cursor must
be on asingle table only.

2 If thecursor isfor ajoined query (including using aview containing a
join), then the FROM clause must be used. Only the current row of the
specified table is deleted. The other tables involved in the join are not
affected.

3 If aFROM clauseisincluded, and no table owner is specified, the
table-spec valueisfirst matched against any correlation names.

& For more information, see the "FROM clause" on page 433 of the
book ASA SQL Reference Manual.

4  If acorrelation name exists, the table-spec value isidentified with the
correlation name.

5 If acorrelation name does not exist, the table-spec value must be
unambiguoudly identifiable as a table name in the cursor.

6 If aFROM clauseisincluded, and atable owner is specified, the
table-spec value must be unambiguously identifiable as atable namein
the cursor.

7 Thepositioned DELETE statement can be used on a cursor open on a
view as long as the view is updatable.

22



Chapter 2 Using SQL in Applications

Canceling cursor operations

Y ou can cancel arequest through an interface function. From
Interactive SQL, you can cancel arequest by pressing the Interrupt SQL
Statement button on the toolbar (or by choosing Stop from the SQL menu).

If you cancel arequest that is carrying out a cursor operation, the position of
the cursor isindeterminate. After canceling the request, you must locate the
cursor by its absolute position, or closeit.

23



Choosing cursor types

Choosing cursor types

This section describes mappings between Adaptive Server Anywhere cursors
and the options available to you from the programming interfaces supported
by Adaptive Server Anywhere.

& For information on Adaptive Server Anywhere cursors, see "Adaptive
Server Anywhere cursors' on page 28.

Availability of cursors

Not all interfaces provide support for all types of cursors.

¢

Cursor properties

24

ODBC and OLE DB (ADO) support all types of cursors.

& For more information, see "Working with result sets' on page 272.
Embedded SQL supports all the types of cursors.

For JDBC:

¢ jConnect 4.x provides only asensitive cursors.

¢ jConnect 5.x supports all types of cursors, but there is a severe
performance penalty for scrollable cursors.

¢ The JDBC-ODBC bridge supports all types of cursors.

Sybase Open Client supports only asensitive cursors. Also, a severe
performance penalty results when using updatable, non-unique cursors.

Y ou request a cursor type, either explicitly or implicitly, from the
programming interface. Different interface libraries offer different choices of
cursor types. For example, JIDBC and ODBC specify different cursor types.

Each cursor type is defined by a number of characteristics:

¢

Uniqueness Declaring a cursor to be unique forces the query to return
all the columns required to uniquely identify each row. Often this means
returning all the columnsin the primary key. Any columns reguired but
not specified are added to the result set. The default cursor typeis
non-unique.

Updatability A cursor declared as read only may not beused in a
positioned update or delete operation. The default cursor type us
updatable.



Chapter 2 Using SQL in Applications

¢ Scrollability You can declare cursors to behave different ways as you
move through the result set. Some cursors can fetch only the current row
or the following row. Others can move backwards and forwards through
the result set.

¢ Sensitivity Changes to the database may or may not be visible through
acursor.

These characteristics may have significant side effects on performance and
on database server memory usage.

Adaptive Server Anywhere makes available cursors with avariety of mixes
of these characteristics. When you request a cursor of a given type, Adaptive
Server Anywhere matches those characteristics as well asit can. The details
of how Adaptive Server Anywhere cursors match the cursor types specified
in the programming interfaces are the subject of the following sections.

There are some occasions when not all characteristics can be supplied.
For example, insensitive cursors in Adaptive Server Anywhere must be
read-only, for reasons described below. If your application requests an
updatable insensitive cursor, a different cursor type (value-sensitive) is
supplied instead.

Requesting Adaptive Server Anywhere cursors

ODBC and OLE DB

When you request a cursor type from your client application, Adaptive
Server Anywhere provides a cursor. Adaptive Server Anywhere cursors are
defined, not by the type as specified in the programming interface, but by the
sensitivity of the result set to changesin the underlying data. Depending on
the cursor type you ask for, Adaptive Server Anywhere provides a cursor
with behavior to match the type.

Adaptive Server Anywhere cursor sensitivity is set in response to the client
cursor type request.

The following table illustrates the cursor sensitivity that is set in response to
different ODBC scrollable cursor types.

ODBC scrollable cursor type Adaptive Server Anywhere cursor
STATIC Insensitive

KEYSET Value-sensitive

DYNAMIC Sensitive

MIXED Value-sensitive

25



Choosing cursor types

Exceptions

Embedded SQL

Exceptions

JDBC

26

& For information on Adaptive Server Anywhere cursors and their
behavior, see " Adaptive Server Anywhere cursors' on page 28. For
information on how to request a cursor type in ODBC, see "Choosing a
cursor characteristics' on page 272.

If aSTATIC cursor isrequested as updatable, a value-sensitive cursor is
supplied instead and awarning is issued.

If aDYNAMIC or MIXED cursor is reguested and the query cannot be
executed without using work tables, awarning isissued and an asensitive
cursor is supplied instead.

To request a cursor from an embedded SQL application, you specify the
cursor type on the DECL ARE statement. The following tableillustrates the
cursor sensitivity that is set in response to different requests:

Cursor type Adaptive Server Anywhere cursor
NO SCROLL Asensitive

DYNAMIC SCROLL Asensitive

SCROLL Vaue-sensitive

INSENSITIVE Insensitive

SENSITIVE Sensitive

If an DYNAMIC SCROLL or NO SCROLL cursor isreguested as
UPDATABLE, then a sensitive or value-sensitive cursor is supplied. It is not
guaranteed which of the two is supplied. This uncertainty fits the definition
of asensitive behavior.

If an INSENSITIVE cursor isrequested as UPDATABLE, then a
value-sensitive cursor is supplied.

If aDYNAMIC SCROLL cursor isrequested, if the PREFETCH database
option is set to OFF, and if the query execution plan involves no work tables,
then a sensitive cursor may be supplied. Again, this uncertainty fits the
definition of asensitive behavior.

Only one kind of cursor is available to JDBC applications. Thisisan
asensitive cursor. In JDBC you execute an ExecuteQuery statement to open
acursor.



Chapter 2 Using SQL in Applications

Open Client

Only one kind of cursor is available to JDBC applications. Thisisan
asensitive cursor.

Bookmarks and cursors

Block cursors

ODBC provides bookmarks, or values, used to identify rowsin a cursor.
Adaptive Server Anywhere supports bookmarks for all kinds of cursors
except DYNAMIC cursors.

ODBC provides a cursor type called a block cursor. When you use a BLOCK
cursor, you can use SQL FetchScroll or SQL ExtendedFetch to fetch a
block of rows, rather than a single row. Block cursors behave identically to
embedded SQL ARRAY fetches.

27



Adaptive Server Anywhere cursors

Adaptive Server Anywhere cursors

Membership,
order, and value
changes

28

Any cursor, once opened, has an associated result set. The cursor is kept
open for alength of time. During that time, the result set associated with the
cursor may be changed, either through the cursor itself or, subject to isolation
level requirements, by other transactions. Some cursors permit changes to the
underlying data to be visible, while others do not reflect these changes. The
different behavior of cursors with respect to changes to the underlying datais
the sensitivity of the cursor.

Adaptive Server Anywhere provides cursors with a variety of sensitivity
characteristics. This section describes what sensitivity is, and describes the
sensitivity characteristics of cursors.

This section assumes that you have read "What are cursors?' on page 15.

Changes to the underlying data can affect the result set of a cursor in the
following ways:

¢ Membership Theset of rowsin the result set, asidentified by their
primary key values.

¢ Order Theorder of the rowsin the result set.
¢ Value Thevauesof therowsin theresult set.

For example, consider the following simple table with employee information
(emp_id isthe primary key column):

emp_id | emp_Iname
1 ‘ Whitney

2 | Cobb

3 | chin

A cursor on the following query returns all results from the table in primary
key order:

SELECT enp_id, enp_l name
FROM enpl oyee
CRDER BY enp_id

The membership of the result set could be changed by adding a new row or
deleting arow. The values could be changed by changing one of the names
in the table. The order could be changed by changing the primary key value
of one of the employees.



Chapter 2 Using SQL in Applications

Visible and
invisible changes

Subject to isolation level requirements, the membership, order, and values of
the result set of a cursor can be changed after the cursor is opened.
Depending on the type of cursor in use, the result set as seen by the
application may change to reflect these changes or may not.

Changes to the underlying data may be visible or invisible through the
cursor. A visible change is a change that is reflected in the result set of the
cursor. Changes to the underlying data that are not reflected in the result set
seen by the cursor areinvisible.

Cursor sensitivity overview

Adaptive Server Anywhere cursors are classified by their sensitivity with
respect to changes of the underlying data. In particular, cursor sensitivity is
defined in terms of which changes are visible.

¢ Insensitive cursors Theresult set is fixed when the cursor is opened.
No changes to the underlying data are visible.

& For more information, see "Insensitive cursors' on page 33.

¢ Sensitive cursors The result set can change after the cursor is opened.
All changesto the underlying data are visible.

& For more information, see " Sensitive cursors' on page 34.

¢ Asensitive cursors  Changes may be reflected in the membership,
order, or values of the result set seen through the cursor, or may not be
reflected at all.

& For more information, see "Asensitive cursors' on page 36.

¢ Value-sensitive cursors Changesto the order or values of the
underlying data. The membership of the result set is fixed when the
cursor is opened.

& For more information, see "Value-sensitive cursors' on page 37.

The differing requirements on cursors place different constraints on
execution, and so performance. For more information, see " Cursor sensitivity
and performance” on page 39.

Cursor sensitivity example: a deleted row

This example uses asimple query to illustrate how different cursors respond
to arow in the result set being deleted.

Consider the following sequence of events:

29



Adaptive Server Anywhere cursors

30

1 Anapplication opens a cursor on the following query against the sample

database.
SELECT enp_id, enp_l nane
FROM enpl oyee
CRDER BY enp_id
emp_id emp_Ilname
102 Whitney
105 Cobb
160 Breault

The application fetches the first row through the cursor (102).

The application fetches the next row through the cursor (105).

A separate transaction deletes employee 102 (Whitney) and commits the

change.

Theresults of cursor actionsin this situation depend on the cursor sensitivity:

¢ Insensitive cursors

The DELETE is not reflected in either the

membership or values of the results as seen through the cursor:

Action

Result

Fetch previous row

Fetch the first row
(absolute fetch)

Fetch the second row
(absolute fetch)

Returns the original copy of the row (102).
Returns the original copy of the row (102).

Returns the unchanged row (105).

¢ Sensitive cursors  The membership of the result set has changed so
that row 105 is now the first row in the result set:

Action

Result

Fetch previous row

Fetch the first row
(absolute fetch)

Fetch the second row
(absolute fetch)

ReturnsRow Not Found error. There is no
previous row.

Returns row 105.

Returns row 160.




Chapter 2 Using SQL in Applications

¢ Value-sensitive cursors  The membership of the result set is fixed,
and so row 105 is still the second row of the result set. The DELETE is
reflected in the values of the cursor, and creates an effective "hole" in

the result set.

Action Result

Fetch previous row Returns No current row of cursor. Thereisa
hole in the cursor where the first row used to be.

Fetch the first row Returns No current row of cursor. Thereisa

(absolute fetch) hole in the cursor where the first row used to be.

Fetch the second row Returns row 105.

(absolute fetch)

¢ Asensitive cursors  The membership and values of the result set are
indeterminate with respect to the changes. The response to a fetch of the
previous row, the first row, or the second row depends on the particular
optimization method for the query, whether that method involved the
formation of awork table, and whether the row being fetched was
prefetched from the client.

The benefit of asensitive cursorsis that for many applications,
sengitivity is unimportant. In particular, if you are using a forward-only,
read-only cursor, no underlying changes are seen. Also, if you are
running at a high isolation level, underlying changes are disallowed.

Cursor sensitivity example: an updated row

This example uses asimple query to illustrate how different cursor types
respond to arow in the result set being updated in such away as to change
the order of the result set.

Consider the following sequence of events:

1 Anapplication opens a cursor on the following query against the sample
database.

SELECT enp_id, enp_l name
FROM enpl oyee

emp_id emp_Iname
102 Whitney

105 Cobb

160 Breault

31



Adaptive Server Anywhere cursors

The application fetches the first row through the cursor (102).
The application fetches the next row through the cursor (105).

A separate transaction updates the employee ID of employee 102
(Whitney) to 165 and commits the change.

The results of the cursor actions in this situation depend on the cursor

sensitivity:

¢ Insensitive cursors The UPDATE is not reflected in either the
membership or values of the results as seen through the cursor:

Action Result

Fetch previous row Returns the original copy of the row (102).
Fetch the first row Returns the original copy of the row (102).
(absolute fetch)

Fetch the second row Returns the unchanged row (105).
(absolute fetch)

¢ Sensitive cursors  The membership of the result set has changed so
that row 105 is now the first row in the result set:

Action Result

Fetch previous row Returns Row Not Found. The membership of the
result set has changed so that 105 is now the first
row. The cursor is moved to the position before
the first row.

Fetch the first row Returns row 105.
(absolute fetch)

Fetch the second row Returns row 160.
(absolute fetch)

In addition, afetch on a sensitive cursor returns the warning
SQLE_ROW_UPDATED_WARNING if the row has changed since the
last reading. The warning is given only once. Subsequent fetches of the
same row do not produce the warning.

Similarly, a positioned update or delete through the cursor on arow
since it was last fetched returns the
SQLE_ROW_UPDATED_SINCE_READ error. An application must fetch
the row again for an update or delete on a sensitive cursor to work.

32



Chapter 2 Using SQL in Applications

Insensitive cursors

Standards

An update to any column causes the warning/error, even if the column is
not referenced by the cursor. For example, a cursor on a query returning
emp_Iname would report the update even if only the salary column was
modified.

Value-sensitive cursors  The membership of the result set is fixed,
and so row 105 is still the second row of the result set. The DELETE is
reflected in the values of the cursor, and creates an effective "hole" in
the result set.

Action Result

Fetch previous row Returns Row Not Found. The membership of the
result set has changed so that 105 is now the first
row: The cursor is positioned on the hole: itis

before row 105.
Fetch the first row Returns Row Not Found. The membership of the
(absolute fetch) result set has changed so that 105 is now the first
row: The cursor is positioned onthe hole: it is
before row 105.

Fetch the second row Returns row 105.
(absolute fetch)

Asensitive cursors  The membership and values of the result set are
indeterminate with respect to the changes. The response to a fetch of the
previous row, the first row, or the second row depends on the particular
optimization method for the query, whether that method involved the
formation of awork table, and whether the row being fetched was
prefetched from the client.

No warnings or errors in bulk operations mode
Update warning and error conditions do not occur in bulk operations
mode (- b database server option).

These cursors have insensitive membership, order, and values. No changes
made after cursor open time are visible.

Insensitive cursors are used only for read-only cursor types.

Insensitive cursors correspond to the ISO/ANSI standard definition of
insensitive cursors, and to ODBC static cursors.

33



Adaptive Server Anywhere cursors

Programming

! Interface Cursor type Comment
interfaces
ODBC, OLEDB, | Static If an updatable static cursor is requested,
and ADO avaue-sensitive cursor is used instead.
Embedded SQL INSENSITIVE
or NO SCROLL
JDBC Unsupported
Open Client Unsupported
Description Insensitive cursors always return rows that match the query’s selection

criteria, in the order specified by any ORDER BY clause.

The result set of an insensitive cursor is fully materialized as a work table
when the cursor is opened. This has the following consequences:

¢ If theresult set isvery large, the disk space and memory requirements
for managing the result set may be significant.

¢ Norow isreturned to the application before the entire result set is
assembled as a work table. For complex queries, this may lead to adelay
before the first row is returned to the application.

¢ Subsequent rows can be fetched directly from the work table, and so are
returned quickly. The client library may prefetch several rows at atime,
further improving performance.

¢ Insensitive cursors are not affected by ROLLBACK or ROLLBACK TO
SAVEPOINT.

Sensitive cursors

These cursors have sensitive membership, order, and values.
Sensitive cursors can be used for read-only or updatable cursor types.

Standards Sensitive cursors correspond to the ISO/ANSI standard definition of

sensitive cursors, and to ODBC dynamic cursors.

Programming Interface Cursor type Comment
interfaces
ODBC, OLE DB, | Dynamic
and ADO
Embedded SQL SENSITIVE Also supplied in response to arequest for

aDYNAMIC SCROLL cursor when no
work tableis required and PREFETCH is
off.

34



Chapter 2 Using SQL in Applications

Description

All changes are visible through the cursor, including changes through the
cursor and from other transactions. Higher isolation levels may hide some
changes made in other transactions because of locking.

Changes to cursor membership, order, and al column values are all visible.
For example, if a sensitive cursor contains ajoin, and one of the values of
one of the underlying tablesis modified, then all result rows composed from
that base row show the new value. Result set membership and order may
change at each fetch.

Sensitive cursors always return rows that match the query’s selection criteria,
and are in the order specified by any ORDER BY clause. Updates may affect
the membership, order, and values of the result set.

The requirements of sensitive cursors place restrictions on the
implementation of sensitive cursors;

¢+ Rows cannot be prefetched, as changes to the prefetched rows would not
be visible through the cursor. This may impact performance.

¢ Sensitive cursors must be implemented without any work tables being
constructed, as changes to those rows stored as work tables would not be
visible through the cursor.

¢ Theno work table limitation restricts the choice of join method by the
optimizer and therefore may impact performance.

¢ For some queries, the optimizer is unable to construct a plan that does
not include a work table that would make a cursor sensitive.

Work tables are commonly used for sorting and grouping intermediate
results. A work table is not needed for sorting if the rows can be
accessed through an index. It is not possible to state exactly which
queries employ work tables, but the following queries do employ them:

¢ UNION queries, although UNION ALL do not necessarily use work
tables.

+ Statements with an ORDER BY clause, if thereis no index on the
ORDER BY column.

¢ Any query that is optimized using a hash join.
¢ Many queriesinvolving DISTINCT or GROUP BY clauses.

In these cases, Adaptive Server Anywhere either returns an error to the
application, or changes the cursor type to an asensitive cursor and
returns a warning.

35



Adaptive Server Anywhere cursors

& For more information on query optimization and the use of work
tables, see " Query Optimization and Execution” on page 313 of the book
ASA SQL User’s Guide.

Asensitive cursors

Standards

Programming
interfaces

Description

36

These cursors do not have well-defined sensitivity in their membership,
order, or values. The flexibility that is allowed in the sensitivity permits
asensitive cursors to be optimized for performance.

Asensitive cursors are used only for read-only cursor types.

Insensitive cursors correspond to the ISO/ANSI standard definition of
asensitive cursors, and to ODBC cursors with unspecific sensitivity.

Interface | Cursor type
ODBC, OLE DB, and ADO | Unspecified sensitivity
Embedded SQL | DYNAMIC SCROLL

A request for an asensitive cursor places few restrictions on the methods
Adaptive Server Anywhere can use to optimize the query and return rows to
the application. For these reasons, asensitive cursors provide the best
performance. In particular, the optimizer is free to employ any measure of
meaterialization of intermediate results as work tables, and rows can be
prefetched by the client.

Adaptive Server Anywhere makes no guarantees about the visibility of
changes to base underlying rows. Some changes may be visible, others not.
Membership and order may change at each fetch. In particular, updates to
base rows may result in only some of the updated columns being reflected in
the cursor’s result.

Asensitive cursors do not guarantee to return rows that match the query’s
selection and order. The row membership is fixed at cursor open time, but
subsequent changes to the underlying values are reflected in the results.

Asensitive cursors always return rows that matched the customer’'s WHERE
and ORDER BY clauses at the time the cursor membership is established. If
column values change after the cursor is opened, rows may be returned that
no longer match WHERE and ORDER BY clauses.



Chapter 2 Using SQL in Applications

Value-sensitive cursors

Standards

Programming
interfaces

Description

These cursors are insensitive with respect to their membership, and sensitive
with respect to the order and values of the result set.

Value-sensitive cursors can be used for read-only or updatable cursor types.

Value-sensitive cursors do not correspond to an ISO/ANS| standard
definition. They correspond to ODBC keyset-driven cursors.

Interface Cursor type
ODBC, OLE DB, and ADO Keyset-driven
Embedded SQL SCROLL

JDBC Keyset-driven
Open Client Keyset-driven

If the application fetches a row composed of a base underlying row that has
changed, then the application must be presented with the updated value, and
the SQL_ROW_UPDATED status must be issued to the application. If the
application attempts to fetch a row that was composed of a base underlying
row that was deleted, a SQL_ROW_DELETED status must be issued to the
application.

Changes to primary key values remove the row from the result set (treated as
adelete, followed by aninsert). A special case occurs when arow in the
result set is deleted (either from cursor or outside) and a new row with the
same key value isinserted. Thiswill result in the new row replacing the old
row where it appeared.

There is no guarantee that rows in the result set match the query’s selection
or order specification. Since row membership is fixed at open time,
subsequent changes that make a row not match the WHERE clause or
ORDER BY do not change arow's membership nor position.

All values are sensitive to changes made through the cursor. The sensitivity
of membership to changes made through the cursor is controlled by the
ODBC option SQL_STATIC_SENSITIVITY. If thisoption ison, then
inserts through the cursor add the row to the cursor. Otherwise, they are not
part of the result set. Deletes through the cursor remove the row from the
result set, preventing a hole returning the SQL_ROW_DELETED status.

37



Adaptive Server Anywhere cursors

38

Value-sensitive cursors use a key set table. When the cursor is opened,
Adaptive Server Anywhere populates awork table with identifying
information for each row contributing to the result set. When scrolling
through the result set, the key set table is used to identify the membership of
the result set, but values are obtained, if necessary, from the underlying
tables.

The fixed membership property of value-sensitive cursors allows your
application to remember row positions within a cursor and be assured that
these positions will not change. For more information, see " Cursor sensitivity
example: adeleted row" on page 29.

¢

If arow was updated or may have been updated since the cursor was
opened, Adaptive Server Anywhere returns a
SQLE_ROW_UPDATED_WARNING when the row is fetched. The
warning is generated only once: fetching the same row again does not
produce the warning.

An update to any column of the row causes the warning, even if the
updated column is not referenced by the cursor. For example, a cursor
on emp_Iname and emp_fname would report the update even if only the
birthdate column was modified. These update warning and error
conditions do not occur in bulk operations mode (-b database server
option) when row locking is disabled. See "Performance considerations
of moving data" on page 422 of the book ASA SQL User’s Guide.

& For moreinformation, see "Row has been updated since last time
read" on page 243 of the book ASA Errors Manual

An attempt to execute a positioned update or delete on arow that has
been modified since it was last fetched returns a
SQLE_ROW_UPDATED_SINCE_READ error and cancelsthe
statement. An application must FETCH the row again before the
UPDATE or DELETE is permitted.

An update to any column of the row causes the error, even if the updated
column is not referenced by the cursor. The error does not occur in bulk
operations mode.

& For more information, see "Row has changed since last read --
operation cancelled" on page 244 of the book ASA Errors Manual.

If arow has been deleting after the cursor is opened, either through the
cursor or from another transaction, aholeis created in the cursor. The
membership of the cursor isfixed, so arow position is reserved, but the
DELETE operation is reflected in the changed value of the row. If you
fetch the row at this hole, you receive aNo Current Row of Cursor error
(SQL state 24503), indicating that there is no current row, and the cursor
isleft positioned on the hole. Y ou can avoid holes by using sensitive
cursors, as their membership changes along with the values.



Chapter 2 Using SQL in Applications

& For more information, see "No current row of cursor" on page 215
of the book ASA Errors Manual.

Rows cannot be prefetched for value-sensitive cursors. This requirement may
impact performance in some cases.

Cursor sensitivity and performance

Thereis atrade-off between performance and other cursor properties. In
particular, making a cursor updatable places restrictions on the cursor query
processing and delivery that constrain performance. Also, putting
reguirements on cursor sensitivity may constrain cursor performance.

To understand how the updatability and sensitivity of cursors affects
performance, you need to understand how the results that are visible through
acursor are transmitted from the database to the client application.

In particular, results may be stored at two intermediate locations for
performance reasons:

¢ Work tables Either intermediate or final results may be stored as work
tables. Value-sensitive cursors employ awork table of primary key
values. Query characteristics may also lead the optimizer to use work
tables in its chosen execution plan.

¢ Prefetching Theclient side of the communication may retrieve rows
into a buffer on the client side to avoid separate requests to the database
server for each row.

Client ODBC driver or
. . Database server
application network library
I\ ;
Prefetched /—I—\
rows w
Work table
oW w

Sensitivity and updatability limit the use of intermediate locations.

Any updatable cursor is prevented from using work tables and from
prefetching results. If either of these were used, the cursor would be
vulnerable to lost updates. The following example illustrates this problem:

39



Adaptive Server Anywhere cursors

Prefetching rows

40

1 Anapplication opens a cursor on the following query against the sample
database.

SELECT id, quantity

FROM pr oduct
id quantity
300 28
301 54
302 75

The application fetches the row with id = 300 through the cursor.

A separate transaction updates the row is updated using the following
statement:

UPDATE pr oduct
SET quantity = quantity - 10
WHERE id = 300

4 The application updates the row through the cursor to a value of
(quantity - 5).

5 Thecorrect fina value for the row would be 13. If the cursor had
prefetched the row, the new value of the row would be 23. The update
from the separate transaction islost.

Similar restrictions govern sensitivity. For more information, see the
descriptions of distinct cursor types.

Prefetches and multiple-row fetches are different. Prefetches can be carried
out without explicit instructions from the client application. Prefetching
retrieves rows from the server into a buffer on the client side, but does not
make those rows available to the client application until the application
fetches the appropriate row.

By default, the Adaptive Server Anywhere client library prefetches multiple
rows whenever an application fetches a single row. The Adaptive Server
Anywhere client library stores the additional rows in a buffer.

Prefetching assists performance by cutting down on client/server traffic, and
increases throughput by making many rows available without a separate
reguest to the server for each row or block of rows.



Chapter 2 Using SQL in Applications

Controlling
prefetching from an
application

& For more information on controlling prefetches, see "PREFETCH
option" on page 592 of the book ASA Database Administration Guide.

¢

The PREFET CH option controls whether or not prefetching occurs. You
can set the PREFETCH option to ON or OFF for a single connection. By
default, it is set to ON.

In embedded SQL, you can control prefetching on a per-cursor basis
when you open a cursor on an individual FETCH operation using the
BLOCK clause.

The application can specify a maximum number of rows contained in a
single fetch from the server by specifying the BLOCK clause.

For example, if you are fetching and displaying 5 rows at atime, you
could use BLOCK 5. Specifying BLOCK 0 fetches 1 record at atime
and also causes a FETCH RELATIVE 0 to aways fetch the row from
the server again.

Although you can also turn off prefetch by setting a connection
parameter on the application, it is more efficient to set BLOCK=0 than
to set the PREFET CH option to OFF.

& For more information, see "PREFETCH option" on page 592 of the
book ASA Database Administration Guide

In Open Client, you can control prefetching behavior using ct_cursor
with CS_ CURSOR_ROWS after the cursor is declared, but beforeitis
opened.

Cursor sensitivity and isolation levels

Both cursor sensitivity and transaction isolation levels address the problem
of concurrency, but in different ways.

By choosing anisolation level for atransaction (often at the connection
level), you determine when locks are placed on rows in the database. Locks
prevent other transactions from accessing or modifying valuesin the
database.

By choosing a cursor sensitivity, you determine which changes are visible to

the application using the cursor. By setting cursor sensitivity you are not

determining when locks are placed on rows in the database, and you do not
limit the changes that can be made to the database itself.

41



Describing result sets

Describing result sets

42

Some applications build SQL statements which cannot be completely
specified in the application. In some cases, for example, statements depend
on aresponse from the user before the application knows exactly what
information to retrieve, such as when areporting application allows a user to
select which columns to display.

In such a case, the application needs a method for retrieving information
about both the nature of the result set and the contents of the result set. The
information about the nature of the result set, called adescriptor, identifies
the data structure, including the number and type of columns expected to be
returned. Once the application has determined the nature of the result set,
retrieving the contentsis straightforward.

Thisresult set metadata (information about the nature and content of the
data) is manipulated using descriptors. Obtaining and managing the result set
metadata is called describing.

Since cursors generally produce result sets, descriptors and cursors are
closely linked, although some interfaces hide the use of descriptors from the
user. Typicaly, statements needing descriptors are either SELECT
statements or stored procedures that return result sets.

A sequence for using a descriptor with a cursor-based operationis as
follows:

1 Allocate the descriptor. This may be done implicitly, although some
interfaces allow explicit allocation as well.

2 Prepare the statement.

3 Describe the statement. If the statement is a stored procedure call or
batch, and the result set is not defined by aresult clause in the procedure
definition, then the describe should occur after opening the cursor.

4 Declare and open a cursor for the statement (embedded SQL) or execute
the statement.

5  Get the descriptor and modify the allocated areaif necessary. Thisis
often done implicitly.

Fetch and process the statement results.
Dedllocate the descriptor.

Close the cursor.

© 0 N O

Drop the statement. Some interfaces do this automatically.



Chapter 2 Using SQL in Applications

Implementation
notes

In embedded SQL, a SQLDA (SQL Descriptor Area) structure holds the
descriptor information.

& For more information, see "The SQL descriptor area (SQLDA)" on
page 206.

In ODBC, adescriptor handle allocated using SQL AllocHandle
provides access to the fields of adescriptor. Y ou can manipulate these
fields using SQL SetDescRec, SQL SetDescField, SQL GetDescRec,
and SQL GetDescField.

Alternatively, you can use SQL DescribeCol and SQL ColAttributesto
obtain column information.

In Open Client, you can use ct_dynamic to prepare a statement and
ct_describe to describe the result set of the statement. However, you can
also use ct_command to send a SQL statement without preparing it first
and use ct_resultsto handle the returned rows one by one. Thisisthe
more common way of operating in Open Client application
development.

In JDBC, the java.SQL .ResultSetM etaData class provides information
about result sets.

Y ou can also use descriptors for sending data to the engine (for example,
with the INSERT statement); however, thisis a different kind of
descriptor than for result sets.

& For moreinformation about input and output parameters of the
DESCRIBE statement, see the "DESCRIBE statement [ESQL]" on
page 392 of the book ASA SQL Reference Manual.

43



Controlling transactions in applications

Controlling transactions in applications

Transactions are sets of atomic SQL statements. Either all statementsin the
transaction are executed, or none. This section describes a few aspects of
transactions in applications.

& For more information about transactions, see "Using Transactions and
Isolation Levels' on page 89 of the book ASA SQL User’s Guide.

Setting autocommit or manual commit mode

Database programming interfaces can operate in either manual commit
mode or autocommit mode.

¢ Manual commit mode Operations are committed only when your
application carries out an explicit commit operation or when the
database server carries out an automatic commit, for example when
executing an ALTER TABLE statement or other data definition
statement. Manual commit mode is also sometimes called chained
mode.

To use transactions in your application, including nested transactions
and savepoints, you must operate in manual commit mode.

¢ Autocommit mode Each statement istreated as a separate transaction.
Autocommit mode is equivalent to appending a COMMIT statement to
the end of each of your commands. Autocommit mode is also sometimes
called unchained mode.

Autocommit mode can affect the performance and behavior of your
application. Do not use autocommit if your application requires transactional
integrity.

& For information on autocommit impact on performance, see "Turn off
autocommit mode" on page 149 of the book ASA SQL User’s Guide.

Controlling autocommit behavior

44

The way to control the commit behavior of your application depends on the
programming interface you are using. The implementation of autocommit
may be client-side or server-side, depending on the interface.

& For moreinformation, see " Autocommit implementation details' on
page 45.



Chapter 2 Using SQL in Applications

R

¢

B3

¢

R

¢

R

¢

» To control autocommit mode (ODBC):

By default, ODBC operates in autocommit mode. The way you turn off
autocommit depends on whether you are using ODBC directly, or using
an application development tool. If you are programming directly to the
ODBC interface, set the SQL_ATTR_AUTOCOMMIT connection
attribute,

» To control autocommit mode (JDBC):

By default, JIDBC operates in autocommit mode. To turn off
autocommit, use the setAutoCommit method of the connection object:

conn. set AutoCommit ( false );

» To control autocommit mode (Open Client):

By default, a connection made through Open Client operatesin
autocommit mode. Y ou can change this behavior by setting the
CHAINED database option to ON in your application using a statement
such as the following:

SET COPTI ON CHAI NED=" ON

» To control autocommit mode (embedded SQL):

By default, embedded SQL applications operate in manual commit
mode. To turn on autocommit, set the CHAINED database option to
OFF using a statement such as the following:

SET COPTI ON CHAI NED=" OFF

Autocommit implementation details

The previous section, "Controlling autocommit behavior" on page 44,
describes how autocommit behavior can be controlled from each of the
Adaptive Server Anywhere programming interfaces. Autocommit mode has
slightly different behavior depending on the interface you are using and how
you control the autocommit behavior.

Autocommit mode can be implemented in one of two ways:

¢

Client-side autocommit  When an application uses autocommit, the
client-library sends a COMMIT statement after each SQL statement
executed.

Adaptive Server Anywhere uses client-side autocommit for ODBC and
OLE DB applications.

45



Controlling transactions in applications

¢ Server-side autocommit When an application uses autocommit, the
database server issues a commit after each SQL statement. This behavior
is controlled, implicitly in the case of JDBC, by the CHAINED database
option.

Adaptive Server Anywhere uses server-side autocommit for embedded
SQL, JDBC, and Open Client applications.

There is a difference between client-side and server-side autocommit in the
case of compound statements such as stored procedures or triggers. From the
client side, a stored procedure is a single statement, and so autocommit sends
asingle commit statement after the whole procedure is executed. From the
database server perspective, the stored procedure may be composed of many
SQL statements, and so server-side autocommit issues a COMMIT after each
SQL statement within the procedure.

Do not mix client-side and server-side implementations
Do not combine use of the CHAINED option with autocommit in your
ODBC or OLE DB application.

Controlling the isolation level

You can set theisolation level of a current connection using the
ISOLATION_LEVEL database option.

Some interfaces, such as ODBC, allow you to set theisolation level for a
connection at connection time. Y ou can reset thislevel later using the
ISOLATION_LEVEL database option.

Cursors and transactions

ROLLBACK and
cursors

46

In general, acursor closes when a COMMIT is performed. There are two
exceptions to this behavior:

¢ TheCLOSE _ON_ENDTRANS database option is set to OFF.

¢ A cursor isopened WITH HOLD, which is the default with Open Client
and JDBC.

If either of these two casesis true, the cursor remains open on a COMMIT.

If atransaction rolls back, then cursors close except for those cursors opened
WITH HOLD. However, don't rely on the contents of any cursor after a
rollback.



Chapter 2 Using SQL in Applications

Savepoints

Cursors and
isolation levels

The draft SO SQL 3 standard states that on arollback, all cursors (even those
cursors opened WITH HOLD) should close. Y ou can obtain this behavior by
setting the ANSI_CLOSE_CURSORS AT_ROLLBACK option to ON.

If atransaction rolls back to a savepoint, and if the

ANSI_CLOSE _CURSORS AT_ROLLBACK optionis ON, then all cursors
(even those cursors opened WITH HOLD) opened after the SAVEPOINT
close.

Y ou can change the isolation level of aconnection during a transaction using
the SET OPTION statement to alter the ISOLATION_LEVEL option.
However, this change affects only closed cursors.

47



Controlling transactions in applications

48



CHAPTER 3
Introduction to Java in the Database

About this chapter This chapter provides motivation and concepts for using Javain the database.

Adaptive Server Anywhere is a runtime environment for Java. Java provides
anatural extension to SQL, turning Adaptive Server Anywhereinto a
platform for the next generation of enterprise applications.

Contents Topic Page
Introduction 50
Javain the database Q & A 53
A Java seminar 59
The runtime environment for Javain the database 69
Tutorial: A Javain the database exercise 77

49



Introduction

Introduction

Adaptive Server Anywhere is aruntime environment for Java. This means
that Java classes can be executed in the database server. Building aruntime
environment for Java classes into the database server provides powerful new
ways of managing and storing data and logic.

Javain the database offers the following:

¢ You can reuse Java components in the different layers of your
application—client, middle-tier, or server—and use them wherever
makes the most sense to you. Adaptive Server Anywhere becomes a
platform for distributed computing.

¢ Java is a more powerful language than stored procedures for building
logic into the database.

¢ Java classes become rich user-defined data types.
¢ Methods of Java classes provide new functions accessible from SQL.

¢ Java can be used in the database without jeopardizing the integrity,
security, and robustness of the database.

Separately-licensa Java in the database is a separately licensable component and must be

ble component ordered before you can install it. To order this component, see the card in
your SQL Anywhere Studio package or see
http://www.sybase.com/detail?id=1015780.

The SQLJ Java in the database is based on the SQLJ Part 1 and SQLJ Part 2 proposed

standard standards. SQLJ Part 1 provides specifications for calling Java static methods
as SQL stored procedures and user-defined functions. SQLJ Part 2 provides
specifications for using Java classes as SQL domains.

Learning about Java in the database

Java is a relatively new programming language with a growing, but still
limited, knowledge base. Intended for a variety of Java developers, this
documentation will be useful for everyone from the experienced Java
developer to the many readers who are unfamiliar with the language, its
possibilities, syntax, and use.

For those readers familiar with Java, there is much to learn about using Java
in a database. Adaptive Server Anywhere not only extends the capabilities of
the database with Java, but also extends the capabilities of Java with the
database.

50



Chapter 3 Introduction to Java in the Database

Java
documentation

The following table outlines the documentation regarding the use of Javain

the database.

Title

Purpose

"Introduction to Javain the
Database" on page 49 (this
chapter)

"Using Javain the Database"
on page 85

"Data Access Using JDBC"
on page 129

"Debugging Logic in the
Database" on page 571 of the
book ASA SQL User’s Guide

Adaptive Server Anywhere
Reference.

Reference guide to Sun’s Java
API

Thinking in Java by Bruce
Eckel.

Using the Java documentation

Java concepts and how to apply themin
Adaptive Server Anywhere.

Practical stepsto using Javain the database.

Accessing data from Java classes, including
distributed computing.

Testing and debugging Java code running in the
database.

The Reference Manual includes material on the
SQL extensions that support Javain the
database.

Online guide to Java API classes, fields and
methods. Available as Windows Help only.

Online book that teaches how to program in
Java. Supplied in Adobe PDF format in the

Samples|\ASAlJava subdirectory of your

SQL Anywhere directory.

The following table is a guide to which parts of the Java documentation
apply to you, depending on your interests and background. It is a guide only
and should not limit your efforts to learn more about Javain the database.

51



Introduction

52

If you ...

Consider reading ...

Are new to object-oriented programming.

Want an explanation of terms such as
instantiated, field, and class method.

Are a Java developer who wants to just
get started.

Want to know the key features of Javain
the database.

Want to find out how to access data from
Java.

Want to prepare a database for Java.

Want acomplete list of supported Java
APIs.

Aretrying to use aJava API class and
need Java reference information.

Want to see an example of distributed
computing.

"A Java seminar" on page 59
Thinking in Java by Bruce Eckel.
"A Java seminar' on page 59

"The runtime environment for Javain
the database" on page 69

"Tutoria: A Javain the database
exercise" on page 77

"Javain the database Q & A" on
page 53

"Data Access Using JDBC" on
page 129

"Java-enabling a database" on
page 89

"Java class data types' on page 77 of
the book ASA SQL Reference Manual

The online guide to Java API classes
(Windows Help only)

"Creating distributed applications’ on
page 158



Chapter 3 Introduction to Java in the Database

Java in the database Q & A

This section describes the key features of Javain the database.

What are the key features of Java in the database?

Detailed explanations of al the following points appear in later sections.

¢

You can run Java in the database server Aninternal Java Virtual
Machine (VM) runs Java code in the database server.

You can call Java from SQL Y ou can call Java functions (methods)
from SQL statements. Java methods provide a more powerful language
than SQL stored procedures for adding logic to the database.

You can access data from Java Aninternal JDBC driver lets you
access data from Java.

You can debug Java in the database Y ou can use the Sybase
debugger to test and debug your Java classes in the database.

You can use Java classes as data types Every Javaclassinstalled
in a database becomes available as a data type that can be used as the
data type of acolumnin atable or avariable.

You can save Java objects in tables An instance of aJavaclass (a
Java object) can be saved asavaluein atable. You can insert Java
objects into atable, execute SELECT statements against the fields and
methods of objects stored in atable, and retrieve Java objects from a
table.

With this ability, Adaptive Server Anywhere becomes an
object-relational database, supporting objects while not degrading
existing relational functionality.

SQL is preserved The use of Java does not alter the behavior of
existing SQL statements or other aspects of non-Java relational database
behavior.

How do | store Java instructions in the database?

Javais an object-oriented language, so its instructions (source code) comein
the form of classes. To execute Javain a database, you write the Java
instructions outside the database and compile them outside the database into
compiled classes (byte code) which are binary files holding Java
instructions.

53



Java in the database Q & A

You then install these compiled classes into a database. Once installed, you
can execute these classes in the database server.

Adaptive Server Anywhere is aruntime environment for Java classes, not a
Java development environment. Y ou need a Java development environment,
such as Sybase PowerJ or the Sun Microsystems Java Development Kit, to
write and compile Java.

& For moreinformation, see "Installing Java classes into a database" on
page 94.

How does Java get executed in a database?

Differences from a
standalone VM

Why Java?

54

Adaptive Server Anywhere includes a Java Virtual M achine (VM) which
runs in the database environment. The Sybase Java VM interprets compiled
Javainstructions and runs them in the database server.

In addition to the VM, the SQL request processor in the database server has
been extended so it can call into the VM to execute Javainstructions. It can
also process requests from the VM to enable data access from Java.

There is adifference between executing Java code using a standard VM such
asthe Sun JavaVM java.exe and executing Java code in the database. The
Sun VM runs from a command line, while the Adaptive Server Anywhere
JavaVM isavailable at all timesto perform a Java operation whenever it is
required as part of the execution of a SQL statement.

Y ou cannot access the Sybase Java interpreter externally. It isonly used
when the execution of a SQL statement requires a Java operation to take
place. The database server starts the VM automatically when needed: you do
not have to take any explicit action to start or stop the VM.

Java provides a number of features that make it ideal for use in the database:
¢ Thorough error checking at compile time.

¢ Built-in error handing with a well-defined error handling methodology.
¢ Built-in garbage collection (memory recovery).

¢ Elimination of many bug-prone programming techniques.

¢ Strong security features.

.

Javacode isinterpreted, so no operations get executed without being
acceptable to the VM.



Chapter 3 Introduction to Java in the Database

On what platforms is Java in the database supported?

Javain the database is not supported on Windows CE. It is supported on
other Windows operating systems, UNIX, and NetWare.

How do | use Java and SQL together?

A guiding principle for the design of Javain the database is that it provides a
natural, open extension to existing SQL functionality.

¢ Javaoperations are invoked from SQL  Sybase has extended the
range of SQL expressions to include properties and methods of Java
objects, so you can include Java operationsin a SQL statement.

¢ Javaclasses become domains You store Java classes using the
same SQL statements as those used for traditional SQL data types.

Y ou can use many of the classes that are part of the Java APl asincluded in
the Sun Microsystems Java Development Kit. You can also use classes
created and compiled by Java developers.

What is the Java API?

The Java Application Programmer’s Interface (API) is a set of classes created
by Sun Microsystems. It provides a range of base functionality that can be
used and extended by Java developers. It is at the core of what you can do
with Java.

The Java API offers atremendous amount of functionality in itsownright. A
large portion of the Java API is available to any database able to use Java
code. This exposes the mgjority of non-visual classes from the Java API that
should be familiar to developers currently using the Sun Microsystems Java
Development Kit (JDK).

& For more information about supported Java APIs, see " Supported Java
packages' on page 77 of the book ASA SQL Reference Manual.

How do | access Java from SQL?
In addition to using the Java API in classes, you can use it in stored

procedures and SQL statements. Y ou can treat the Java APl classes as
extensions to the available built-in functions provided by SQL.

55



Java in the database Q & A

For example, the SQL function PI(*) returns the value for pi. The Java API
classjava.lang.M ath has a parallel field named PI returning the same value.
But java.lang.Math aso has afield named E that returns the base of the
natural logarithms, as well as a method that computes the remainder
operation on two arguments as prescribed by the |EEE 754 standard.

Other members of the Java API offer even more specialized functionality.
For example, java.util.Stack generates alast-in, first-out queue that can
store ordered lists; java.util.HashTable maps valuesto keys,
java.util.StringTokenizer breaks astring of charactersinto individual word
units.

& For moreinformation, see "Inserting, updating, and deleting Java
objects' on page 101.

Which Java classes are supported?

The database does not support all Java API classes. Some classes, for
exampl e the java.awt package containing user interface components for
applications, are inappropriate inside a database server. Other classes,
including parts of java.io, deal with writing information to disk, and this also
is unsupported in the database server environment.

& For more information about supported and unsupported classes, see
"Supported Java packages' on page 77 of the book ASA SQL Reference
Manual and "Unsupported Java packages and classes' on page 78 of the
book ASA SQL Reference Manual.

How can | use my own Java classes in databases?

56

You caninstall your own Java classes into a database. For example, a
developer could design, write in Java, and compile with a Java compiler a
user-created Employee class or Package class.

User-created Java classes can contain both information about the subject and
some computational logic. Onceinstalled in a database, Adaptive Server
Anywhere lets you use these classes in all parts and operations of the
database and execute their functionality (in the form of class or instance
methods) as easily as calling a stored procedure.



Chapter 3 Introduction to Java in the Database

Java classes and stored procedures are different

Java classes are different from stored procedures. Whereas stored
procedures are written in SQL, Java classes provide a more powerful
language, and can be called from client applications as easily and in the
same way as stored procedures.

When a Java class getsinstalled in a database, it becomes available as a new
domain. You can use a Java class in any situation where you would use
built-in SQL data types: as a column typein atable or as avariable type.

For example, if aclass called Address has been installed into a database, a
columnin atable called Addr can be of type Address, which means only
objects based on the Address class can be saved as row values for that
column.

& For moreinformation, see "Installing Java classes into a database" on
page 94.

Can | access data using Java?

The JDBC interface is an industry standard, designed specifically to access
database systems. The JDBC classes are designed to connect to a database,
request data using SQL statements, and return result sets that can be
processed in the client application.

Normally, client applications use JDBC classes, and the database system
vendor supplies a JDBC driver that allows the JDBC classes to establish a
connection.

Y ou can connect from a client application to Adaptive Server Anywhere via
JDBC, using jConnect or aJDBC/ODBC bridge. Adaptive Server Anywhere
also provides an internal JDBC driver which permits Java classesinstalled in
adatabase to use JDBC classes that execute SQL statements.

& For moreinformation, see "Data Access Using JDBC" on page 129.

Can | move classes from client to server?

Y ou can create Java classes that can be moved between levels of an
enterprise application. The same Java class can be integrated into either the
client application, a middle tier, or the database—wherever is most
appropriate.

57



Java in the database Q & A

Y ou can move a class contai ning business logic, data, or a combination of
both to any level of the enterprise system, including the server, allowing you
complete flexibility to make the most appropriate use of resources. It also
enables enterprise customers to develop their applications using asingle
programming language in a multi-tier architecture with unparalleled
flexibility.

Can | create distributed applications?

Y ou can create an application that has some pieces operating in the database
and some on the client machine. Y ou can pass Java objects from the server to
the client just as you pass SQL data such as character strings and numeric
values.

& For moreinformation, see " Creating distributed applications’ on
page 158.

What can | not do with Java in the database?

58

Adaptive Server Anywhere is aruntime environment for Java classes, not a
Java development environment.

Y ou cannot carry out the following tasks in the database:

¢  Edit class sourcefiles (*java files).

¢ Compile Java class source files (*java files).

¢  Execute unsupported Java APIs, such as applet and visual classes.
.

Execute Java methods that require the execution of native methods. All
user classesinstalled into the database must be 100% Java.

The Java classes used in Adaptive Server Anywhere must be written and
compiled using a Java application development tool, and then installed into a
database for use, testing, and debugging.



Chapter 3 Introduction to Java in the Database

A Java seminar

This section introduces key Java concepts. After reading this section you
should be able to examine Java code, such as a simple class definition or the
invocation of a method, and understand what is taking place.

Java samples directory

Some of the classes used as examples in this manual are located in the
Java samples directory, which is the Samples|ASAlJava subdirectory of
your SQL Anywhere directory.

Two files represent each Java class example: the Java source and the
compiled class. You can immediately install to a database (without
modification) the compiled version of the Java class examples.

Understanding Java classes

Example

A Java class combines data and functionality—the ability to hold
information and perform computational operations. One way of
understanding the concept of a class is to view it as an entity, an abstract
representation of a thing.

You could design an Invoice class, for example, to mimic paper invoices,
such as those used every day in business operations. Just as a paper invoice
contains certain information (line-item details, who is being invoiced, the
date, payment amount, payment due-date), so also does an instance of an
Invoice class. Classes hold information in fields.

In addition to describing data, a class can make calculations and perform
logical operations. For example, the Invoice class could calculate the tax on a
list of line items for every Invoice object, and add it to the sub total to

produce a final total, without any user intervention. Such a class could also
ensure all essential pieces of information are present in the Invoice and even
indicate when payment is over due or partially paid. Calculations and other
logical operations are carried out by thethods of the class.

The following Java code declares a class called Invoice. This class
declaration would be stored in a file nanieebice.java, and then compiled
into a Java class using a Java compiler.

59



A Java seminar

Subclasses in Java

Compiling Java classes

Compiling the source for a Java class creates a new file with the same
name as the source file, but with a different extension. Compiling
Invoice.java creates afile called Invoice.class which could be used in a
Java application and executed by a Java VM.

The Sun JDK tool for compiling class declarationsis javac.exe.

public class Invoice {
/! So far, this class does nothing and knows not hi ng

}

The class keyword is used, followed by the name of the class. Thereisan
opening and closing brace: everything declared between the braces, such as
fields and methods, becomes part of the class.

In fact, no Java code exists outside class declarations. Even the Java

procedure that a Java interpreter runs automatically to create and manage

other objects—thenain method that is often the start of your application—is
itself located within a class declaration.

You can define classes afhclasses of other classes. A class that is a
subclass of another class can use the fields and method of its parent: this is
calledinheritance. You can define additional methods and fields that apply
only to the subclass, and redefine the meaning of inherited fields and
methods.

Java is a single-hierarchy language, meaning that all classes you create or use
eventually inherit from one class. This means the low-level classes (classes
further up in the hierarchy) must be present before higher-level classes can

be used. The base set of classes required to run Java applications is called the
runtime Java classes, or theJava API.

Understanding Java objects

60

A classis a template that defines what an object is capable of doing, just as
an invoice form is a template that defines what information the invoice
should contain.



Chapter 3 Introduction to Java in the Database

Methods and fields

Class constructors

Classes contain no specific information about objects. Rather, your
application creates, or instantiates, objects based on the class (template), and
the objects hold the data or perform calculations. The instantiated object is an
instance of the class. For example, an Invoice object is an instance of the
Invoice class. The class defines what the object is capable of but the object is
the incarnation of the class that gives the class meaning and usefulness.

In the invoice example, the invoice form defines what all invoices based on
that form can accomplish. There is one form and zero or many invoices
based on the form. The form contains the definition but the invoice
encapsulates the useful ness.

The Invoice object is created, stores information, is stored, retrieved, edited,
updated, and so on.

Just as one invoice template can create many invoices, with each invoice
separate and distinct from the other in its details, you can generate many
objects from one class.

A method is a part of a class that does something—a function that performs
a calculation or interacts with other objects—on behalf of the class. Methods
can accept arguments, and return a value to the calling function. If no return
value is necessary, a method can rewaid. Classes can have any number

of methods.

A field is a part of a class that holds information. When you create an object
of type JavaClass, the fields inJavaClass hold the state unique to that object.

You create an object by invoking a class constructaomstructor is a
method that has the following properties:

+ A constructor method has the same name as the class, and has no
declared data type. For example, a simple constructor for the Product
class would be declared as follows:

Product () {
...constructor code here. ..

}

¢ If you include no constructor method in your class definition, a default
method is used that is provided by the Java base object.

¢ You can supply more than one constructor for each class, with different
numbers and types of arguments. When a constructor is invoked, the one
with the proper number and type of arguments is used.

61



A Java seminar

Understanding fields

Examples

There are two categories of Javafields:

¢ Instance fields Each object hasits own set of instance fields, created
when the object was created. They hold information specific to that
instance. For example, alineltem1Description field in the Invoice class
holds the description for aline item on a particular invoice. You can
access instance fields only through an object reference.

¢ Classfields A classfield holdsinformation that isindependent of any
particular instance. A classfield is created when the classis first |oaded,
and no further instances are created no matter how many objects are
created. Class fields can be accessed either through the class name or the
object reference.

To declare afield in aclass, state its type, then its name, followed by a
semicolon. To declare a class field, use the static Java keyword in the
declaration. Y ou declare fields in the body of the class and not within a
method; declaring a variable within a method makes it a part of the method,
not of the class.

The following declaration of the class Invoice has four fields, corresponding
to information that might be contained on two line items on an invoice.

public class Invoice {
/1 Fields of an invoice contain the invoice data

public String lineltenlDescription;
public int lineltenlCost;

public String lineltenmDescription;
public int lineltenkCost;

Understanding methods

62

There are two categories of Java methods:

¢ Instance methods A totalSum method in the Invoice class could
calculate and add the tax, and return the sum of all costs, but would only
be useful if it iscalled in conjunction with an I nvoice object, one that
had values for its line item costs. The calculation can only be performed
for an object, since the object (not the class) contains the line items of
the invoice.



Chapter 3 Introduction to Java in the Database

Example

¢ Class methods Class methods (also called static methods) can be
invoked without first creating an object. Only the name of the class and
method is necessary to invoke a class method.

Similar to instance methods, class methods accept arguments and return
values. Typicaly, class methods perform some sort of utility or
information function related to the overall functionality of the class.

Class methods cannot access instance fields.

To declare amethod, you state its return type, its name and any parameters it
takes. Like a class declaration, the method uses an opening and closing brace
to identify the body of the method where the code goes.

public class Invoice {

/1 Fields
public String lineltenlDescription;
public double IineltemlCost;

public String lineltenRDescription;
public double IineltenkCost;

/1 A et hod
public double total Sun() {
doubl e runni ngsum

runni ngsum = |ineltenlCost + |ineltenkCost;
runni ngsum = runni ngsum * 1. 15;

return runni ngsum

}

Within the body of the total Sum method, a variable named runningsum is
declared. First, this holds the sub total of the first and second line item cost.
This sub total isthen multiplied by 15 per cent (the rate of taxation) to
determine the total sum.

Thelocal variable (asit is known within the method body) is then returned to
the calling function. When you invoke the total Sum method, it returns the
sum of the two line item cost fields plus the cost of tax on those two items.

The par sel nt method of the java.lang.Integer class, which is supplied with
Adaptive Server Anywhere, is one example of a class method. When given a
string argument, the par sel nt method returns the integer version of the
string.

For example given the string value "1", the par sel nt method returns 1, the
integer value, without requiring an instance of the java.lang.Integer classto
first be created, asillustrated by this Java code fragment:

63



A Java seminar

Example

64

String num= "1";
int i = java.lang.|nteger.parselnt( num);

The following version of the Invoice class now includes both an instance
method and a class method. The class method named r ateOf T axation
returns the rate of taxation used by the class to calculate the total sum of the
invoice.

The advantage of making the rateOf Taxation method a class method (as
opposed to an instance method or field) is that other classes and procedures
can use the value returned by this method without having to create an
instance of the classfirst. Only the name of the class and method is required
to return the rate of taxation used by this class.

Making rateof Taxation a method, as opposed to afield, allowsthe
application developer to change how the rate is cal culated without adversely
affecting any objects, applications, or procedures that use its return value.
Future versions of Invoice could make the return value of the

rateOf Taxation class method based on a more complicated calculation
without affecting other methods that use its return value.

public class Invoice {
/1 Fields
public String lineltenlDescription;
public double lineltenlCost;
public String lineltenRDescription;
public double IineltenkCost;
/1 An instance method
public double total Sun() {
doubl e runni ngsum
doubl e taxfactor = 1 + Invoice.rateC Taxation();

runni ngsum = |ineltenlCost + |ineltenkCost;
runni ngsum = runni ngsum * taxfactor;

return runni ngsum

/1 A class met hod

public static double rateO Taxation() {
doubl e rate;
rate = .15;

return rate;



Chapter 3 Introduction to Java in the Database

Object oriented and procedural languages

Java is based on
classes

A Java glossary

Packages

If you are more familiar with procedural languages such as C, or the SQL
stored procedure language, than object-oriented languages, this section
explains some of the key similarities and differences between procedural and
object-oriented languages.

The main structural unit of code in Javais aclass.

A Java class could be looked at as just a collection of procedures and
variables that have been grouped together because they all relateto a
specific, identifiable category.

However the manner in which a class gets used sets object-oriented
languages apart from procedural languages. When an application written in a
procedural language is executed, it is typically loaded into memory once and
takes the user down a pre-defined course of execution.

In object-oriented languages such as Java, a classis used like atemplate: a
definition of potential program execution. Multiple copies of the class can be
created and loaded dynamically, as needed, with each instance of the class
capable of containing its own data, values, and course of execution. Each
loaded class could be acted on or executed independently of any other class
loaded into memory.

A classthat isloaded into memory for execution is said to have been
instantiated. An instantiated class is called an object: it is an application
derived from the class that is prepared to hold unique values or have its
methods executed in a manner independent of other class instances.

The following items outline some of the details regarding Java classes. It is
by no means an exhaustive source of knowledge about the Java language, but
may aid in the use of Java classesin Adaptive Server Anywhere.

& For more information about the Java language, see the online book
Thinking in Java, by Bruce Eckel, included with Adaptive Server Anywhere
in the file Samples\ASA\JavalTjava.pdf.

A packageis agrouping of classes that share acommon purpose or
category. One member of a package has special privileges to access data and
methods in other members of the package, hence the protected access
modifier.

A package isthe Java equivalent of alibrary. It isa collection of classes
which can be made available using the import statement. The following Java
statement imports the utility library from the Java API:

65



A Java seminar

Public versus
private

Constructors

Garbage collection

Interfaces

inmport java.util.*

Packages are typically held in JAR files, which have the extension .jar or
.zZip.

An access modifier determines the visibility (essentially the public, private,
or protected keyword used in front of any declaration) of afield, method or
class to other Java objects.

¢ A public class, method, or field is visible everywhere.

¢ A privateclass, method, or field is visible only in methods defined
within that class.

¢ A protected method or field is visible to methods defined within that
class, within sublclasses of the class, or within other classes in the same
package.

¢ Thedefault visibility, known as package, means that the method or field
isvisible within the class and to other classes in the same package.

A constructor is a special method of a Java classthat is called when an
instance of the classis created.

Classes can define their own constructors, including multiple, overriding
constructors. Which arguments were used in the attempt to create the object
determine which constructor is used. When the type, number, and order of
arguments used to create an instance of the class match one of the class's
constructors, that constructor is used when creating the object.

Garbage collection automatically removes any object with no references to
it, with the exception of objects stored as valuesin atable.

There is no such thing as a destructor method in Java (asthereisin C++).
Java classes can define their own finalize method for clean up operations
when an object is discarded during garbage collection.

Java classes can inherit only from one class. Java uses interfaces instead of
multiple-inheritance. A class can implement multiple interfaces. Each
interface defines a set of methods and method profiles that must be
implemented by the class for the class to be compiled.

An interface defines what methods and static fields the class must declare.
The implementation of the methods and fields declared in an interface is
located within the class that uses the interface: the interface defines what the
class must declare; it is up to the class to determine how it isimplemented.

Java error handling

66

Javaerror handling code is separate from the code for normal processing.



Chapter 3 Introduction to Java in the Database

Error types in Java

Errors generate an exception object representing the error. Thisis called
throwing an exception. A thrown exception terminates a Java program
unlessit is caught and handled properly at some level of the application.

Both Java API classes and custom-created classes can throw exceptions. In
fact, users can create their own exception classes which throw their own
custom-created classes.

If there is no exception handler in the body of the method where the
exception occurred, then the search for an exception handler continues up the
call stack. If thetop of the call stack is reached and no exception handler has
been found, the default exception handler of the Javainterpreter running the
application is called and the program terminates.

In Adaptive Server Anywhere, if a SQL statement calls a Java method, and
an unhandled exception is thrown, a SQL error is generated.

All errorsin Java come from two types of error classes. Exception and
Error. Usualy, Exception-based errors are handled by error handling code
in your method body. Error type errors are specifically for internal errors and
resource exhaustion errors inside the Java run-time system.

Exception class errors are thrown and caught. Exception handling code is
characterized by try, catch, and finally code blocks.

A try block executes code that may generate an error. A catch block is code
that executes if the execution of atry block generates (or throws) an error.

A finally block defines a block of code that executes regardless of whether
an error was generated and caught and is typically used for cleanup
operations. It is used for code that, under no circumstances, can be omitted.

There are two types of exception class errors: those that are runtime
exceptions and those that are not runtime exceptions.

Errors generated by the runtime system are known as implicit exceptions, in
that they do not have to be explicitly handled as part of every class or method
declaration.

For example, an array out of bounds exception can occur whenever an array
isused, but the error does not have to be part of the declaration of the class
or method that uses the array.

All other exceptions are explicit. If the method being invoked can throw an
error, it must be explicitly caught by the class using the exception-throwing
method, or this class must explicitly throw the error itself by identifying the
exception it may generate in its class declaration. Essentially, explicit
exceptions must be dealt with explicitly. A method must declare al the
explicit errorsit throws, or catch all the explicit errors that may potentially
be thrown.

67



A Java seminar

68

Non-runtime exceptions are checked at compile time. Runtime exceptions
are usually caused by errors in programming. Java catches many such errors
during compilation, before running the code.

Every Java method is given an alternative path of execution so that all Java
methods complete, even if they are unable to complete normally. If the type
of error thrown is not caught, it's passed to the next code block or method in
the stack.



Chapter 3 Introduction to Java in the Database

The runtime environment for Java in the

database

This section describes the Sybase runtime environment for Java, and how it
differs from a standard Java runtime environment.

Supported versions of Java and JDBC

The Sybase Java VM provides you with the choice of using the JDK 1.1,
JDK 1.2, or IDK 1.3 programming interfaces. The specific versions provided
are JDK versions1.1.8 and 1.3.

Between release 1.0 of the JDK and release 1.1, several new APIs were
introduced. As well, a number were deprecated—the use of certain APIs
became no longer recommended and support for them may be dropped in
future releases.

A Java class file using deprecated APIs generates a warning when compiled,
but does still execute on a Java virtual machine built to release 1.1 standards,
such as the Sybase VM.

The internal JDBC driver supports JDBC version 2.

& For more information on the JDK APIs that are supported, please see
"Supported Java packages" on page 77 of the B&KQL Reference
Manual.

& For information on how to create a database that supports Java, see
"Java-enabling a database" on page 89.

The runtime Java classes

Examples

The runtime Java classes are the low-level classes that are made available to
a database when it is created or Java-enabled. These classes include a subse
of the Java API. These classes are part of the Sun Java Development Kit.

The runtime classes provide basic functionality on which to build
applications. The runtime classes are always available to classes in the
database.

You can incorporate the runtime Java classes in your own user-created
classes: either inheriting their functionality or using it within a calculation or
operation in a method.

Some Java API classes included in the runtime Java classes include:

69



The runtime environment for Java in the database

User-defined classes

¢

Primitive Java data types All primitive (native) datatypesin Java
have a corresponding class. In addition to being able to create objects of
these types, the classes have additional, often useful, functionality.

The Javaint data type has a corresponding classin java.lang.I nteger.

The utility package The package java.util.* contains a number of
very helpful classes whose functionality has no paralel in the SQL
functions available in Adaptive Server Anywhere.

Some of the classes include:
¢ Hashtable which mapskeysto values.

¢ StringTokenizer which breaks a String down into individual
words.

¢ Vector which holds an array of objects whose size can change
dynamically

¢ Stack which holdsalast-in, first-out stack of objects.

JDBC for SQL operations The package java.SQL .* containsthe

classes needed by Java objects to extract data from the database using
SQL statements.

Unlike user-defined classes, the runtime classes are not stored in the
database. Instead, they are stored in filesin the java subdirectory of the
Adaptive Server Anywhere installation directory.

User-defined classes are installed into a database using the INSTALL
statement. Once installed, they become available to other classes in the
database. If they are public classes, they are available from SQL as domains.

& For moreinformation about installing classes, see "Installing Java
classesinto a database” on page 94.

Identifying Java methods and fields

The dot in SQL

70

In SQL statements, the dot identifies columns of tables, asin the following
query:

SELECT enpl oyee. enp_i d
FROM enpl oyee

The dot also indicates object ownership in qualified object names:

SELECT enp_id
FROM DBA. enpl oyee



Chapter 3 Introduction to Java in the Database

The dot in Java In Java, the dot is an operator that invokes the methods or access for the
fields of a Java class or object. It is also part of an identifier, used to identify
class names, asin the fully qualified class name java.util.Hashtable.

In the following Java code fragment, the dot is part of an identifier on the
first line of code. On the second line of code, it is an operator.

java.util.Randomrnd = new java. util.Random();
int i =rnd nextint();

Invoking Java In SQL, the dot operator can be replaced with the double right angle bracket
methods from SQL (>>). The dot operator is more Java-like, but can lead to ambiguity with
respect to existing SQL names. The use of >> removes this ambiguity.

>>in SQL is not the same as >>in Java

Y ou can only use the double right angle bracket operator in SQL
statements where a Java dot operator is otherwise expected. Within a Java
class, the double right angle bracket is not a replacement for the dot
operator and has a completely different meaning in itsrole as the right bit
shift operator.

For example, the following batch of SQL statementsis valid:

CREATE VARI ABLE rnd java. util.Random
SET rnd = NEWj ava. util. Random();
SELECT rnd>>nextInt();

Theresult of the SELECT statement is arandomly generated integer.

Using the variable created in the previous SQL code example, the following
SQL statement illustrates the correct use of a class method:

SELECT j ava. | ang. Mat h>>abs( rnd>>nextint() );

Java is case sensitive

Java syntax works as you would expect it to, and SQL syntax is unaltered by
the presence of Java classes. Thisistrue even if the same SQL statement
contains both Java and SQL syntax. It's a simple statement, but with
far-reaching implications.

Javais case sensitive. The Java class FindOut is a completely different class
from the class Findout. SQL is case insensitive with respect to keywords and
identifiers.

71



The runtime environment for Java in the database

Data types

Java case sensitivity is preserved even when embedded in a SQL statement
that is case insensitive. The Java parts of the statement must be case
sensitive, even though the parts previous to and following the Java syntax
can be in either upper or lower case.

For example, the following SQL statements successfully execute because the
case of Java objects, classes, and operators is respected even though there is
variation in the case of the remaining SQL parts of the statement.

SeLeC java.l ang. Mat h. randon();
When you use a Java class as a data type for a column, it is a user-defined

SQL datatype. However, it is still case sensitive. This convention prevents
ambiguities with Java classes that differ only in case.

Strings in Java and SQL

A set of double quotesidentifies string literals in Java, as in the following
Java code fragment:

String str = "This is a string";

In SQL, however, single quotes mark strings, and double quotes indicate an
identifier, asillustrated by the following SQL statement:

| NSERT | NTO TABLE DBA. t 1
VALUES( 'Hell o' )

Y ou should always use the double quote in Java source code, and single
guotesin SQL statements.

For example, the following SQL statements are valid.

CREATE VARI ABLE str char(20);
SET str = NEWjava.lang. String( 'Brand new object’ )

The following Java code fragment is also valid, if used within a Javaclass.

String str = new java.lang. String(
"Brand new object" );

Printing to the command line

72

Printing to the standard output is a quick way of checking variable values
and execution results at various points of code execution. When the method
in the second line of the following Java code fragment is encountered, the
string argument it accepts prints out to standard output.

String str = "Hello world";
Systemout.println( str );



Chapter 3 Introduction to Java in the Database

In Adaptive Server Anywhere, standard output is the server window, so the
string appears there. Executing the above Java code within the database is the
equivalent of the following SQL statement.

MESSACE ' Hell o worl d’

Using the main method

When aclass contains a main method matching the following declaration,
most Java run time environments, such as the Sun Javainterpreter, execute it
automatically. Normally, this static method executes only if it isthe class
being invoked by the Javainterpreter

public static void main( String args[ ] ) { }

Useful for testing the functionality of Java objects, you are always
guaranteed this method will be called first, when the Sun Javaruntime
system starts.

In Adaptive Server Anywhere, the Java runtime system is always available.
The functionality of objects and methods can be tested in an ad hoc, dynamic
manner using SQL statements. In many ways thisis far more flexible for
testing Java class functionality.

Scope and persistence

SQL variables are persistent only for the duration of the connection. Thisis
unchanged from previous versions of Adaptive Server Anywhere, and is
unaffected by whether the variable is a Java class or a native SQL data type.

The persistence of Java classes is analogous to tables in a database: tables
exist in the database until you drop them, regardless of whether they hold
data or even whether they are ever used. Java classes installed to a database
are similar: they are available for use until you explicitly remove them with a
REMOVE statement.

&> For more information on removing classes, see "REMOVE statement"
on page 507 of the book ASA SQL Reference Manual.

A class method in an installed Java class can be called at any time from a
SQL statement. Y ou can execute the following statement anywhere you can
execute SQL statements.

SELECT j ava. | ang. Mat h. abs(-342)

A Javaobject isonly available in two forms: as the value of avariable, or as
avauein atable.

73



The runtime environment for Java in the database

Java escape characters in SQL statements

In Java code, you can use escape charactersto insert certain special
charactersinto strings. Consider the following code, which inserts a new line
and tab in front of a sentence containing an apostrophe.

String str = "\n\t\This is an object\'s string literal";

Adaptive Server Anywhere permits the use of Java escape characters only
when being used by Java classes. From within SQL, however, you must
follow the rules that apply to stringsin SQL.

For example, to pass a string value to afield using a SQL statement, you
could use the following statement, but the Java escape characters could not.

SET obj.str = '\nThis is the object’’s string field;

& For more information on SQL string handling rules, see " Strings' on
page 9 of the book ASA SQL Reference Manual.

Keyword conflicts

SQL keywords can conflict with the names of Java classes, including API
classes. This occurs when the name of a class, such as the Date class, which
isamember of the java.util.* package, is referenced. SQL reserves the word
Date for use as a keyword, even though it & so the name of a Java class.

When such ambiguities appear, you can use double quotes to identify that
you are not using the word in question as the SQL reserved word. For
example, the following SQL statement causes an error because Date isa
keyword and SQL reservesits use.

-- This statenent is incorrect
CREATE VARI ABLE dt java.util.Date

However the following two statements work correctly because the word Date
is within quotation marks.

CREATE VARI ABLE dt java.util."Date";
SET dt = NEWjava. util."Date" (1997, 11, 22, 16, 11, 01)

The variable dt now contains the date: November 22, 1997, 4:11 p.m.

Use of import statements

It iscommon in a Java class declaration to include an import statement to
access classes in another package. Y ou can reference imported classes using
unqualified class hames.

74



Chapter 3 Introduction to Java in the Database

Classes further up
in the hierarchy
must also be
installed.

For example, you can reference the Stack class of the java.util packagein
two ways:

¢ explicitly using the name java.util.Stack, or
¢ using the name Stack, and including the following import statement:

inport java.util.*;

A class referenced by another class, either explicitly with afully qualified
name or implicitly using an import statement, must also beinstalled in the
database.

The import statement works as intended within compiled classes. However,
within the Adaptive Server Anywhere runtime environment, no equivalent to
the import statement exists. All class names used in SQL statements or stored
procedures must be fully qualified. For example, to create a variable of type
String, you would reference the class using the fully qualified name:
java.lang.String.

Using the CLASSPATH variable

CLASSPATH
ignored at runtime

CLASSPATH used
to install classes

Sun’s Java runtime environment and the Sun JDK Java compiler use the
CLASSPATH environment variable to locate classes referenced within Java
code. A CLASSPATH variable provides the link between Java code and the
actud file path or URL location of the classes being referenced. For
example, i nport java.io.* alowsall the classesin thejava.io package to
be referenced without a fully qualified name. Only the class name isrequired
in the following Java code to use classes from the java.io package. The
CLASSPATH environment variable on the system where the Java class
declaration is to be compiled must include the location of the Java directory,
the root of the java.io package.

The CLASSPATH environment variable does not affect the Adaptive Server
Anywhere runtime environment for Java during the execution of Java
operations because the classes are stored in the database, instead of in
external files or archives.

The CLASSPATH variable can, however, be used to locate a file during the
installation of classes. For example, the following statement installs a
user-created Java class to a database, but only specifies the name of thefile,
not its full path and name. (Note that this statement involves no Java
operations.)

I NSTALL JAVA NEW

FROM FI LE ' I nvai ce. cl ass’

75



The runtime environment for Java in the database

Public fields

76

If the file specified isin adirectory or zip file specified by the CLASSPATH
environmental variable, Adaptive Server Anywhere will successfully locate
the file and install the class.

It isacommon practice in object-oriented programming to define class fields
as private and make their values available only through public methods.

Many of the examples used in this documentation render fields public to
make examples more compact and easier to read. Using public fieldsin
Adaptive Server Anywhere aso offers a performance advantage over
accessing public methods.

The general convention followed in this documentation is that a user-created
Java class designed for use in Adaptive Server Anywhere exposes its main
valuesin its fields. Methods contain computational automation and logic that
may act on these fields.



Chapter 3 Introduction to Java in the Database

Tutorial: A Java in the database exercise

Thistutorial is aprimer for invoking Java operations on Java classes and
objects using SQL statements. It describes how to install a Java class into the
database. It also describes how to access the class and its members and
methods from SQL statements. The tutorial uses the Invoice class created in
"A Java seminar" on page 59.

Requirements Thetutorial assumes that you have installed Javain the database software. It
also assumes that you have a Java Development Kit (JDK) installed,
including the Java compiler (javac).

Resources Source code and batch files for this sample are provided in the directory
Samples|ASA|InvoiceJava under your SQL Anywhere directory.

Create and compile the sample Java class

Thefirst step isto write the Java code and compileit. Thisis done outside
the database

« To create and compile the class:

1 Createafilecaled Invoice.java holding the following code.

e



Tutorial: A Java in the database exercise

public class Invoice {

Il Fields
public String lineltenlDescription;
public double |ineltenlCost;

public String lineltenkDescription;
public doubl e |ineltenlCost;

/1 An instance met hod
public double total Sun{) {
doubl e runni ngsum
doubl e taxfactor = 1 + Invoice.rateC Taxation();

runni ngsum = |ineltemlCost + |ineltenkCost;
runni ngsum = runni ngsum * taxfactor;

return runni ngsum

}

/1 A class method

public static double rateC Taxation() {
doubl e rate;
rate = .15;

return rate,

}
}

Y ou can find source code for this class as the file
Samples\ASA|Javalnvoicelinvoice.java under your SQL Anywhere
directory.

2 Compilethefileto create the file Invoice.class.

From a command prompt in the same directory as Invoice.java, execute
the following command.

javac *.java

The class is now compiled and ready to be installed into the database.

Install the sample Java class

78

Java classes must be installed into a database before they can be used. You
caninstall classes from Sybase Central or Interactive SQL. This section
provides instructions for both. Choose whichever you prefer.

« To install the class to the sample database ( Sybase Central ):

1 Start Sybase Central and connect to the sample database.



Chapter 3 Introduction to Java in the Database

Notes

2 Open the Java Objects folder and double-click Add Java Class. The Java
Class Creation wizard appears.

3 Usethe Browse button to locate invoice.class in the
Samples|ASAlJavalnvoice subdirectory of your SQL Anywhere
installation directory.

4 Click Finish to exit the wizard.

% To install the class to the sample database ( Interactive SQL ):

1 Start Interactive SQL and connect to the sample database.

2 Inthe SQL Statements pane of Interactive SQL, type the following
command:

I NSTALL JAVA NEW
FROM FI LE
" pat i\ \ sanpl es\\ ASA\\ Javal nvoi ce\\ | nvoi ce. cl ass’

where path is your SQL Anywhere directory.

The classis how installed into the sample database.

¢ At thispoint no Javain the database operations have taken place. The
class has been installed into the database and is ready for use as the data
type of avariable or columnin atable.

¢ Changes made to the class file from now on are not automatically
reflected in the copy of the class in the database. Y ou must re-install the
classes if you want the changes reflected.

& For moreinformation on installing classes, and for information on
updating an installed class, see "Installing Java classes into a database" on

page 94.

Creating a SQL variable of type Invoice

This section creates a SQL variable that references a Java object of type
Invoice.

Case sensitivity

Javais case sensitive, so the portions of the following examplesin this
section pertaining to Java syntax are written using the correct case. SQL
syntax is rendered in upper case.

1 FromInteractive SQL, execute the following statement to create a SQL
variable named Inv of type I nvoice, where Invoice is the Java class you
installed to a database:

79



Tutorial: A Java in the database exercise

CREATE VARI ABLE | nv I nvoice

Once you create avariable, it can only be assigned avaueif its data
type and declared data type are identical or if the value is a subclass of
the declared data type. In this case, the variable I nv can only contain a
reference to an object of type Invoice or a subclass of Invoice.

Initially, the variable Inv is NULL because no value has been passed to
it.

Execute the following statement to identify the current value of the
variable Inv.

SELECT | FNULL( I nv,
"No object referenced’,
"Variable not null: contains object reference’)

The variable currently has no object referenced.
Assignavalueto Inv.

Y ou must instatiate an instance of the Invoice class using the NEW
keyword.

SET Inv = NEW I nvoi ce()

The Inv variable now has areference to a Java object. To verify this,
you can execute the statement from step 2.

The Inv variable contains a reference to a Java object of type I nvoice.
Using this reference, you can access any of the object’s fields or invoke
any of its methods.

Access fields and methods of the Java object

80

If avariable (or column value in atable) contains a reference to a Java
object, then the fields of the object can be passed values and its methods can
be invoked.

For example, the variable of type Invoice that you created in the previous
section contains a reference to an I nvoice object and has four fields, the
value of which can be set using SQL statements.

++ To access fields of the Invoice object:

From Interactive SQL, execute the following SQL statements to set field
valuesfor the variable Inv.

SET Inv.lineltenlDescription = 'Wrk boots’;
SET Inv.lineltenlCost = '79.99;
SET Inv.lineltenkDescription = 'Hay fork’;



Chapter 3 Introduction to Java in the Database

Calling methods
versus referencing
fields

SET Inv.lineltenkCost = '37.49;

Each SQL statement passes avalueto afield in the Java object
referenced by Inv.

2 Execute SELECT statements against the variable. Any of the following
SQL statements return the current value of afield in the Java object
referenced by Inv.

SELECT Inv.lineltenlDescription;
SELECT Inv.lineltenlCost;
SELECT Inv.lineltenkDescription;
SELECT Inv.lineltenRkCost;

3 Useafield of the Inv variable in a SQL expression.

Execute the following SQL statement and have executed the above SQL
statements.

SELECT * FROM PRCDUCT
WHERE unit_price < Inv.lineltenkCost;

In addition to having public fields, the I nvoice class has one instance
method, which you can invoke

To invoking methods of the Invoice object:

¢ From Interactive SQL, execute the following SQL statement, which
invokes the total Sum() method of the object referenced by the variable
Inv. It returns the sum of the two cost fields plus the tax charged on this
sum.

SELECT Inv.total Sun();

Method names are always followed by parentheses, even when they take no
arguments. Field names are not followed by parentheses.

The total Sum() method takes no arguments, but returns avalue. The
brackets are used because a Java operation is being invoked even though the
method takes no arguments.

For Javain the database, direct field access is faster than method invokation.
Accessing afield does not require the Java VM to be invoked, while
invoking a method requires the VM to execute the method.

Asindicated by the Invoice class definition outlined at the beginning of this
section, the total Sum instance method makes use of the class method
rateOfTaxation.

Y ou can access this class method directly from a SQL statement.
SELECT I nvoi ce. rat et Taxati on();

81



Tutorial: A Java in the database exercise

Notice the name of the classis used, not the name of a variable containing a
reference to an I nvoice object. Thisis consistent with the way Java handles
class methods, even though it is being used in a SQL statement. A class
method can be invoked even if no object based on that class has been
instantiated.

Class methods do not require an instance of the class to work properly, but
they can still be invoked on an object. The following SQL statement yields
the same results as the previously executed SQL statement.

SELECT I nv. rateC Taxation();

Saving Java objects in tables

When you install aclassin adatabase, it is available as a new data type.
Columns in atable can be of type Javaclass where Javaclass is the name of
aninstalled public Java class. Y ou can then create a Java object and add it to
atable as the value of a column.

< To use the Invoice class in a table:
1 Create atable with a column of type Invoice.

From Interactive SQL, execute the following SQL statement.

CREATE TABLE T1 (
IDint,
JCol I nvoice

)
The column named JCal only accepts objects of type Invoice or one of
its subclasses.

2 Using thevariable Inv, which contains a reference to a Java object of
type Invoice, execute the following SQL statement to add arow to the
table T1.

I NSERT INTO T1
VALUES( 1, Inv );

Once an object has been added to the table T1, you can issue select
statements involving the fields and methods of the objects in the table.

3 Execute the following SQL statement to return the value of the field
linelteml1Description for al the objectsin the table T1 (right now, there
should only be one object in the table).

SELECT ID, JCol.lineltemlDescription
FROM T1;

82



Chapter 3 Introduction to Java in the Database

Y ou can execute similar select statements involving other fields and
methods of the object.

A second method for creating a Java object and adding it to a table
involves the following expression, which always creates a Java object
and returns areferenceto it.

NEW Javacl assnane()

Y ou can use this expression in a number of ways. For example, execute
the following SQL statement to create a Java object and insertsit into
thetable T1.

I NSERT | NTO T1
VALUES ( 2, NEWInvoice() );

Execute the following SQL statement to verify that these two objects
have been saved as values of column JCol inthetable T1.

SELECT I D, JCol .total Sun()
FROM t 1

The results of the JCol column (the second row returned by the above
statement) should be 0, because the fields in that object have no values
and the total Sum method is a calculation of those fields.

Returning an object using a query

In addition to accessing fields and methods, you can also retrieve an entire
object from atable using a query.

% To access Invoice objects stored in a table:

¢

From Interactive SQL, execute the following series of statementsto
create anew variable and pass avalue (it can only contain an object
reference where the object is of type Invoice). The object reference
passed to the variable was generated using the table T1.

CREATE VARI ABLE I nv2 | nvoice;

SET Inv2 = (select JCol fromT1l where ID = 2);
SET Inv2.lineltenlDescription = Sweet feed ;
SET Inv2.lineltenkDescription = 'Drive belt’;

The value for the linel tem1Description field and linel tem2Descr iption
have been changed in the variable Inv2, but not in the table that was the
source for the value of thisvariable.

83



Tutorial: A Java in the database exercise

Thisis consistent with the way SQL variables are currently handled: the
variable Inv contains areference to a Java object. The value in the table
that was the source of the variable's reference is not altered until an
UPDATE statement is executed.

84



CHAPTER 4
Using Java

About this chapter

Contents

In the Database

This chapter describes how to add Java classes and objects to your database,

and how to use these objectsin arelational database.

Before you begin

Topic Page
Introduction 86
Java-enabling a database 89
Installing Java classes into a database 94
Creating columns to hold Java objects 99
Inserting, updating, and deleting Java objects 101
Querying Java objects 106
Comparing Javafields and objects 108
Special features of Java classesin the database 111
How Java objects are stored 118
Java database design 121
Using computed columns with Java classes 124
Configuring memory for Java 127

To run the examplesin this chapter, first run the file
Samples|ASAlJavaljdemo.sql under your SQL Anywhere directory.

& For moreinformation, and full instructions, see " Setting up the Java

samples' on page 86.

85



Introduction

Introduction

This chapter describes how to accomplish tasks using Javain the database,
including the following:

¢ How to Java-enable a database You need to follow certain steps to
enable your database to use Java.

¢ Installing Java classes You need to install Java classes in a database
to make them available for use in the server.

¢ Properties of Java columns  This section describes how columns with
Java class data types fit into the relational model.

¢ Javadatabase design This section providestips for designing
databases that use Java classes.

Setting up the Java samples

Many of the examplesin this chapter require you to use a set of classes and
tables added to the sample database. The tables hold the same information as
tables of the same name in the sampl e database, but the user ID named jdba
owns them. They use Java class data types instead of simple relational types
to hold the information. Y ou can find the sample in the Samples|ASAlJava
subdirectory of your SQL Anywhere directory.

Sample tables designed for tutorial use only

The sample tables illustrate different Java features. They are not a
recommendation for how to redesign your database. Y ou should consider
your own situation in eval uating where to incorporate Java data types and
other features.

Setting up the Java examples involves two steps:
1 Javaenable the sample database.

2 Add the Java sample classes and tables.

% To Java-enable the sample database:
1 Start Interactive SQL and connect to the sample database.

2 Inthe SQL Statements pane of Interactive SQL, type the following
statement:

ALTER DATABASE UPGRADE JAVA JOK ' 1.3’

86



Chapter 4 Using Java in the Database

3

Shut down Interactive SQL and the sample database.

The asademo.db database must be shut down before you can use Java
features.

+ To add Java classes and tables to the sample database:

1
2

Start Interactive SQL and connect to the sample database.

In the SQL Statements pane of Interactive SQL, type the following
statement:

READ " pat h\ \ Sanpl es\\ ASA\\ Java\\j deno. sql "
where path is your SQL Anywhere directory. This runs the instructions

in the jdemo.sql command file. The instructions may take some timeto
complete.

Y ou can view the script Samples|ASAlJavaljdemo.sqgl using atext editor. It
executes the following steps:

1
2

Installs the JDBCExamples class.

Creates a user ID named JDBA with password SQL and DBA authority,
and sets the current user to be JDBA.

Installs a JAR file named asademo.jar. This file contains the class
definitions used in the tables.

Creates the following tables under the JDBA user ID:
¢ product

¢ contact

¢ customer

¢+ employee

¢ sales order

¢ sdes order_items

Thisisasubset of the tables in the sample database.

Adds the data from the standard tables of the same names into the Java
tables. This step uses INSERT from SELECT statements. This step may
take some time.

Creates some indexes and foreign keys to add integrity constraints to the
schema.

87



Introduction

Managing the runtime environment for Java

Management tasks
for Java

Tools for managing
Java

88

The runtime environment for Java consists of:

¢

The Sybase Java Virtual Machine Running within the database
server, the Sybase Java Virtual Machine interprets and executes the
compiled Java classfiles.

The runtime Java classes When you create a database, a set of Java
classes becomes available to the database. Java applicationsin the
database require these runtime classes to work properly.

To provide aruntime environment for Java, you need to carry out the
following tasks:

¢

Java-enable your database Thistask involves ensuring the
availability of built-in classes and the upgrading of the database to
Version 8 standards.

& For more information, see " Java-enabling a database" on page 89.

Install other classes your users need Thistask involves ensuring
that classes other than the runtime classes are installed and up to date.

& For moreinformation, see "Installing Java classes into a database"
on page 94.

Configuring your server Y ou must configure your server to make the
necessary memory available to run Java tasks.

& For more information, see " Configuring memory for Java' on
page 127.

You can carry out all these tasks from Sybase Central or from
Interactive SQL.



Chapter 4 Using Java in the Database

Java-enabling a database

When not to
Java-enable a
database

The Adaptive Server Anywhere Runtime environment for Java requires a
JavaVM and the Sybase runtime Java classes. Y ou need to Java-enable a
database for it to be able to use the runtime Java classes.

Javain the database is a separatel y-licensed component of SQL Anywhere
Studio.

New databases are not Java-enabled by default
By default, databases created with Adaptive Server Anywhere are not
Java-enabled.

Javais asingle-hierarchy language, meaning that all classes you create or use
eventually inherit from one class. This means the low-level classes (classes
further up in the hierarchy) must be present before you can use higher-level
classes. The base set of classes required to run Java applications are the
runtime Java classes, or the Java API.

Java-enabling a database adds many entries into the system tables. This adds
to the size of the database and, more significantly, adds about 200K to the
memory requirements for running the database, even if you do not use any
Javafunctionality.

If you are not going to use Java, and if you are running in a limited-memory
environment, you may wish to not Java-enable your database.

The Sybase runtime Java classes

The Sybase runtime Java classes are held on disk rather than stored in a
database like other classes. The following files contain the Sybase runtime
Javaclasses. Thefiles are in the Java subdirectory of your SQL Anywhere
directory:

¢ 1.1\classes.zip Thisfile, licensed from Sun Microsystems, contains a
subset of the Sun Microsystems Java runtime classes for JDK 1.1.8.

¢ 1.3\rtjar Thisfile, licensed from Sun Microsystems, contains a subset
of the Sun Microsystems Java runtime classes for JDK 1.3.

¢ asajdbc.zip Thisfile contains Sybase internal JIDBC driver classes for
JDK 1.1.

¢ asajrtl2.zip Thisfile contains Sybase internal JDBC driver classes for
JDK 1.2 and IDK 1.3.

89



Java-enabling a database

JAR files

Installed packages

When you Java-enabl e a database, you also update the system tables with a
list of available classes from the system JAR files. Y ou can then browse the
class hierarchy from Sybase Central, but the classes themselves are not
present in the database.

The database stores runtime class names the under the following JAR files:
¢ ASAJRT Class names from asajdbce.zip are held here.
¢ ASAJDBCDRV Class names from jdbcdrv.zip are held here.

¢ ASASystem Class names from classes.zip are held here.

These runtime classes include the following packages:

¢ java Packages stored hereinclude the supported Java runtime classes
from Sun Microsystems.

& For alist of the supported Java runtime classes, see " Supported
Java packages' on page 77 of the book ASA SQL Reference Manual.

¢ com.sybase Packages stored here provide server-side JDBC support.
¢ sun Sun Microsystems provides the packages stored here.

¢ sybase.sql Packages stored here are part of the Sybase server-side
JDBC support.

Caution: do not install classes from another version of Sun’s JDK
Classes in Sun's JDK share names with the Sybase runtime Java classes
that must be installed in any database intended to execute Java
operations.

You must not replace the classes.zip file included with Adaptive Server
Anywhere. Using another version of these classes could cause
compatibility problems with the Sybase Java Virtual Machine.

You must only Java-enable a database using the methods outlined in this
section.

Ways of Java-enabling a database

Creating
databases

90

Y ou can Java-enable databases when you create them, when you upgrade
them, or in a separate operation at alater time.

Y ou can create a Java-enabled database using:
¢ the CREATE DATABASE statement.



Chapter 4 Using Java in the Database

Upgrading
databases

& For details of the syntax, see "CREATE DATABASE statement”
on page 273 of the book ASA SQL Reference Manual.

¢ the dbinit utility.

& For details, see " Creating a database using the dbinit command-line
utility" on page 466 of the book ASA Database Administration Guide.

¢ Sybase Central.

& For details, see " Creating a database” on page 29 of the book ASA
QL User’s Guide.

Y ou can upgrade a database to a Java-enabled Version 8 database using:
¢ the ALTER DATABASE statement.

& For details of the syntax, see"ALTER DATABASE statement" on
page 205 of the book ASA SQL Reference Manual.

¢ the dbupgrad.exe upgrade utility.

& For details, see "Upgrading a database using the dbupgrad
command-line utility" on page 522 of the book ASA Database
Administration Guide.

¢ Sybase Central.
& For details, see "Java-enabling a database" on page 92.

If you choose not to install Javain the database, all database operations not
involving Java operations remain fully functional and work as expected.

New databases and Java

CREATE
DATABASE
options

By default, Adaptive Server Anywhere does not install Sybase runtime Java
classes each time you create a database. The installation of this
separately-licensable component is optional, and controlled by the method
you use to create the database.

The CREATE DATABASE SQL statement has an option called JAVA. To
Java-enable a database, you can set the option to ON. To disable Java, set the
option to OFF. This option is set to OFF by default.

For example, the following statement creates a Java-enabled database file
named temp.db:

CREATE DATABASE ’'c:\\sybase\\asa8\\tenp’ JAVA ON

The following statement creates a database file named temp2.db, which does
not support Java.

91



Java-enabling a database

Database
initialization utility

CREATE DATABASE ’c:\\sybase\\asa8\\tenp2’

Y ou can create databases using the dbinit.exe database initialization utility.
This utility has options that control whether or not to install the runtime Java
classesin the newly-created database. By default, the classes are not
installed.

The same options are available when creating databases using Sybase
Central.

Upgrading databases and Java

Database upgrade
utility

Y ou can upgrade existing databases created with earlier versions of the
software using the Upgrade utility or the ALTER DATABASE statement.

Y ou can upgrade databases to Adaptive Server Anywhere Version 8
standards using the dbupgrad.exe utility. Using the—jr  Upgrade utility
option prevents the installation of Sybase runtime Java classes.

& For information on the conditions under which Javain the database is
included in the upgraded database, see "Upgrading a database using the
dbupgrad command-line utility" on page 522 of the book ASA Database
Administration Guide.

Java-enabling a database

92

If you have created a database, or upgraded a database to standards, but have
chosen not to Java-enable the database, you can add the necessary Java
classes at alater date, using either Sybase Central or Interactive SQL.

To add the Java runtime classes to a database (Sybase Central):

1 Connect to the database from Sybase Central as a user with DBA
authority.

Right-click the database and choose Upgrade Database.
Click Next on the introductory page of the wizard.

Select the database you want to upgrade from the list.

ga A W N

Y ou can choose to create a backup of the database if you wish. Click
Next.

6 You can choose to install jConnect meta-information support if you
wish. Click Next.



Chapter 4 Using Java in the Database

7  Select the Install Java Support option. Y ou must also choose which
version of the JDK you want to install. The default classes are the JDK
1.3 classes. For version 7.x databases, the default classes are the IDK
1.1.8 classes.

8 Follow the remaining instructions in the wizard.

% To add the Java runtime classes to a database (SQL):

1 Connect to the database from Interactive SQL as a user with DBA
authority.

2 Executethe following statement:
ALTER DATABASE UPGRADE JAVA ON

&>~ For moreinformation, see "ALTER DATABASE statement” on
page 205 of the book ASA SQL Reference Manual.

3 Restart the database for the Java support to take effect.

Using Sybase Central to Java-enable a database

Y ou can use Sybase Central to create databases using wizards. During the
creation or upgrade of a database, the wizard prompts you to choose whether
or not you have the Sybase runtime Java classes installed. By default, this
option Java-enables the database.

Using Sybase Central, you can create or upgrade a database by choosing:
¢ Create Database from the Utilities folder, or

¢ Upgrade Database from the Utilities folder to upgrade a database from a
previous version of the software to a database with Java capabilities.

93



Installing Java classes into a database

Installing Java classes into a database

Before you install a Java class into a database, you must compileit. You can
install Java classes into a database as:

¢ Asingleclass Youcaninstal asingle classinto adatabase from a
compiled class file. Class files typically have extension .class.

¢ AJAR Youcaninstal aset of classesal at onceif they arein either a
compressed or uncompressed JAR file. JAR files typically have the
extension .jar or .zip. Adaptive Server Anywhere supports all
compressed JAR files created with the Sun JAR utility, and some other
JAR compression schemes as well.

This section describes how to install Java classes once you have compiled
them. Y ou must have DBA authority to install aclassor JAR.

Creating a class

Although the details of each step may differ depending on whether you are
using a Java devel opment tool such as Sybase PowerJ, the stepsinvolved in
creating your own class generally include the following:

< To create aclass:

1 Define your class Write the Java code that defines your class. If you
are using the Sun Java SDK then you can use atext editor. If you are
using a development tool such as Sybase PowerJ, the development tool
provides instructions.

Use only supported classes

If your class uses any runtime Java classes, make certain they are
among the list of supported classes aslisted in " Supported Java
packages' on page 77 of the book ASA SQL Reference Manual.

User classes must be 100% Java. Native methods are not allowed.

2 Name and save your class Save your class declaration (Java code) in
afile with the extension .java. Make certain the name of thefileisthe
same as the name of the class and that the case of both namesis
identical.

For example, aclass called Utility should be saved in afile called
Utility.java.

94



Chapter 4 Using Java in the Database

Installing a class

Compile your class This step turns your class declaration containing
Java code into a new, separate file containing byte code. The name of
the new file is the same as the Java code file but has an extension of
.class. Y ou can run a compiled Java class in a Java runtime
environment, regardless of the platform you compiled it on or the
operating system of the runtime environment.

The Sun JDK contains a Java compiler, Javac.exe.

Java-enabled databases only

You caninstall any compiled Java class file in a database. However,
Java operations using an installed class can only take placeif the
database has been Java-enabled as described in " Java-enabling a
database" on page 89.

To make your Java class available within the database, you install the class
into the database either from Sybase Central, or using the INSTALL
statement from Interactive SQL or other application. Y ou must know the
path and file name of the class you wish to install.

Y ou require DBA authority to install a class.

< To install a class (Sybase Central):

1

2
3
4

Connect to a database with DBA authority.
Open the Java Objects folder for the database.
Double-click Add Java Class.

Follow the instructions in the wizard.

+ Toinstall aclass (SQL):

1
2

Connect to a database with DBA authority.

Execute the following statement:

I NSTALL JAVA NEW
FROM FI LE ’ pat h\\ d assNane. cl ass’

where path is the directory where the classfile is, and ClassName.class
isthe name of the classfile.

The double backslash ensures that the backslash is not treated as an
escape character.

95



Installing Java classes into a database

Installing a JAR

96

®,
o

For example, to install aclassin afile named Utility.class, held in the
directory c:lsource, you would enter the following statement:

I NSTALL JAVA NEW
FROM FI LE " c:\\source\\Uility.class’

If you use arelative path, it must be relative to the current working
directory of the database server.

& For moreinformation, see "INSTALL statement” on page 467 of
the book ASA SQL Reference Manual, and "Deleting Java objects,
classes, and JAR files" on page 105.

It is useful and common practice to collect sets of related classes together in
packages, and to store one or more packagesin aJAR file. For information
on JAR files and packages, see the accompanying online book, Thinking in

Java, or another book on programming in Java.

Youinstal aJAR file the same way as you install aclassfile. A JAR file can
have the extension JAR or ZIP. Each JAR file must have anamein the
database. Usually, you use the same name as the JAR file, without the
extension. For example, if you install a JAR file named myjar.zip, you would
generally giveit a JAR name of myjar.

& For moreinformation, see "INSTALL statement” on page 467 of the
book ASA SQL Reference Manual, and " Deleting Java objects, classes, and
JAR files' on page 105.

To install a JAR (Sybase Central):

1 Connect to a database with DBA authority.

2 Open the Java Objects folder for the database.
3 Double-click Add JAR File.
4

Follow the instructions in the wizard.

To install a JAR (SQL):
1 Connect to adatabase with DBA authority.
2 Enter the following statement:

I NSTALL JAVA NEW
JAR ' j ar nange’
FROM FI LE ' pat i\\ Jar Nane. j ar’



Chapter 4 Using Java in the Database

Updating classes and Jars

Existing Java
objects and
updated classes

When updated
classes take effect

Objects stored in
serialized form

Y ou can update classes and JAR files using Sybase Central or by entering an
INSTALL statement in Interactive SQL or some other client application.

To update aclass or JAR, you must have DBA authority and a newer version
of the compiled classfile or JAR file available in afile on disk.

Y ou may have instances of a Java class stored as Java objects in your
database, or as valuesin a column that uses the class as its data type.

Despite updating the class, these old values will still be available, even if the
fields and methods stored in the tables are incompatible with the new class
definition.

Any new rows you insert, however, need to be compatible with the new
definition.

Only new connections established after installing the class, or which use the
class for the first time after installing the class, use the new definition. Once
the Virtual Machine loads a class definition, it stays in memory until the
connection closes.

If you have been using a Java class or objects based on a classin the current
connection, you need to disconnect and reconnect to use the new class
definition.

& To understand why the updated classes take effect in this manner, you
need to know alittle about how the VM works. For information, see
"Configuring memory for Java' on page 127.

Java objects can use the updated class definition because they are stored in
serialized form. The serialization format, designed specifically for the
database, is not the Sun Microsystems serialization format. The internal
Sybase VM carries out al serialization and deserialization, so there are no
compatibility issues.

To update a class or JAR (Sybase Central):

1 Connect to a database with DBA authority.

2 Open the Java Objects folder.

3 Locatethe class or JAR file you wish to update.

4

Right-click the class or JAR file and choose Update from the popup
menu.

5 Intheresulting dialog, specify the name and location of the class or JAR
file to be updated. Y ou can click Browse to search for it.

97



Installing Java classes into a database

Tip
Y ou can also update a Java class or JAR file by clicking Update Now on
the General tab of its property sheet.

% To update a class or JAR (SQL):
1 Connect to adatabase with DBA authority.

2 Executethe following statement:

| NSTALL JAVA UPDATE
[ JAR ' jarnane ]
FROM FI LE ’ fi | enan¥’

If you are updating a JAR, you must enter the name by which the JAR is
known in the database.

& For moreinformation, see "INSTALL statement” on page 467 of
the book ASA SQL Reference Manual.

98




Chapter 4 Using Java in the Database

Creating columns to hold Java objects

This section describes how columns of Java class data types fit into the
standard SQL framework.

Creating columns with Java data types

Case sensitivity

Y ou can use any installed Java class as a data type. Y ou must use the fully
qualified name for the data type.

For example, the following CREATE TABLE statement includes a column
that has columns of Java data types asademo.Name and
asademo.Contactlnfo. Here, Name and Contactl nfo are classes within the
asademo package.

CREATE TABLE | dba. cust oner

(
id i nteger NOT NULL,
conpany_nane CHAR(35) NOT NULL,
JNane asadeno. Name NOT NULL,
JCont act | nfo asadeno. Cont act | nfo NOT NULL,
PRI MARY KEY (i d)
)

Unlike other SQL data types, Java data types are case sensitive. Y ou must
supply the proper case of all parts of the data type.

Using defaults and NULL on Java columns

Y ou can use defaults on Java columns, and Java columns can hold NULL
entries.

Java columns and defaults Columns can have as default values any
function of the proper data type, or any preset default. Y ou can use any
function of the proper data type (for example, of the same class asthe
column) as a default value for Java columns.

Java columns and NULL Javacolumnscan alow NULL. If anullable
column with Java data type has no default value, the column contains NULL.

If aJavavalueisnot s, it has a Java null value. This Java null maps onto
the SQL NULL, and you can use the ISNULL and ISNOT NULL search
conditions against the values. For example, suppose the description of a
Product Java object in a column named JProd was not set, you can query all
products with non-null values for the description as follows:

99



Creating columns to hold Java objects

SELECT *
FROM pr oduct
WHERE JProd>>description IS NULL

100



Chapter 4 Using Java in the Database

Inserting, updating, and deleting Java objects

Create the Java
sample tables

A sample class

This section describes how the standard SQL data manipulation statements
apply to Java columns.

Throughout the section, concrete examples based on the Product table of the
sample database and a class named Product illustrate points. Y ou should
first look at the file Samples|ASAlJavallasademo\Product.java under your
SQL Anywhere directory.

The examplesin this section assume that you have added the Java tables to
the sample database, and that you are connected as user ID jDBA with
password SQL.

& For moreinformation, see " Setting up the Java samples' on page 86.

This section describes a class that is used in examples throughout the
following sections.

The Product class definition, included in the file
Samples|ASAlJavalasademolProduct.jave under your SQL Anywhere
directory, isreproduced in part below:

package asadeno;
public class Product inplenments java.io.Serializable {

Il public fields

public String nane ;

public String description ;

public String size ;

public String color;

public int quantity ;

public java.math. BigDeci mal unit_price ;

/1 Default constructor

Product () {
unit_price = new java. mat h. Bi gDeci mal ( 10.00 );
narme = "Unknown";
size = "One size fits all";

}

/1 Constructor using all avail abl e argunents
Product ( String inColor,

String inDescription,

String inNang,

101



Inserting, updating, and deleting Java objects

Notes

int inQuantity,
String inSze,
java. mat h. Bi gDeci mal inUnit_price

) {
color = inColor;
description = inDescription;
name = i nNane;
quantity = inQuantity;
size = inSize;
uni t _price=inUnit_price;
}
public String toString() {
return size +" " + pame + ": " +
unit_price.toString();
}

The Product class has several public fields that correspond to some of
the columns of the DBA.Product table that will be collected together in
this class.

ThetoString method is provided for convenience. When you include an
object namein a select-list, thetoString method is executed and its
return string displayed.

Some methods are provided to set and get the fields. It is common to use
such methods in object-oriented programming rather than to address the
fields directly. Here, the fields are public for convenience in tutorials.

Inserting Java objects

When you INSERT arow in atable that has a Java column, you need to

insert a Java object into the Java column.

Y ou can insert a Java object in two ways: from SQL or from other Java
classes running inside the database, using JDBC.

Inserting a Java object from SQL

Y ou can insert a Java object using a constructor, or you can use SQL
variables to build up a Java object before inserting it.

Inserting an object When you insert avalue into a column that has a Java class data type, you

using a constructor areinserting a Java object. To insert an object with the proper set of
properties, the new object must have proper values for any public fields, and
you will want to call any methods that set private fields.

102



Chapter 4 Using Java in the Database

< To insert a Java object:

¢ INSERT anew instance of the Product class into the table product as
follows:

| NSERT
I NTO product ( ID, JProd )
VALUES ( 702, NEW asadeno. Product () )

Y ou can run this example against the sample database from the user 1D
jdba once the jdemo.sql script has been run.

The NEW keyword invokes the default constructor for the Product classin
the asademo package.

Inserting an object Y ou can a'so set the values of the fields of the object individualy, as
from a SQL opposed to through the constructor, in a SQL variable of the proper class.
variable

< Toinsert a Java object using SQL variables:

1 Create aSQL variable of the Java class type:
CREATE VARl ABLE Product Var asadeno. Product

2 Assign anew object to the variable, using the class constructor:
SET Product Var = NEW asadeno. Pr oduct ()

3 Assignvaluesto thefields of the object, where required:

SET Product Var>>col or = "Bl ack’;

SET Product Var>>description = 'Steel tipped boots’;
SET Product Var>>nanme = 'Wrk boots’;

SET Product Var>>quantity = 40;

SET Product Var>>si ze = 'Extra Large’;

SET ProductVar>>unit_price = 79.99;

4 Insert the variable into the table:

| NSERT
I NTO Product ( id, JProd )
VALUES ( 800, ProductVar )

5 Check that the value is inserted:

SELECT *
FROM pr oduct
WHERE i d=800

6 Undo the changes you have made in this exercise:
ROLLBACK

103



Inserting, updating, and deleting Java objects

The use of SQL variablesistypical of stored procedures and other uses of
SQL to build programming logic into the database. Java provides a more
powerful way of accomplishing thistask. Y ou can use server-side Java
classes together with JIDBC to insert objects into tables.

Inserting an object from Java

Y ou can insert an object into a table using a JDBC prepared statement.

A prepared statement uses placeholders for variables. Y ou can then use the
setObj ect method of the Prepar edStatement object.

Y ou can use prepared statements to insert objects from either client-side or
server-side JDBC.

& For more information on using prepared statements to work with
objects, see "Inserting and retrieving objects" on page 156.

Updating Java objects

Updating the entire
object

Updating fields of
the object

104

Y ou may wish to update a Java column value in either of the following ways:
¢ Update the entire object.
¢ Update some of the fields of the object.

Y ou can update the object in much the same way as you insert objects:

¢ From SQL, you can use a constructor to update the object to a new
object as the constructor creates it. Y ou can then update individual fields
if you need to.

¢ From SQL, you can use a SQL variable to hold the object you need, and
then update the row to hold the variable.

¢ From JDBC, you can use a prepared statement and the
Prepar edStatement.setObj ect method.

Individual fields of an object have data types that correspond to SQL data
types, using the SQL to Java data type mapping described in "Java/ SQL
data type conversion” on page 84 of the book ASA SQL Reference Manual.

Y ou can update individual fields using a standard UPDATE statement:

UPDATE Pr oduct
SET JProd.unit_price = 16.00
WHERE | D = 302

Intheinitial release of Javain the database, it was necessary to use a special
function (EVALUATE) to carry out updates. Thisis no longer necessary.



Chapter 4 Using Java in the Database

Using set methods

To update a Javafield, the Java data type of the field must map to a SQL
type: the expression on the right hand side of the SET clause must match this
type. You may need to use the CAST function to cast the data types

appropriate.

& For more information about data type mappings between Java and
SQL, see"Java/ SQL data type conversion” on page 84 of the book ASA
0L Reference Manual.

It is common practice in Java programming not to address fields directly, but
to use methods to get and set the value. It is also common practice for these
methods to return void. Y ou can use set methods in SQL to update a column:

UPDATE j dba. Pr oduct
SET JProd. set Nane( ' Tank Top’)
WHERE i d=302

Using methods is slower than addressing the field directly, because the Java
VM must run.

& For more information, see " Return value of methods returning void" on
page 112.

Deleting Java objects, classes, and JAR files

Deleting rows containing Java objects is no different than deleting other
rows. The WHERE clause in the DELETE statement can include Java
objects or Javafields and methods.

& For more information, see "DELETE statement” on page 388 of the
book ASA SQL Reference Manual.

Using Sybase Central, you can also delete an entire Java class or JAR file.

To delete a Java class or JAR file (Sybase Central):
1 Openthe Java Objectsfolder.
2 Locatethe class or JAR you would like to delete.

3 Right-click the class or JAR file and choose Del ete from the popup
menu.

& Seedso
¢ "Ingtaling aclass' on page 95
¢+ "InstalingaJAR" on page 96

105



Querying Java objects

Querying Java objects

Retrieving the
entire object

Retrieving fields of
the object

106

Y ou may wish to retrieve a Java column value in either of the following
ways:

¢ Retrieve the entire object.

¢ Retrieve some of the fields of the object.

From SQL, you can create a variable of the appropriate type, and select the
value from the object into that variable. However, the obvious place in which
you may wish to make use of the entire object isin a Java application.

Y ou can retrieve an object into a server-side Java class using the getObj ect
method of the ResultSet of a query. Y ou can also retrieve an object to a
client-side Java application.

& For more information about retrieving objects using JDBC, see
"Queries using JDBC" on page 153.

Individual fields of an object have data types that correspond to SQL data
types, using the SQL to Java data type mapping described in "Java/ SQL
data type conversion" on page 84 of the book ASA SQL Reference Manual.

¢ You canretrieveindividual fields by including them in the select-list of
aquery, asin the following simple example:

SELECT JProd>>unit_price
FROM pr oduct
WHERE |1 D = 400

¢ If you use methods to set and get the values of your fields, asis common
in object oriented programming, you can include a getField method in
your query:
SELECT JPr od>>get Nane()

FROM Pr oduct
WHERE | D = 401

& For more information about using objectsin the WHERE clause and
other issues in comparing objects, see "Comparing Java fields and objects”
on page 108.

Performance tip
Getting afield directly is faster than invoking a method that gets the field
because method invocations require starting the Java VM.




Chapter 4 Using Java in the Database

The results of
SELECT column-
name

You can list the column name in a query select list, asin the following query:

SELECT JProd
FROM j dba. pr oduct

This query returns the Sun serialization of the object to the client application.

When you execute a query that retrieves an object in Interactive SQL, it
displays the return value of the object’s toString method. For the Product
class, the toString method lists, in one string, the size, name, and unit price
of the object. The results of the query are as follows:

JProd

Small Tee Shirt: 9.00

Medium Tee Shirt: 14.00
Onesizefitsall Tee Shirt: 14.00
Onesizefitsall Baseball Cap: 9.00
Onesizefitsall Baseball Cap: 10.00
Onesizefitsall Visor: 7.00
Onesizefitsall Visor: 7.00

Large Sweatshirt: 24.00

Large Sweatshirt: 24.00

Medium Shorts: 15.00

107



Comparing Java fields and objects

Comparing Java fields and objects

Ways of comparing
Java objects

108

Public Java classes are domains with much more richness than traditional
SQL domains. This raises issues about how Java columns behave in a
relational database, compared to columns based on traditional SQL data

types.

In particular, the issue of how objects are compared has implications for the

following:

¢ Querieswith an ORDER BY clause, a GROUP BY clause, aDISTINCT
keyword, or using an aggregate function.

¢ Statements that use equality or inequality comparison conditions.

¢ Indexes and unique columns.

¢ Primary and foreign key columns.

Sorting and ordering rows, whether in aquery or in an index, implies a
comparison between values on each row. If you have a Java column, you can
carry out comparisons in the following ways:

¢

Compare on a public field Y ou can compare on apublic field in the
same way you compare on aregular row. For example, you could
execute the following query:

SELECT nane, JProd.unit_price
FROM Pr oduct
CRDER BY JProd. unit_price

Y ou can use this kind of comparison in queries, but not for indexes and
key columns.

Compare using a compareTo method Y ou can compare Java objects
that have implemented a compar €T o method. The Product class on
which the JProd column is based has a compar eT o method that
compares objects based on the unit_pricefield. This permits the
following query:

SELECT nane, JProd.unit_price
FROM Pr oduct
CRDER BY JProd

The comparison needed for the ORDER BY clause is automatically
carried out based on the compar eT o method.



Chapter 4 Using Java in the Database

Comparing Java objects

Requirements of
the compareTo
method

Example

To compare two objects of the same type, you must implement a compareTo
method:

¢

For columns of Java data types to be used as primary keys, indexes, or
as unigue columns, the column class must implement acompareTo
method.

To use ORDER BY, GROUP BY, or DISTINCT clausesin aquery, you
must be comparing the values of the column. The column class must
have a compar €T o method for any of these clauses to be valid.

Functions that employ comparisons, such as MAX and MIN, can only
be used on Java classes with a compar €T 0 method.

The compar eT o method must have the following properties:

¢

Scope The method must be visible externally, and so should be a
public method.

Arguments The method takes a single argument, which is an object of
the current type. The current object is compared to the supplied object.
For example, Product.compar €T o has the following argument:

conpareTo( Product anot her Product )

The method compares the another Product object, of type Product, to
the current object.

Return values The compareTo method must return an int data type,
with the following meanings:

¢ Negative integer The current object is less than the supplied
object. It is recommended that you return -1 for this case for
compatibility with compareTo methods in base Java classes.

¢ Zero Thecurrent object has the same value as the supplied object.

¢ Positive integer The current object is greater than the supplied
object. It is recommended that you return 1 for this case for
compatibility with compareTo methods in base Java classes.

The Product class installed into the sample database with the example
classes has a compar eT 0 method as follows:

public int conpareTo( Product anotherProduct ) {
/Il Conpare first on the basis of price
/1 and then on the basis of toString()

int 1Val = unit_price.intValue();
int rVal = anotherProduct. unit_price.intVal ue();
if (Ival >rval ) {

return 1;

109



Comparing Java fields and objects

Make toString and
compareTo
compatible

110

}
elseif (Ival <rval ) {
return -1;

}

el se {
return toString().conpareTo(
anot her Product.toString() );{

}
}
}

This method compares the unit price of each object. If the unit prices are the
same, then the names are compared (using Java string comparison, not the
database string comparison). Only if both the unit price and the name are the
same are the two objects considered the same when comparing.

When you include a Java column in the select list of a query, and execute it
in Interactive SQL, the value of the toString method appears. When
comparing columns, the compar €T o method is used. If the toString and
compar eT o methods are not implemented consistently with each other, you
can get inappropriate results such as DISTINCT queries that appear to return
duplicate rows.

For example, suppose the Product class in the sample database had a
toString method that returned the product name, and a compar €T o method
based on the price. Then the following query, executed in Interactive SQL,
would display duplicate values:

SELECT DI STI NCT JProd
FROM pr oduct

JProd

Tee Shirt
Tee Shirt
Baseball Cap
Visor
Sweatshirt
Shorts

Here, the returned value being displayed is determined by toString. The
DISTINCT keyword eliminates duplicates as determined by compareTo. As
these have been implemented in ways that are not related to each other,
duplicate rows appear to have been returned.



Chapter 4 Using Java in the Database

Special features of Java classes in the database

This section describes features of Java classes when used in the database.

Supported classes

Y ou cannot use all classes from the JDK. The runtime Java classes available
for use in the database server belong to a subset of the Java API.

& For more information about supported packages, see " Supported Java
packages' on page 77 of the book ASA SQL Reference Manual.

Calling the main method

Example

You typically start Java applications (outside the database) by running the
Java VM on a class that has amain method.

For example, the JDBCExamplesclassin thefile
Samples|ASAlJavalJDBCExamples.java under your SQL Anywhere
directory has a main method. When you execute the class from the command
line using a command such as the following, it is the main method that
executes:

j ava JDBCExanpl es
& For more information about how to run the JDBCExamples class, see
"Establishing JDBC connections' on page 143.
To call the main method of a class from SQL:

1 Declarethe method with an array of strings as an argument:

public static void main( java.lang.String[] args ){
}

2 Invokethemai n method using the CALL statement.

Each member of the array of strings must be of CHAR or VARCHAR
data type, or aliteral string.

The following class contains amai n method which writes out the arguments
in reverse order:

111



Special features of Java classes in the database

public class ReverseWite {
public static void main( String[] args ){
int i:
for( i = args.length; i >0 ; i-- ){
Systemout.print( args[ i-1] );
}
}
}
Y ou can execute this method from SQL as follows:

call ReverseWite.main( ' one’, two', 'three’ )

The database server window displays the output:

three two one

Using threads in Java applications

With features of the java.lang.Thread package, you can use multiple threads
in a Java application. Each Javathread is an engine thread, and comes from
the number of threads permitted by the - gn database server option.

Y ou can synchronize, suspend, resume, interrupt, or stop threadsin Java
applications.

& For moreinformation about database server threads, see "—gn server
option" on page 141 of the bodiSA Database Administration Guide.

Serialization of All calls to the server-side JDBC driver are serialized, such that only one
JDBC calls thread is actively executing JDBC at any one time.

Procedure Not Found error

If you supply an incorrect number of arguments when calling a Java method,
or if you use an incorrect data type, the server responds ®ititedure Not
Found error. You should check the number and type of arguments.

&~ For more information about type conversions between SQL and Java,
see "Java / SQL data type conversion" on page 84 of theA®fo&QL
Reference Manual.

Return value of methods returning void

You can use Java methods in SQL statements wherever you can use an
expression. You must ensure that the Java method return data type maps to
the appropriate SQL data type.

112



Chapter 4 Using Java in the Database

& For more information about Java/SQL data type mappings, see "Java/
SQL data type conversion” on page 84 of the book ASA SQL Reference
Manual.

When a method returns void, however, the value thisis returned to SQL; that
is, the object itself. The feature only affects calls made from SQL, not from
Java.

Thisfeature is particularly useful in UPDATE statements, where set methods
commonly return void. Y ou can use the following UPDATE statement in the
sampl e database;

updat e j dba. product
set JProd = JProd. set Name(’ Tank Top’)
wher e i d=302

The setName method returns void, and so implicitly returns the product
object to SQL.

Returning result sets from Java methods

Example

This section describes how to make result sets available from Java methods.
Y ou must write a Java method that returns aresult set to the calling
environment, and wrap this method in a SQL stored procedure declared to be
EXTERNAL NAME of LANGUAGE JAVA.

To return result sets from a Java method:

1 Ensure that the Java method is declared as public and static in a public
class.

2 For each result set you expect the method to return, ensure that the
method has a parameter of type java.sgl.ResultSet[]. These result set
parameters must all occur at the end of the parameter list.

3 Inthe method, first create an instance of java.sql.ResultSet and then
assign it to one of the ResultSet[] parameters.

4  Create a SQL stored procedure of type EXTERNAL NAME
LANGUAGE JAVA. Thistype of procedure isawrapper around a Java
method. Y ou can use a cursor on the SQL procedure result set in the
same way as any other procedure that returns result sets.

& For more information about the syntax for stored procedures that
are wrappers for Java methods, see "CREATE PROCEDURE statement"
on page 305 of the book ASA SQL Reference Manual.

The following simple class has a single method which executes a query and
passes the result set back to the calling environment.

113



Special features of Java classes in the database

inport java.sql.*;

public class M/ResultSet {
public static void return_rset( ResultSet[] rsetl)
throws SQ.Exception {
Connection conn = DriverManager. get Connect i on(
"jdbc: defaul t:connection" );
Statement stnmt = conn.createStatenent();
Resul t Set rset =
st . executeQery (
"SELECT CAST( JNane.| astName " +

"AS CHAR( 50 ) )" +
"FROM j dba. contact " );
rset1[0] = rset;
}
}

Y ou can expose the result set using a CREATE PROCEDURE statement that
indicates the number of result sets returned from the procedure and the
signatur e of the Java method.

A CREATE PROCEDURE statement indicating a result set could be defined
asfollows:

CREATE PROCEDURE result_set()
DYNAM C RESULT SETS 1
EXTERNAL NAME
"M/Resul tSet.return_rset ([Ljava/sql/ResultSet;)V
LANGUAGE JAVA

Y ou can open a cursor on this procedure, just as you can with any ASA
procedure returning result sets.

The string (Ljava/sgl/ResultSet;)V is a Java method signature whichisa
compact character representation of the number and type of the parameters
and return value.

& For more information about Java method signatures, see "CREATE
PROCEDURE statement" on page 305 of the book ASA SQL Reference
Manual.

Returning values from Java via stored procedures

Y ou can use stored procedures created using the EXTERNAL NAME
LANGUAGE JAVA as wrappers around Java methods. This section
describes how to write your Java method to exploit OUT or INOUT
parameters in the stored procedure.

114



Chapter 4 Using Java in the Database

Java does not have explicit support for INOUT or OUT parameters. Instead,
you can use an array of the parameter. For example, to use an integer OUT
parameter, create an array of exactly one integer:

public class Testd ass {
public static boolean testQut( int[] param){
parani0] = 123;
return true;

}
}

The following procedure uses the testOut method:

CREATE PROCEDURE sp_testQut ( OUT p | NTEGER )
EXTERNAL NAME ' Testd ass/testQut ([I)Z
LANGUAGE JAVA

The string ([1)Z is a Java method signature, indicating that the method has a
single parameter, which is an array of integers, and returns a Boolean value.
Y ou must define the method so that the method parameter you wish to use as
an OUT or INOUT parameter is an array of a Java data type that corresponds
to the SQL data type of the OUT or INOUT parameter.

& For more information about the syntax, including the method signature,
see "CREATE PROCEDURE statement"” on page 305 of the book ASA SQL
Reference Manual.

& For moreinformation, see "Java/ SQL data type conversion” on
page 84 of the book ASA SQL Reference Manual.

Security management for Java

The default
security manager

Java provides security managers than you can use to control user accessto
security-sensitive features of your applications, such as file access and
network access. Adaptive Server Anywhere provides the following support
for Java security managers in the database:

¢ Adaptive Server Anywhere provides a default security manager.
¢ You can provide your own security manager.

& For information, see "Implementing your own security manager"
on page 116.

The default security manager is the class
com.sybase.asa.jrt.SAGenericSecurityM anager. It carries out the
following tasks:

1 It checksthe value of the database option JAVA_INPUT_OUTPUT.

115



Special features of Java classes in the database

Controlling Java
file I/0 using the
default security
manager

It checks whether the database server was started in C2 security mode
using the -sc database server option.

If the connection property is OFF, it disallows access to Javafile I/O
features.

If the database server isrunning in C2 security mode, it disallows access
to java.net packages.

When the security manager prevents a user from accessing a feature, it
returns ajava.lang.SecurityException.

& For moreinformation, see"JAVA_INPUT_OUTPUT option" on
page 577 of the book ASA Database Administration Guide, and "—sc server
option" on page 150 of the bodiSA Database Administration Guide.

Java file I/O is controlled through the JAVA_INPUT_OUTPUT database
option. By default this option is set to OFF, disallowing file 1/O.

% To permit file access using the default security manager:

¢

Set the JAVA_INPUT_OUTPUT option to ON:
SET CPTI ON JAVA | NPUT_QUTQUT=" ON

Implementing your own security manager

116

There are several steps to implementing your own security manager.

< To provide your own security manager:

1

Implement a class that exterjdsa.lang.SecurityM anager .

The SecurityManager class has a number of methods to check whether a
particular action is allowed. If the action is permitted, the method returns
silently. If the method returns a valu&ecurityException is thrown.

You must override methods that govern actions you wish to permit with
methods that return silently. You can do this by implementingpai ¢
voi d method.

Assign appropriate users to your security manager.

You use theadd_user_security_manager,

update_user_security_manager, anddelete_user_security_manager
system stored procedures to assign security managers to a user. For
example, to assign the MySecurityManager class as the security
manager for a user, you would execute the following command:

call dbo.add_user_security_manager (
user _name, 'MySecurityManager’, NULL )



Chapter 4 Using Java in the Database

Example

The following class allows reading from files but disallows writing:

public class M/SecurityManager extends SecurityManager
{ public void checkRead(Fil eDescriptor) {}

public void checkRead(String) {}

public void checkRead(String, Chject) {}

}

The SecurityM anager .checkWr ite methods are not overridden, and prevent
write operations on files. The checkRead methods return silently, permitting
the action.

117



How Java objects are stored

How Java objects are stored

Notes

Java objects and

118

Javavalues are stored in serialized form. This means that each row contains
the following information:

¢

¢
¢
¢

A version identifier.
Anidentifier for the class (or subclass) that is stored.
The values of non-static, non-transient fields in the class.

Other overhead information.

The class definition is not stored for each row. Instead, the identifier
provides areference to the class definition, which is held only once.

Y ou can use Java objects without knowing the details of how these pieces
work, but storage methods for these objects do have some implications for
performance and so information follows.

¢

Disk space Theoverhead per row is 10 to 15 bytes. If the classhas a
single variable, then the storage required for the overhead can be similar
to the amount needed for the variable itself. If the class has many
variables, the overhead is negligible.

Performance Any time you insert or update a Java value, the JavaVM
needs to seridlize it. Any time aJavavalueisretrieved in aquery, it
needs to be deserialized by the VM. This can amount to a significant
performance penalty.

Y ou can avoid the performance penalty for queries by using computed
columns.

Indexing Indexes on Java columns will not be very selective, and will
not provide the performance benefits associated with indexes on simple
SQL datatypes.

Serialization If aclass has areadObject or writeObject method,
these are called when deserializing or serializing the instance. Using a
readObject or writeObject method can impact performance because
the Java VM is being invoked.

class versions

Java objects stored in the database are per sistent; that is, they exist even
when no code is running. This means that you could carry out the following
sequence of actions:

1

Install aclass.



Chapter 4 Using Java in the Database

Accessing rows
when a class is
updated

When objects are
inaccessible

Moving objects
across databases

When the new
class is used

2 Create atable using that class as the data type for a column.
3 Insert rowsinto the table.

4 Ingtall anew version of the class.
How will the existing rows work with the new version of the class?

Adaptive Server Anywhere provides aform of class versioning to allow the
new class to work with the old rows. The rules for accessing these older
values are as follows:

¢ If aseridizablefieldisin the old version of the class, but is either
missing or not serializable in the new version, the field isignored.

¢ If aseriaizablefield isin the new version of the class, but was either
missing or not serializable in the old version, the field isinitialized to a
default value. The default value is O for primitive types, false for
Boolean values, and NULL for object references.

¢ If there was a superclass of the old version that is not a superclass of the
new version, the data for that superclassisignored.

¢ |f thereisasuperclass of the new version that was not a superclass of
the old version, the data for that superclassisinitialized to default
values.

¢ |f aseridizablefield changes type between the older version and the
newer version, the field isinitialized to a default values. Type
conversions are not supported; thisis consistent with Sun Microsystems
serialization.

A serialized object isinaccessible if the class of the object or any of its
superclasses has been removed from the database at any time. This behavior
is consistent with Sun Microsystems seriaization.

These changes make cross database transfer of objects possible even when
the versions of classes differ. Cross database transfer can occur as follows:

¢ Objectsare replicated to a remote database.
¢+ Atableof objectsisunloaded and reloaded into another database.

¢ Alog file containing objects is translated and applied against another
database.

Each connection’s VM loads the class definition for each class the first time
that classis used.

When you INSTALL aclass, the VM on your connection isimplicitly
restarted. Therefore, you have immediate access to the new class.

119



How Java objects are stored

For connections other than the one that carries out the INSTALL, the new
class |oads the next time a VM accesses the class for the first time. If the
classis aready loaded by a VM, that connection does not see the new class
until the VM isrestarted for that connection (for example, with a STOP
JAVA and START JAVA).

120



Chapter 4 Using Java in the Database

Java database design

Thereisalarge body of theory and practical experience available to help you
design arelational database. Y ou can find descriptions of Entity-Relationship
design and other approaches not only in introductory form (see "Designing

Y our Database" on page 3 of the book ASA SQL User’s Guide) but also in
more advanced books.

No comparable body of theory and practice to develop object-relational
databases exists, and this certainly appliesto Java-relational databases. Here,
we offer some suggestions for how to use Java to enhance the practical
usefulness of relational databases.

Entities and attributes in relational and object-oriented data

In relational database design, each table describes an entity. For example, in
the sample database there are tables named Employee, Customer,
Sales_order, and Department. The attributes of these entities become the
columns of the tables: employee addresses, customer identification numbers,
sales order dates, and so on. Each row of the table may be considered as a
separate instance of the entity—a specific employee, sales order, or
department.

In object-oriented programming, each class describes an entity, and the
methods and fields of that class describe the attributes of the entity. Each
instance of the class (eaobject) holds a separate instance of the entity.

It may seem unnatural, therefore, for relational columns to be based on Java
classes. A more natural correspondence may seem to be between table and
class.

Entities and attributes in the real world

The distinction between entity and attribute may sound clear, but a little
reflection shows that it is commonly not at all clear in practice:

¢ An address may be seen as an attribute of a customer, but an address is
also an entity, with its own attributes of street, city, and so on.

¢ A price may be seen as an attribute of a product, but may also be seen as
an entity, with attributes of amount and currency.

121



Java database design

The utility of the object-relational database lies in exactly the fact that there
are two ways of expressing entities. Y ou can express some entities as tables
and some entities as classesin atable. The next section describes an
example.

Relational database limitations

Consider an insurance company wishing to keep track of its customers. A
customer may be considered as an entity, so it is natural to construct asingle
table to hold all customers of the company.

However, insurance companies handle several kinds of customer. They
handle policy holders, policy beneficiaries, and people who are responsible
for paying policy premiums. For each of these customer types, the insurance
company needs different information. For a beneficiary, little is needed
beyond an address. For a policy holder, health information is required. For
the customer paying the premiums, information may be needed for tax
purposes.

Isit best to handle the separate kinds of customers as separate entities, or to
handl e the customer type as an attribute of the customer? There are
limitations to both approaches:

¢ Building separate tables for each type of customer can lead to avery
complex database design, and to multi-table queries when information
relating to all customersisrequired.

¢ ltisdifficult, if using asingle customer table, to ensure that the
information for each customer is correct. Making columns required for
some customers but not for others, nullable, permits the entry of correct
data, but does not enforce it. There is no simple way in relational
databases to tie default behavior to an attribute of the new entry.

Using classes to overcome relational database limitations

122

Y ou can use a single customer table, with Java class columns for some of the
information, to overcome the limitations of relational databases.

For example, suppose different contact information is necessary for policy
holders than for beneficiaries. Y ou could approach this by defining a column
based on a ContactInfor mation class. Then define classes named

Holder Contactl nfor mation and BeneficiaryContactl nfor mation which
are subclasses of the Contactl nfor mation class. By entering new customers
according to their type, you can be sure that the information is correct.



Chapter 4 Using Java in the Database

Levels of abstraction for relational data

Datain arelational database can be categorized by its purpose. Which of this
data belongs in a Java class, and which is best kept in simple data type
columns?

¢

Referential integrity columns  Primary key columns and foreign key
columns commonly hold identification numbers. These identification
numbers may be called referential data since they primarily define the
structure of the database and the relationships between tables.

Referential data does not generally belong in Java classes. Although you
can make a Java class column a primary key column, integers and other
simple data types are more efficient for this purpose.

Indexed data Columns that are commonly indexed may also belong
outside a Java class. However, the dividing line between data that needs
to be indexed and data that is not to be indexed is vaguely defined.

With computed columns, you can selectively index on a Javafield or
method (or, in fact, some other expression). If you define a Java class
column and then find that it would be useful to index on afield or
method of that column, you can use computed columns to make a
separate column from that field or method.

& For more information, see "Using computed columns with Java
classes' on page 124.

Descriptive data It is common for some of the datain each row to be
descriptive. It is not used for referential integrity purposes, and is
possibly not frequently indexed, but it is data commonly used in queries.
For an employee table, this may include information such as start date,
address, benefit information, salary, and so on. This data can often
benefit from being combined into fewer columns of Java class data

types.

Java classes are useful for abstracting at alevel between that of the single
relational column and the relational table.

123



Using computed columns with Java classes

Using computed columns with Java classes

Uses of computed
columns

Computed columns are a feature designed to make Java database design
easier, to make it easier to take advantage of Java features for existing
databases, and to improve performance of Java data types.

A computed column is a column whose values are obtained from other
columns. Y ou cannot INSERT or UPDATE values in computed columns.
However, any update that attempts to modify the computed column does fire
triggers associated with the column.

There are two main uses of computed columns with Java classes:

¢ Exploding a Java column If you create a column using a Java class
data type, computed columns enable you to index one of the fields of the
class. You can add a computed column that holds the value of the field,
and create an index on that field.

¢ Adding a Java column to a relational table If you wish to use some
of the features of Java classes while disturbing an existing database as
little as possible, you can add a Java column as a computed column,
collecting its values from other columns in the table.

Defining computed columns

Creating tables
with computed
columns

Adding computed
columns to tables

124

Computed columns are declared in the CREATE TABLE or
ALTER TABLE statement.

The following CREATE TABLE statement is used to create the product table
in the Java sample tables:

CREATE TABLE pr oduct
(
id | NTEGER NOT NULL,
JProd asadeno. Product NOT NULL,
name CHAR(15) COWPUTE ( JProd>>nane ),
PRI MARY KEY ("id")
)

The following statement alters the product table by adding another computed
column:

ALTER TABLE product

ADD i nventory_ Val ue | NTEGER
COWUTE ( JProd.quantity * JProd.unit_price )



Chapter 4 Using Java in the Database

Modifying the
expression for
computed columns

Y ou can change the expression used in a computed column using the
ALTER TABLE statement. The following statement changes the expression
that a computed column is based on.

ALTER TABLE tabl e_nane
ALTER col urm- name SET COMPUTE ( expression )

The column is recalculated when this statement is executed. If the new
expression isinvalid, the ALTER TABLE statement fails.

The following statement stops a column from being a computed column.

ALTER TABLE tabl e_nane
ALTER col unm- nane DROP COVWPUTE

The values in the column are not changed when this statement is executed.

Inserting and updating computed columns

Computed columns have some impact on valid INSERT and UPDATE
statements. The jdba.product table in the Java sample tables has a computed
column (name) which we use to illustrate the issues. The table definition is
asfollows:

CREATE TABLE "j dba". " product"

(
"id" | NTEGER NOT NULL,

"JProd" asadeno. Product NOT NULL,
"nane" CHAR(15) COWPUTE( JProd. nane ),
PR MARY KEY ("id")

)

¢ No direct inserts or updates You cannot insert avalue directly into a
computed column. The following statement fails with a Duplicate Insert
Column error:

-- Incorrect statenent
I NSERT | NTO PRODUCT (id, nane)
VALUES( 3006, 'bad insert statenent’ )

Similarly, no UPDATE statement can directly update a computed
column.

¢ Listing column names You must always specify column namesin
INSERT statements on tables with computed columns. The following
statement fails with aWrong Number of Values for Insert error:

-- Incorrect statenent
I NSERT | NTO PRODUCT
VALUES( 3007, new asadeno. Product () )

Instead, you must list the columns, as follows:

125



Using computed columns with Java classes

| NSERT | NTO PRODUCT( id, JProd )
VALUES( 3007, new asadeno. Product () )

¢ Triggers You can definetriggers on a computed column, and any
INSERT or UPDATE statement that affects the column fires the trigger.

When computed columns are recalculated

Recal culating computed columns occurs when;
¢ Any column is deleted, added, or renamed.
¢ Thetableisrenamed.

¢ Any column’s data type or COMPUTE clause is modified.
¢ Avrowisinserted.

¢ Arow isupdated.

Computed columns are not recal culated when queried. If you use a
time-dependent expression, or one that depends on the state of the database
in some other way, then the computed column may not give a proper result.

126



Chapter 4 Using Java in the Database

Configuring memory for Java

This section describes the memory requirements for running Javain the
database and how to set up your server to meet those requirements.

The Java VM requires a significant amount of cache memory.

& For information on tuning the cache, see "Using the cache to improve
performance” on page 152 of the book ASA SQL User’s Guide.

Database and The Java VM uses memory on both a per-database and on a per-connection
connection-level basis.

requirements ¢ The per-database requirements are not r elocatable: they cannot be

paged out to disk. They must fit into the server cache. Thistype of
memory is not for the server; it is for each database. When estimating
cache reguirements, you must sum the requirements for each database
you run on the server.

¢ The per-connection requirements are relocatable, but only as a unit. The
reguirements for one connection are either all in cache, or all in the
temporary file.

How memory is used

Javain the database requires memory for several purposes:

¢ When Javaisfirst used when a server is running, the VM isloaded into
memory, requiring over 1.5 Mb of memory. Thisis part of the
database-wide requirements. An additional VM isloaded for each
database that uses Java.

¢ For each connection that uses Java, a new instance of the VM loads for
that connection. The new instance requires about 200K per connection.

¢ Each class definition that is used in a Java application is loaded into
memory. Thisis held in database-wide memory: separate copies are not
required for individual connections.

¢ Each connection requires a working set of Java variables and application
stack space (used for method arguments and so on).

Managing memory Y ou can control memory use in the following ways:

¢ Setthe overall cache size You must use a cache size sufficient to
meet all the requirements for non-rel ocatable memory.

The cache size is set when the server is started using the - ¢ option.

127



Configuring memory for Java

Starting and
stopping the VM

128

In many cases, a cache size of 8 Mb is sufficient.

¢ Set the namespace size The Java namespace size is the maximum
size, in bytes, of the per database memory allocation.

Y ou can set thisusing the JAVA_NAMESPACE_SIZE option. The
option isglobal, and can only be set by a user with DBA authority.

¢ Set the heap size ThisJAVA_HEAP_SIZE option sets the maximum
size, in bytes, of per-connection memory.

This option can be set for individual connections, but asit affects the
memory available for other usersit can be set only by a user with DBA
authority.

In addition to setting memory parameters for Java, you can unload the VM
when Javais not in use using the STOP JAVA statement. Only a user with
DBA authority can execute this statement. The syntax is simply:

STCP JAVA

The VM loads whenever a Java operation is carried out. If you wish to
explicitly load it in readiness for carrying out Java operations, you can do so
by executing the following statement:

START JAVA



CHAPTER 5

Data Access Using JDBC

About this chapter This chapter describes how to use JDBC to access data.

JDBC can be used both from client applications and inside the database. Java
classes using JDBC provide a more powerful aternative to SQL stored
procedures for incorporating programming logic in the database.

Contents Topic Page
JDBC overview 130
Using the jConnect JDBC driver 136
Using the JDBC-ODBC bridge 141
Establishing JDBC connections 143
Using JDBC to access data 150
Creating distributed applications 158

129



JDBC overview

JDBC overview

JDBC provides a SQL interface for Java applications: if you want to access
relational datafrom Java, you do so using JDBC calls.

Rather than a thorough guide to the JIDBC database interface, this chapter
provides some simple examples to introduce JDBC and illustrates how you
can use it on the client and in the database.

& The examplesillustrate the distinctive features of using JDBC in
Adaptive Server Anywhere. For more information about JDBC
programming, see any JDBC programming book.

JDBC and Y ou can use JDBC with Adaptive Server Anywhere in the following ways:

Adaptive Server

.
Anywhere

.
JDBC resources R

.

130

JDBC on the client Javaclient applications can make JDBC callsto
Adaptive Server Anywhere. The connection takes place through a JDBC
driver. SQL Anywhere Studio includes two JDBC drivers: the jConnect
driver for pure Java applications and a JDBC-ODBC bridge.

In this chapter, the phrase client application applies both to applications
running on a user's machine and to logic running on a middle-tier
application server.

JDBC in the database Javaclassesinstalled into a database can make
JDBC calls to access and modify data in the database using an internal
JDBC driver.

Required software You need TCP/IP to use the Sybase jConnect
driver.

The Sybase jConnect driver may aready be available, depending on
your installation of Adaptive Server Anywhere.

& For more information about the jConnect driver and its location,
see "The jConnect driver files' on page 136.

Example source code You can find source code for the examplesin
this chapter in the file Samples|\ASAlJavalJDBCExamples.java in your
SQL Anywhere directory.

& For moreinformation about how to set up the Java examples,
including the JIDBCExamples class, see " Setting up the Java samples’
on page 86.



Chapter 5 Data Access Using JDBC

Choosing a JDBC driver

Two JDBC drivers are provided for Adaptive Server Anywhere:

¢ jConnect Thisdriverisa100% pure Javadriver. It communicates
with Adaptive Server Anywhere using the TDS client/server protocol.

¢ JDBC-ODBC bridge Thisdriver communicates with Adaptive Server
Anywhere using the Command Seguence client/server protocol. Its
behavior is consistent with ODBC, embedded SQL, and OLE DB
applications.

When choosing which driver to use, you may want to consider the following
factors:

¢ Features Bothdriversare JDK 2 compliant. The JDBC-ODBC bridge
provides fully-scrollable cursors, which are not available in jConnect.

¢ PureJava ThejConnect driver isapure Java solution. The
JDBC-ODBC bridge requires the Adaptive Server Anywhere ODBC
driver and is not a pure Java solution.

¢ Performance TheJDBC-ODBC bridge provides better performance
for most purposes than the jConnect driver.

¢ Compatibility TheTDS protocol used by the jConnect driver is shared
with Adaptive Server Enterprise. Some aspects of the driver’s behavior
are governed by this protocol, and are configured to be compatible with
Adaptive Server Enterprise.

Both drivers are available on Windows 95/98/M e and Windows
NT/2000/XP, as well as supported UNIX and Linux operating systems. They
are not available on NetWare or Windows CE.

JDBC program structure

The following sequence of events typically occur in JIDBC applications:

1 Create a Connection object Calling agetConnection class method
of the Driver M anager class creates a Connection object, and
establishes a connection with a database.

2 Generate a Statement object The Connection object generates a
Statement object.

3 Pass a SQL statement A SQL statement that executed within the
database environment passes to the Statement object. If the statement is
aquery, this action returns a ResultSet object.

131



JDBC overview

The ResultSet object contains the data returned from the SQL
statement, but exposes it one row at atime (similar to the way a cursor
works).

Loop over the rows of the result set The next method of the
ResultSet object performs two actions:

¢ Thecurrent row (the row in the result set exposed through the
ResultSet object) advances one row.

¢ A Boolean value (true/false) returns to indicate whether thereis, in
fact, arow to advance to.

For each row, retrieve the values Valuesare retrieved for each
column in the ResultSet object by identifying either the name or
position of the column. Y ou can use the getDate method to get the value
from a column on the current row.

Java objects can use JDBC objects to interact with a database and get data
for their own use, for example to manipulate or for usein other queries.

JDBC in the database features

The version of JDBC that you can use from Javain the database is
determined by the JDK version that the database is set up to use.

¢

If your database isinitialized with JDK 1.2 or JDK 1.3, you can use the
JDBC 2.0 API.

&> For information on upgrading databases to JDK 1.2 or JDK 1.3,
see "ALTER DATABASE statement" on page 205 of the book ASA SQL
Reference Manual or ""Upgrading a database using the dbupgrad
command-line utility" on page 522 of the book ASA Database
Administration Guide.

If your database isinitialized with JDK 1.1, you can use JDBC 1.2
features. Theinternal JDBC driver for JIDK 1.1 (asajdbc) makes some
features of JDBC 2.0 available from server-side Java applications, but
does not provide full JIDBC 2.0 support.

& For moreinformation, see "Using JDBC 2.0 features from JDK 1.1
databases' on page 132.

Using JDBC 2.0 features from JDK 1.1 databases

This section describes how to access JDBC 2.0 features from databases
initialized with JDK 1.1 support. For many purposes, a better solutionisto
upgrade your version of Javain the databaseto 1.3.

132



Chapter 5 Data Access Using JDBC

JDBC 2.0
restrictions

For databases initialized with JDK 1.1 support, the sybase.sql.ASA package
contains features that are part of JDBC 2.0. To use these JDBC 2.0 features
you must cast your JDBC objects into the corresponding classesin the
sybase.sql.ASA package, rather than the java.sql package. Classes that are
declared asjava.sgl arerestricted to JDBC 1.2 functionality only.

The classesin sybase.sql. ASA are as follows:

JDBC class Sybase internal driver class
java.sgl.Connection sybase.sql.ASA.SAConnection
java.sgl.Statement sybase.sgl . ASA.SAStatement

java.sgl.PreparedStatement sybase.sql . ASA.SAPreparedStatement
java.sgl.CallableStatement sybase.sql . ASA.SACdllableStatement
java.sgl.ResultSetM etaData sybase.sgl.ASA.SAResultSetM etaData
java.sgl.ResultSet sybase.sql.SAResultSet
java.sgl.DatabaseM etaData sybase.sgl.SADatabaseM etaData

The following function provides a ResultSetM etaData object for a prepared
statement without requiring a ResultSet or executing the statement. This
function is not part of the JDBC 1.2 standard.

Resul t Set Met aDat a
sybase. sql . ASA. SAPr epar edSt at enent . descri be()

The following code fetches the previous row in aresult set, a feature not
supported in JDBC 1.2:

i nport java.sql.*;

i nport sybase. sql . asa. *;

Resul t Set rs;

/] nore code here

( ( sybase.sql.asa.SAResultSet)rs ). previous();

The following classes are part of the JDBC 2.0 core interface, but are not

available in the sybase.sgl.ASA package:
¢+ javagyl.Blob
¢+ javagyl.Clob
¢  javagyl.Ref

¢ javasgl.Struct
¢ javasgl.Array
¢ javasgl.Map

133



JDBC overview

The following JDBC 2.0 core functions are not available in the
sybase.sql.ASA package:

Class in Missing functions
sybase.sql.ASA
SAConnection java.util.Map getTypeMap()

void setTypeMap( java.util.Map map )
SAPreparedStatement void setRef( int pidx, java.sgl.Ref r)

void setBlob( int pidx, java.sgl.Blob b)

void setClob( int pidx, java.sql.Clob ¢)

void setArray( int pidx, java.sgl.Array a)
SACallableStatement Object getObject( pidx, java.util.Map map )
java.sgl.Ref getRef( int pidx )

java.sgl.Blob getBlob( int pidx )

java.sgl.Clob getClob( int pidx )
javasgl.Array getArray(int pidx )
SAResultSet Object getObject( int cidx, java.util.Map map )
java.sgl.Ref getRef(int cidx )

java.sgl.Blob getBlob( int cidx )

java.sgl.Clob getClob( int cidx )
javasgl.Array getArray(int cidx )

Object getObject( String cName, java.util.Map map )
java.sgl.Ref getRef( String cName)
java.sgl.Blob getBlob( String cName)
java.sgl.Clob getClob( String cName)

java.sgl.Array getArray( String cName)

Differences between client- and server-side JDBC connections

A difference between JDBC on the client and in the database server liesin
establishing a connection with the database environment.

134



Chapter 5 Data Access Using JDBC

¢

Client side Inclient-side JDBC, establishing a connection requires the
Sybase jConnect JDBC driver or the Adaptive Server Anywhere
JDBC-ODBC bridge. Passing arguments to the

Driver M anager .getConnection establishes the connection. The
database environment is an external application from the perspective of
the client application.

Server-side When using JDBC within the database server, a
connection already exists. A value of jdbc: default: connection passes to
Driver Manager .getConnection, which provides the JDBC application
with the ability to work within the current user connection. Thisisa
quick, efficient, and safe operation because the client application has
already passed the database security to establish the connection. The
user ID and password, having been provided once, do not need to be
provided again. The internal JIDBC driver can only connect to the
database of the current connection.

Y ou can write JDBC classes in such away that they can run both at the client
and at the server by employing a single conditional statement for
constructing the URL. An external connection requires the machine name
and port number, while the internal connection reguires
jdbc:default:connection.

135



Using the jConnect JDBC driver

Using the jConnect JDBC driver

If you wish to use JDBC from aclient application or applet, you must have
the jConnect JDBC driver to connect to Adaptive Server Anywhere
databases.

jConnect isincluded with SQL Anywhere Studio. If you received Adaptive
Server Anywhere as part of another package, jConnect may or may not be
included. Y ou must have jConnect in order to use JDBC from client
applications. Y ou can use JDBC in the database without jConnect.

The jConnect driver files

Setting the
CLASSPATH for
jConnect

Importing the

jConnect classes

136

The jConnect JDBC driver isinstalled into a set of directories under the
Sybasel\Shared directory. Two versions of jConnect are supplied:

¢ jConnect4.5 Thisversion of jConnect isfor use when developing
JDK 1.1 applications. jConnect 4.5 isinstalled into the
Sybasel\Shared\jConnect-4_5 directory.

jConnect 4.5 is supplied as a set of classes.

¢ jConnect5.5 Thisversion of jConnect isfor use when developing
JDK 1.2 or later applications. jConnect 5.5 isinstalled into the
Sybasel|Shared\jConnect-5_5 directory.

jConnect 5.5 is supplied asajar file named jconn2.jar.

Examplesin this chapter use jConnect 5.5. Users of jConnect 4.5 must make
appropriate substitutions.

For your application to use jConnect, the jConnect classes must bein your
classpath at compile time and run time, so the Java compiler and Java
runtime can locate the necessary files.

The following command adds the jConnect 5.5 driver to an existing
CLASSPATH environment variable where path is your SybaselShared
directory.

set cl asspat h=%I asspat h% pat h\ j Connect - 5_5\ cl asses\j conn2.j ar

The following command adds the jConnect 4.5 driver to an existing
CLASSPATH environment variable:

set cl asspat h=%I asspat h% pat h\ j Connect - 4_5\ cl asses

The classesin jConnect are al in the com.sybase package.



Chapter 5 Data Access Using JDBC

If you are using jConnect 5.5, your application must access classesin
com.sybase.jdbc2.jdbc. Y ou must import these classes at the beginning of
each source file:

i mport com sybase. j dbc2. jdbc. *

If you are using jConnect 4.5, the classes are in com.sybase.jdbc. Y ou must
import these classes at the beginning of each sourcefile:

i nport com sybase. jdbc.*

Installing jConnect system objects into a database
If you wish to use jConnect to access system table information (database
metadata), you must add the jConnect system objects to your database.

By default, the jConnect system objects are added to any new database. Y ou
can choose to add the jConnect objects to the database when creating, when
upgrading, or at alater time.

You caninstall the jConnect system objects from Sybase Central or from
Interactive SQL.

% To add jConnect system objects to a database ( Sybase Central ):

1 Connect to the database from Sybase Central as a user with DBA
authority.

2 Intheleft pane of Sybase Central, right-click the database icon and
choose Re-Ingtall jConnect Meta-data Support from the popup menu.

% To add jConnect system objects to a database ( Interactive SQL ):

¢ Connect to the database from Interactive SQL as a user with DBA
authority, and enter the following command in the SQL Statements
pane:

read path\scripts\jcatal og. sql
where path is your SQL Anywhere directory.

Tip

Y ou can also use acommand prompt to add the jConnect system objects
to adatabase. At the command prompt, type:

dbi sgl -c "uid=user; pwd=pud" pat h\scripts\jcatal og. sql

where user and pwd identify a user with DBA authority, and path is your
SQL Anywhere directory.

137



Using the jConnect JDBC driver

Loading the jConnect driver

Before you can use jConnect in your application, load the driver by entering
the following statement:

d ass. f or Nare( " com sybase. j dbc2. j dbc. SybDriver"). new nst ance() ;

Using the newl nstance method works around issues in some browsers.

Supplying a URL for the server

To connect to a database via jConnect, you need to supply a Uniform
Resource Locator (URL) for the database. An example given in the section
"Connecting from a JDBC client application using jConnect" on page 143 is
asfollows:

StringBuffer tenp = new StringBuffer()

/1 Use the jConnect driver...

t enp. append("j dbc: sybase: Tds: ") ;

/1 to connect to the supplied nmachi ne nare...

t enp. append( _coni nfo);

/1 on the default port nunber for ASA ..

t enp. append(": 2638");

// and connect.
Systemout.println(tenp.toString());

conn = Driver Manager . get Connection(tenmp.toString()

_props );
The URL is put together in the following way:

j dbc: sybase: Tds: nachi ne- nane: port - nunber
Theindividual components are:

¢ jdbc:sybase:Tds The Sybase jConnect JDBC driver, using the TDS
application protocoal.

¢ machine-name The IP address or name of the machine on which the
server isrunning. If you are establishing a same-machine connection,
you can use localhost, which means the current machine

¢ port number The port number on which the database server listens.
The port number assigned to Adaptive Server Anywhereis 2638. Use
that number unless there are specific reasons not to do so.

The connection string must be less than 253 charactersin length.

138



Chapter 5 Data Access Using JDBC

Specifying a database on a server

Using the
ServiceName
parameter

Using the
RemotePWD
parameter

Each Adaptive Server Anywhere server may have one or more databases
loaded at atime. The URL as described above specifies a server, but does not
specify a database. The connection attempt is made to the default database on
the server.

Y ou can specify a particular database by providing an extended form of the
URL in one of the following ways.

j dbc: sybase: Tds: nachi ne- nane: port - nunber ?Ser vi ceNanme=DBN

The question mark followed by a series of assignmentsis a standard way of
providing argumentsto a URL. The case of servicename is not significant,
and there must be no spaces around the = sign. The DBN parameter isthe
database name.

A more general method allows you to provide additional connection
parameters such as the database name, or a database file, using the
RemotePWD field. Y ou set RemotePWD as a Properties field using the
setRemotePasswor d() method.

Here is sample code that illustrates how to use the field.

sybDrvr = (SybDriver)d ass. f or Nang(
"com sybase. jdbc2. jdbc. SybDri ver" ).new nstance();

props = new Properties();
props. put( "User", "DBA" );
props. put ( "Password", "SQ" );
sybDrvr . set Renot ePasswor d(

nul I, "dbf=asadeno.db", props );
Connection con = DriverManager. get Connecti on(

"jdbc: sybase: Tds: | ocal host", props );

Using the database file parameter DBF, you can start a database on a server
using jConnect. By default, the database is started with autostop=YES. If you
specify a DBF or DBN of utility_db, then the utility database will
automatically be started.

& For moreinformation on the utility database, see "Using the utility
database" on page 226 of the book ASA Database Administration Guide.

Database options set for jConnect connections

When an application connects to the database using the jConnect driver, two
stored procedures are called:

1 sp_tsql_environment sets some database options for compatibility with
Adaptive Server Enterprise behavior.

139



Using the jConnect JDBC driver

2 Thespt_mda procedure is then called, and sets some other options. In
particular, the spt_mda procedure determines the
QUOTED_IDENTIFIER setting. To change the default behavior, you
should modify the spt_mda procedure.

140



Chapter 5 Data Access Using JDBC

Using the JDBC-ODBC bridge

Required files

Establishing a
connection

The JDBC-ODBC bridge provides a JDBC driver that has some performance
benefits and feature benefits compared to the pure Java jConnect JDBC
driver, but which is not a pure-Java sol ution.

& For information on choosing which JDBC driver to use, see "Choosing
aJDBC driver" on page 131.

The Java component of the JDBC-ODBC bridge isincluded in the jodbc.jar
fileinstalled into the Java subdirectory of your SQL Anywhere installation.
For Windows, the native component is dbjodbc8.dll in the win32 subdirectory
of your SQL Anywhere installation; for UNIX and Linux, the native
component is dbjodbc8.so. This component must be in the system path.
When deploying applications using this driver, you must also deploy the
ODBC driver files.

The following code illustrates how to establish a connection using the JDBC-
ODBC bridge:

String driver, url;
Connection conn;

driver="ianywhere. ni.jdbcodbc. | Driver";
url = "jdbc: odbc: dsn=ASA 8.0 Sanpl e";

G ass. forNane( driver );

conn = Driver Manager. get Connection( url );

There are several things to note about this code:

¢ Astheclassesareloaded using d ass. f or Nane, the package containing
the JIDBC-ODBC bridge does not have to be imported using i npor t
statements.

¢ jodbc.jar must be in your classpath when you run the application.

¢ TheURL containsjdbc:odbc: followed by a standard ODBC
connection string. The connection string is commonly an ODBC data
source, but you can also use explicit semicolon separated individual
connection parameters in addition to or instead of the data source. For
more information on the parameters that you can use in a connection
string, see "Connection parameters' on page 70 of the book ASA
Database Administration Guide.

If you do not use a data source, you should specify the ODBC driver to
use by including the driver parameter in your connection string:

url = "jdbc: odbc:";
url += "driver=Adaptive Server Anywhere 8.0;...";

141



Using the JDBC-ODBC bridge

Character sets

142

On UNIX the JDBC-ODBC bridge does not use ODBC Unicode bindings or
callsand does not carry out character trandations. Sending non-ASCI| data
through the bridge leads to data corruption.

On Windows the JIDBC-ODBC bridge does use ODBC Unicode bindings
and calls to translate among character sets.



Chapter 5 Data Access Using JDBC

Establishing JDBC connections

Connecting from

This section presents classes that establish a JDBC database connection from
aJava application. The examplesin this section use jConnect (client side) or
Javain the database (server side). For information on establishing
connections using the JDBC-ODBC bridge, see "Using the JIDBC-ODBC
bridge" on page 141.

a JDBC client application using jConnect

If you wish to access database system tables (database metadata) from a
JDBC application, you must add a set of jConnect system objects to your
database. The internal JDBC driver classes and jConnect share stored
procedures for database metadata support. These procedures are installed to
all databases by default. The dbinit-i option prevents this installation.

& For more information about adding the jConnect system objectsto a
database, see "Using the jConnect JDBC driver" on page 136.

The following complete Java application is a command-line application that
connects to a running database, prints a set of information to your
command-line, and terminates.

Establishing a connection is the first step any JDBC application must take
when working with database data.

&~ This example illustrates an external connection, which is aregular
client/server connection. For information on how to create an internal
connection from Java classes running inside the database server, see
"Establishing a connection from a server-side JDBC class" on page 146.

External connection example code

The following is the source code for the methods used to make a connection.
The source code can be found in the main method and the ASAConnect
method of the file JDBCExamples.java in the Samples|\ASAlJava directory
under your SQL Anywhere directory:

i nport java.sql.*; /1 JDBC

i nport com sybase. j dbc2. j dbc. *; /1 Sybase j Connect
i nport java.util.Properties; /'l Properties

i nport sybase. sql. *; Il Sybase utilities

i nport asadeno. *; /1 Exanpl e cl asses

143



Establishing JDBC connections

public class JDBCExanpl es{
private static Connection conn;

public static void main( String args[] ){
/1l Establish a connection
conn = nul |l ;
String machineNane = ( args.length == 1 ? args[ 0]
"l ocal host" );
ASAConnect ( "DBA', "SQ.", nachi neNane );
if( connl=null ) {
Systemout. println( "Connection successful" );
}el se{
Systemout. println( "Connection failed" );
}

try{
get Gbj ect Col um() ;
get bj ect Col umCast C ass() ;
insert Qoj ect ();

catch( Exception e ){
Systemout.printin( "Error: " + e.getMessage() );
e.printStackTrace();
}
}

private static void ASAConnect( String userlD,
String password,
String machi neNanme ) {
// Connect to an Adaptive Server Anywhere
String coninfo = new String( machi neNane );

Properties props = new Properties();
props. put( "user", userlD);

props. put ( "password", password );
props. put (" DYNAM C_PREPARE", "true");

/1 Load j Connect

try {
Cl ass. forNane( "com sybase. j dbc2.j dbc. SybDri ver"

). newl nst ance();
String dbURL = "jdbc: sybase: Tds: " + nachi neNane +
": 2638/ 27JCONNECT_VERS| ON=5";

Systemout. println( dbURL );
conn = DriverManager. get Connection( dbURL , props

}
catch ( Exception e ) {
Systemout.printin( "Error: " + e.getMessage() );
e.printStackTrace();
}
}

144



Chapter 5 Data Access Using JDBC

How the external connection example works

Importing
packages

The main method

The ASAConnect
method

The external connection example is a Java command-line application.

The application requires severa libraries, which areimported in the first
lines of JDBCExamples.java:

¢ Thejava.sgl package contains the Sun Microsystems JDBC classes,
which are required for all JDBC applications. You'l find it in the
classes.zip file in your Java subdirectory.

¢ Imported from com.sybase.jdbc2.jdbc, the Sybase jConnect JDBC
driver isrequired for all applications that connect using jConnect.

¢ Theapplication uses aproperty list. Thejava.util.Propertiesclassis
required to handle property lists. You'll find it in the classes.zip filein
your Java subdirectory.

¢ Theasademo package contains classes used in some samples. You'll
find it in the Samples|ASAl\Javalasademo.jar file.

Each Java application requires a class with a method named main, which is
the method invoked when the program starts. In this simple example,
JDBCExamples.main is the only method in the application.

The JDBCExamples.main method carries out the following tasks:

1 Processes the command-line argument, using the machine name if
supplied. By default, the machine name islocalhost, which is
appropriate for the personal database server.

2 Cdlsthe ASAConnect method to establish a connection.

3 Executes several methods that scroll datato your command-line.

The JDBCExamples. ASAConnect method carries out the following tasks:
1 Connectsto the default running database using Sybase jConnect.

¢ Class.forName loads jConnect. Using the newl nstance method, it
works around issues in some browsers.

¢ The StringBuffer statements build up a connection string from the
literal strings and the supplied machine name provided on the
command-line.

¢ DriverManager.getConnection establishes a connection using the
connection string.

2 Returns control to the calling method.

145



Establishing JDBC connections

Running the external connection example

This section describes how to run the external connection example.

+ To create and execute the external connection example application:
1 Openthe command prompt.
2 Changeto your SQL Anywhere directory.
3 Changeto the SampleslASAlJava subdirectory.
4

Ensure the database is |oaded onto a database server running TCP/IP.
Y ou can start such a server on your local machine using the following
command (from the Samples|ASAlJava subdirectory):

start dbeng8 ..\..\..\asadeno

5 Enter the following at the command prompt to run the example:
j ava JDBCExanpl es

If you wish to try this against a server running on another machine, you
must enter the correct name of that machine. The default islocalhost,
which is an alias for the current machine name.

6 Confirmthat alist of people and products appears at the command
prompt.

If the attempt to connect fails, an error message appears instead.
Confirm that you have executed all the steps as required. Check that
your CLASSPATH is correct. Anincorrect CLASSPATH resultsin a
failureto locate a class.

& For more information about using jConnect, see "Using the jConnect
JDBC driver" on page 136, and see the online documentation for jConnect.

Establishing a connection from a server-side JDBC class

SQL statementsin JDBC are built using the cr eateStatement method of a
Connection object. Even classes running inside the server need to establish a
connection to create a Connection object.

Establishing a connection from a server-side JDBC classis more
straightforward than establishing an external connection. Because a user
already connected executes the server-side class, the class simply usesthe
current connection.

146



Chapter 5 Data Access Using JDBC

Server-side connection example code

The following is the source code for the example. Y ou can find the source
code in the I nter nalConnect method of
Samples\ASAlJavalJDBCExamples.java under your SQL Anywhere

directory:
public static void Internal Connect() {
try {
conn =

Dri ver Manager . get Connecti on("j dbc: def aul t: connecti on");
Systemout.printin("Hello Wrld");

}

catch ( Exception e ) {
Systemout.println("Error: " + e.get Message());
e.printStackTrace();

}
}
}

How the server-side connection example works

In this simple example, I nternalConnect() is the only method used in the
application.

The application requires only one of the libraries (JDBC) imported in the
first line of the JDBCExamples.java class. The others are for external
connections. The package named java.sql contains the JDBC classes.

The Inter nalConnect() method carries out the following tasks:
1 Connectsto the default running database using the current connection:

¢ DriverManager.getConnection establishes a connection using a
connection string of jdbc: default:connection.

2 PrintsHello World to the current standard output, which is the server
window. System.out.printin carries out the printing.

3 If thereisan error in the attempt to connect, an error message appearsin
the server window, together with the place where the error occurred.

Thetry and catch instructions provide the framework for the error
handling.

4 Terminates the class.

Running the server-side connection example

This section describes how to run the server-side connection example.

147



Establishing JDBC connections

% To create and execute the internal connection example application:

1

If you have not already done so, compile the JDBCExamples.java file. If
you are using the JDK, you can do the following in the
Samples|ASAlJava directory from a command prompt:

j avac JDBCExanpl es. j ava

Start a database server using the sample database. Y ou can start such a
server on your local machine using the following command (from the
Samples|ASAlJava subdirectory):

start dbeng8 ..\..\..\asadeno

The TCP/IP network protocol is not necessary in this case since you are
not using jConnect.

Install the class into the sample database. Once connected to the sample
database, you can do this from Interactive SQL using the following
command:

I NSTALL JAVA NEW
FROM FI LE ’ pat h\ Sanpl es\ ASA\ Java\ JDBCExanpl es. cl ass’

where path is the path to your installation directory.

Y ou can also install the class using Sybase Central. While connected to
the sampl e database, open the Java Objects folder and double-click Add
Java Class. Then follow the instructions in the wizard.

Y ou can now call the I nter nalConnect method of this class just as you
would a stored procedure:

CALL JDBCExanpl es>>I nt er nal Connect ()

Thefirst time aJavaclassis called in a session, the internal Java virtua
machine must be loaded. This can take afew seconds.

Confirm that the message Hello World prints on the server screen.

Notes on JDBC connections

¢

148

Autocommit behavior The JDBC specification requires that, by
default, a COMMIT is performed after each data modification statement.
Currently, the server-side JIDBC behavior isto commit. Y ou can control
this behavior using a statement such as the following:

conn. set AutoCommit ( false )

where conn is the current connection object.



Chapter 5 Data Access Using JDBC

Connection defaults From server-side JDBC, only thefirst call to
getConnection( " jdbc:default:connection” ) creates a new connection
with the default values. Subsequent calls return a wrapper of the current
connection with all connection properties unchanged. If you set
AutoCommit to OFF in your initial connection, any subsequent
getConnection calls within the same Java code return a connection with
AutoCommit set to OFF.

Y ou may wish to ensure that closing a connection resets the connection
properties to their default values, so that subsequent connections are
obtained with standard JDBC values. The following type of code
achievesthis:

Connection conn = DriverManager. get Connection("");
bool ean ol dAut oCommt = conn. get Aut oCommi t ();

try {
/! do code here

}
finally {

conn. set Aut oComm t ( ol dAut oCommit );
}

This discussion applies not only to AutoCommit, but also to other
connection properties such as Transactionl solation and isReadOnly.

149



Using JDBC to access data

Using JDBC to access data

Java applications that hold some or all classes in the database have
significant advantages over traditional SQL stored procedures. At an
introductory level, however, it may be helpful to use the parallels with SQL
stored procedures to demonstrate the capabilities of JDBC. In the following
examples, we write Java classes that insert arow into the Department table.

As with other interfaces, SQL statementsin JDBC can be either static or
dynamic. Static SQL statements are constructed in the Java application and
sent to the database. The database server parses the statement, selects an
execution plan, and executes the statement. Together, parsing and selecting
an execution plan are referred to as preparing the statement.

If asimilar statement has to be executed many times (many insertsinto one
table, for example), there can be significant overhead in static SQL because
the preparation step has to be executed each time.

In contrast, a dynamic SQL statement contains placeholders. The statement,
prepared once using these placeholders, can be executed many times without
the additional expense of preparing.

In this section, we use static SQL. Dynamic SQL isdiscussed in alater
section.

Preparing for the examples

Sample code

150

This section describes how to prepare for the examples in the remainder of
the chapter.

The code fragments in this section are taken from the complete class
Samples|ASA\JavalJDBCExamples.java.

+ To install the JDBCExamples class:

1 If you have not already done so, install the JDBCExamples.class file
into the sample database. Once connected to the sample database from
Interactive SQL, enter the following command in the SQL Statements
pane:

I NSTALL JAVA NEW
FROM FI LE ’ pat h\ Sanpl es\ ASA\ Java\ JDBCExanpl es. cl ass’

where path is the path to your installation directory.

You can also install the class using Sybase Central. While connected to
the sample database, open the Java Objects folder and double-click Add
Java Class. Then follow the instructions in the wizard.



Chapter 5 Data Access Using JDBC

Inserts, updates, and deletes using JDBC

The Statement object executes static SQL statements. Y ou execute SQL
statements such as INSERT, UPDATE, and DELETE, which do not return
result sets, using the executeUpdate method of the Statement object.
Statements, such as CREATE TABLE and other data definition statements,
can also be executed using executeUpdate.

The following code fragment illustrates how JDBC carries out INSERT
statements. It uses an internal connection held in the Connection object
named conn. The code for inserting values from an external application
using JDBC would need to use a different connection, but otherwise would
be unchanged.

public static void InsertFixed() {
/Il returns current connection
conn =
Dri ver Manager . get Connecti on("j dbc: def aul t: connecti on");
/1 D sabl e aut ocommt
conn. set Aut oComm t( false );

Statement stnmt = conn.createStatenent();

Integer | Rows = new I nteger( stnt.executeUpdate
("I NSERT | NTO Department (dept_id, dept_nane )"
+ "VALUES (201, 'Eastern Sales’)"
) )
/1 Print the nunber of rows updated
Systemout. println(lRows.toString() + " row
inserted" );

}

Source code available

This code fragment is part of the InsertFixed method of the
JDBCExamples classincluded in the Samples|ASAlJava subdirectory of
your installation directory.

Notes ¢ The setAutoCommit method turns off the AutoCommit behavior so
changes are only committed if you execute an explicit COMMIT
instruction.

¢ TheexecuteUpdate method returns an integer which reflects the
number of rows affected by the operation. In this case, a successful
INSERT would return avalue of one (1).

151



Using JDBC to access data

¢ Theinteger return type convertsto an I nteger object. The Integer class
isawrapper around the basic int data type, providing some useful
methods such astoString().

¢ TheInteger | Rows convertsto a string to be printed. The output goes to
the server window.

< To run the JDBC Insert example:
1 Using Interactive SQL, connect to the sample database as user ID DBA.

2 Ensurethe JDBCExamples class has beeninstalled. It isinstalled
together with the other Java examples classes.

& For moreinformation about installing the Java examples classes,
see " Setting up the Java samples' on page 86.

3 Call the method as follows:
CALL JDBCExanpl es>>I nsert Fi xed()
4 Confirm that arow has been added to the department table.

SELECT *
FROM depar t ment

The row with ID 201 is not committed. Y ou can execute a ROLLBACK
statement to remove the row.

In this example, you have seen how to create a very simple JDBC class.
Subsequent examples expand on this.

Passing arguments to Java methods
We can expand the I nsertFixed method to illustrate how arguments are
passed to Java methods.

The following method uses arguments passed in the call to the method as the
valuesto insert:

public static void InsertArguments(
String id, String name) {

try {
conn = DriverManager. get Connecti on(
"jdbc: defaul t:connection" );
String sql Str = "I NSERT | NTO Departnent "
+ " ( dept_id, dept_name )"
+ " VALUES (" + id+ ", '™ +nane + "")"

/| Execute the statenent
Statenent stnt = conn.createStatemnment();

152



Chapter 5 Data Access Using JDBC

Notes ¢

Integer | Rows = new I nteger( stnt.executeUpdat e(
sql Str.toString() ) );

/1 Print the nunber of rows updated
Systemout.println(lRows.toString() + " row
inserted" );

catch ( Exception e ) {
Systemout.printin("Error: " + e.get Message());
e.printStackTrace();

}
}

The two arguments are the department 1D (an integer) and the
department name (a string). Here, both arguments pass to the method as
strings because they are part of the SQL statement string.

The INSERT is a static statement and takes no parameters other than the
SQL itself.

If you supply the wrong number or type of arguments, you receive the
Procedure Not Found error.

% To use a Java method with arguments:

1

Queries using JDBC

If you have not already installed the JIDBCExamples.class file into the
sampl e database, do so.

Connect to the sample database from I nteractive SQL and enter the
following command:

cal | JDBCExanpl es>>I nsert Argunments( '203', 'Northern
Sal es’ )

Verify that an additional row has been added to the Department table:

SELECT *
FROM Depar t nent

Roll back the changes to |eave the database unchanged:
ROLLBACK

The Statement object executes static queries, as well as statements that do
not return result sets. For queries, you use the executeQuery method of the
Statement object. Thisreturns the result set in aResultSet object.

153



Using JDBC to access data

The following code fragment illustrates how queries can be handled within
JDBC. The code fragment places the total inventory value for a product into
avariable named inventory. The product nameis held in the String variable
prodname. This example is available as the Query method of the
JDBCExamplesclass.

The example assumes an internal or external connection has been obtained
and is held in the Connection object named conn.

public static int Query () {
int max_price = 0;
try{
conn = DriverManager. get Connect i on(
"j dbc: defaul t: connection" );

/1 Build the query
String sgl Str = "SELECT id, unit_price "
+ "FROM product " ;

/| Execute the statenent
Statenent stnt = conn.createStatemnment();
ResultSet result = stnt.executeQuery( sql Str );

while( result.next() ) {
int price = result.getlnt(2);
Systemout.printin( "Priceis " + price);
if( price > max_price ) {

nmax_price = price ;

}
}
catch( Exception e ) {
Systemout.println("Error: " + e.get Message());
e.printStackTrace();
}
return max_price;
}
Running the Once you have installed the JDBCExamples class into the sample database,
example you can execute this method using the following statement in
Interactive SQL:
sel ect JDBCExanpl es>>Query()
Notes ¢ The query selects the quantity and unit price for all products named
prodname. These results are returned into the ResultSet object named
result.

¢ Thereisaloop over each of the rows of the result set. The loop uses the
next method.

154



Chapter 5 Data Access Using JDBC

¢ For each row, the value of each column isretrieved into an integer
variable using the getl nt method. ResultSet also has methods for other
data types, such as getString, getDate, and getBinaryString.

The argument for the getl nt method is an index number for the column,
starting from 1.

Data type conversion from SQL to Javais carried out according to the
information in " SQL to Java data type conversion" on page 85 of the
book ASA SQL Reference Manual.

¢ Adaptive Server Anywhere supports bidirectional scrolling cursors.
However, JDBC provides only the next method, which corresponds to
scrolling forward through the result set.

¢ The method returns the value of max_price to the calling environment,
and Interactive SQL displaysit on the Results tab in the Results pane.

Using prepared statements for more efficient access

Example

If you use the Statement interface, you parse each statement you send to the
database, generate an access plan, and execute the statement. The steps prior
to actual execution are called preparing the statement.

Y ou can achieve performance benefitsif you use the Prepar edStatement
interface. This allows you to prepare a statement using placeholders, and
then assign val ues to the placeholders when executing the statement.

Using prepared statements is particularly useful when carrying out many
similar actions, such as inserting many rows.

& For more information about prepared statements, see " Preparing
statements' on page 12.

The following example illustrates how to use the Pr epar ed Statement
interface, although inserting a single row is not a good use of prepared
statements.

The following method of the JDBCExamples class carries out a prepared
statement:

public static void JlinsertPrepared(int id, String nane)

try {
conn = DriverManager. get Connect i on(

"jdbc: defaul t:connection");

/1 Build the | NSERT st at enent

/1 ? is a placehol der character

String sqgl Str = "I NSERT | NTO Departnent "
+ "( dept_id, dept_nanme ) "

155



Using JDBC to access data

+"VALUES ( 2, ?)"

/1 Prepare the statenent
Prepar edSt at enent stnt = conn. prepar eSt at ement (
sql Str );

stnt.setInt(1, id);
stm.setString(2, nane );
I nteger | Rows = new | nteger (
stnt. execut eUpdate() );

/1 Print the nunber of rows updated
Systemout.println(lRows.toString() + " row
inserted" );

}

catch ( Exception e ) {
Systemout.println("Error: " + e.get Message());
e.printStackTrace();

}
}
Running the Once you have installed the JIDBCExamples class into the sample database,
example you can execute this example by entering the following statement:

cal | JDBCExanpl es>>| nsert Prepar ed(
202, 'Eastern Sales’ )

The string argument is enclosed in single quotes, which is appropriate for

SQL. If you invoke this method from a Java application, use double quotesto

delimit the string.

Inserting and retrieving objects

Asan interface to relational databases, JDBC is designed to retrieve and
manipulate traditional SQL data types. Adaptive Server Anywhere also

provides abstract data types in the form of Java classes. The way you access

these Java classes using JDBC depends on whether you want to insert or
retrieve the objects.

& For moreinformation on getting and setting entire objects, see
"Creating distributed applications' on page 158.

Retrieving objects
Y ou can retrieve objects, their fields, and their methods by:

156



Chapter 5 Data Access Using JDBC

Inserting objects

¢ Accessing methods and fields Java methods and fields can be
included in the select-list of aquery. A method or field then appearsasa
column in the result set, and can be accessed using one of the standard
ResultSet methods, such as getInt or getString.

¢ Retrieving an object If you include a column with a Java class data
typein aquery select list, you can use the ResultSet getObject method
to retrieve the object into a Java class. Y ou can then access the methods
and fields of that object within the Java class.

From a server-side Java class, you can use the JDBC setObject method to
insert an object into a column with Java class data type.

Y ou can insert objects using a prepared statement. For example, the
following code fragment inserts an object of type MyJavaClass into a column
of table T:

java. sql . PreparedStatenent ps =

conn. prepareStatenent ("insert T values( ? )" );
ps.sethject( 1, new M/ Javad ass() );
ps. execut eUpdat e() ;

An alternative isto set up a SQL variable that holds the object and then to
insert the SQL variableinto the table.

Miscellaneous JDBC notes

¢ Access permissions Likeall Java classesin the database, classes
containing JDBC statements can be accessed by any user. Thereis no
equivalent to the GRANT EXECUTE statement that grants permission
to execute procedures, and there is no need to qualify the name of aclass
with the name of its owner.

¢ Execution permissions Javaclasses are executed with the
permissions of the connection executing them. This behavior is different
to that of stored procedures, which execute with the permissions of the
owner.

157



Creating distributed applications

Creating distributed applications

Related tasks

Requirements for
distributed
applications

158

Inadistributed application, parts of the application logic run on one
machine, and parts run on another machine. With Adaptive Server
Anywhere, you can create distributed Java applications, where part of the
logic runs in the database server, and part on the client machine.

Adaptive Server Anywhere is capable of exchanging Java objects with an
external Javaclient.

Having the client application retrieve a Java object from a database is the key
task in adistributed application This section describes how to accomplish
that task.

In other parts of this chapter, we described how to retrieve several tasks
related to retrieving objects, but which should not be confused with
retrieving the object itself. For example:

¢ "Querying Java objects' on page 106 describes how to retrieve an object
into a SQL variable. This does not solve the problem of getting the
object into your Java application.

¢ "Querying Java objects' on page 106 also describes how to retrieve the
public fields and the return value of Java methods. Again, thisisdistinct
from retrieving an object into a Java application.

¢ "Inserting and retrieving objects’ on page 156 describes how to retrieve
objects into server-side Java classes. Again, thisis not the same as
retrieving them into a client application.

There are several tasks in building a distributed application.

To build a distributed application:

1 Any classrunning in the server must implement the Serializable
interface. Thisisvery simple.

2 Theclient-side application must import the class so the object can be
reconstructed on the client side.

3 Usethe sybase.sql. ASAULtils.toByteArray method on the server side to
serialize the object. Thisis only necessary for Adaptive Server
Anywhere version 6.0.1 and earlier.

4  Usethe sybase.sgl.ASAULtils.fromByteArray method on the client side
to reconstruct the object. Thisis only necessary for Adaptive Server
Anywhere version 6.0.1 and earlier.

These tasks are described in the following sections.



Chapter 5 Data Access Using JDBC

Implementing the Serializable interface

Objects pass from the server to a client application in serialized form. This
means that each row contains the following information:

¢ A version identifier.

¢ Anidentifier for the class (or subclass) that is stored.

¢ Thevaluesof non-static, non-transient fields in the class.
¢ Other overhead information.

For an object to be sent to a client application, it must implement the
Serializable interface. Fortunately, thisisavery simple task.

To implement the Serializable interface:
¢ Add the wordsimplementsjava.io.Serializable to your class definition.

For example, Samples|\ASAl\Javalasademo\Product.java implements the
Serializable interface by virtue of the following declaration:

public class Product inplenents java.io.Serializable

Implementing the Serializable interface amounts to simply declaring that
your class can be seriaized.

The Serializable interface contains no methods and no variables. Serializing
an object convertsit into a byte stream, which alows it to be saved to disk or
sent to another Java application where it can be reconstituted or deserialized.

A serialized Java object in a database server, sent to a client application and
deserialized, isidentical in every way to its original state. Some variablesin
an object, however, either don't need to be or, for security reasons, should
not be serialized. Those variables are declared using the keyword transient,
asin the following variable declaration.

transient String password;

When an object with this variable is deserialized, the variable always
contains its default value, null.

Custom serialization can be accomplished by adding writeObject() and
readObj ect() methods to your class.

&> For moreinformation about serialization, see Sun Microsystems' Java
Development Kit (JDK).

159



Creating distributed applications

Importing the class on the client side

On the client side, any class that retrieves an object has to have accessto the
proper class definition to use the object. To use the Product class, which is
part of the asademo package, you must include the following line in your
application:

i nport asadeno. *

The asademo.jar file must be included in your CLASSPATH for this
package to be located.

A sample distributed application

160

The JDBCExamples.java class contains three methods that illustrate
distributed Java computing. These are al called from the main method. This
method is called in the connection example described in " Connecting from a
JDBC client application using jConnect” on page 143, and is an example of a
distributed application.

Here is the getObjectColumn method from the JDBCExamples class.

private static void get QbjectColum() throws Exception {
/!l Return a result set froma col um contai ni ng
/1 Java objects

asadeno. ContactInfo ci;

String nang;

String sComent ;

if (conn!=null ) {
Statenment stnt = conn.createStatenent();
ResultSet rs = stnt.executeQery(
"SELECT JCont act I nfo FROM j dba. cont act™
)
while ( rs.next() ) {
ci = ( asadeno.Contactlnfo )rs.getObject(1);

Systemout.printIn( "\n\tStreet: " + ci.street +
"Aty: " +ci.city +
"\n\tState: " + ci.state +
"Phone: " + ci.phone +
SLIDE
}

}
}

The getObject method is used in the same way asin the internal Java case.



Chapter 5 Data Access Using JDBC

Older method

getObject and setObject recommended

The getObject and setObject methods remove the need for explicit
serialization and deserialization that was needed in earlier versions of the
software. The current section describes that older method for users who
are maintaining code that uses these techniques.

In this section we describe how one of these examples works. Y ou can study
the code for the other examples.

Serializing and Hereisthe serializeColumn method of an old version of the
deserializing query JDBCExamples class.
results

private static void serializeColum() throws Exception {
Statenent stnt;
Resul t Set rs;
byte arrayb[];
asadeno. Contactlnfo ci;
String nang;

if (conn!=null ) {
stnt = conn.createStatemnent();
rs = stnt.executeQuery( "SELECT
sybase. sql . ASAUti | s. t oByt eArray( JName. get Nare() )
AS Nane,
sybase. sql . ASAUt i | s. t oByt eArray(
jdba. contact. JContactInfo )
FROM j dba. contact" );

while ( rs.next() ) {
arrayb = rs. getBytes("Nane");
nane = ( String
) sybase. sql . ASAUt i | s. fronByteArray( arrayb );
arrayb = rs. getBytes(2);

ci =
(asadeno. Cont act | nf o) sybase. sql . ASAU i | s. fronByt eArray(
arrayb );
Systemout.println( "Nane: " + nane +
"\n\tStreet: " + ci.street +
"\mtdty: " +ci.city +
"\n\tState: " + ci.state +
"\n\t Phone: " + ci.phone +
"\n" )]
}

Systemout.println( "\n\n" );
}
}

Here is how the method works:

161



Creating distributed applications

A connection already exists when the method is called. The connection
object is checked, and as long as it exists, the code executes.

A SQL query is constructed and executed. The query is as follows:

SELECT
sybase. sql . ASAUti | s. toByt eArray( JNane. get Nare() )
AS Nane,
sybase. sql . ASAUti | s. t oByt eArray(
j dba. contact. JContactInfo )
FROM j dba. cont act

This statement queries the jdba.contact table. It gets information from
the IName and the JContactl nfo columns. Instead of just retrieving the
column itself, or amethod of the column, the

sybase.sql. ASAULtils.toByteArray function converts the valuesto a
byte stream so it can be serialized.

The client loops over the rows of the result set. For each row, the value
of each column is deserialized into an object.

The output (System.out.println ) shows that the fields and methods of
the object can be used as they could in their original state.

Other features of distributed applications

162

There are two other methods in JDBCExamples.java that use distributed
computing:

¢

serializeVariable This method creates a native Java object referenced
by a SQL variable on the database server and passes it back to the client
application.

serializeColumnCastClass This method islike the serializeColumn
method, but demonstrates how to reconstruct subclasses. The column
that is queried (JProd from the product table) is of datatype
asademo.Product. Some of the rows are asademo.Hat, whichisa
subclass of the Product class. The proper class is reconstructed on the
client side.



CHAPTER 6

Embedded SQL Programming

About this chapter

Contents

This chapter describes how to use the embedded SQL programming interface

to Adaptive Server Anywhere.
Topic Page
Introduction 164
Sample embedded SQL programs 171
Embedded SQL datatypes 177
Using host variables 181
The SQL Communication Area (SQLCA) 188
Fetching data 193
Static and dynamic SQL 202
The SQL descriptor area (SQLDA) 206
Sending and retrieving long values 214
Using stored procedures 220
Embedded SQL programming techniques 224
The SQL preprocessor 226
Library function reference 230
Embedded SQL command summary 247

163



Introduction

Introduction

164

Embedded SQL is a database-programming interface for the C and C++
programming languages. It consists of SQL statements intermixed with
(embedded in) C or C++ source code. These SQL statements are translated
by a SQL preprocessor into C or C++ source code, which you then compile.

At runtime, embedded SQL applications use an Adaptive Server Anywhere
interface library to communicate with database server. The interface library
isadynamic link library (DL L) or shared library on most platforms.

¢+ On Windows operating systems, the interface library is dblib8.dll.

¢ On UNIX operating systems, the interface library is libdblib8.so,
libdblib8.sl, or libdblib8.a, depending on the operating system.

Adaptive Server Anywhere provides two flavors of embedded SQL. Static
embedded SQL is simpler to use but less flexible than dynamic embedded
SQL. Both flavors are discussed in this chapter.



Chapter 6 Embedded SQL Programming

Development process overview

T
N

C Source Code

i

SQL
Preprocessor
A
C Compiler
A
Linker DLL Import

Library

!

A

Custom

Application g DL 'Qatabase

Once the program has been successfully preprocessed and compiled, it is
linked with theimport library for the Adaptive Server Anywhere interface
library to form an executable file. When the database is running, this
executable file uses the Adaptive Server Anywhere DLL to interact with the
database. The database does not have to be running when the program is
preprocessed.

For Windows, there are separate import libraries for Watcom C/C++, for
Microsoft Visual C++, and for Borland C++.

& Using import librariesis the standard devel opment method for
applications that call functionsin DLLs. Adaptive Server Anywhere also
provides an alternative, and recommended method which avoids the use of
import libraries. For more information, see "Loading the interface library
dynamically" on page 169.

165



Introduction

Running the SQL preprocessor

The SQL preprocessor is an executable named sqlpp.exe.
Command line The SQLPP command lineis as follows:
sqlpp [ options | SQL-filename [output-filename]

The SQL preprocessor processes a C program with embedded SQL before
the C or C++ compiler is run. The preprocessor translates the SQL
statements into C/C++ language source that is put into the output file. The
normal extension for source programs with embedded SQL is.sqc. The
default output filename is the SQL-filename with an extension of .c. If the
L -filename already has a .c extension, then the output filename extension
is.cc by default.

& For afull listing of the command-line options, see "The SQL
preprocessor” on page 226.

Supported compilers

The C language SQL preprocessor has been used in conjunction with the
following compilers:

Operating system Compiler Version
Windows Watcom C/C++ 9.5 and above
Windows Microsoft Visual C/C++ 1.0 and above
Windows Borland C++ 45

Windows CE Microsoft Visual C/C++ 5.0

UNIX GNU or native compiler

NetWare Watcom C/C++ 10.6, 11

&~ For ingtructions on building NetWare NLMss, see "Building NetWare
Loadable Modules' on page 170.

Embedded SQL header files

All header files are installed in the h subdirectory of your Adaptive Server
Anywhere installation directory.

166



Chapter 6 Embedded SQL Programming

Import libraries

Filename Description

sqlca.h Main header file included in al embedded SQL programs. This
file includes the structure definition for the SQL Communication
Area (SQLCA) and prototypes for al embedded SQL database
interface functions.

sqlda.h SQL Descriptor Area structure definition included in embedded
SQL programs that use dynamic SQL.

sqldef.h Definition of embedded SQL interface datatypes. Thisfile also
contains structure definitions and return codes needed for starting
the database server from a C program.

sqlerr.h Definitions for error codes returned in the sglcode field of the
SQLCA.

sqlstate.h Definitions for ANSI/ISO SQL standard error states returned in
the sglstate field of the SQLCA.

pshpk1.h, These headers ensure that structure packing is handled correctly.

pshpk2.h, They support Watcom C/C++, Microsoft Visua C++, IBM

poppk.h Visua Age, and Borland C/C++ compilers.

All import libraries are installed in the /ib subdirectory, under the operating
system subdirectory of the Adaptive Server Anywhere installation directory.
For example, Windows import libraries are stored in the win32llib

subdirectory.

Operating system Compiler Import library
Windows Watcom C/C++ dblibtw.lib
Windows Microsoft Visual C++ | dblibtm.lib
Windows CE Microsoft Visual C++ | dblib8.lib
NetWare Watcom C/C++ dblib8.lib

Solaris (unthreaded All compilers libdblib8.so,
applications) libdbtasks8.so
Solaris (threaded All compilers libablib8_r.so,
applications) libdbtasks8_r.so

The libdbtasks8 libraries are called by the libdblib8 library. Some compilers
locate libdbtasks8 automatically, while for others you need to specify it

explicitly.

167



Introduction

A simple example

Thefollowing isavery simple example of an embedded SQL program.

#i ncl ude <stdio. h>
EXEC SQ. | NCLUDE SQ.CA;
mai n()

db_init( &sglca);
EXEC SQ. WHENEVER SQLERRCR @GOTO error;
EXEC SQ. CONNECT " DBA" | DENTI FI ED BY "SQ";
EXEC SQ. UPDATE enpl oyee
SET enp_|l nane = ' Pl ankt on’
WHERE enp_id = 195;
EXEC S COW T WORK;
EXEC SQ DI SCONNECT;
db_fini( &sglca);

return( 0);
error:
printf( "update unsuccessful -- sqglcode = %d.n",

sql ca. sql code );
db_fini( &sqglca);
return( -1);

}

This example connects to the database, updates the last name of employee
number 195, commits the change, and exits. There isvirtually no interaction
between the SQL and C code. The only thing the C code is used for in this
exampleis control flow. The WHENEVER statement is used for error
checking. The error action (GOTO in this example) is executed after any
SQL statement that causes an error.

& For adescription of fetching data, see "Fetching data" on page 193.

Structure of embedded SQL programs

SQL statements are placed (embedded) within regular C or C++ code. All
embedded SQL statements start with the words EXEC SQL and end with a
semicolon (;). Normal C language comments are allowed in the middle of
embedded SQL statements.

Every C program using embedded SQL must contain the following statement
before any other embedded SQL statements in the source file.

EXEC SQL | NCLUDE SQLCA;

168



Chapter 6 Embedded SQL Programming

The first embedded SQL statement executed by the C program must be a
CONNECT statement. The CONNECT statement is used to establish a
connection with the database server and to specify the user ID that is used for
authorizing all statements executed during the connection.

The CONNECT statement must be the first embedded SQL statement
executed. Some embedded SQL commands do not generate any C code, or
do not involve communication with the database. These commands are thus
allowed before the CONNECT statement. Most notable are the INCLUDE
statement and the WHENEVER statement for specifying error processing.

Loading the interface library dynamically

The usua practice for developing applications that use functions from DLLs
isto link the application against an import library, which contains the
required function definitions.

This section describes an aternative to using an import library for
developing Adaptive Server Anywhere applications. The Adaptive Server
Anywhere interface library can be loaded dynamically, without having to
link against the import library, using the esgldll.c module in the src
subdirectory of your installation directory. Using esqldll.c is recommended
because it is easier to use and more robust in its ability to locate the interface
DLL.

+ To load the interface DLL dynamically:

1 Your program must call db_init_dll to load the DLL, and must call
db_fini_dll tofreethe DLL. The db_init_dll call must be before any
function in the database interface, and no function in the interface can be
caled after db_fini_dll.

You must till call thedb_init and db_fini library functions.

2 You must #include the esqldil.h header file before the EXEC SQL
INCLUDE SQLCA statement or #include <sglca.h> line in your
embedded SQL program.

3 A SQL OS macro must be defined. The header file sgica.h, which is
included by esqdil.c, attempts to determine the appropriate macro and
define it. However, certain combinations of platforms and compilers
may cause thisto fail. In this case, you must add a#define to the top of
thisfile, or make the definition using a compiler option.

169



Introduction

Macro | Platforms

_SQL_OS WINNT ‘ All Windows operating systems
_SQL_OS UNIX ‘ UNIX

_SQL_OS NETWARE ‘ NetWare

4  Compile esgldil.c.

5 Instead of linking against the imports library, link the object module
esqldil.obj with your embedded SQL application objects.

Sample Y ou can find a sample program illustrating how to load the interface library
dynamically in the Samples|ASAIESQLDynamicLoad subdirectory of your
SQL Anywhere directory. The source codeisin
Samples|\ASAIESQLDynamicLoad\sample.sqc.

Building NetWare Loadable Modules

Y ou must use the Watcom C/C++ compiler, version 10.6 or 11.0, to compile
embedded SQL programs as NetWare Loadable Modules (NLM).

% To create an embedded SQL NLM:

1 OnWindows, preprocess the embedded SQL file using the following
command:

sqgl pp -0 NETWARE srcfile. sqc
Thisinstruction creates a file with .c extension.

2 Compile file.c using the Watcom compiler (10.6 or 11.0), using the
/ bt =net war e option.

3 Link theresulting object file using the Watcom linker with the following
options:
FORMAT NOVELL
MODULE dbl i b8
CPTI ON CASEEXACT

| MPORT @bl i b8.inp
LI BRARY dblib8.1ib

Thefiles dblib8.imp and dblib8.lib are shipped with Adaptive Server
Anywhere, in the nim\lib directory. The IMPORT and LIBRARY lines
may require afull path.

170



Chapter 6 Embedded SQL Programming

Sample embedded SQL programs

Sample embedded SQL programs are included with the Adaptive Server
Anywhere installation. They are placed in the Samples|ASAIC subdirectory
of your SQL Anywhere directory.

¢ The dtatic cursor embedded SQL example, Samples|\ASAIClcur.sqc,
demonstrates the use of static SQL statements.

¢ Thedynamic cursor embedded SQL example, Samples|ASA|Cldcur.sqc,
demonstrates the use of dynamic SQL statements.

To reduce the amount of code that is duplicated by the sample programs, the
mainlines and the data printing functions have been placed into a separate
file. Thisis mainch.c for character mode systems and mainwin.c for
windowing environments.

The sample programs each supply the following three routines, which are
called from the mainlines.

¢ WSQLEX_Init Connects to the database and opens the cursor.

¢ WSQLEX_Process_Command Processes commands from the user,
mani pulating the cursor as necessary.

¢ WSQLEX_Finish Closesthe cursor and disconnect from the database.
The function of the mainlineisto:
1 Call the WSQLEX Init routine

2 Loop, getting commands from the user and calling
WSQL_Process Command until the user quits

3 Cdl the WSQLEX_Finish routine

Connecting to the database is accomplished with the embedded SQL
CONNECT command supplying the appropriate user I1D and password.

In addition to these samples, you may find other programs and source files as
part of SQL Anywhere Studio which demonstrate features available for
particular platforms.

Building the sample programs

Files to build the sample programs are supplied with the sample code.

¢ For Windows and NetWare operating systems, hosted on Windows
operating systems, use makeall.bat to compile the sample programs.

171



Sample embedded SQL programs

¢ For UNIX, usethe shell script makeall.

¢ For Windows CE, use the dcur.dsp project file for Microsoft Visual
C++.

The format of the command is as follows:
nmakeal | {Exanpl e} {Platforn} {Conpiler}

Thefirst parameter is the name of the example program that you want to
compile. It is one of the following:

¢ CUR dtatic cursor example
¢ DCUR dynamic cursor example
¢ ODBC ODBC example

The second parameter is the target platform. It is one of the following:
¢  WINNT compile for Windows.
¢ NETWARE compilefor NetWare NLM

Thethird parameter is the compiler to use to compile the program. The
compiler can be one of:

¢ WC useWatcom C/C++
¢ MC useMicrosoft C
¢ BC useBorlandC

Running the sample programs

172

The executable files are held in the Samples|ASAIC directory, together with

the source code.

< To run the static cursor sample program:

1 Start the program:

¢  Start the Adaptive Server Anywhere Personal Server Sample
database.

¢ Runthefile Samples|\ASAICIcurwnt.exe.

2 Follow the on-screen instructions.

The various commands manipulate a database cursor and print the query

results on the screen. Type the letter of the command you wish to

perform. Some systems may require you to press ENTER after the letter.



Chapter 6 Embedded SQL Programming

Windows samples

< To run the dynamic cursor sample program:

1 Start the program:
¢ Runthefile Samples|ASAIC\dcurwnt.exe.
2 Connect to a database;

¢ Each sample program presents a consol e-type user interface and
prompts you for acommand. Enter the following connection string
to connect to the sample database:

DSN=ASA 8.0 Sanpl e
3 Choose atable:

¢ Each sample program prompts you for atable. Choose one of the
tables in the sample database. For example, you may enter
Customer or Employee.

4 Follow the on-screen instructions.

The various commands manipulate a database cursor and print the query
results on the screen. Type the letter of the command you wish to
perform. Some systems may require you to press ENTER after the letter.

The Windows versions of the example programs are real Windows programs.
However, to keep the user interface code relatively ssimple, some
simplifications have been made. In particular, these applications do not
repaint their Windows on WM_PAINT messages except to reprint the
prompt.

Static cursor sample

This example demonstrates the use of cursors. The particular cursor used
here retrieves certain information from the employee table in the sample
database. The cursor is declared statically, meaning that the actual SQL
statement to retrieve the information is "hard coded" into the source program.
Thisisagood starting point for learning how cursors work. The next
example ("Dynamic cursor sampl€" on page 174) takes thisfirst example and
converts it to use dynamic SQL statements.

& For information on where the source code can be found and how to
build this example program, see " Sample embedded SQL programs' on
page 171.

The open_cursor routine both declares a cursor for the specific SQL
command and also opens the cursor.

173



Sample embedded SQL programs

Printing a page of information is accomplished by the print routine. It loops
pagesize times, fetching a single row from the cursor and printing it out.
Note that the fetch routine checks for warning conditions (such as Row not
found) and prints appropriate messages when they arise. In addition, the
cursor is repositioned by this program to the row before the one that appears
at the top of the current page of data.

The move, top, and bottom routines use the appropriate form of the FETCH
statement to position the cursor. Note that this form of the FETCH statement
doesn't actually get the data—it only positions the cursor. Also, a general
relative positioning routinenove, has been implemented to move in either
direction depending on the sign of the parameter.

When the user quits, the cursor is closed and the database connection is also
released. The cursor is closed by a ROLLBACK WORK statement, and the
connection is release by a DISCONNECT.

Dynamic cursor sample

174

This sample demonstrates the use of cursors for a dynamic SQL SELECT
statement. It is a slight modification of the static cursor example. If you have
not yet looked at "Static cursor sample" on page 173, it would be helpful to
do so before looking at this sample.

& For information on where the source code can be found and how to
build this sample program, see "Sample embedded SQL programs" on
page 171.

Thedcur program allows the user to select a table to look at with the
command. The program then presents as much information from that table as
fits on the screen.

When this program is run, it prompts for a connection string of the form:
ui d=DBA; pwd=SQ; dbf =c: \ asa\ asadeno. db

The C program with the embedded SQL is held inSév@ples|ASAIC
subdirectory of your SQL Anywhere directory. The program looks much like
the static cursor sample with the exception ofdthnect, open_cur sor, and
print functions.

Theconnect function uses the embedded SQL interface function
db_string_connect to connect to the database. This function provides the
extra functionality to support the connection string that is used to connect to
the database.

Theopen_cursor routine first builds the SELECT statement
SELECT * FROM t abl enane



Chapter 6 Embedded SQL Programming

where tablename is a parameter passed to the routine. It then prepares a
dynamic SQL statement using this string.

The embedded SQL DESCRIBE command is used to fill in the SQLDA
structure the results of the SELECT statement.

Size of the SQLDA

Aninitial guessistaken for the size of the SQLDA (3). If thisis not big
enough, the actual size of the select list returned by the database server is
used to allocate a SQLDA of the correct size.

The SQLDA structureis then filled with buffers to hold strings that
represent the results of the query. Thefill_s sqglda routine converts all
datatypesin the SQLDA to DT_STRING and alocates buffers of the
appropriate size.

A cursor isthen declared and opened for this statement. The rest of the
routines for moving and closing the cursor remain the same.

Thefetch routine is dlightly different: it puts the results into the SQLDA
structure instead of into alist of host variables. The print routine has
changed significantly to print results from the SQLDA structure up to the
width of the screen. The print routine also uses the name fields of the
SQLDA to print headings for each column.

Service examples

The example programs cur.sqc and dcur.sqc, when compiled for aversion of
Windows that supports services, run optionally as services.

The two files containing the example code for Windows services are the
source file ntsve.c and the header file ntsve.h. The code allows alinked
executable to be run either as aregular executable or as a Windows service.

To run one of the compiled examples as a Windows service:
1 Start Sybase Central and open the Services folder.
Select a service type of Sample Application, and click OK.

2
3 Enter aservice namein the appropriate field.
4

Select the sample program (curwnt.exe or dcurwnt.exe) from the
Samples|ASA|C subdirectory of your SQL Anywhere directory.

Click OK toinstall the service.

Click Start on the main window to start the service.

175



Sample embedded SQL programs

176

When run as a service, the programs display the normal user interface if
possible. They also write the output to the Application Event Log. If it is not
possible to start the user interface, the programs print one page of datato the
Application Event Log and stop.

These examples have been tested with the Watcom C/C++ 10.5 compiler and
the Microsoft Visual C++ compiler.



Chapter 6 Embedded SQL Programming

Embedded SQL data types

To transfer information between a program and the database server, every
piece of data must have a data type. The embedded SQL data type constants
are prefixed with DT _, and can be found in the sqgldef.h header file. You can
create a host variable of any one of the supported types. You can also use
these typesin a SQLDA structure for passing data to and from the database.

Y ou can define variables of these data types using the DECL__ macros listed
in sqica.h. For example, avariable holding aBIGINT value could be
declared with DECL_BIGINT.

The following data types are supported by the embedded SQL programming
interface:

¢

* & & ¢ & o o o o

DT_BIT 8-bit signed integer

DT_SMALLINT 16-bit signed integer.
DT_UNSSMALLINT 16-bit unsigned integer
DT_TINYINT 8-bit signed integer
DT_BIGINT 64-hit signed integer

DT_INT 32-bit signed integer.

DT_UNSINT 16-bit unsigned integer
DT_FLOAT 4-byte floating point number.
DT_DOUBLE 8-byte floating point number.
DT_DECIMAL Packed decimal number.

typedef struct DECI MAL {
char array[1];
} DEC MAL;

DT_STRING NULL-terminated character string. The string is
blank-padded if the database is initialized with blank-padded strings.

DT_DATE NULL-terminated character string that isavalid date.
DT_TIME NULL-terminated character string that is a valid time.

DT_TIMESTAMP NULL-terminated character string that isavalid
timestamp.

DT_FIXCHAR Fixed-length blank padded character string.

177



Embedded SQL data types

178

DT_VARCHAR Varying length character string with atwo-byte length
field. When supplying information to the database server, you must set
the length field. When fetching information from the database server, the
server setsthe length field (not padded).

typedef struct VARCHAR {
unsi gned short int |en;
char array[1];

} VARCHAR

DT_LONGVARCHAR Long varying length character data. The macro
defines a structure, as follows:

#def i ne DECL_LONGVARCHAR( si ze ) \
struct { a_sql _uint32 array_| en; \
a_sql _uint 32 stored_|l en; \
a_sql _uint32 untrunc_len; \
char array[ si ze+1];\

}

The DECL_LONGVARCHAR struct may be used with more than 32K
of data. Large data may be fetched all at once, or in pieces using the
GET DATA statement. Large data may be supplied to the server all at
once, or in pieces by appending to a database variable using the SET
statement. The datais not null terminated.

& For more information, see " Sending and retrieving long values' on
page 214.

DT_BINARY Varying length binary data with a two-byte length field.
When supplying information to the database server, you must set the
length field. When fetching information from the database server, the
server setsthe length field.

typedef struct BINARY {
unsi gned short int len;
char array[1];

} BI NARY;

DT_LONGBINARY Long binary data. The macro defines a structure,
asfollows:

#def i ne DECL_LONGBI NARY( si ze ) \
struct { a_sql _uint32 array_| en; \
a_sql _uint 32 stored_l en; \
a_sql _uint32 untrunc_len; \
char array[size]; \

}



Chapter 6 Embedded SQL Programming

The DECL_LONGBINARY struct may be used with more than 32K of
data. Large data may be fetched al at once, or in pieces using the GET
DATA statement. Large data may be supplied to the server al at once,
or in pieces by appending to a database variable using the SET
statement.

& For more information, see " Sending and retrieving long values' on
page 214.

DT_TIMESTAMP_STRUCT SQLDATETIME structure with fields for
each part of atimestamp.

typedef struct sqldatetime {
unsi gned short year; /* e.g. 1999 */
unsi gned char nonth; /* 0-11 */
unsi gned char day_of week; /* 0-6 0=Sunday */
unsi gned short day_of year; /* 0-365 */
unsi gned char day; /* 1-31 */
unsi gned char hour; /* 0-23 */
unsi gned char mnute; /* 0-59 */
unsi gned char second; /* 0-59 */
unsi gned | ong m crosecond; /* 0-999999 */
} SQLDATETI ME;

The SQLDATETIME structure can be used to retrieve fields of DATE,
TIME, and TIMESTAMP type (or anything that can be converted to one
of these). Often, applications have their own formats and date
manipulation code. Fetching datain this structure makesit easier for a
programmer to manipulate this data. Note that DATE, TIME, and
TIMESTAMP fields can also be fetched and updated with any character

type.

If you use a SQLDATETIME structure to enter a date, time, or
timestamp into the database, theday_of _year and day_of _week
members are ignored.

& For moreinformation, seethe DATE_FORMAT,
TIME_FORMAT, TIMESTAMP_FORMAT, and DATE_ORDER
database options in " Database Options’ on page 535 of the book ASA
Database Administration Guide.

DT_VARIABLE NULL-terminated character string. The character
string must be the name of a SQL variable whose value is used by the
database server. This data type is used only for supplying data to the
database server. It cannot be used when fetching data from the database
server.

The structures are defined in the sglca.h file. The VARCHAR, BINARY,
and DECIMAL types contain a one-character array and are thus not useful
for declaring host variables but they are useful for allocating variables
dynamically or typecasting other variables.

179



Embedded SQL data types

DATE and TIME
database types

180

There are no corresponding embedded SQL interface data types for the
various DATE and TIME database types. These database types are all
fetched and updated using either the SQLDATETIME structure or character
strings.

& For moreinformation see "GET DATA statement [ESQL]" on
page 437 of the book ASA SQL Reference Manual and "SET statement” on
page 531 of the book ASA SQL Reference Manual.



Chapter 6 Embedded SQL Programming

Using host variables

Host variables are C variables that are identified to the SQL preprocessor.
Host variables can be used to send values to the database server or receive
values from the database server.

Host variables are quite easy to use, but they have some restrictions.
Dynamic SQL isamore general way of passing information to and from the
database server using a structure known as the SQL Descriptor Area
(SQLDA). The SQL preprocessor automatically generates a SQLDA for
each statement in which host variables are used.

&> For information on dynamic SQL, see " Static and dynamic SQL" on
page 202.

Declaring host variables

Example

Host variables are defined by putting them into a declar ation section.
According to the IBM SAA and ANS| embedded SQL standards, host
variables are defined by surrounding the normal C variable declarations with
the following:

EXEC SQ. BEA N DECLARE SECTI ON;
/* Cvariable declarations */
EXEC SQ. END DECLARE SECTI QN

These host variables can then be used in place of value constants in any SQL
statement. When the database server executes the command, the value of the
host variable is used. Note that host variables cannot be used in place of table
or column names. dynamic SQL isrequired for this. The variable nameis
prefixed with acolon (:) in a SQL statement to distinguish it from other
identifiers allowed in the statement.

A standard SQL preprocessor does not scan C language code except inside a
DECLARE SECTION. Thus, TYPEDEF types and structures are not
allowed. Initializers on the variables are allowed inside a

DECLARE SECTION.

¢ Thefollowing sample code illustrates the use of host variables on an
INSERT command. The variables arefilled in by the program and then
inserted into the database:

EXEC SQ. BEA N DECLARE SECTI QN;
| ong enpl oyee_nunber;

char enpl oyee_nane[ 50] ;

char enpl oyee_initials[8];

char enpl oyee_phone[ 15] ;

181



Using host variables

EXEC SQ. END DECLARE SECTI O\

/* programfills in variables with appropriate
val ues

*/

EXEC SQ | NSERT | NTO Enpl oyee

VALUES (: enpl oyee_nunber, :enpl oyee_nane,
.enployee_initials, :enployee phone );

& For amore extensive example, see " Static cursor sample” on
page 173.

C host variable types

182

Only alimited number of C datatypes are supported as host variables. Also,
certain host variable types do not have a corresponding C type.

Macros defined in the sglca.h header file can be used to declare host
variables of the following types: VARCHAR, FIXCHAR, BINARY,
PACKED DECIMAL, LONG VARCHAR, LONG BINARY, or
SQLDATETIME structure. They are used as follows:

EXEC SQ. BEG N DECLARE SECTI O\
DECL_VARCHAR( 10 ) v_varchar;

DECL_FI XCHAR( 10 ) v_fixchar;
DECL_LONGVARCHAR( 32678 ) v_l ongvarchar;
DECL_BI NARY( 4000 ) v_binary;
DECL_LONGBI NARY( 128000 ) v_I ongbi nary;
DECL_DECI MAL( 10, 2 ) v_packed_deci mal ;
DECL_DATETI ME v_dat et i ne;

EXEC SQ. END DECLARE SECTI O\

The preprocessor recognizes these macros within a declaration section and
treats the variable as the appropriate type.

The following table lists the C variable types that are allowed for host
variables and their corresponding embedded SQL interface data types.

C Data Type Embedded SQL Interface Description

Type
short i; DT_SMALLINT 16-hit signed integer
shortint i;
unsigned short int i;
long I; DT_INT 32-bit signed integer
longintI;
unsigned longiint I;
float f; DT_FLOAT 4-byte floating point
doubled; DT_DOUBLE 8-byte floating point




Chapter 6 Embedded SQL Programming

C Data Type Embedded SQL Interface Description
Type

DECL_DECIMAL(p,s) DT_DECIMAL(p,s) Packed decimal

char a; /*n=1*/ DT_FIXCHAR(n) Fixed length character

DECL_FIXCHAR(n) & string blank padded.

DECL_FIXCHAR &n;

char g[n]; *n>=1*/ DT_STRING(n) NULL-terminated string.
The string is blank-padded
if the databaseis
initialized with
blank-padded strings.

char *g; DT_STRING(32767) NULL-terminated string

DECL_VARCHAR(N) & DT_VARCHAR(n) Varying length character
string with 2-byte length
field. Not blank padded

DECL_BINARY(n) & DT_BINARY(n) Varying length binary data
with 2-byte length field

DECL_DATETIME g DT_TIMESTAMP_STRUCT SQLDATETIME structure

DECL_LONGVARCHAR(N) & DT_LONGVARCHAR Varying length long
character string with three
4-byte length fields. Not
blank padded or NULL
terminated.

DECL_LONGBINARY(n) & DT_LONGBINARY Varying length long binary
datawith three 4-byte
length fields. Not blank
padded.

Pointers to char

A host variable declared as a pointer to char (char *a) is considered by the
database interface to be 32 767 byteslong. Any host variable of type pointer
to char used to retrieve information from the database must point to a buffer
large enough to hold any value that could possibly come back from the
database.

Thisis potentially quite dangerous because somebody could change the
definition of the column in the database to be larger than it was when the
program was written. This could cause random memory corruption problems.
If you are using a 16-bit compiler, requiring 32 767 bytes could make the
program stack overflow. It is better to use adeclared array, even asa
parameter to afunction, whereit is passed as apointer to char. Thisletsthe
PREPARE statements know the size of the array.

183



Using host variables

Scope of host A standard host-variable declaration section can appear anywhere that C

variables variables can normally be declared. Thisincludes the parameter declaration
section of a C function. The C variables have their normal scope (available
within the block in which they are defined). However, since the SQL
preprocessor does not scan C code, it does not respect C blocks.

Asfar asthe SQL preprocessor is concerned, host variables are global; two
host variables cannot have the same name.

Host variable usage

Host variables can be used in the following circumstances:

¢ SELECT, INSERT, UPDATE and DELETE statementsin any place
where a number or string constant is allowed.

¢ ThelINTO clause of SELECT and FETCH statements.

¢ Host variables can also be used in place of a statement name, a cursor
name, or an option name in commands specific to embedded SQL.

¢ For CONNECT, DISCONNECT, and SET CONNECT, a host variable
can be used in place of a user 1D, password, connection name,
connection string, or database environment name.

¢ For SET OPTION and GET OPTION, a host variable can be used in
place of auser ID, option name, or option value.

¢ Host variables cannot be used in place of atable name or a column name
in any statement.

Examples ¢ Thefollowing isvalid embedded SQL:

| NCLUDE SQLCA;
| ong SQ.CCDE;
subl() {
char SQLSTATE] 6] ;
exec SQL CREATE TABLE ...

}
¢ Thefollowing is not valid embedded SQL:

| NCLUDE SQLCA;
subl() {
char SQLSTATE] 6] ;
exec SQL CREATE TABLE...

}
sub2() {

exec SQL DRCP TABLE...

/1 No SQSTATE in scope of this statenent
}

184



Chapter 6 Embedded SQL Programming

¢ Thecase of SQLSTATE and SQLCODE isimportant and the ISO/ANSI
standard requires that their definitions be exactly as follows:

| ong SQ.CCDE;
char SQLSTATE| 6] ;

Indicator variables

Indicator variables are C variables that hold supplementary information when
you are fetching or putting data. There are several distinct uses for indicator
variables:

¢ NULL values To enable applications to handle NULL values.

¢ String truncation To enable applications to handle cases when fetched
values must be truncated to fit into host variables.

¢ Conversion errors To hold error information.

Anindicator variableis a host variable of type short int that is placed
immediately following aregular host variable in a SQL statement. For
example, in the following INSERT statement, :ind_phone is an indicator
variable:
EXEC SQ. | NSERT | NTO Enpl oyee
VALUES (: enpl oyee_nunber, :enpl oyee_nane,
.enployee_initials, :enployee_phone:ind_phone );

Using indicator variables to handle NULL

Using indicator
variables when
inserting NULL

In SQL data, NULL represents either an unknown attribute or inapplicable
information. The SQL concept of NULL is not to be confused with the C
language constant by the same name (NULL). The C constant is used to
represent anon-initialized or invalid pointer.

When NULL is used in the Adaptive Server Anywhere documentation, it
refersto the SQL database meaning given above. The C language constant is
referred to asthe null pointer (lower case).

NULL is not the same as any value of the column’s defined type. Thus, in
order to pass NULL values to the database or receive NULL results back,
something extrais required beyond regular host variables. I ndicator
variables are used for this purpose.

An INSERT statement could include an indicator variable as follows:

185



Using host variables

EXEC SQ. BEG N DECLARE SECTI O\
short int enpl oyee_nunber;

char enpl oyee_nane[ 50] ;

char enpl oyee_initials[6];

char enpl oyee_phone[ 15] ;

short int ind_phone

EXEC SQ. END DECLARE SECTI O\

/*

programfills in enpnum enpnane,

initials and honephone

*/

if( /* phone nunmber is unknown */ ) {
i nd_phone = -1;

} else {
i nd_phone = 0;

}

EXEC SQ. | NSERT | NTO Enpl oyee
VALUES (: enpl oyee_nunber, :enpl oyee_nane,
.enployee_initials, :enployee_phone:ind_phone );

If the indicator variable has avalue of —1, a NULL is written. If it has a value
of 0, the actual value @mployee phone is written.

Using indicator Indicator variables are also used when receiving data from the database.
variables when They are used to indicate that a NULL value was fetched (indicator is
fetching NULL negative). If a NULL value is fetched from the database and an indicator

variable is not supplied, an error is generated (SQLE_NO_INDICATOR).
Errors are explained in the next section.

Using indicator variables for truncated values

Indicator variables indicate whether any fetched values were truncated to fit
into a host variable. This enables applications to handle truncation
appropriately.

If a value is truncated on fetching, the indicator variable is set to a positive
value, containing the actual length of the database value before truncation. If
the length of the value is greater than 32 767, then the indicator variable
contains 32 767.

Using indicator values for conversion errors

By default, the CONVERSION_ERROR database option is set to ON, and
any data type conversion failure leads to an error, with no row returned.

186



Chapter 6 Embedded SQL Programming

Y ou can use indicator variables to tell which column produced a data type
conversion failure. If you set the database option CONVERSION_ERROR
to OFF, any data type conversion failure givesa CANNOT_CONVERT
warning, rather than an error. If the column that suffered the conversion error
has an indicator variable, that variable is set to avalue of —2.

If you set the CONVERSION_ERROR option to OFF when inserting data
into the database, a value of NULL is inserted when a conversion failure
occurs.

Summary of indicator variable values

The following table provides a summary of indicator variable usage.

Indicator | Supplying Value to Receiving value from database

Value database

>0 Host variable value Retrieved value was truncated — actual
length in indicator variable

0 Host variable value Fetch successful, or
CONVERSION_ERROR set to ON

-1 NULL value NULL result

-2 NULL value Conversion error (when
CONVERSION_ERROR is set to OFF
only). SQLCODE indicates a
CANNOT_CONVERT warning

<=2 NULL value NULL result

& For moreinformation on retrieving long values, see "GET DATA
statement [ESQL]" on page 437 of the book ASA SQL Reference Manual.

187



The SQL Communication Area (SQLCA)

The SQL Communication Area (SQLCA)

SQLCA provides
error codes

SQLCA fields

188

The SQL Communication Area (SQLCA) isan area of memory that is
used on every database request for communicating statistics and errors from
the application to the database server and back to the application. The

SQL CA isused as a handle for the application-to-database communication
link. It is passed in to all database library functions that need to communicate
with the database server. It isimplicitly passed on all embedded SQL
statements.

A global SQLCA variableis defined in the interface library. The
preprocessor generates an external reference for the global SQLCA variable
and an external reference for a pointer to it. The external reference is named
sglca and is of type SQLCA. The pointer is named sglcaptr. The actual
global variable is declared in the imports library.

The SQLCA is defined by the sqgica.h header file, included in the h
subdirectory of your installation directory.

Y ou reference the SQLCA to test for a particular error code. The sglcode
and sglstate fields contain error codes when a database request has an error
(see below). Some C macros are defined for referencing the sqlcode field,
the sglstate field, and some other fields.

Thefieldsin the SQLCA have the following meanings:

¢ sglcaid An 8-byte character field that contains the string SQL CA as
an identification of the SQLCA structure. Thisfield helpsin debugging
when you are looking at memory contents.

¢ sqglcabc A longinteger that contains the length of the SQLCA
structure (136 bytes).

¢ sglcode A long integer that specifiesthe error code when the database
detects an error on arequest. Definitions for the error codes can be
found in the header file sqglerr.h. The error code is O (zero) for a
successful operation, positive for a warning and negative for an error.

& For afull listing of error codes, see "Database Error Messages' on
page 1 of the book ASA Errors Manual.

¢ sqglerrml  Thelength of the information in the sglerrmc field.

¢ sglerrmc  Zero or more character stringsto be inserted into an error
message. Some error messages contain one or more placeholder strings
(%1, %2, ...) which are replaced with the strings in this field.



Chapter 6 Embedded SQL Programming

* & & o

For example, if a Table Not Found error is generated, sqlerrmc contains
the table name, which isinserted into the error message at the
appropriate place.

& For afull listing of error messages, see "Database Error Messages'
on page 1 of the book ASA Errors Manual.

sqlerrp  Reserved.
sqglerrd A utility array of long integers.
sglwarn Reserved.

sqlstate The SQLSTATE status value. The ANSI SQL standard
(SQL-92) defines a new type of return value from a SQL statement in
addition to the SQLCODE valuein previous standards. The SQLSTATE
value is always a five-character null-terminated string, divided into a
two-character class (the first two characters) and a three-character
subclass. Each character can be adigit from 0 through 9 or an upper case
alphabetic character A through Z.

Any class or subclass that begins with 0 through 4 or A through H is
defined by the SQL standard; other classes and subclasses are
implementation defined. The SQLSTATE value '00000" means that there
has been no error or warning.

& For more SQLSTATE values, see "Database Error Messages' on
page 1 of the book ASA Errors Manual.

sqlerror array The sglerror field array has the following elements.

¢

sqglerrd[1] (SQLIOCOUNT) The actual number of input/output
operations that were required to complete a command.

The database does not start this number at zero for each command. Y our
program can set this variable to zero before executing a sequence of
commands. After the last command, this number is the total number of
input/output operations for the entire command sequence.

sqglerrd[2] (SQLCOUNT) The vaue of thisfield depends on which
statement is being executed.

¢ INSERT, UPDATE, PUT, and DELETE statements The number
of rows that were affected by the statement.

On acursor OPEN, thisfield isfilled in with either the actual
number of rows in the cursor (avalue greater than or equal to 0) or
an estimate thereof (a negative number whose absolute value is the
estimate). It is the actual number of rows if the database server can
compute it without counting the rows. The database can also be
configured to always return the actual number of rows using the
ROW_COUNT option.

189



The SQL Communication Area (SQLCA)

¢ FETCH cursor statement The SQLCOUNT field isfilled if a
SQLE_NOTFOUND warning isreturned. It contains the number of
rows by which aFETCH RELATIVE or FETCH ABSOLUTE
statement goes outside the range of possible cursor positions (a
cursor can be on arow, before the first row, or after the last row). In
the case of awide fetch, SQLCOUNT is the number of rows
actually fetched, and isless than or equal to the number of rows
reguested. During awide fetch, SQLE_NOTFOUND is not set.

& For moreinformation on wide fetches, see "Fetching more
than one row at atime" on page 197.

ThevaueisOif the row was not found but the position is valid, for
example, executing FETCH RELATIVE 1 when positioned on the
last row of a cursor. The value is positive if the attempted fetch was
beyond the end of the cursor, and negative if the attempted fetch
was before the beginning of the cursor.

¢ GET DATA statement The SQLCOUNT field holds the actual
length of the value.

¢ DESCRIBE statement Inthe WITH VARIABLE RESULT clause
used to describe procedures that may have more than one result set,
SQLCOUNT is set to one of the following values:

¢ 0 Theresult set may change: the procedure call should be
described again following each OPEN statement.

¢ 1 Theresult setisfixed. No re-describing isrequired.

In the case of asyntax error, SQLE_SYNTAX_ERROR, thisfield
contains the approximate character position within the command
string where the error was detected.

¢ sqlerrd[3] (SQLIOESTIMATE) The estimated number of input/output
operations that are to complete the command. Thisfield is given avalue
on an OPEN or EXPLAIN command.

SQLCA management for multi-threaded or reentrant code

190

Y ou can use embedded SQL statements in multi-threaded or reentrant code.
However, if you use a single connection, you are restricted to one active
reguest per connection. In a multi-threaded application, you should not use
the same connection to the database on each thread unless you use a
semaphore to control access.



Chapter 6 Embedded SQL Programming

There are no restrictions on using separate connections on each thread that
wishes to use the database. The SQLCA is used by the runtime library to
distinguish between the different thread contexts. Thus, each thread wishing
to use the database must have its own SQL CA.

Any given database connection is accessible only from one SQLCA, with the
exception of the cancel instruction, which must be issued from a separate
thread.

& For information on canceling requests, see "I mplementing request
management” on page 224.

Using multiple SQLCAs

+ To manage multiple SQLCAs in your application:

1 You must usethe option on the SQL preprocessor that generates
reentrant code (-r ). The reentrant code isalittle larger and alittle slower
because statically initialized global variables cannot be used. However,
these effects are minimal.

2 Each SQLCA used in your program must be initialized with acall to
db_init and cleaned up at the end with acall to db_fini.

Caution
Failure to call db_fini for each db_init on NetWare can cause the
database server to fail and the NetWare file server to fail.

3 Theembedded SQL statement SET SQLCA ("SET SQLCA statement
[ESQL]" on page 545 of the book ASA SQL Reference Manual) is used
to tell the SQL preprocessor to use a different SQLCA for database
requests. Usually, a statement such as: EXEC SQL SET SQLCA
‘task_data->sglca’; is used at the top of your program or in a header file
to set the SQL CA reference to point at task specific data. This statement
does not generate any code and thus has no performance impact. It
changes the state within the preprocessor so that any reference to the
SQLCA uses the given string.

& For information about creating SQLCAS, see"SET SQLCA statement
[ESQL]" on page 545 of the book ASA SQL Reference Manual.

When to use multiple SQLCAs

Y ou can use the multiple SQLCA support in any of the supported embedded
SQL environments, but it isonly required in reentrant code.

191



The SQL Communication Area (SQLCA)

The following list detail s the environments where multiple SQLCAs must be
used:

¢ Multi-threaded applications |f more than one thread uses the same
SQLCA, acontext option can cause more than one thread to be using the
SQLCA at the same time. Each thread must have its own SQLCA. This
can also happen when you have a DLL that uses embedded SQL and is
called by more than one thread in your application.

¢ Dynamic link libraries and shared libraries A DLL hasonly one
data segment. While the database server is processing a request from one
application, it may yield to another application that makes a request to
the database server. If your DLL uses the global SQLCA, both
applications are using it at the same time. Each Windows application
must have its own SQL CA.

¢ ADLL with one data segment A DLL can be created with only one
data segment or one data segment for each application. If your DLL has
only one data segment, you cannot use the global SQLCA for the same
reason that aDLL cannot use the global SQLCA. Each application must
have its own SQLCA.

Connection management with multiple SQLCAs

192

Y ou do not need to use multiple SQL CAs to connect to more than one
database or have more than one connection to a single database.

Each SQLCA can have one unnamed connection. Each SQL CA has an active
or current connection (see "SET CONNECTION statement [Interactive SQL]
[ESQL]" on page 536 of the book ASA SQL Reference Manual). All
operations on a given database connection must use the same SQL CA that
was used when the connection was established.

Record locking

Operations on different connections are subject to the normal record
locking mechanisms and may cause each other to block and possibly to
deadlock. For information on locking, see the chapter "Using Transactions
and Isolation Levels' on page 89 of the book ASA SQL User’s Guide.




Chapter 6 Embedded SQL Programming

Fetching data

Fetching datain embedded SQL is done using the SELECT statement. There
are two cases:

¢ The SELECT statement returns at most onerow UseanINTO
clause to assign the returned values directly to host variables.

&~ For information, see "SELECT statements that return at most one
row" on page 193.

¢ The SELECT statement may return multiple rows Use cursorsto
manage the rows of the result set.

& For more information, see "Using cursors in embedded SQL" on
page 194.

& LONG VARCHAR and LONG BINARY datatypes are handled
differently to other data types. For more information, see " Retrieving LONG
data' on page 215.

SELECT statements that return at most one row

Example

A single row query retrieves at most one row from the database. A
single-row query SELECT statement has an INTO clause following the
select list and before the FROM clause. The INTO clause contains alist of
host variables to receive the value for each select list item. There must be the
same number of host variables as there are select list items. The host
variables may be accompanied by indicator variablesto indicate NULL
results.

When the SELECT statement is executed, the database server retrieves the
results and places them in the host variables. If the query results contain
more than one row, the database server returns an error.

If the query results in no rows being selected, aRow Not Found warning is
returned. Errors and warnings are returned in the SQLCA structure, as
described in "The SQL Communication Area (SQLCA)" on page 188.

For example, the following code fragment returns 1 if arow from the
employee table is fetched successfully, 0 if the row doesn't exist, and —1 if an
error occurs.

EXEC SQ. BEG N DECLARE SECTI O\

| ong enp_id;

char nane[ 41] ;

char sex;

char bi rt hdat e[ 15] ;

193



Fetching data

short intind_birthdate;
EXEC SQ. END DECLARE SECTI O\

int find_enployee( |ong enployee )
{
enp_i d = enpl oyee;
EXEC SQ. SELECT enp_fnane ||
"' || enp_lname, sex, birth_date
I NTO : nane, :sex,
*birthdate:ind_birthdate
FROM " DBA" . enpl oyee
WHERE enp_id = :enp_id;
i f( SQLOODE == SQ.E_NOTFOUND ) {
return( 0 ); /* enployee not found */
} else if( SQLQCODE < 0 ) {
return( -1 ); /* error */
} else {
return( 1); /* found */
}

Using cursors in embedded SQL

194

A cursor is used to retrieve rows from a query that has multiple rowsin its
result set. A cursor isahandle or an identifier for the SQL query and a
position within the result set.

& For an introduction to cursors, see "Working with cursors' on page 19.

To manage a cursor in embedded SQL:

1 Declareacursor for aparticular SELECT statement, using the
DECLARE statement.

Open the cursor using the OPEN statement.

3 Retrieveresults onerow at atime from the cursor using the FETCH
statement.

4 Fetch rows until the Row Not Found warning is returned.

Errors and warnings are returned in the SQLCA structure, described in
"The SQL Communication Area (SQLCA)" on page 188.

5 Closethe cursor, using the CLOSE statement.

By default, cursors are automatically closed at the end of atransaction (on
COMMIT or ROLLBACK). Cursorsthat are opened withaWITH HOLD
clause are kept open for subsequent transactions until they are explicitly
closed.



Chapter 6 Embedded SQL Programming

The following is a simple example of cursor usage:

voi d print_enpl oyees( void )
{
EXEC SQ. BEA N DECLARE SECTI QN;
char nane[ 50] ;
char sex;
char birthdate[ 15];
short int ind_birthdate;
EXEC SQ. END DECLARE SECTI QN
EXEC SQ. DECLARE C1 CURSCR FCR
SELECTenp_fname || ' ' || enp_l nane,
sex, birth_date
FROM " DBA". enpl oyee;
EXEC SQ OPEN C1,
for( ;; ) {
EXEC SQ FETCH Cl | NTO : nane, :sex,
:birthdate:ind_birthdate;
i f( SQLCODE == SQ.E _NOTFOUND ) {
br eak;
} else if( SQQCODE < 0 ) {
br eak;

}
if( ind_birthdate < 0 ) {
strcpy( birthdate, "UNKNOM' );

printf( "Nane: % Sex: % Birthdate:
%.n",nane, sex, birthdate );

}
EXEC SQL CLGCSE CI;
}

& For complete examples using cursors, see " Static cursor sample” on
page 173 and "Dynamic cursor sampl€" on page 174.

Cursor positioning A cursor is positioned in one of three places:
¢ Onarow
¢+ Beforethefirst row
¢ After thelast row

195



Fetching data

Cursor positioning
problems

196

Absolute row Absolute row

from start from end

0 Before first row -n-1
1 -n

2 -n+1

3 -n+2
n-2 -3
n-1 -2
n -1
n+1 After last row 0

When acursor is opened, it is positioned before the first row. The cursor
position can be moved using the FETCH command (see "FETCH statement
[ESQL] [SP]" on page 424 of the book ASA SQL Reference Manual ). It can
be positioned to an absolute position either from the start or from the end of
the query results. It can also be moved relative to the current cursor position.

There are special positioned versions of the UPDATE and DELETE
statements that can be used to update or delete the row at the current position
of the cursor. If the cursor is positioned before the first row or after the last
row, aNo Current Row of Cursor error is returned.

The PUT statement can be used to insert arow into a cursor.

Inserts and some updatesto DY NAMIC SCROLL cursors can cause
problems with cursor positioning. The database server does not put inserted
rows at a predictable position within a cursor unless there is an ORDER BY
clause on the SELECT statement. In some cases, the inserted row does not
appear at all until the cursor is closed and opened again.

With Adaptive Server Anywhere, this occursif atemporary table had to be
created to open the cursor.



Chapter 6 Embedded SQL Programming

& For adescription, see "Use of work tablesin query processing” on
page 160 of the book ASA SQL User’s Guide.

The UPDATE statement may cause arow to movein the cursor. This
happens if the cursor has an ORDER BY clause that uses an existing index (a
temporary table is not created).

Fetching more than one row at atime

The FETCH statement can be modified to fetch more than one row at atime,
which may improve performance. Thisiscalled awide fetch or an array
fetch.

& Adaptive Server Anywhere also supports wide puts and inserts. For
information on these, see "PUT statement [ESQL]" on page 499 of the book
ASA SQL Reference Manual and "EXECUTE statement [ESQL]" on

page 414 of the book ASA SQL Reference Manual.

To use wide fetches in embedded SQL, include the fetch statement in your
code as follows:

EXEC SQL FETCH . . . ARRAY nnn

where ARRAY nnn isthelast item of the FETCH statement. The fetch count
nnn can be a host variable. The number of variablesin the SQLDA must be
the product of nnn and the number of columns per row. The first row is
placed in SQLDA variables 0 to (columns per row) — 1, and so on.

Each column must be of the same type in each row of the SQLDA, or a
SQLDA INCONSISTENT error is returned.

The server returns in SQLCOUNT the number of records that were fetched,
which is always greater than zero unless there is an error or warning. On a
wide fetch, a SQLCOUNT of one with no error condition indicates that one
valid row has been fetched.

Example The following example code illustrates the use of wide fetches. You can also
find this code asamples|ASAlesqlwidefetch\widefetch.sqc in your
SQL Anywhere directory.

197



Fetching data

198

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
#incl ude <string. h>

#i ncl ude "sql def. h"
EXEC SQ | NCLUDE SQLCA;

EXEC SQ. WHENEVER SQLERRCR { Print SQLError();
goto err; };

static void PrintSQLError()

/*************************/

char buffer[200];

printf( "SQ error % -- %\n",
SQLCCDE,
sqgl error_nessage( &sql ca,
buffer,
sizeof ( buffer ) ) );
}

static SQLDA * Prepar eSQ.DA(
a_sqgl _stat enent _nunber st at 0,
unsi gned wi dt h,
unsi gned *col s_per_row )
/*********************************************/
/* Allocate a SQLDA to be used for fetching from
the statenment identified by "stat0". "w dth"
rows wWill be retrieved on each FETCH request.
The nunber of colums per rowis assigned to
"col s_per_row'. */

{
int num col s;
unsi gned row, col, offset;
SQ.DA * sql da;

EXEC SQ. BEG N DECLARE SECTI QN
a_sql _statenent _nunber stat;
EXEC SQ. END DECLARE SECTI ON;

stat = statO;

sgl da = all oc_sql da( 100 );

if( sglda == NULL ) return( NULL );

EXEC SQ. DESCRI BE :stat | NTO sql da;

*col s_per_row = num.col s = sql da->sql d;

if( numcols * width > sglda->sqln ) {
free_sqlda( sqglda);
sglda = alloc_sqlda( numcols * width );
if( sglda == NULL ) return( NULL );
EXEC SQ. DESCRI BE :stat | NTO sql da;

}
/1l copy first rowin SQLDA setup by describe
/1 to follow ng (wde) rows



Chapter 6 Embedded SQL Programming

sgl da->sqld = numcols * width;
of fset = numcol s;
for( row=1; row < width; row+ ) {
for( col = 0;
col < numcols;
col ++, offset++ ) {
sql da- >sql var[of fset].sql type =
sql da- >sqgl var[col ] . sql type;
sql da- >sql var[of fset].sqgllen =
sql da- >sqgl var[col ] . sql |l en;
// optional: copy described col um nane
mencpy( &sql da->sql var[of f set]. sgl nane,
&sql da- >sql var[col ] . sql nane,
si zeof ( sql da->sql var[ 0] . sqgl nane )

)
}
}
fill _s_sqglda( sqglda, 40 );
return( sqglda);
err:
return( NULL );
}

static void PrintFetchedRows( SQ.DA * sql da,
unsi gned col s_per_row )
/******************************************/
/* Print rows already wide fetched in the SQDA */
{
| ong rows_f et ched;
int row, col, offset;

if( SQLCOUNT == 0 ) {
rows_fetched = 1;

} else {

rows_fetched = SQLCOUNT,;

}
printf( "Fetched % Rows:\n", rows_fetched );
for( row=0; row < rows_fetched; row+ ) {
for( col = 0; col < cols_per_row col++ ) {

offset = row * cols_per_row + col;

printf( " \"%\"",

(char *)sqgl da->sql var[ of f set]
.sgldata );

}
printf( "\n" );
}

static int DoQuery( char * query_strO,
unsi gned fetch_wi dthO )

/*****************************************/

199



Fetching data

/* Wde Fetch "query_str0" sel ect statenent
* using a width of "fetch_wi dth0" rows" */

{

SQLDA * sql da;

unsi gned col s_per_row,

EXEC SQ BEG N DECLARE SECTI O\

a_sql _statenent _nunber stat;

char * query_str;

unsi gned fetch_width;

EXEC SQ. END DECLARE SECTI ON;

query_str = query_stro;
fetch_width = fetch_wi dthoO;

EXEC SQL PREPARE :stat FROM:query_str;
EXEC SQL DECLARE QCURSOR CURSCR FCR : stat
FOR READ ONLY;
EXEC SQ. OPEN QCURSCOR;
sql da = Prepar eSQLDA( stat,
fetch_wi dth,
&col s_per_row );
if( sglda == NULL ) {
printf( "Error allocating SQLDANn" );
return( SQLE_NO _MEMCORY );

}
for( ;; ) {
EXEC SQL FETCH QCURSCOR | NTO DESCR PTOR sql da
ARRAY : fetch_wi dth;
if( SQCCDE ! = SQLE_NCERRCR ) break;
Print Fet chedRows( sql da, cols_per_row);

}
EXEC SQ CLOSE QCURSCR
EXEC SQ. DRCP STATEMENT :stat;
free_filled_sqglda( sqlda);
err:
return( SQLCCODE );
}

void main( int argc, char *argv[] )
/*********************************/
/* Optional first argunent is a select statenent,
* optional second argunent is the fetch width */
{
char *query_str =
"sel ect enp_fnane, enp_l nane from enpl oyee";
unsi gned fetch_wi dth = 10;

if( argc > 1) {

query_str = argv[1];

if( argc >2) {
fetch_ width = atoi( argv[2] );
if( fetchwidth <2 ) {

200



Chapter 6 Embedded SQL Programming

Notes on using
wide fetches

fetch width = 2;
}

}

}

db_init( &qlca);
EXEC SQ. CONNECT "dba" | DENTI FIED BY "sqgl";

DoQuery( query_str, fetch_width );

EXEC SQL DI SCONNECT;
err:

db_fini( &sqglca);
}

In the function PrepareSQL DA, the SQLDA memory is allocated using
the alloc_sglda function. This allows space for indicator variables,
rather than using the alloc_sglda _noind function.

If the number of rows fetched is fewer than the number requested, but is
not zero (at the end of the cursor for example), the SQLDA items
corresponding to the rows that were not fetched are returned as NULL
by setting the indicator value. If no indicator variables are present, an
error is generated (SQLE_NO_INDICATOR: no indicator variable for
NULL result).

If arow being fetched has been updated, generating a
SQLE_ROW_UPDATED_WARNING warning, the fetch stops on the
row that caused the warning. The values for al rows processed to that
point (including the row that caused the warning) are returned.
SQLCOUNT contains the number of rows that were fetched, including
the row that caused the warning. All remaining SQLDA items are
marked as NULL.

If arow being fetched has been deleted or islocked, generating an
SQLE_NO_CURRENT_ROW or SQLE_LOCKED error, SQLCOUNT
contains the number of rows that were read prior to the error. This does
not include the row that caused the error. The SQLDA does not contain
values for any of the rows since SQLDA values are not returned on
errors. The SQLCOUNT value can be used to reposition the cursor, if
necessary, to read the rows.

201



Static and dynamic SQL

Static and dynamic SQL

There are two ways to embed SQL statements into a C program:
¢  Static statements

¢ Dynamic statements

Until now, we have been discussing static SQL. This section compares static
and dynamic SQL.

Static SQL statements

All standard SQL data manipulation and data definition statements can be
embedded in a C program by prefixing them with EXEC SQL and suffixing
the command with a semicolon (;). These statements are referred to as static
statements.

Static statements can contain references to host variables, as described in
"Using host variables' on page 181. All examples to this point have used
static embedded SQL statements.

Host variables can only be used in place of string or numeric constants. They
cannot be used to substitute column names or table names; dynamic
statements are required to perform those operations.

Dynamic SQL statements

202

In the C language, strings are stored in arrays of characters. Dynamic
statements are constructed in C language strings. These statements can then
be executed using the PREPARE and EXECUTE statements. These SQL
statements cannot reference host variables in the same manner as static
statements since the C language variables are not accessible by name when
the C program is executing.

To pass information between the statements and the C language variables, a
data structure called the SQL Descriptor Area (SQLDA) isused. This
structure is set up for you by the SQL preprocessor if you specify alist of
host variables on the EXECUTE command in the USING clause. These
variables correspond by position to place holdersin the appropriate positions
of the prepared command string.

& For information on the SQLDA, see "The SQL descriptor area
(SQLDA)" on page 206.



Chapter 6 Embedded SQL Programming

A place holder is put in the statement to indicate where host variables are to
be accessed. A place holder is either a question mark (?) or ahost variable
reference asin static statements (a host variable name preceded by a colon).
In the latter case, the host variable name used in the actual text of the
statement serves only as a place holder indicating a reference to the SQL
descriptor area.

A host variable used to pass information to the database is called abind
variable.

Example For example:

EXEC SQL BEG N DECLARE SECTI O\
char comnj 200];
char address[ 30];
char city[20];
short int cityind;
| ong enpnum
EXEC SQ. END DECLARE SECTI O\

sprintf( comm "update % set address = :?,
city = :?"
' where enpl oyee_nunber = :?",

tabl enane );
EXEC SQL PREPARE S1 FROM : conm
EXEC SQL EXECUTE S1 USI NG : address, :city:cityind,
: enpnum

This method requires the programmer to know how many host variables
there are in the statement. Usually, thisis not the case. So, you can set up
your own SQLDA structure and specify this SQLDA in the USING clause
on the EXECUTE command.

The DESCRIBE BIND VARIABLES statement returns the host variable
names of the bind variables that are found in a prepared statement. This
makes it easier for a C program to manage the host variables. The general
method is as follows:

EXEC SQ. BEA N DECLARE SECTI QN;
char conni 200] ;
EXEC SQ. END DECLARE SECTI O\

sprintf( comm "update % set address = :address,
city = :city"
' where enpl oyee_nunber = :enpnunt,
t abl enane );
EXEC SQ. PREPARE S1 FROM : comm
/* Assume that there are no nore than 10 host vari abl es.
See next exanple if you can't put
alimt onit */
sglda = alloc_sqlda( 10 );

203



Static and dynamic SQL

SQLDA contents

Indicator variables
and NULL

EXEC SQ. DESCRI BE BI ND VARI ABLES FOR S1 USI NG DESCRI PTCR
sql da;

/* sqglda->sqgld will tell you how rmany host vari abl es
there were. */

/* Fill in SQLDA VARI ABLE fields with val ues based on
nane fields in sqlda */

EXEC SQL EXECUTE S1 USI NG DESCR PTCR sql da;
free_sqlda( sqglda);

The SQLDA consists of an array of variable descriptors. Each descriptor
describes the attributes of the corresponding C program variable or the
location that the database stores data into or retrieves data from:

¢+ datatype

¢ lengthif typeisastring type

¢ precision and scaleif type isanumeric type
¢ memory address

¢ indicator variable

& For acomplete description of the SQLDA structure, see "The SQL
descriptor area (SQLDA)" on page 206

Theindicator variable is used to passaNULL value to the database or
retrieve aNULL value from the database. The indicator variableis also used
by the database server to indicate truncation conditions encountered during a
database operation. The indicator variableis set to a positive value when not
enough space was provided to receive a database value.

& For more information, see "Indicator variables' on page 185.

Dynamic SELECT statement

204

A SELECT statement that returns only a single row can be prepared
dynamically, followed by an EXECUTE with an INTO clause to retrieve the
one-row result. SELECT statements that return multiple rows, however, are
managed using dynamic cursors.

With dynamic cursors, results are put into a host variable list or a SQLDA
that is specified on the FETCH statement (FETCH INTO and

FETCH USING DESCRIPTOR). Since the number of select list itemsis
usually unknown to the C programmer, the SQLDA route is the most
common. The DESCRIBE SELECT LIST statement sets up a SQLDA with
the types of the select list items. Space is then allocated for the values using
thefill_sglda() function, and the information isretrieved by the

FETCH USING DESCRIPTOR statement.



Chapter 6 Embedded SQL Programming

Thetypical scenario is as follows:

EXEC SQ. BEA N DECLARE SECTI QN;
char conni 200] ;

EXEC SQ. END DECLARE SECTI O\
int actual _size;
SQ.DA * sql da;

sprintf( comm "select * from%", table_nane );
EXEC SQ. PREPARE S1 FROM : comm
/* Initial guess of 10 colums in result. If it is
wong, it is corrected right after the first
DESCRI BE by real |l ocating sql da and doi ng DESCRI BE
again. */
sglda = alloc_sqglda( 10 );
EXEC SQ. DESCRI BE SELECT LI ST FOR S1 USI NG DESCRI PTCR
sql da;
i f( sglda->sqld > sqglda->sqgln ){
actual _si ze = sqgl da->sql d;
free_sqlda( sqglda );
sglda = all oc_sql da( actual _size );
EXEC SQ. DESCRI BE SELECT LI ST FOR S1
USI NG DESCRI PTCR sql da;

}
fill _sqlda( sqglda);
EXEC SQ. DECLARE Cl1 CURSCOR FOR S1;
EXEC SQ. OPEN C1;
EXEC SQ. WHENEVER NOTFOUND { br eak};
for( ;; ){
EXEC SQ. FETCH Cl USI NG DESCR PTCR sql da;
/* do sonmething with data */
}
EXEC SQ. CLOCSE C1;
EXEC SQ. DROP STATEMENT Si;

Drop statements after use
To avoid consuming unnecessary resources, ensure that statements are
dropped after use.

& For acomplete example using cursors for a dynamic select statement,
see "Dynamic cursor sample" on page 174.

& For details of the functions mentioned above, see "Library function
reference” on page 230.

205



The SQL descriptor area (SQLDA)

The SQL descriptor area (SQLDA)

The SQLDA (SQL Descriptor Area) is an interface structure that is used for
dynamic SQL statements. The structure passes information regarding host
variables and SELECT statement results to and from the database. The
SQLDA isdefined in the header file sqglda.h.

& There are functions in the database interface library or DLL that you
can use to manage SQLDAs. For descriptions, see "Library function
reference” on page 230.

When host variables are used with static SQL statements, the preprocessor
constructs a SQLDA for those host variables. It isthis SQLDA that is
actually passed to and from the database server.

The SQLDA header file

206

The contents of sqlda.h are as follows:

#i fndef _SQ.DA H | NCLUDED
#define _SQ.DA H | NCLUDED
#define 11 _SQLDA

#i ncl ude "sql ca. h"

#if defined( _SQ._PACK STRUCTURES )
#i ncl ude "pshpkl. h"
#endi f

#define SQL_MAX NAME LEN 30

#define _sql daf ar _sql far

t ypedef short int a_SQ _type
struct sql nanme {
short int length; /* length of char data */

char data] SQL_MAX_NAME_LEN]; /* data */
b
struct sqglvar { /* array of variable descriptors */
short int sqltype; /* type of host variable */
short int sqllen; /* length of host variable */
void _sqldafar *sqgldata; /* address of variable */
short int _sqgldafar *sqlind; /* indicator variable pointer */
struct sqgl name sql name
h



Chapter 6 Embedded SQL Programming

struct sql da{
unsigned char sqldaid[8]; /* eye catcher "SQDA"*/
a_SQ_int32 sqgldabc; /* length of sqglda structure*/
short int sqgln; /* descriptor size in nunber of entries */
short int sqgld; /* nunber of variables found by DESCR BE*/

struct sql var sglvar[1]; /* array of variable descriptors */
h
#def i ne SCALE(sqll en) ((sqllen)/256)
#def i ne PREA SI O\ sql | en) ((sqllen)&0xff)
#defi ne SET_PREC S| ON_SCALE(sql | en, preci si on, scal e) \

sgllen = (scal e)*256 + (precision)
#def i ne DECI MALSTORACGE(sql l en) (PREA SIO\(sqgllen)/2 + 1)

typedef struct sql da SQLDA;
typedef struct sql var SQAVAR, SQ.DA VAR ABLE;
typedef struct sqglname SQNAVE, SQLDA NAMNE;

#i f ndef SQLDASI ZE

#def i ne SQLDASI ZE( n) ( sizeof( struct sglda ) + \
(n-1) * sizeof( struct sqlvar) )

#endi f

#i f defined( _SQ._PACK _STRUCTURES )
#i ncl ude "poppk. h"

#endi f
#endi f
SQLDA fields
The SQLDA fields have the following meanings:
Field Description
sgldaid An 8-byte character field that contains the string SQL DA as an

identification of the SQLDA structure. Thisfield helpsin
debugging when you are looking at memory contents.

sgldabc A long integer containing the length of the SQLDA structure.
sgin The number of variable descriptorsin the sglvar array.
sgld The number of variable descriptors which are valid (contain

information describing a host variable). Thisfield is set by the
DESCRIBE statement and sometimes by the programmer when
supplying data to the database server.

sglvar An array of descriptors of type struct sqlvar, each describing a
host variable.

207



The SQL descriptor area (SQLDA)

SQLDA host variable descriptions

208

Each sglvar structurein the SQLDA describes a host variable. The fields of
the sglvar structure have the following meanings:

¢

sqltype Thetype of the variable that is described by this descriptor
(see "Embedded SQL data types' on page 177).

The low order bit indicates whether NULL values are allowed. Valid
types and constant definitions can be found in the sqgldef.h header file.

Thisfield isfilled by the DESCRIBE statement. Y ou can set thisfield to
any type when supplying data to the database server or retrieving data
from the database server. Any necessary type conversion is done
automatically.

sgllen Thelength of the variable. What the length actually means
depends upon the type information and how the SQL DA is being used.

For DECIMAL types, thisfield isdivided into two 1-byte fields. The
high byte is the precision and the low byte isthe scale. The precisionis
the total number of digits. The scale is the number of digits that appear
after the decimal point.

For LONG VARCHAR and LONG BINARY datatypes, thearray len
field of the DT_LONGBINARY and DT_LONGVARCHAR data type
structure is used instead of the sgllen field.

& For more information on the length field, see "SQLDA sgllen field
values' on page 209.

sgldata A four-byte pointer to the memory occupied by this variable.
This memory must correspond to the sgltype and sgllen fields.

& For storage formats, see "Embedded SQL data types' on page 177.

For UPDATE and INSERT commands, this variable is not involved in
the operation if the sqldata pointer isanull pointer. For aFETCH, no
dataisreturned if the sgldata pointer isanull pointer. In other words,

the column returned by the sqldata pointer is an unbound column.

If the DESCRIBE statement uses LONG NAMES, thisfield holds the
long name of the result set column. If, in addition, the DESCRIBE
statement isa DESCRIBE USER TY PES statement, then this field holds
the long name of the user-defined data type, instead of the column. If the
type is abase type, the field is empty.



Chapter 6 Embedded SQL Programming

sglind A pointer to the indicator value. An indicator valueisa short
int. A negative indicator value indicates aNULL value. A positive
indicator value indicates that this variable has been truncated by a
FETCH statement, and the indicator value contains the length of the data
before truncation. A value of —2 indicates a conversion error if the
CONVERSION_ERROR database option is set to OFF.

& For more information, see "Indicator variables" on page 185.

If the sglind pointer is the null pointer, no indicator variable pertains to
this host variable.

Thesglind field is also used by the DESCRIBE statement to indicate
parameter types. If the type is a user-defined data type, this field is set to
DT_HAS_USERTYPE_INFO. In such a case, you may wish to carry

out a DESCRIBE USER TYPES to obtain information on the
user-defined data types.

sglname A VARCHAR structure that contains a length and character

buffer. It is filled by a DESCRIBE statement and is not otherwise used.
This field has a different meaning for the two formats of the DESCRIBE
statement:

¢ SELECTLIST The name buffer is filled with the column heading
of the corresponding item in the select list.

¢ BIND VARIABLES The name buffer is filled with the name of the
host variable that was used as a bind variable, or "?" if an unnamed
parameter marker is used.

On a DESCRIBE SELECT LIST command, any indicator variables
present are filled with a flag indicating whether the select list item is
updatable or not. More information on this flag can be found in the
sqgldef.h header file.

If the DESCRIBE statement is a DESCRIBE USER TYPES statement,
then this field holds the long name of the user-defined data type instead
of the column. If the type is a base type, the field is empty.

SQLDA sqllen field values

Thesgllen field length of thesglvar structure in a SQLDA is used in the
following kinds of interactions with the database server:

¢

describing values The DESCRIBE statement gets information about
the host variables required to store data retrieved from the database, or
host variables required to pass data to the database.

& See "Describing values" on page 210.

209



The SQL descriptor area (SQLDA)

Describing values

210

¢ retrieving values

Retrieving values from the database.

& See"Retrieving values' on page 212.

¢ sending values

& See"Sending values' on page 211.

These interactions are described in this section.

Sending information to the database.

The following tables detail each of these interactions. These tables list the
interface constant types (the DT __ types) found in the sqldef.h header file.
These constants would be placed in the SQLDA sqltype field.

& For information about sgltype field values, see "Embedded SQL data

types' on page 177.

In static SQL, a SQLDA isstill used but it is generated and completely filled
in by the SQL preprocessor. In this static case, the tables give the
correspondence between the static C language host variable types and the

interface constants.

The following table indicates the values of the sgllen and sqltype structure
members returned by the DESCRIBE command for the various database
types (both SELECT LIST and BIND VARIABLE DESCRIBE statements).
In the case of a user-defined database data type, the base type is described.

Y our program can use the types and lengths returned from a DESCRIBE, or
you may use ancther type. The database server performs type conversions
between any two types. The memory pointed to by the sgldata field must
correspond to the sgltype and sgllen fields.

& For information on embedded SQL data types, see "Embedded SQL

data types' on page 177.

Database field type

Embedded SQL type
returned

Length returned on
describe

BIGINT
BINARY ()
BIT
CHAR(n)
DATE

DECIMAL(p,S)

DT BIGINT
DT_BINARY
DT BIT
DT_FIXCHAR
DT _DATE

DT_DECIMAL

8
n
1
n

length of longest
formatted string

high byte of length field
in SQLDA set to p, and
low bytesetto s



Chapter 6 Embedded SQL Programming

Sending values

Database field type

Embedded SQL type
returned

Length returned on
describe

DOUBLE

FLOAT

INT

LONG BINARY
LONG VARCHAR
REAL

SMALLINT
TIME

TIMESTAMP

TINYINT
UNSIGNED BIGINT
UNSIGNED INT
UNSIGNED SMALLINT
VARCHAR(n)

DT_DOUBLE
DT_FLOAT

DT_INT
DT_LONGBINARY
DT_LONGVARCHAR
DT_FLOAT
DT_SMALLINT
DT_TIME

DT_TIMESTAMP

DT_TINYINT
DT_UNSBIGINT
DT_UNSINT
DT_UNSSMALLINT
DT_VARCHAR

8
4
4
32767
32767
4
2

length of longest
formatted string

length of longest
formatted string

1

8
4
2

>

The following table indicates how you specify lengths of values when you
supply data to the database server in the SQLDA.

Only the data types displayed in the table are allowed in this case. The
DT_DATE, DT_TIME, and DT_TIMESTAMP types are treated the same as
DT_STRING when supplying information to the database; the value must be
aNULL-terminated character string in an appropriate date format.

Embedded SQL Data Type

Program action to set the length

DT BIGINT
DT_BINARY (n)

DT _BIT
DT_DATE
DT_DECIMAL(p,s)

No action required

Length taken from field in BINARY
structure

No action required
Length determined by terminating \O

high byte of length field in SQLDA set to p,
and low bytesetto s

211



The SQL descriptor area (SQLDA)

Retrieving values

Embedded SQL Data Type

Program action to set the length

DT_DOUBLE
DT_FIXCHAR(n)

DT_FLOAT
DT_INT
DT_LONGBINARY

DT_LONGVARCHAR

DT_SMALLINT
DT_STRING

DT_TIME
DT_TIMESTAMP
DT_TIMESTAMP_STRUCT
DT_UNSBIGINT
DT_UNSINT
DT_UNSSMALLINT
DT_VARCHAR(n)

DT_VARIABLE

No action required

Length field in SQLDA determines length of
string

No action required
No action required

Length field ignored. See "Sending LONG
data' on page 217

Length field ignored. See "Sending LONG
data' on page 217

No action required
Length determined by terminating \O
Length determined by terminating \O
Length determined by terminating \O
No action required
No action required
No action required
No action required

Length taken from field in VARCHAR
structure

Length determined by terminating \O

The following table indicates the values of the length field when you retrieve
data from the database using a SQLDA. The sgllen field is never modified
when you retrieve data.

Only the interface data types displayed in the table are allowed in this case.
TheDT_DATE, DT_TIME, and DT_TIMESTAMP data types are treated
the same as DT_STRING when you retrieve information from the database.
The value is formatted as a character string in the current date format.

212



Chapter 6 Embedded SQL Programming

Embedded SQL

What the program

How the database

Data Type must set length field to | returns length
when receiving information after
fetching a value
DT _BIGINT No action required No action required

DT_BINARY ()

DT BIT
DT _DATE
DT_DECIMAL(p.9)

DT_DOUBLE
DT_FIXCHAR(n)

DT_FLOAT
DT_INT
DT_LONGBINARY

DT_LONGVARCHAR

DT_SMALLINT
DT_STRING
DT_TIME
DT_TIMESTAMP

DT_TIMESTAMP_
STRUCT

DT_UNSBIGINT
DT_UNSINT
DT_UNSSMALLINT
DT_VARCHAR(n)

Maximum length of
BINARY structure (n+2)

No action required
Length of buffer

High byte set to p and low
bytesettos

No action required
Length of buffer

No action required
No action required

Length field ignored. See
"Retrieving LONG data"
on page 215

Length field ignored. See
"Retrieving LONG data"
on page 215

No action required
Length of buffer
Length of buffer
Length of buffer

No action required

No action required
No action required
No action required

Maximum length of
VARCHAR structure
(n+2)

len field of BINARY
structure set to actual
length

No action required
\0 at end of string
No action required

No action required

Padded with blanks to
length of buffer

No action required
No action required

Length field ignored. See
"Retrieving LONG data"
on page 215

Length field ignored. See
"Retrieving LONG data"
on page 215

No action required
\O at end of string
\O at end of string
\O at end of string
No action required

No action required
No action required
No action required

len field of VARCHAR
structure set to actual
length

213



Sending and retrieving long values

Sending and retrieving long values

Static SQL usage

Dynamic SQL
usage

214

The method for sending and retrieving LONG VARCHAR and LONG
BINARY valuesin embedded SQL applications is different from that for
other data types. Although the standard SQLDA fields can be used, they are
limited to 32 kb data as the fields holding the information (sgldata, sgllen,
sglind) are 16-bit values. Changing these values to 32-bit values would break
existing applications.

The method of describing LONG VARCHAR and LONG BINARY valuesis
the same as for other data types.

& For information about how to retrieve and send values, see "Retrieving
LONG data" on page 215, and "Sending LONG data" on page 217.

Separate structures are used to hold the all ocated, stored, and untruncated
lengths of LONG BINARY and LONG VARCHAR datatypes. The static
SQL datatypes are defined in sgica.h as follows:

#def i ne DECL_LONGVARCHAR( si ze ) \
struct { a_sql _uint32 array_| en; \
a_sql _uint 32 stored_l en; \
a_sql _uint32 untrunc_len; \
char array[ si ze+1];\

}
#def i ne DECL_LONGBI NARY( si ze ) \
struct { a_sql _uint32 array_| en; \
a_sql _uint 32 stored_|l en; \
a_sql _uint32 untrunc_len; \
char array[size]; \

}

For dynamic SQL, set the sgltype field to DT_LONGVARCHAR or
DT_LONGBINARY as appropriate. The associated LONGBINARY and
LONGVARCHAR structures are as follows:

typedef struct LONGVARCHAR {

a_sql _uint 32 array_| en;
/* nunber of allocated bytes in array */
a_sql _uint 32 stored_l en;

/* nunber of bytes stored in array
* (never |arger than array_|en)
*/

a_sql _uint 32 untrunc_l en;
/* nunber of bytes in untruncated expression
* (may be larger than array_| en)
*/

char array[1]; /* the data */

} LONGVARCHAR, LONGBI NARY;



Chapter 6 Embedded SQL Programming

& For information about how to implement this feature in your
applications, see "Retrieving LONG data"' on page 215, and "Sending LONG
data' on page 217.

Retrieving LONG data

This section describes how to retrieve LONG values from the database. For
background information, see " Sending and retrieving long values' on
page 214.

The procedures are different depending on whether you are using static or
dynamic SQL.

To receive a LONG VARCHAR or LONG BINARY value (static SQL):

1

Declare a host variable of type DECL_LONGVARCHAR or
DECL_LONGBINARY, as appropriate.

Retrieve the data using FETCH, GET DATA, or EXECUTE INTO.
Adaptive Server Anywhere sets the following information:

¢ indicator variable Theindicator variableis negative if the value
isNULL, O if thereis no truncation, and is the positive untruncated
length in bytes up to a maximum of 32767.

& For more information, see "Indicator variables' on page 185.

¢ stored_len ThisDECL_LONGVARCHAR or
DECL_LONGBINARY field holds the number of bytesretrieved
into the array. It is never greater thanarray_len.

¢ untrunc_len ThisDECL_LONGVARCHAR or
DECL_LONGBINARY field holds the number of bytes held by the
database server. It isat least equal to the stored_len value. It is set
even if the value is not truncated.

To receive a value into a LONGVARCHAR or LONGBINARY structure
(dynamic SQL):

1

Set the sgltype field to DT_LONGVARCHAR or DT_L ONGBINARY
as appropriate.

Set the sgldata field to point to the LONGVARCHAR or
LONGBINARY structure.

Y ou can use the LONGVARCHARSI ZE( n ) or LONGBI NARYSI ZE( n )
macros to determine the total number of bytes to allocate to hold n bytes
of datain the array field.

215



Sending and retrieving long values

216

3 Setthearray_len field of the LONGVARCHAR or LONGBINARY
structure to the number of bytes allocated for the array field.

4 Retrievethedatausing FETCH, GET DATA, or EXECUTE INTO.
Adaptive Server Anywhere sets the following information:

¢ *sglind Thissgldafield isnegativeif the valueisNULL, O if
there is no truncation, and is the positive untruncated length in bytes
up to a maximum of 32767.

¢ stored_len ThisLONGVARCHAR or LONGBINARY field
holds the number of bytes retrieved into the array. It is never greater
thanarray_len.

¢ untrunc_len ThisLONGVARCHAR or LONGBINARY field
holds the number of bytes held by the database server. It is at least
equal to the stored_len value. It is set even if the valueis not
truncated.

The following code snippet illustrates the mechanics of retrieving LONG
VARCHAR data using dynamic embedded SQL. It is not intended to be a
practical application:;



Chapter 6 Embedded SQL Programming

#defi ne DATA LEN 128000
void get_test_var()

/*****************/

{
LONGVARCHAR *| ongptr;

SQ.DA *sql da;
SQVAR *sql var;

sglda = alloc_sqglda( 1);
longptr = (LONGVARCHAR *)nal | oc(
LONGVARCHARS| ZE( DATA LEN ) );
if( sglda == NULL || longptr == NULL ) {
fatal _error( "Allocation failed" );
}

// init longptr for receiving data
longptr->array_| en = DATA_LEN

/1l init sqlda for receiving data

/1 (sqgllen is unused with DI_LONG types)
sglda->sqld = 1; // using 1 sqlvar

sgl var = &sql da->sql var[0];

sql var->sql type = DI_LONGVARCHAR;

sqgl var->sql data = | ongptr;

printf( "fetching test_var\n" );
EXEC SQL PREPARE sel ect _stnt FROM ' SELECT test_var’;
EXEC SQ. EXECUTE sel ect _stnt | NTO DESCRI PTOR sql da;
EXEC SQL DRCP STATEMENT sel ect_stnt;
printf( "stored_len: %l, untrunc_len: %,
1st char: %, l|ast char: %\n",

| ongptr->stored_| en,

I ongptr->untrunc_| en,

| ongptr->array[ 0],

| ongpt r->array[ DATA LEN-1] );
free_sqlda( sqglda);
free( longptr );

Sending LONG data

This section describes how to send LONG values to the database from
embedded SQL applications. For background information, see " Sending and
retrieving long values' on page 214.

The procedures are different depending on whether you are using static or
dynamic SQL.

217



Sending and retrieving long values

218

% To send a LONG VARCHAR or LONG BINARY value (static SQL):

1

4

Declare a host variable of type DECL_LONGVARCHAR or
DECL_LONGBINARY, as appropriate.

If you are sending NULL and using an indicator variable, set the
indicator variable to a negative value.

& For more information, see "Indicator variables' on page 185.

Set the stored_len field of the DECL_LONGVARCHAR or
DECL_LONGBINARY structure to the number of bytes of datain the
array field.

Send the data by opening the cursor or executing the statement.

The following code snippet illustrates the mechanics of sending a LONG
VARCHAR using static embedded SQL. It is not intended to be a practical
application.

#def i ne DATA LEN 12800

EXEC SQ. BEG N DECLARE SECTI QN;

I/ SQPP initializes longdata.array_|en
DECL_LONGVARCHAR( 128000) | ongdat a;

EXEC SQ. END DECLARE SECTI ON;

voi d set_test var()

/*****************/

{
/1l init longdata for sending data
nmenset ( | ongdata.array, 'a, DATA LEN);
| ongdat a. stored_| en = DATA_LEN
printf( "Setting test_var to %l a s\n", DATA LEN);
EXEC SQ. SET test_var = :longdata;
}

% To send a value using a LONGVARCHAR or LONGBINARY structure
(dynamic SQL):

1

Set the sgltype field to DT_LONGVARCHAR or DT_LONGBINARY
as appropriate.

If you are sending NULL, set * sglind to a negative value.

Set the sgldata field to point to the LONGVARCHAR or
LONGBINARY structure.

Y ou can use the LONGVARCHARSI ZE( n ) or LONGBI NARYSI ZE( n )
macros to determine the total number of bytes to allocate to hold n bytes
of datain the array field.



Chapter 6 Embedded SQL Programming

Set thearray_len field of the LONGVARCHAR or LONGBINARY
structure to the number of bytes allocated for the array field.

Set the stored_len field of the LONGVARCHAR or LONGBINARY
structure to the number of bytes of datain the array field. This must not
be more than array_len.

Send the data by opening the cursor or executing the statement.

219



Using stored procedures

Using stored procedures

This section describes the use of SQL procedures in embedded SQL.

Using simple stored procedures

220

Y ou can create and call stored procedures in embedded SQL.

Y ou can embed a CREATE PROCEDURE just like any other data definition
statement, such as CREATE TABLE. You can also embed a CALL
statement to execute a stored procedure. The following code fragment
illustrates both creating and executing a stored procedure in embedded SQL :

EXEC SQL CREATE PROCEDURE pettycash( | N anmount
DECI MAL( 10, 2) )
BEGA N
UPDATE account
SET bal ance = bal ance - anobunt
VWHERE nane = ' bank’;

UPDATE account
SET bal ance = bal ance + anobunt
WHERE nane = 'pettycash expense’;
END;
EXEC SQ. CALL pettycash( 10.72 );

If you wish to pass host variable values to a stored procedure or to retrieve
the output variables, you prepare and execute a CALL statement. The
following code fragment illustrates the use of host variables. Both the
USING and INTO clauses are used on the EXECUTE statement.

EXEC SQ. BEA N DECLARE SECTI QN;
doubl e hv_expense;
doubl e hv_bal ance;

EXEC SQ. END DECLARE SECTI O\



Chapter 6 Embedded SQL Programming

/] code here
EXEC SQL CREATE PROCEDURE pettycash(
I N expense  DEC MAL( 10, 2),
QUT endbal ance DECI MAL( 10, 2) )
BEG N
UPDATE account
SET bal ance = bal ance - expense
WHERE nane = ' bank’;

UPDATE account
SET bal ance = bal ance + expense
WHERE nane = 'pettycash expense’;

SET endbal ance = ( SELECT bal ance FROM account
WHERE nane = ' bank’ );
END,

EXEC SQL PREPARE S1 FROM ' CALL pettycash( ?, 2 )’;
EXEC SQL EXECUTE S1 USI NG : hv_expense | NTO : hv_bal ance;

& For moreinformation, see "EXECUTE statement [ESQL]" on page 414
of the book ASA SQL Reference Manual, and "PREPARE statement
[ESQL]" on page 495 of the book ASA SQL Reference Manual.

Stored procedures with result sets

Database procedures can also contain SELECT statements. The procedure is
declared using aRESULT clause to specify the number, name, and types of
the columnsin the result set. Result set columns are different from output
parameters. For procedures with result sets, the CALL statement can be used
in place of a SELECT statement in the cursor declaration:

EXEC SQ. BEG N DECLARE SECTI QN;
char  hv_nane[100];
EXEC SQ. END DECLARE SECTI O\

EXEC SQ. CREATE PROCEDURE femal e_enpl oyees()
RESULT( nane char (50) )
BEA N
SELECT enp_fnane || enp_|l nane FROM enpl oyee
WHERE sex = 'f';
END,

EXEC SQ. PREPARE S1 FROM ' CALL fenal e_enpl oyees()’;

EXEC SQ. DECLARE Cl CURSCR FCR S1;
EXEC SQ. OPEN C1,
for(;;) {
EXEC SQ. FETCH Cl I NTO : hv_nane;
i f( SQLCCDE ! = SQLE_NCERROR ) break;

221



Using stored procedures

Dynamic cursors
for CALL
statements

222

printf( "%\\n", hv_nane );

}
EXEC SQL CLCSE CI;

In this example, the procedure has been invoked with an OPEN statement
rather than an EXECUTE statement. The OPEN statement causes the
procedure to execute until it reaches a SELECT statement. At this point, C1
isacursor for the SELECT statement within the database procedure. Y ou
can use al forms of the FETCH command (backward and forward scrolling)
until you are finished with it. The CLOSE statement terminates execution of
the procedure.

If there had been another statement following the SELECT in the procedure,
it would not have been executed. In order to execute statements following a
SELECT, use the RESUME cursor-name command. The RESUME
command either returns the warning SQLE_PROCEDURE_COMPLETE or
it returns SQLE_NOERROR indicating that there is another cursor. The
exampleillustrates a two-select procedure:

EXEC SQ. CREATE PROCEDURE peopl e()
RESULT( nane char (50) )
BEG N

SELECT enp_fnane || enp_| nane
FROM enpl oyee;

SELECT fnane || |nane
FROM cust oner ;
END;

EXEC SQ. PREPARE S1 FROM ' CALL people()’;

EXEC SQ DECLARE C1 CURSCR FCR S1,
EXEC SQ. OPEN C1;
whi | e( SQLCODE == SQLE_NCERROR ) {
for(;:) {
EXEC SQ. FETCH Cl I NTO : hv_nane;
i f( SQLCCDE ! = SQLE NCERROR ) break;
printf( "%\\n", hv_nane );

}

EXEC SQL RESUME CI;
}
EXEC SQL CLCSE CI;

These examples have used static cursors. Full dynamic cursors can also be
used for the CALL statement.

& For adescription of dynamic cursors, see "Dynamic SELECT
statement" on page 204.



Chapter 6 Embedded SQL Programming

DESCRIBE ALL

Multiple result sets

The DESCRIBE statement works fully for procedure calls. A DESCRIBE
OUTPUT produces a SQLDA that has a description for each of the result set
columns.

If the procedure does not have aresult set, the SQLDA has a description for
each INOUT or OUT parameter for the procedure. A DESCRIBE INPUT
statement produces a SQLDA having a description for each IN or INOUT
parameter for the procedure.

DESCRIBE ALL describes IN, INOUT, OUT, and RESULT set parameters.
DESCRIBE ALL usestheindicator variablesin the SQLDA to provide
additional information.

The DT_PROCEDURE_IN and DT_PROCEDURE_OUT bits are set in the
indicator variable when a CALL statement is described.
DT_PROCEDURE_IN indicatesan IN or INOUT parameter and
DT_PROCEDURE_OUT indicatesan INOUT or OUT parameter. Procedure
RESULT columns have both bits clear.

After adescribe OUTPUT, these bits can be used to distinguish between
statements that have result sets (need to use OPEN, FETCH, RESUME,
CLOSE) and statements that do not (need to use EXECUTE).

& For acomplete description, see "DESCRIBE statement [ESQL]" on
page 392 of the book ASA SQL Reference Manual.

If you have a procedure that returns multiple result sets, you must re-describe
after each RESUME statement if the result sets change shapes.

Y ou need to describe the cursor, not the statement, to re-describe the current
position of the cursor.

223



Embedded SQL programming techniques

Embedded SQL programming techniques

This section contains a set of tips for devel opers of embedded SQL
programs.

Implementing request management

Backup functions

224

The default behavior of the interface DLL isfor applicationsto wait for
completion of each database request before carrying out other functions. This
behavior can be changed using request management functions. For example,
when using Interactive SQL, the operating systemis still active while
Interactive SQL is waiting for aresponse from the database and

Interactive SQL carries out some tasksin that time.

Y ou can achieve application activity while a database request isin progress
by providing a callback function. In this callback function you must not do
another database request except db_cancel_request. Y ou can use the

db_is working function in your message handlersto determine if you have a
database request in progress.

Thedb_register_a callback function is used to register your application
callback functions.

& For moreinformation, see the following:

¢+ "db register_a calback function" on page 237
¢ "db_cancd_request function" on page 233

¢+ "db_is working function" on page 236

The db_backup function provides support for online backup in embedded
SQL applications. The backup utility makes use of this function. Y ou should
only need to write a program to use this function if your backup requirements
are not satisfied by the Adaptive Server Anywhere backup utility.

BACKUP statement is recommended

Although this function provides one way to add backup features to an
application, the recommended way to accomplish thistask isto use the
BACKUP statement. For more information, see "BACKUP statement" on
page 245 of the book ASA SQL Reference Manual.




Chapter 6 Embedded SQL Programming

& You can also access the backup utility directly using the Database
Tools DBBackup function. For more information on this function, see
"DBBackup function" on page 293.

& For more information, see "db_backup function" on page 230.

225



The SQL preprocessor

The SQL preprocessor

The SQL preprocessor processes a C or C++ program containing embedded
SQL, before the compiler isrun.

Syntax sqlpp [ options ] SQL-filename [ output-filename ]
Option Description
—c "keyword=value;..." Supply reference database connection parameters
[UltraLite]
—d Favor datasize
—elevel Flag non-conforming SQL syntax as an error
—f Put the far keyword on generated static data
-g Do not display Ultralite warnings
—hline-width Limit the maximum line length of output
-k Include user declaration of SQLCODE
—mversion Spgci fy the version name for generated synchronization
scripts
-n Line numbers
—o operating-sys Target operating system.
—p project UltralLite project name
—q Quiet mode—do not print banner
—r Generate reentrant code
—sstring-en Maximum string length for the compiler
-w level Flag non-conforming SQL syntax as awarning
—X Change multibyte SQL strings to escape sequences
—z sequence Specify collation sequence
See also "Introduction” on page 164
Description The SQL preprocessor processes a C or C++ program containing embedded

SQL before the compiler isrun. SQLPP tranglates the SQL statementsin the
input-file into C language source that is put into the output-file. The normal
extension for source programs with embedded SQL is .sqc. The default
output filename is the SQL -filename with an extension of .c. If the

SQL -filename has a .c extension, the default output filename extension is
.CC.

226



Chapter 6 Embedded SQL Programming

Options

—c Required when preprocessing files that are part of an UltraLite
application. The connection string must give the SQL preprocessor access to
read and modify your reference database.

—d Generate code that reduces data space size. Data structures are reused
and initialized at execution time before use. Thisincreases code size.

—e Thisoption flags any embedded SQL that is not part of a specified set
of SQL/92 as an error.

The allowed values of level and their meanings are as follows:
e flag syntax that is not entry-level SQL/92 syntax

i flag syntax that is not intermediate-level SQL/92 syntax
f flag syntax that is not full-SQL/92 syntax

t flag non-standard host variable types

.
.
.
.
¢ u flag syntax that is not supported by UltraLite
.

w alow all supported syntax
—g Do not display warning specific to Ultral ite code generation.

—h  Limits the maximum length of lines output by sqipp to num. The
continuation character is a backslash (\) and the minimum value of numis
ten.

-k  Notifies the preprocessor that the program to be compiled includes a
user declaration of SQLCODE.

—m  Specify the version name for generated synchronization scripts. The
generated synchronization scripts can be used in aMobiLink consolidated
database for simple synchronization.

-n  Generate line number information in the C file. This consists of #line
directives in the appropriate places in the generated C code. If the compiler
that you are using supports the #line directive, this option makes the
compiler report errors on line numbers in the SQC file (the one with the
embedded SQL ) as opposed to reporting errors on line numbersin the C file
generated by the SQL preprocessor. Also, the #line directives are used
indirectly by the source level debugger so that you can debug while viewing
the SQC sourcefile.

227



The SQL preprocessor

228

-0 Specify the target operating system. Note that this option must match
the operating system where you run the program. A reference to a special
symbol is generated in your program. This symbol is defined in the interface
library. If you use the wrong operating system specification or the wrong
library, an error is detected by the linker. The supported operating systems

are:
¢  WINDOWS Windows 95/98/Me, Windows CE
¢  WINNT Microsoft Windows NT/2000/XP

¢ NETWARE Novell NetWare

¢  UNIX UNIX

—p ldentifiesthe UltraLite project to which the embedded SQL files
belong. Applies only when processing files that are part of an UltraLite
application.

—g Do not print the banner.

—r  For more information on re-entrant code, see " SQLCA management for
multi-threaded or reentrant code" on page 190.

—s  Set the maximum size string that the preprocessor puts into the C file.
Strings longer than this value are initialized using a list of characters
(‘a','b','c, etc). Most C compilers have alimit on the size of string literal they
can handle. This option is used to set that upper limit. The default valueis
500.

—w This option flags any embedded SQL that is not part of a specified set
of SQL/92 asawarning.

The alowed values of level and their meanings are as follows:
¢ e flagsyntax that isnot entry-level SQL/92 syntax

¢ i flagsyntax that is not intermediate-level SQL/92 syntax
¢ f flag syntax that is not full-SQL/92 syntax

¢ t flag non-standard host variable types

¢ u flag syntax that is not supported by UltraLite

.

w alow all supported syntax

—x  Change multibyte strings to escape sequences so that they can pass
through compilers.

—z Thisoption specifies the collation sequence. For alisting of
recommended collation sequences, type dbinit —I at the command prompt.



Chapter 6 Embedded SQL Programming

The collation sequence is used to help the preprocessor understand the
characters used in the source code of the program, for example, in
identifying alphabetic characters suitable for use in identifiers. If - z is not
specified, the preprocessor attempts to determine areasonable collation to
use based on the operating system and SQLLOCALE environment variable.

229



Library function reference

Library function reference

DLL entry points

The SQL preprocessor generates calls to functionsin the interface library or
DLL. In addition to the calls generated by the SQL preprocessor, a set of
library functionsis provided to make database operations easier to perform.
Prototypes for these functions are included by the

EXEC SQL INCLUDE SQLCA command.

This section contains a reference description of these various functions.

The DLL entry points are the same except that the prototypes have a
modifier appropriate for DLLSs.

Y ou can declare the entry points in a portable manner using _esglentry_,
which isdefined in sglca.h. It resolves to the value __stdcall:

alloc_sqlda function

Prototype

Description

SQLDA *alloc_sqglda( unsigned numvar);

Allocates a SQLDA with descriptors for numvar variables. The sgin field of
the SQLDA isinitialized to numvar. Space is alocated for the indicator
variables, the indicator pointers are set to point to this space, and the
indicator valueisinitialized to zero. A null pointer isreturned if memory
cannot be allocated. It is recommended that you use this function instead of
alloc_sglda_noind function.

alloc_sglda_noind function

Prototype

Description

SQLDA *alloc_sqglda_noind( unsigned numvar);

Allocates a SQLDA with descriptors for numvar variables. The sgin field of
the SQLDA isinitialized to numvar. Space is not allocated for indicator
variables; the indicator pointers are set to the null pointer. A null pointer is
returned if memory cannot be allocated.

db_backup function

Prototype

230

void db_backup(
SQLCA * sqlca,
int op,
int file_num,
unsigned long page_num,
SQLDA * sglda);



Chapter 6 Embedded SQL Programming

Authorization Must be connected to auser ID with DBA authority or REMOTE DBA
authority (SQL Remote).

Description

BACKUP statement is recommended

Although this function provides one way to add backup features to an
application, the recommended way to accomplish thistask isto use the
BACKUP statement. For more information, see "BACKUP statement" on
page 245 of the book ASA SQL Reference Manual.

The action performed depends on the value of the op parameter:

¢ DB_BACKUP_START Must be called before a backup can start. Only
one backup can be running at one time against any given database
server. Database checkpoints are disabled until the backup is complete
(db_backup iscalled with an op value of DB_BACKUP_END). If the
backup cannot start, the SQLCODE is
SQLE_BACKUP_NOT_STARTED. Otherwise, the SQLCOUNT field
of the sglcais set to the size of each database page. (Backups are
processed one page at atime.)

Thefile_num, page_num and sglda parameters are ignored.

¢ DB_BACKUP_OPEN_FILE Open the database file specified by
file_num, which allows pages of the specified file to be backed up using
DB_BACKUP_READ_PAGE. Vadlid file numbers are 0 through
DB_BACKUP_MAX_FILE for the root database files,
DB_BACKUP_TRANS LOG_FILE for the transaction log file, and
DB _BACKUP_WRITE_FILE for the database write fileif it exists. If
the specified file does not exist, the SQLCODE is SQLE_NOTFOUND.
Otherwise, SQLCOUNT contains the number of pagesin thefile,
SQLIOESTIMATE contains a 32-hit value (POSIX time_t) which
identifies the time that the database file was created, and the operating
system file nameisin the sglerrmc field of the SQLCA.

The page_num and sglda parameters are ignored.

¢ DB_BACKUP_READ PAGE Read one page of the database file
specified by file_num. The page_num should be avalue from O to one
less than the number of pages returned in SQLCOUNT by a successful
call to db_backup withthe DB_BACKUP_OPEN_FILE operation.
Otherwise, SQLCODE is set to SQLE_NOTFOUND. The sglda
descriptor should be set up with one variable of type DT_BINARY
pointing to a buffer. The buffer should be large enough to hold binary
data of the size returned in the SQLCOUNT field on the call to
db_backup with the DB_BACKUP_START operation.

231



Library function reference

232

DT_BINARY data contains a two-byte length followed by the actual
binary data, so the buffer must be two bytes longer than the page size.

Application must save buffer

This call makes a copy of the specified database page into the buffer,
but it is up to the application to save the buffer on some backup
media.

DB _BACKUP_READ RENAME_LOG Thisactionisthe sameas
DB _BACKUP_READ_PAGE, except that after the last page of the
transaction log has been returned, the database server renames the
transaction log and starts a new one.

If the database server is unable to rename the log at the current time (for
examplein version 7.x or earlier databases there may be incomplete
transactions), the SQLE_BACKUP_CANNOT_RENAME_LOG_YET
error is set. In this case, do not use the page returned, but instead reissue
the request until you receive SQLE_NOERROR and then write the page.
Continue reading the pages until you receive the SQLE_NOTFOUND
condition.

The SQLE_ BACKUP_CANNOT_RENAME_LOG_YET error may be
returned multiple times and on multiple pages. In your retry loop, you
should add a delay so as not to slow the server down with too many
requests.

When you receive the SQLE_NOTFOUND condition, the transaction
log has been backed up successfully and the file has been renamed. The
name for the old transaction file is returned in the sglerrmc field of the
SQLCA.

Y ou should check the sglda->sglvar[0].sglind value after adb_backup
cal. If thisvalueis greater than zero, the last log page has been written
and the log file has been renamed. The new nameis till in
sglca.sglerrme, but the SQLCODE vaue is SQLE_NOERROR.

Y ou should not call db_backup again after this, except to close files and
finish the backup. If you do, you get a second copy of your backed up
log file and you receive SQLE_NOTFOUND.

DB_BACKUP_CLOSE_FILE Must be called when processing of one
file is complete to close the database file specified by file_num.

The page_num and sglda parameters are ignored.

DB_BACKUP_END Must be called at the end of the backup. No other
backup can start until this backup has ended. Checkpoints are enabled

again.



Chapter 6 Embedded SQL Programming

Thefile_num, page_num and sglda parameters are ignored.

The dbbackup program uses the following algorithm. Note that thisisnot C
code, and does not include error checking.

db_backup( ... DB _BACKUP_START ... )
al l ocat e page buffer based on page size in SQCCDE
sglda = alloc_sqglda( 1)
sgl da->sqld = 1;
sqgl da- >sql var[ 0] . sql type DT_BI NARY
sqgl da- >sql var[ 0] . sgl data = al | ocated buffer
for file_num= 0 to DB _BACKUP_MAX FI LE
db_backup( ... DB _BACKUP_CPEN FILE, file num... )
i f SQLCODE == SQLE_NO ERRCR
/* The file exists */
num pages = SQLOOUNT
file_time = SQLE | O ESTI MATE
open backup file with name from sql ca.sqglerrnt
for page_num= 0 to numpages - 1
db_backup( ... DB_BACKUP_READ PAGE,
file_num page_num sqglda )
wite page buffer out to backup file
next page_num
cl ose backup file
db_backup( ... DB _BACKUP_CLOSE FILE, file_num... )
end if
next file_num
backup up file DB _BACKUP_WRI TE_FI LE as above
backup up file DB_BACKUP_TRANS LOG FI LE as above
free page buffer
db_backup( ... DB BACKUP_END ... )

db_cancel_request function

Prototype

Description

int db_cancel_request( SQLCA *sglca);

Cancelsthe currently active database server request. This function checksto
make sure a database server request is active before sending the cancel
request. If the function returns 1, then the cancel request was sent; if it
returns O, then no request was sent.

A non-zero return value does not mean that the request was canceled. There
are afew critical timing cases where the cancel request and the response

from the database or server "cross". In these cases, the cancel simply has no
effect, even though the function still returns TRUE.

Thedb_cancel_request function can be called asynchronously. This
function and db_is working are the only functions in the database interface
library that can be called asynchronously using an SQLCA that might bein
use by another request.

233



Library function reference

If you cancel arequest that is carrying out a cursor operation, the position of
the cursor isindeterminate. Y ou must locate the cursor by its absolute
position or closeit, following the cancel.

db_delete file function

Prototype

Authorization

Description

void db_delete_file(
SQLCA * sqlca,
char * filename );

Must be connected to auser ID with DBA authority or REMOTE DBA
authority (SQL Remote).

Thedb_delete file function requests the database server to delete filename.
This can be used after backing up and renaming the transaction log (see
DB_BACKUP_READ_RENAME_LOG in"db_backup function" on

page 230) to delete the old transaction log. Y ou must be connected to a user
ID with DBA authority.

db_find_engine function

Prototype

Description

db_fini function

Prototype

Description

234

unsigned short db_find_engine(
SQLCA *sqlca,
char *name);

Returns an unsigned short value, which indicates status information about the
database server whose name is name. If no server can be found with the
specified name, the return value is 0. A non-zero value indicates that the
server is currently running.

Each bit in the return value conveys some information. Constants that
represent the bits for the various pieces of information are defined in the
sqldef.h header file. If anull pointer is specified for name, information is
returned about the default database environment.

unsigned short db_fini( SQLCA *sqlca);

This function frees resources used by the database interface or DLL. You
must not make any other library calls or execute any embedded SQL
commands after db_fini is called. If an error occurs during processing, the
error code is set in SQLCA and the function returns 0. If there are no errors,
anon-zero value is returned.



Chapter 6 Embedded SQL Programming

See also

You need to call db_fini once for each SQLCA being used.

Caution
Failureto call db_fini for each db_init on NetWare can cause the
database server to fail and the NetWare file server to fail.

For information on using db_init in Ultralite applications, see "db_fini
function" on page 231 of the book UltraLite User’s Guide.

db_get property function

Prototype

Description

See also

unsigned int db_get_property(
SQLCA * sqlca,
a_db_property property,
char * value_buffer,
int value_buffer_size);

This function is used to obtain the address of the server to which you are
currently connected. It is used by the dbping utility to print out the server
address.

The function can also be used to obtain the value of database properties.
Database properties can also be obtained in an interface-independent manner
by executing a SELECT statement, as described in " Database properties’ on
page 618 of the book ASA Database Administration Guide.

The arguments are as follows:

¢ a_db_property Anenum withthevalue
DB_PROP_SERVER_ADDRESS. DB_PROP_SERVER_ADDRESS
gets the current connection’s server network address as a printable string.
Shared memory and NamedPipes protocols always return the empty
string for the address. TCP/IP and SPX protocols return non-empty
string addresses.

¢ value_buffer Thisargument isfilled with the property value asanull
terminated string.

¢ value_buffer_size The maximum length of the string value_buffer,
including the terminating null character.

"Database properties on page 618 of the book ASA Database Administration
Guide

235



Library function reference

db_init function

Prototype

Description

See also

unsigned short db_init( SQLCA *sqlca);

This function initializes the database interface library. This function must be
called before any other library call is made and before any embedded SQL
command is executed. The resources the interface library requires for your
program are allocated and initialized on this call.

Usedb_fini to free the resources at the end of your program. If there are any
errors during processing, they are returned in the SQLCA and O is returned.
If there are no errors, anon-zero valueis returned and you can begin using
embedded SQL commands and functions.

In most cases, this function should be called only once (passing the address
of the global sglca variable defined in the sgica.h header file). If you are
writing aDLL or an application that has multiple threads using embedded
SQL, call db_init once for each SQLCA that is being used.

& For more information, see " SQLCA management for multi-threaded or
reentrant code" on page 190.

Caution
Failureto call db_fini for each db_init on NetWare can cause the
database server to fail, and the NetWare file server to fail.

For information on using db_init in Ultralite applications, see "db _init
function" on page 231 of the book UltraLite User’s Guide.

db_is_working function

Prototype

Description

236

unsigned db_is_working( SQLCA *sglca);

Returns 1 if your application has a database request in progress that uses the
given sglcaand 0 if there is no request in progress that uses the given sglca.

This function can be called asynchronously. This function and
db_cancel_request are the only functions in the database interface library
that can be called asynchronously using an SQLCA that might be in use by
another request.



Chapter 6 Embedded SQL Programming

db _locate servers function

Prototype

Description

unsigned int db_locate_servers(
SQLCA *sqlca,
SQL_CALLBACK_PARM callback _address,
void *callback_user_data);

Provides programmatic access to the information displayed by the dblocate
utility, listing al the Adaptive Server Anywhere database servers on the local
network that are listening on TCP/IP.

The callback function must have the following prototype:

int (*)( SQLCA *sqlca,
a_server_address *server_addr,
void *callback_user_data);

The callback function is called for each server found. If the callback function
returns 0, db_locate servers stops iterating through servers.

The sglca and callback_user _data passed to the callback function are those
passed into db_locate servers. The second parameter is a pointer to an

a server_address structure. a_server_addressisdefined in sglca.h, with
the following definition:

typedef struct a_server_address {
a_SQ_uint32 port _type;
a_SQ _uint 32 port_num
char *nane;
char *addr ess;

} a_server_address;

¢ port_type Isalways PORT_TYPE TCP at thistime (defined to be 6
in sqglca.h).

¢ port_num Isthe TCP port number on which this server islistening.
¢ name Pointsto abuffer containing the server name.

¢ address Pointsto abuffer containing the |P address of the server.

& For more information, see "The Server Location utility" on page 498 of
the book ASA Database Administration Guide.

db_register_a callback function

Prototype

void db_register_a_callback(
SQLCA *sqlca,
a_db_callback_index index,
( SQL_CALLBACK_PARM ) callback);

237



Library function reference

Description This function registers callback functions.

If you do not register aDB_CALLBACK_WAIT callback, the default action
isto do nothing. Y our application blocks, waiting for the database response,
and Windows changes the cursor to an hourglass.

To remove a callback, pass anull pointer as the callback function.
The following values are alowed for the index parameter:

¢ DB_CALLBACK_DEBUG_MESSAGE The supplied functionis called
once for each debug message and is passed a null-terminated string
containing the text of the debug message. The string normally has a
newline character (\ n) immediately before the terminating null
character. The prototype of the callback function is as follows:

void SQL_CALLBACK debug_message_callback(
SQLCA *sqlca,
char * message_string );

¢ DB_CALLBACK_START The prototypeisasfollows:
void SQL_CALLBACK start_callback( SQLCA *sqlca);

Thisfunction is called just before a database request is sent to the server.
DB_CALLBACK_START isused only on Windows.

¢ DB_CALLBACK_FINISH The prototypeisasfollows:
void SQL_CALLBACK finish_callback( SQLCA * sqlca);

Thisfunction is called after the response to a database request has been
received by theinterface DLL. DB_CALLBACK_FINISH is used only
on Windows operating systems.

¢ DB_CALLBACK_CONN_DROPPED The prototypeisasfollows:

void SQL_CALLBACK conn_dropped_callback (
SQLCA *sqlca,
char *conn_name);

Thisfunction is called when the database server is about to drop a
connection because of aliveness timeout, through a DROP
CONNECTION statement, or because the database server is being shut
down. The connection name conn_name s passed in to alow you to
distinguish between connections. If the connection was not named, it has
avalue of NULL.

¢ DB_CALLBACK_WAIT Theprototypeisasfollows:
void SQL_CALLBACK wait_callback( SQLCA *sqglca );

238



Chapter 6 Embedded SQL Programming

Thisfunction is called repeatedly by the interface library while the
database server or client library is busy processing your database
request.

Y ou would register this callback as follows:

db_regi ster_a_cal |l back( &sql ca,
DBCALLBACK WAI T,
( SQ_CALLBACK_PARM &db_wai t _request );

¢ DB_CALLBACK_MESSAGE Thisisused to enable the application to
handle messages received from the server during the processing of a
request.

The callback prototype is as follows:

void SQL_CALLBACK message_callback(
SQLCA* sqlca,
unsigned short msg_type,
an_SQL_code code,
unsigned length,
char* msg

);

The msg_type parameter states how important the message is and you
may wish to handle different message typesin different ways. The
available message types are MESSAGE_TY PE_INFO,
MESSAGE_TYPE_WARNING, MESSAGE_TYPE_ACTION, and
MESSAGE_TYPE_STATUS. These constants are defined in sqgldef. h.
The codefield isanidentifier. The length field tells you how long the
message is. The message is not null-terminated.

For example, the Interactive SQL callback displays STATUS and INFO
message in the Messages pane, while messages of type ACTION and
WARNING go to adialog. If an application does not register this
callback, there is adefault callback, which causes all messages to be
written to the server lodfile (if debugging ison and alodfileis
specified). In addition, messages of type

MESSAGE_TYPE WARNING and MESSAGE_TYPE_ACTION are
more prominently displayed, in an operating system-dependent manner.

db_start _database function
Prototype unsigned int db_start_database( SQLCA * sglca, char * parms);

Arguments sglca A pointer to a SQLCA structure. For information, see " The SQL
Communication Area (SQLCA)" on page 188.

239



Library function reference

Description

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEY WORD=value. For example,

" Ul D=DBA; PWD=SQ; DBF=c: \ \ db\ \ nydat abase. db"

& For an available list of connection parameters, see " Connection
parameters' on page 164 of the book ASA Database Administration Guide.

Start a database on an existing server if the database is not aready running.
The steps carried out to start a database are described in " Starting a personal
server” on page 79 of the book ASA Database Administration Guide

The return valueis true if the database was aready running or successfully
started. Error information is returned in the SQL CA.

If auser ID and password are supplied in the parameters, they are ignored.

& The permission required to start and stop a database is set on the server
command line. For information, see " The database server" on page 120 of the
book ASA Database Administration Guide.

db_start_engine function

Prototype

Arguments

Description

240

unsigned int db_start_engine( SQLCA * sglca, char * parms);

sqlca A pointer to a SQLCA structure. For information, see "The SQL
Communication Area (SQLCA)" on page 188.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEY WORD=value. For example,

" Ul D=DBA; PWD=SQ_; DBF=c: \ \ db\ \ nydat abase. db"

& For an availablelist of connection parameters, see "Connection
parameters' on page 164 of the book ASA Database Administration Guide.

Starts the database server if it is not running. The steps carried out by this
function are those listed in " Starting a personal server" on page 79 of the
book ASA Database Administration Guide.

Thereturn value istrue if a database server was either found or successfully
started. Error information is returned in the SQL CA.

Thefollowing call to db_start_engine starts the database server and names
it asademo, but does not load the database, despite the DBF connection
parameter:

db_start_engi ne( &sql ca, "DBF=c:\\asa8\\asadeno. db;
St art =dbeng8" ) ;



Chapter 6 Embedded SQL Programming

If you wish to start a database as well as the server, include the database file
in the START connection parameter:;

db_start_engi ne( &sql ca, "ENG=eng_nane; START=dbeng8
c:\\asa\\asadeno. db" );

This cal starts the server, namesit eng_name, and starts the asademo
database on that server.

Thedb_start_engine function attempts to connect to a server before starting
one, to avoid attempting to start a server that is aready running.

The FORCESTART connection parameter is used only by the
db_start_engine function. When set to YES, there is no attempt to connect
to a server before trying to start one. This enables the following pair of
commands to work as expected:

1 Start adatabase server named server 1.
start dbeng8 -n server_1 asadeno. db

2 Force anew server to start and connect to it:

db_start_engi ne( &sqgl da, "START=dbeng8 -n server_2 asadeno. db; ForceStart=YES" )

If FORCESTART was not used, and without an ENG parameter, the second
command would have attempted to connect to server_1. The
db_start_engine function does not pick up the server name from the -n
option of the START parameter.

db_stop_database function

Prototype

Arguments

Description

unsigned int db_stop_database( SQLCA * sglca, char * parms );

sqglca A pointer to a SQLCA structure. For information, see "The SQL
Communication Area (SQLCA)" on page 188.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEY WORD=value. For example,

" Ul D=DBA; PWD=SQ_; DBF=c: \ \ db\ \ nydat abase. db"

& For an available list of connection parameters, see " Connection
parameters’ on page 164 of the book ASA Database Administration Guide.

Stop the database identified by DatabaseName on the server identified by
EngineName. If EngineName is not specified, the default server is used.

By default, this function does not stop a database that has existing
connections. If Unconditional isyes, the database is stopped regardless of
existing connections.

241



Library function reference

A return value of TRUE indicates that there were no errors.

& The permission required to start and stop a database is set on the server
command line. For information, see " The database server" on page 120 of the
book ASA Database Administration Guide.

db_stop_engine function
Prototype unsigned int db_stop_engine( SQLCA * sqlca, char * parms);

Arguments sqlca A pointer to a SQLCA structure. For information, see " The SQL
Communication Area (SQLCA)" on page 188.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEYWORD=value. For example,

" Ul D=DBA; PWD=SQ; DBF=c: \ \ db\ \ nydat abase. db"

& For an availablelist of connection parameters, see " Connection
parameters' on page 164 of the book ASA Database Administration Guide.

Description Terminates execution of the database server. The steps carried out by this
function are:

¢ Look for alocal database server that has a name that matches the
EngineName parameter. If no EngineName is specified, look for the
default local database server.

¢ If no matching server isfound, this function fails.

¢ Send arequest to the server to tell it to checkpoint and shut down all
databases.

¢ Unload the database server.

By default, this function does not stop a database server that has existing
connections. If Unconditional isyes, the database server is stopped
regardless of existing connections.

A C program can use this function instead of spawning DBSTOP. A return
value of TRUE indicates that there were no errors.

Theuse of db_stop_engineis subject to the permissions set with the -gk
server option.

& For moreinformation, see "—gk server option" on page 140 of the book
ASA Database Administration Guide.

242



Chapter 6 Embedded SQL Programming

db_string_connect function

Prototype

Arguments

Description

unsigned int db_string_connect( SQLCA * sqlca, char * parms);

sqlca A pointer to a SQLCA structure. For information, see "The SQL
Communication Area (SQLCA)" on page 188.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEYWORD=value. For example,

" Ul D=DBA; PWD=SQ; DBF=c: \ \ db\ \ nydat abase. db"

& For an availablelist of connection parameters, see " Connection
parameters’ on page 164 of the book ASA Database Administration Guide.

Provides extra functionality beyond the embedded SQL CONNECT
command. This function carries out a connection using the algorithm
described in " Troubleshooting connections* on page 73 of the book ASA
Database Administration Guide.

The return value is true (non-zero) if a connection was successfully
established and false (zero) otherwise. Error information for starting the
server, starting the database, or connecting is returned in the SQLCA.

db_string_disconnect function

Prototype

Arguments

Description

unsigned int db_string_disconnect( SQLCA * sqglca, char * parms );

sqlca A pointer to a SQLCA structure. For information, see "The SQL
Communication Area (SQLCA)" on page 188.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEY WORD=value. For example,
" Ul D=DBA; PWD=SQ; DBF=c: \ \ db\ \ nydat abase. db"

& For an availablelist of connection parameters, see " Connection
parameters' on page 164 of the book ASA Database Administration Guide.

This function disconnects the connection identified by the ConnectionName
parameter. All other parameters are ignored.

If no ConnectionName parameter is specified in the string, the unnamed
connection is disconnected. Thisis equivalent to the embedded SQL
DISCONNECT command. The Boolean return value istrue if a connection
was successfully ended. Error information is returned in the SQLCA.

243



Library function reference

This function shuts down the database if it was started with the
AutoStop=yes parameter and there are no other connections to the database.
It also stops the server if it was started with the AutoStop=yes parameter and
there are no other databases running.

db_string_ping_server function

Prototype unsigned int db_string_ping_server(
SQLCA * sqlca,
char * connect_string,
unsigned int connect_to_db);

Description The connect_string is a normal connect string that may or may not contain
server and database information.

If connect_to_db is non-zero (true), then the function attempts to connect to a
database on a server. It returns a non-zero (true) value only if the connect
string is sufficient to connect to the named database on the named server.

If connect_to_db is zero, then the function only attemptsto locate a server. It
returns a non-zero value only if the connect string is sufficient to locate a
server. It makes no attempt to connect to the database.

fill_s_sqglda function

Prototype struct sqglda * fill_s_sqlda(
struct sqglda * sqlda,
unsigned int maxlen);

Description The same asfill_sglda, except that it changes all the datatypesin sglda to
type DT_STRING. Enough spaceis allocated to hold the string
representation of the type originally specified by the SQLDA, upto a
maximum of maxlen bytes. The length fields in the SQLDA (sgllen) are
modified appropriately. Returns sglda if successful and returns the null
pointer if there is not enough memory available.

fill_sqglda function

Prototype struct sqlda * fill_sqlda( struct sglda * sqlda );

Description Allocates space for each variable described in each descriptor of sglda, and
assigns the address of this memory to the sgldata field of the corresponding
descriptor. Enough space is allocated for the database type and length
indicated in the descriptor. Returns sglda if successful and returns the null
pointer if there is not enough memory available.

244



Chapter 6 Embedded SQL Programming

free_filled_sqglda function

Prototype void free_filled_sqlda( struct sglda * sqlda );

Description Free the memory allocated to each sgldata pointer and the space allocated
for the SQLDA itself. Any null pointer is not freed.

Calling thisfunction causes free sglda to be called automatically, and so
any descriptors allocated by alloc_sqlda are freed.

free_sqglda function

Prototype void free_sqlda( struct sqlda * sqlda);

Description Free space allocated to this sglda and free the indicator variable space, as
alocated infill_sglda. Do not free the memory referenced by each sgldata
pointer.

free_sqglda_noind function

Prototype void free_sqlda_noind( struct sglda * sqglda);

Description Free space allocated to this sglda. Do not free the memory referenced by
each sgldata pointer. The indicator variable pointers are ignored.

"Database properties' on page 618 of the book ASA Database Administration
Guide

"The Ping utility" on page 494 of the book ASA Database Administration
Guide

sql_needs_quotes function

Prototype unsigned int sql_needs_quotes( SQLCA *sglca, char *str);

Description Returns a Boolean value that indicates whether the string requires double
guotes around it when it is used as a SQL identifier. This function formulates
arequest to the database server to determine if quotes are needed. Relevant
information is stored in the sglcode field.

There are three cases of return val ue/code combinations;

¢ return = FALSE, sqlcode =0 Inthis case, the string definitely does
not need quotes.

¢ return =TRUE Inthiscase, sglcodeisaways SQLE WARNING, and
the string definitely does need quotes.

245



Library function reference

¢ return = FALSE If sglcode is something other than
SQLE_WARNING, the test isinconclusive.

sqlda_storage function

Prototype unsigned long sqlda_storage( struct sglda *sqlda, int varno);

Description Returns the amount of storage required to store any value for the variable
described in sglda->sqglvar [varno].

sqlda_string_length function

Prototype unsigned long sqlda_string_length( SQLDA *sqlda, int varno);

Description Returns the length of the C string (type DT_STRING) that would be required
to hold the variable sglda->sqlvar[varno] (no matter what its typeis).

sqlerror_message function

Prototype char *sqlerror_message( SQLCA *sqica, char * buffer, int max);

Description Return a pointer to a string that contains an error message. The error message
contains text for the error code in the SQLCA. If no error was indicated, a
null pointer is returned. The error message is placed in the buffer supplied,
truncated to length max if necessary.

246



Chapter 6 Embedded SQL Programming

Embedded SQL command summary

EXEC SQL
ALL embedded SQL statements must be preceded with EXEC SQL and
end with asemicolon (;).

There are two groups of embedded SQL commands. Standard SQL
commands are used by simply placing them in a C program enclosed with
EXEC SQL and asemi-colon (;). CONNECT, DELETE, SELECT, SET, and
UPDATE have additional formats only available in embedded SQL. The
additional formats fall into the second category of embedded SQL specific
commands.

& For descriptions of the standard SQL commands, see "SQL Statements'
on page 199 of the book ASA SQL Reference Manual.

Several SQL commands are specific to embedded SQL and can only be used
in a C program.

&>~ For more information about these embedded SQL commands, see
"SQL Language Elements' on page 3 of the book ASA SQL Reference
Manual.

Standard data manipulation and data definition statements can be used from
embedded SQL applications. In addition the following statements are
specifically for embedded SQL programming:

¢ ALLOCATE DESCRIPTOR alocate memory for a descriptor

& See"ALLOCATE DESCRIPTOR statement [ESQL]" on page 203
of the book ASA SQL Reference Manual

¢ CLOSE closeacursor

& See"CLOSE statement [ESQL] [SP]" on page 261 of the book
ASA SQL Reference Manual

¢ CONNECT connect to the database

& See"CONNECT statement [ESQL] [Interactive SQL]" on
page 268 of the book ASA SQL Reference Manual

¢ DEALLOCATE DESCRIPTOR reclaim memory for a descriptor

&~ See"DEALLOCATE DESCRIPTOR statement [ESQL]" on
page 376 of the book ASA SQL Reference Manual

¢ Declaration Section declare host variables for database
communication

247



Embedded SQL command summary

248

& See"Declaration section [ESQL]" on page 377 of the book ASA
L Reference Manual

DECLARE CURSOR declare acursor

& See"DECLARE CURSOR statement [ESQL] [SP]" on page 379
of the book ASA SQL Reference Manual

DELETE (positioned) delete the row at the current position in a cursor

& See"DELETE (positioned) statement [ESQL] [SP]" on page 390
of the book ASA SQL Reference Manual

DESCRIBE describe the host variables for a particular SQL statement

& See"DESCRIBE statement [ESQL]" on page 392 of the book ASA
L Reference Manual

DISCONNECT disconnect from database server

& See"DISCONNECT statement [ESQL] [Interactive SQL]" on
page 396 of the book ASA SQL Reference Manual

DROP STATEMENT free resources used by a prepared statement

& See"DROP STATEMENT statement [ESQL]" on page 405 of the
book ASA SQL Reference Manual

EXECUTE execute aparticular SQL statement

& See"EXECUTE statement [ESQL]" on page 414 of the book ASA
QL Reference Manual

EXPLAIN explain the optimization strategy for a particular cursor

& See"EXPLAIN statement [ESQL]" on page 422 of the book ASA
QL Reference Manual

FETCH fetch arow from acursor

& See"FETCH statement [ESQL] [SP]" on page 424 of the book
ASA SQL Reference Manual

GET DATA fetch long values from a cursor

& See"GET DATA statement [ESQL]" on page 437 of the book ASA
QL Reference Manual

GET DESCRIPTOR retrieve information about a variable in a SQLDA.

& See"GET DESCRIPTOR statement [ESQL]" on page 439 of the
book ASA SQL Reference Manual

GET OPTION get the setting for a particular database option



Chapter 6 Embedded SQL Programming

& See"GET OPTION statement [ESQL]" on page 441 of the book
ASA SQL Reference Manual

INCLUDE include afile for SQL preprocessing

& See"INCLUDE statement [ESQL]" on page 458 of the book ASA
0L Reference Manual

OPEN open acursor

& See"OPEN statement [ESQL] [SP]" on page 485 of the book ASA
L Reference Manual

PREPARE prepare aparticular SQL statement

& See"PREPARE statement [ESQL]" on page 495 of the book ASA
L Reference Manual

PUT insert arow into a cursor

& See"PUT statement [ESQL]" on page 499 of the book ASA SQL
Reference Manual

SET CONNECTION  change active connection

&~ See"SET CONNECTION statement [Interactive SQL] [ESQL]"
on page 536 of the book ASA SQL Reference Manual

SET DESCRIPTOR describe the variablesin a SQLDA and place data
into the SQLDA

& See"SET DESCRIPTOR statement [ESQL]" on page 537 of the
book ASA SQL Reference Manual

SET SQLCA use an SQL CA other than the default global one

& See"SET SQLCA statement [ESQL]" on page 545 of the book
ASA SQL Reference Manual

UPDATE (positioned) update the row at the current location of a
cursor

& See"UPDATE (positioned) statement [ESQL] [SP]" on page 580
of the book ASA SQL Reference Manual

WHENEVER  specify actionsto occur on errorsin SQL statements

& See"WHENEVER statement [ESQL]" on page 589 of the book
ASA SQL Reference Manual

249



Embedded SQL command summary

250



CHAPTER 7

ODBC Programming

About this chapter This chapter presentsinformation for developing applications that call the
ODBC programming interface directly.

The primary documentation for ODBC application development is the
Microsoft ODBC SDK documentation, available as part of the Microsoft
Data Access Components (MDAC) SDK. This chapter provides introductory
material and describes features specific to Adaptive Server Anywhere, but is
not an exhaustive guide to ODBC application programming.

Some application development tools that already have ODBC support
provide their own programming interface that hides the ODBC interface.
This chapter is not intended for users of those tools.

Contents Topic Page
Introduction to ODBC 252
Building ODBC applications 254
ODBC samples 258
ODBC handles 260
Connecting to a data source 263
Executing SQL statements 267
Working with result sets 272
Calling stored procedures 276
Handling errors 278

251



Introduction to ODBC

Introduction to ODBC

Supported
platforms

The Open Database Connectivity (ODBC) interface is an application
programming interface defined by Microsoft Corporation as a standard
interface to database-management systems on Windows operating systems.
ODBC isacall-based interface.

To write ODBC applications for Adaptive Server Anywhere, you need:
¢ Adaptive Server Anywhere.
¢ A Ccompiler capable of creating programs for your environment.

¢ Microsoft ODBC Software Development Kit. Thisis available on the
Microsoft Developer Network, and provides documentation and
additional tools for testing ODBC applications.

Adaptive Server Anywhere supports the ODBC API on UNIX and
Windows CE, in addition to Windows. Having multi-platform ODBC
support makes portable database application devel opment much easier.

& For information on enlisting the ODBC driver in distributed
transactions, see " Three-tier Computing and Distributed Transactions' on
page 361.

ODBC conformance

Levels of ODBC
support

Features
supported by
Adaptive Server
Anywhere

252

Adaptive Server Anywhere provides support for ODBC 3.52.

ODBC features are arranged according to level of conformance. Features are
either Core, Level 1, or Level 2, with Level 2 being the most complete level
of ODBC support. These features are listed in the ODBC Programmer’s
Reference, which is available from Microsoft Corporation as part of the
ODBC software development kit or from the Microsoft Web site, at
http://msdn.microsoft.conVlibrary/default.asp?url=/library/en-
us/odbc/htm/odbcabout_this manual .asp.

Adaptive Server Anywhere supports the ODBC 3.52 specification.

¢ Coreconformance Adaptive Server Anywhere supports all Core level
features.

¢ Level 1 conformance Adaptive Server Anywhere supportsall Level 1
features, except for asynchronous execution of ODBC functions.

Adaptive Server Anywhere supports multiple threads sharing asingle
connection. The requests from the different threads are serialized by
Adaptive Server Anywhere.



Chapter 7 ODBC Programming

¢ Level 2 conformance Adaptive Server Anywhere supportsall Level 2
features, except for the following:

¢ Three part names of tables and views. Thisis not applicable for
Adaptive Server Anywhere.

¢ Asynchronous execution of ODBC functions for specified
individual statements.

¢ Ability to time out login request and SQL queries.

ODBC backwards Applications developed using older versions of ODBC continue to work with

compatibility Adaptive Server Anywhere and the newer ODBC Driver Manager. The new
ODBC features are not provided for older applications.

The ODBC Driver The ODBC Driver Manager is part of the ODBC software supplied with

Manager Adaptive Server Anywhere. The ODBC Version 3 Driver Manager has a

new interface for configuring ODBC data sources.

253



Building ODBC applications

Building ODBC applications

This section describes how to compile and link simple ODBC applications.

Including the ODBC header file

Every C source file that calls ODBC functions must include a
platform-specific ODBC header file. Each platform-specific header file
includes the main ODBC header file odbc.h, which defines al the functions,
data types and constant definitions required to write an ODBC program.

<+ To include the ODBC header file in a C source file:

1 Addaninclude line referencing the appropriate platform-specific header
fileto your source file. The lines to use are as follows:

Operating system | Include line

Windows ‘ #i ncl ude "nt odbc. h"
UNIX #i ncl ude "uni xodbc. h"
Windows CE #i ncl ude "ntodbc. h"

2 Add thedirectory containing the header file to the include path for your
compiler.

Both the platform-specific header files and odbc.h areinstalled in the h
subdirectory of your SQL Anywhere directory.

Linking ODBC applications on Windows

254

This section does not apply to Windows CE. For more information see
"Linking ODBC applications on Windows CE" on page 255.

When linking your application, you must link against the appropriate import
library file to have access to the ODBC functions. The import library defines
entry points for the ODBC Driver Manager odbc32.dll. The Driver Manager

in turn loads the Adaptive Server Anywhere ODBC driver dbodbc8.dll.

Separate import libraries are supplied for Microsoft, Watcom, and Borland
compilers.



Chapter 7 ODBC Programming

% To link an ODBC application (Windows):

¢ Add thedirectory containing the platform-specific import library to the
list of library directories.

The import libraries are stored in the /ib subdirectory of the directory
containing your Adaptive Server Anywhere executables and are named

asfollows:
Operating Compiler Import library
system
Windows Microsoft odbc32.1ib
Windows Watcom C/C++ wodbc32.lib
Windows Borland bodbc32.1ib
Windows CE Microsoft dbodbc8.lib

Linking ODBC applications on Windows CE

On Windows CE operating systems thereis no ODBC Driver Manager. The
import library (dbodbc8.lib) defines entry points directly into the Adaptive
Server Anywhere ODBC driver dbodbc8.dll.

Separate versions of this DLL are provided for the different chips on which
Windows CE is available. The files are in operating-system specific
subdirectories of the ce directory in your SQL Anywhere directory. For
example, the ODBC driver for Windows CE on the SH3 chip isin the
following location:

C.\ Program Fi | es\ Sybase\ SQL Anywhere 8\ ce\ SH3

& For alist of supported versions of Windows CE, see "Adaptive Server
Anywhere supported operating systems" on page 138 of the book
Introducing SQL Anywhere Sudio.

+ To link an ODBC application (Windows CE):

1 Add thedirectory containing the platform-specific import library to the
list of library directories.

The import library is named dbodbc8.lib and is stored in an
operating-system specific location under the ce directory in your
SQL Anywhere directory. For example, the import library for
Windows CE on the SH3 chip isin the following location:

C. \Program Fi | es\ Sybase\ SQ. Anywhere 8\ce\SH3\li b

255



Building ODBC applications

Windows CE and
Unicode

2 Specify the DRIVER= parameter in the connection string supplied to
the SQL Driver Connect function.

szConnStrin =
"driver=ospat h\ dbodbc8. dl | ; dbf =c: \ asadeno. db"

where ospath is the full path to the chip-specific subdirectory of your
SQL Anywhere directory on the Windows CE device. For example:

\ Program Fi | es\ Sybase\ SQL Anywhere 8\ce\SH3\Ilib

The sample program (odbc.c) uses a File data source (FileDSN connection
parameter) called ASA 8.0 Sample.dsn. Y ou can create File data sources on
your desktop system from the ODBC Driver Manager and copy them to your
Windows CE device.

Adaptive Server Anywhere uses an encoding known as UTF-8, a multi-byte
character encoding which can be used to encode Unicode.

The Adaptive Server Anywhere ODBC driver supports either ASCII (8-bit)
strings or Unicode code (wide character) strings. The UNICODE macro
controls whether ODBC functions expect ASCII or Unicode strings. If your
application must be built with the UNICODE macro defined, but you want to
use the ASCII ODBC functions, then the SQL_NOUNICODEMAP macro
must also be defined.

The Samples|ASAIClodbc.c samplefile illustrates how to use the Unicode
ODBC features.

Linking ODBC applications on UNIX

ODBC driver

256

An ODBC Driver Manager is not included with Adaptive Server Anywhere,
but there are third party Driver Managers available. This section describes
how to build ODBC applications that do not use an ODBC Driver Manager.

The ODBC driver isashared object or shared library. Separate versions of
the Adaptive Server Anywhere ODBC driver are supplied for single-threaded
and multi-threaded applications.

The ODBC drivers are the following files:

Operating system | Threading model | ODBC driver

Solaris/Sparc Single threaded dbodbc8.so (dbodbc8.s0.1)
Solaris/Sparc Multi-threaded dbodbc_r.so (dbodbc_r.so.1)

The libraries are installed as symbolic links to the shared library with a
version number (in parentheses).



Chapter 7 ODBC Programming

Data source
information

% To link an ODBC application (UNIX):

1 Link your application directly against the appropriate ODBC driver.

2 When deploying your application, ensure that the appropriate ODBC
driver isavailable in the user's library path.

If Adaptive Server Anywhere does not detect the presence of an ODBC
Driver Manager, it uses ~/.odbc.ini for data source information.

Using an ODBC Driver Manager on UNIX

Third-party ODBC Driver Managers for UNIX are available. An ODBC
Driver Manager includes the following files:

Operating system | Files

Solaris/Sparc libodbc.so (libodbc.so.1)
libodbcinst.so (libodbcinst.so.1)
Solaris/Sparc libodbc.so (libodbc.so.1)

libodbcinst.so (libodbcinst.so.1)

If your are deploying an application that requires an ODBC Driver Manager
and you are not using a third-party Driver Manager, create symbolic links for
both the libodbc and libodbcinst shared libraries to the Adaptive Server
Anywhere ODBC driver.

If an ODBC Driver Manager is present, Adaptive Server Anywhere queries
the Driver Manager rather than ~/.odbc.ini for data source information.

Standard ODBC applications do not link directly against the ODBC driver.
Instead, ODBC function calls go through the ODBC Driver Manager. On
UNIX and Windows CE operating systems, Adaptive Server Anywhere does
not include an ODBC Driver Manager. You can still create ODBC
applications by linking directly against the Adaptive Server Anywhere
ODBC driver, but you can then access only Adaptive Server Anywhere data
SOUrces.

257



ODBC samples

ODBC samples

Several ODBC samples are included with Adaptive Server Anywhere. Y ou
can find the samples in the Samples|ASA subdirectory of your
SQL Anywhere directory. By default, thisis

C.\ Program Fi | es\ Sybase\ SQ. Anywhere 8\ Sanpl es\ ASA

The samples in directories starting with ODBC illustrate separate and simple
ODBC tasks, such as connecting to a database and executing statements. A
complete sasmple ODBC program is supplied as Samples|\ASA|Clodbc.c. The
program performs the same actions as the embedded SQL dynamic cursor
example program that isin the same directory.

& For adescription of the associated embedded SQL program, see
"Sample embedded SQL programs" on page 171.

Building the sample ODBC program

The ODBC sample program in Samples|ASAIC includes a batch file (shell
script for UNIX) that can be used to compile and link the sample application.

¢ To build the sample ODBC program:

1 Openacommand prompt and change directory to the Samples|\ASAIC
subdirectory of your SQL Anywhere directory.

2 Runthe makeall batch file or shell script
The format of the command is as follows:
makeal | api pl atform conpil er
The parameters are as follows:

¢ APl Specify odbc to compile the ODBC example rather than an
embedded SQL version of the application.

¢ Platform Specify WINNT to compile for Windows operating
systems.

¢ Compiler Specify the compiler to use to compile the program. The
compiler can be one of the following:

¢ WC useWatcom C/C++
¢ MC useMicrosoft Visual C++

¢ BC useBorland C++ Builder

258



Chapter 7 ODBC Programming

Running the sample ODBC program

The sample program odbc.c, when compiled for versions of Windows that
support services, runs optionally as a service.

The two files containing the example code for Windows services are the
source file ntsve.c and the header file ntsve.h. The code allows the linked
executable to be run either as aregular executable or as a Windows service.
To run the ODBC sample:
1 Start the program:

¢ Runthefile Samples|\ASA\Clodbcwnt.exe.
2 Choose atable:

¢ Choose one of the tablesin the sample database. For example, you
may enter Customer or Employee.

To run the ODBC sample as a Windows service:

1 Start Sybase Central and open the Services folder.

2 Click Add Service. Follow theinstructions for adding the sample
program as a service.

3 Right-click the serviceicon and click Start to start the service.

When run as a service, the program displays the normal user interface if
possible. It also writes the output to the Application Event Log. If it is not
possible to start the user interface, the program prints one page of datato the
Application Event Log and stops.

259



ODBC handles

ODBC handles

ODBC applications use a small set of handlesto define basic features such
as database connections and SQL statements. A handleis a 32-bit value.

The following handles are used in essentially all ODBC applications.

¢

Environment The environment handle provides a global context in
which to access data. Every ODBC application must allocate exactly one
environment handle upon starting, and must freeit at the end.

The following code illustrates how to allocate an environment handle;

SQLHENV env;

SQLRETURN rc;

rc = SQLAI | ocHandl e( SQ_HANDLE ENvV, SQL
_NULL_HANDLE, &env );

Connection A connection is specified by an ODBC driver and a data
source. An application can have several connections associated with its
environment. Allocating a connection handle does not establish a
connection; a connection handle must be allocated first and then used
when the connection is established.

The following code illustrates how to allocate a connection handle:

SQ.HDBC dbc;
SQLRETURN rc;
rc = SQLAI | ocHandl e( SQ._HANDLE DBC, env, &dbc );

Statement A statement handle provides accessto a SQL statement and
any information associated with it, such as result sets and parameters.
Each connection can have several statements. Statements are used both
for cursor operations (fetching data) and for single statement execution
(e.g. INSERT, UPDATE, and DELETE).

The following code illustrates how to allocate a statement handle;

SQHSTMI stni;
SQLRETURN rc;
rc = SQLAl | ocHandl e( SQ._HANDLE STMI, dbc, &stnt );

Allocating ODBC handles

The handle types required for ODBC programs are as follows:

260



Chapter 7 ODBC Programming

Example

Item Handle type
Environment SQLHENV
Connection SQLHDBC
Statement SQHSTMI
Descriptor SQ.HDESC

The

&

+ To use an ODBC handle:
1 Call the SQLAllocHandle function.

SQL AllocHandle takes the following parameters:

¢ anidentifier for the type of item being alocated

¢ the handle of the parent item

¢ apointer to the location of the handle to be alocated

& For afull description, see SQLAIllocHandle in the Microsoft
ODBC Programmer’s Reference.

Use the handle in subsequent function calls.

Free the object using SQL FreeHandle.

SQL FreeHandle takes the following parameters:
¢ anidentifier for the type of item being freed
¢ thehandle of the item being freed

& For afull description, see SQLFreeHandlein the Microsoft ODBC
Programmer’s Reference.

following code fragment allocates and frees an environment handle:

SQLHENV env;

SQRETURN r et code;

retcode = SQA | ocHandl e( SQ_HANDLE ENV, SQ._NULL_HANDLE, &env );

if( retcode == SQL_SUCCESS || retcode == SQ_SUCCESS WTH INFO ) {
/1 success: application code here

}
SQLFreeHandl e( SQL_HANDLE ENV, env );

For more information on return codes and error handling, see

"Handling errors" on page 278.

261



ODBC handles

A first ODBC example

The following is asimple ODBC program that connects to the Adaptive
Server Anywhere sample database and immediately disconnects.

& You can find thissample as
Samples|\ASAIODBCConnectlodbcconnect.cpp in your SQL Anywhere
directory.

#i ncl ude <stdio. h>
#i ncl ude "ntodbc. h"

int main(int argc, char* argv[])
{

SQLHENV env;

SQ.HDBC dbc;

SQLRETURN r et code;

retcode = SQAl | ocHandl e( SQ_HANDLE ENV, SQ._NULL_HANDLE, &env );
if (retcode == SQ@_SUCCESS || retcode == SQ._SUCCESS WTH INFO {
printf( "env allocated\n" );
/* Set the ODBC version environnent attribute */
retcode = SQ.Set EnvAttr( env, SQ_ATTR ODBC VERSION, (void*)SQ_Ov_CDBC3, 0);
retcode = SQLA | ocHandl e( SQ_HANDLE DBC, env, &dbc );
if (retcode == SQL_SUCCESS || retcode == SQ_SUCCESS WTH | NFO) {
printf( "dbc allocated\n" );
retcode = SQConnect ( dbc,
(SQLCHAR*) "ASA 8.0 Sanple", SQ_NTS,
(SQLCHAR* ) "DBA', SQ_NTS,
(SQLOHAR*) "SQL", SQL_NTS );
if (retcode == SQ_SUCCESS || retcode == SQ_SUCCESS WTH_ INFO {
printf( "Successfully connected\n" );

}
SQ.Di sconnect ( dbc );
}
SQFreeHandl e( SQ_HANDLE DBC, dbc );
}
SQFreeHandl e( SQL_HANDLE _ENV, env );

return O;

}

262



Chapter 7 ODBC Programming

Connecting to a data source

This section describes how to use ODBC functions to establish a connection
to an Adaptive Server Anywhere database.

Choosing an ODBC connection function

ODBC supplies a set of connection functions. Which one you use depends on
how you expect your application to be deployed and used:

¢

SQLConnect The simplest connection function.

SQL Connect takes a data source name and optional user ID and
password. Y ou may wish to use SQL Connect if you hard-code a data
source name into your application.

& For more information, see SQL Connect in the Microsoft ODBC
Programmer’s Reference.

SQLDriverConnect Connects to a data source using a connection
string.

SQL Driver Connect allows the application to use Adaptive Server
Anywhere-specific connection information that is external to the data
source. Also, you can use SQL Driver Connect to request that the
Adaptive Server Anywhere driver prompt for connection information.

SQL Driver Connect can also be used to connect without specifying a
data source.

& For more information, see SQL DriverConnect in the Microsoft
ODBC Programmer’s Reference.

SQLBrowseConnect Connects to a data source using a connection
string, like SQL Driver Connect.

SQL BrowseConnect alows your application to build its own dialog
boxes to prompt for connection information and to browse for data
sources used by a particular driver (in this case the Adaptive Server
Anywhere driver).

& For more information, see SQL BrowseConnect in the Microsoft
ODBC Programmer’s Reference.

The examplesin this chapter mainly use SQL Driver Connect.

& For acomplete list of connection parameters that can be used in
connection strings, see "Connection parameters' on page 164 of the book
ASA Database Administration Guide.

263



Connecting to a data source

Establishing a connection

264

Y our application must establish a connection before it can carry out any
database operations.

To establish an ODBC connection:

1

Allocate an ODBC environment.
For example:

SQLHENV  env;

SQ.RETURN r et code;

retcode = SQA | ocHandl e( SQ._HANDLE_ENV,
SQ_NULL_HANDLE, &env );

Declare the ODBC version.

By declaring that the application follows ODBC version 3, SQLSTATE
values and some other version-dependent features are set to the proper
behavior. For example:

retcode = SQSet EnvAttr( env,
SQL_ATTR_ODBC _VERSI ON, (void*)SQ_Ov_0DBC3, 0);

If necessary, assembl e the data source or connection string.

Depending on your application, you may have a hard-coded data source
or connection string, or you may store it externally for greater flexibility.

Allocate an ODBC connection item.

For example:

retcode = SQA | ocHandl e( SQ_HANDLE _DBC, env, &dbc );
Set any connection attributes that must be set before connecting.

Some connection attributes must be set before establishing a connection,
while others can be set either before or after. For example:

retcode = SQ Set Connect Attr( dbc,
SQ_AUTOCOMM T, (SQ.PA NTER) SQ._AUTOCOM T_CFF, 0 );

& For moreinformation, see " Setting connection attributes’ on
page 265.

Call the ODBC connection function.

For example:



Chapter 7 ODBC Programming

if (retcode == SQ._SUCCESS || retcode ==
SQL_SUCCESS WTH_I NFO {
printf( "dbc allocated\n" );
retcode = SQ Connect ( dbc,
(SQLCHAR*) "ASA 8.0 Sanple", SQ_NTS,
(SQLCHAR* ) "DBA", SQ._NTS,
(SQLCHAR®) "SQL", SQL_NTS );
if (retcode == SQ_SUCCESS
|| retcode == SQ_SUCCESS W TH_I NFO {
/1 successfully connected.

& You can find a complete sample as
Samples\ASAIODBCConnectlodbcconnect.cpp in your SQL Anywhere
directory.

Notes ¢ SQL_NTS Every string passed to ODBC has a corresponding length. If
the length is unknown, you can pass SQL_NTS indicating that itisa
Null Terminated String whose end is marked by the null character (\0).

¢ SQLSetConnectAttr By default, ODBC operates in auto-commit
mode. This mode is turned off by setting SQL_ AUTOCOMMIT to false.

& For moreinformation, see " Setting connection attributes' on
page 265.

Setting connection attributes

Y ou use the SQL SetConnectAttr function to control details of the
connection. For example, the following statement turns off ODBC
autocommit behavior.

retcode = SQSet Connect Attr( dbc, SQL_AUTOCOW T,
(SQLPA NTER) SQL_AUTOCCOW T_OFF, 0 );

& For moreinformation including alist of connection attributes, see
SQL SetConnectAttr in the Microsoft ODBC Programmer’s Reference .

Many aspects of the connection can be controlled through the connection
parameters. For information, see "Connection parameters" on page 70 of the
book ASA Database Administration Guide.

Threads and connections in ODBC applications
Y ou can devel op multi-threaded ODBC applications for Adaptive Server

Anywhere. It is recommended that you use a separate connection for each
thread.

265



Connecting to a data source

Y ou can use a single connection for multiple threads. However, the database
server does not allow more than one active regquest for any one connection at
atime. If one thread executes a statement that takes along time, all other
threads must wait until the request is complete.

266



Chapter 7 ODBC Programming

Executing SQL statements

ODBC includes several functions for executing SQL statements:

¢

Direct execution Adaptive Server Anywhere parses the SQL
statement, prepares an access plan, and executes the statement. Parsing
and access plan preparation are called preparing the statement.

Prepared execution The statement preparation is carried out
separately from the execution. For statements that are to be executed
repeatedly, this avoids repeated preparation and so improves
performance.

& See "Executing prepared statements' on page 269.

Executing statements directly

The SQL ExecDir ect function prepares and executes a SQL statement. The
statement may be optionally include parameters.

The following code fragment illustrates how to execute a statement without
parameters. The SQL ExecDirect function takes a statement handle, a SQL
string, and alength or termination indicator, which in this caseis a
null-terminated string indicator.

The procedure described in this section is straightforward but inflexible. The
application cannot take any input from the user to modify the statement. For
amore flexible method of constructing statements, see "Executing statements
with bound parameters' on page 268.

% To execute a SQL statement in an ODBC application:

1

Allocate a handle for the statement using SQL AllocHandle.

For example, the following statement allocates a handle of type
SQ._HANDLE_STMI with name st nt , on a connection with handle dbc:

SQAl | ocHandl e( SQL_HANDLE_STMI, dbc, &stnt );
Call the SQLExecDirect function to execute the statement:

For example, the following lines declare a statement and execute it. The
declaration of del et est mt  would usually occur at the beginning of the
function:

SQL.CHAR del etestnm [ STMI LEN] =
" DELETE FROM department WHERE dept _id = 201";
SQ.ExecDirect( stnt, deletestnt, SQ_NTS)

267



Executing SQL statements

&~ For acomplete sample with error checking, see
Samples|\ASAIODBCEXxecutelodbcexecute.cpp.

& For moreinformation on SQL ExecDir ect, see SQLExecDirect in the
Microsoft ODBC Programmer’s Reference.

Executing statements with bound parameters

This section describes how to construct and execute a SQL statement, using
bound parameters to set values for statement parameters at runtime.

+ To execute a SQL statement with bound parameters in an ODBC
application:

1 Allocate a handle for the statement using SQL AllocHandle.

For example, the following statement allocates a handle of type
SQ._HANDLE_STMI with name st nt , on a connection with handle dbc:

SQAl | ocHandl e( SQL_HANDLE_STMI, dbc, &stnt );
2 Bind parameters for the statement using SQL BindPar ameter .

For example, the following lines declare variables to hold the values for
the department ID, department name, and manager ID, as well as for the
statement string itself. They then bind parameters to the first, second,
and third parameters of a statement executed using the stmt statement
handle.

#def i ned DEPT_NAME _LEN 20

SQ.I NTEGER cbDeptI D = 0,
cbDept Nane = SQ._NTS, cbManager| D = 0;

SQ.CHAR dept nane[ DEPT_NAME LEN ];

SQLSVALLI NT dept | D, manager | D

SQ.CHAR insertstm|[ STMI LEN] =

"1 NSERT | NTO department "
"( dept_id, dept_nane, dept_head_ id )"
"WALUES (?, ?, ?2,)";

SQ.Bi ndParaneter( stnt, 1, SQ._PARAM | NPUT,
SQ._C SSHORT, SQ._INTEGER, 0, O,

&leptI D, 0, &cbDeptlD);

SQ.Bi ndParaneter( stnt, 2, SQ._PARAM | NPUT,
SQ_C CHAR SQ._CHAR, DEPT_NAME LEN, O,
dept nane, 0, &hDept Nane) ;

SQ.Bi ndParaneter( stnt, 3, SQ_PARAM | NPUT,
SQ._C SSHORT, SQ__I NTEGER 0, O,
&manager | D, 0, &cbManager|D);

3 Assignvaluesto the parameters.

268



Chapter 7 ODBC Programming

For example, the following lines assign values to the parameters for the
fragment of step 2.

deptI D = 201;

strcpy( (char * ) deptnanme, "Sales East" );

manager | D = 902;

Commonly, these variables would be set in response to user action.
4  Execute the statement using SQL ExecDir ect.

For example, the following line executes the statement string held in
i nsertstnt onthe statement handle st nt .

SQ.ExecDirect( stnt, insertstnt, SQ_NTS)

Bind parameters are also used with prepared statements to provide
performance benefits for statements that are executed more than once. For
more information, see " Executing prepared statements' on page 269

& The above code fragments to not include error checking. For a
complete sample, including error checking, see
Samples|\ASAIODBCEXxecutelodbcexecute.cpp.

& For moreinformation on SQL ExecDir ect, see SQLExecDirect in the
Microsoft ODBC Programmer’s Reference.

Executing prepared statements

Prepared statements provide performance advantages for statements that are
used repestedly. ODBC provides afull set of functions for using prepared
statements.

& For an introduction to prepared statements, see "Preparing statements’
on page 12.

% To execute a prepared SQL statement:
1 Prepare the statement using SQL Prepare.

For example, the following code fragment illustrates how to prepare an
INSERT statement:

SQ.RETURN  ret code;
SQLHSTMT stnt;
retcode = SQ.Prepare( stnt,
"1 NSERT | NTO depar t nent
( dept_id, dept_nane, dept_head_id )
VALUES (?, 2, ?2,)",
SQ_NTS);

In this example:

269



Executing SQL statements

270

¢ retcode Holdsareturn code that should be tested for success or
failure of the operation.

¢ stmt Providesahandleto the statement so that it can be
referenced later.

¢ ? Thequestion marks are placeholders for statement parameters.
Set statement parameter val ues using SQL BindPar ameter .

For example, the following function call setsthe value of the dept _id
variable:

SQ.Bi ndPar aneter ( stnt,

0,
&cbDept I D) ;

In this example:
¢ stmt isthe statement handle
¢ 1 indicatesthat this call setsthe value of the first placeholder.

¢  SQL_PARAM_INPUT
statement.

indicates that the parameter is an input

¢ SQL_C_SHORT
application.

indicates the C data type being used in the

¢ SQL_INTEGER
database.

¢ The next two parameters indicate the column precision and the
number of decimal digits: both zero for integers.

indicates SQL data type being used in the

¢ &sDeptID
indicates the length of the buffer, in bytes.

isapointer to a buffer for the parameter value.
¢ 0

¢ &cbDeptID isapointer to a buffer for the length of the parameter
value.

Bind the other two parameters and assign values to sDeptl d.

Execute the statement:
retcode = SQ Execute( stnt);

Steps 2 to 4 can be carried out multiple times.



Chapter 7 ODBC Programming

5 Drop the statement.

Dropping the statement frees resources associated with the statement
itself. Y ou drop statements using SQL FreeHandle.

& For acomplete sample, including error checking, see
Samples|\ASAIODBCPreparelodbcprepare.cpp.

& For moreinformation on SQL Prepare, see SQLPreparein the
Microsoft ODBC Programmer’s Reference.

271



Working with result sets

Working with result sets

ODBC applications use cursors to manipulate and update result sets.
Adaptive Server Anywhere provides extensive support for different kinds of
cursors and cursor operations.

& For an introduction to cursors, see "Waorking with cursors' on page 19.

Choosing a cursor characteristics

272

ODBC functions that execute statements and manipulate result sets use
cursors to carry out their tasks. Applications open a cursor implicitly
whenever they execute a SQL Execute or SQL ExecDirect function.

For applications that move through aresult set only in aforward direction
and do not update the result set, cursor behavior is relatively straightforward.
By default, ODBC applications request this behavior. ODBC defines a
read-only, forward-only cursor, and Adaptive Server Anywhere provides a
cursor optimized for performance in this case.

&~ For asimple example of aforward-only cursor, see "Retrieving data’
on page 273.

For applications that need to scroll both forward and backward through a
result set, such as many graphical user interface applications, cursor behavior
is more complex. What does the application when it returns to arow that has
been updated by some other application? ODBC defines a variety of
scrollable cursorsto alow you to build in the behavior that suits your
application. Adaptive Server Anywhere provides afull set of cursorsto
match the ODBC scrollable cursor types.

You set the required ODBC cursor characteristics by calling the
SQL SetStmtAttr function that defines statement attributes. Y ou must call
SQL SetStmtAttr before executing a statement that creates a result set.

Y ou can use SQL SetStmtAttr to set many cursor characteristics. The
characteristics that determine the cursor type that Adaptive Server Anywhere
suppliesinclude the following:

¢ SQL_ATTR_CURSOR_SCROLLABLE Setto SQL_SCROLLABLE
for ascrollable cursor and SQL_NONSCROLLABLE for a
forward-only cursor. SQL_NONSCROLLABLE isthe default.

¢ SQL_ATTR_CONCURRENCY Set to one of the following values:

¢ SQL_CONCUR_READ ONLY Disallow updates.
SQL_CONCUR_READ_ONLY is the defauil.



Chapter 7 ODBC Programming

Example

Retrieving data

¢ SQL_CONCUR_LOCK Usethelowest level of locking sufficient
to ensure that the row can be updated.

¢ SQL_CONCUR_ROWVER Use optimistic concurrency control,
comparing row versions such as SQLBase ROWID or Sybase
TIMESTAMP.

¢ SQL_CONCUR_VALUES Useoptimistic concurrency control,
comparing values.

& For more information, see SQL SetStmtAttr in the Microsoft ODBC
Programmer’s Reference.

The following fragment requests a read-only, scrollable cursor:

SQAl | ocHandl e( SQL_HANDLE_STMI, dbc, &stnt );
SQSetStmAttr( stnt, SQ_ATTR CURSOR SCROLLABLE,
SQ._SCRCLLABLE, 0 );

To retrieve rows from a database, you execute a SELECT statement using
SQL Execute or SQL ExecDirect. This opens a cursor on the statement. Y ou
then use SQL Fetch or SQL ExtendedFetch to fetch rows through the cursor.
When an application free the statement using SQL FreeHandle it closes the
CUrsor.

To fetch values from a cursor, your application can use either SQL BindCol
or SQL GetData. If you use SQL BindCol, values are automatically retrieved
on each fetch. If you use SQL GetData, you must call it for each column
after each fetch.

SQL GetData is used to fetch values in pieces for columns such as LONG
VARCHAR or LONG BINARY. As an alternative, you can set the
SQL_MAX_LENGTH statement attribute to a value large enough to hold the
entire value for the column. The default value for
SQL_ATTR_MAX_LENGTH is 256 kb.

The following code fragment opens a cursor on a query and retrieves data
through the cursor. Error checking has been omitted to make the example
easier to read. The fragment is taken from a complete sample, which can be
found at Samples|ASA\ODBCSelectlodbcselect.cpp.

273



Working with result sets

SQLI NTEGER cbDept I D = 0, cbDept Nane = SQ._NTS, cbManager!|D = 0;
SQCHAR dept nane[ DEPT_NAME LEN ];
SQLSMALLI NT dept | D, manager | D

SQHENV env;
SQ.HDBC dbc;
SQHSTMT stnt;

SQ.RETURN r et code;

SQLAI | ocHandl e( SQL_HANDLE_ENV, SQ._NULL_HANDLE, &env );
SQ@Set EnvAttr( env, SQ_ATTR ODBC VERSI QN, (void*)SQ@_Ov_CDBC3, 0);
SQAl | ocHandl e( SQL_HANDLE_DBC, env, &dbc );
SQ.Connect ( dbc,
(SQLCHAR*) "ASA 8.0 Sanple", SQ_NTS,
(SQLCHAR*) "DBA', SQ._NTS,
(SQLOHAR*) "SQ", SQ_NTS);
SQLAI | ocHandl e( SQL_HANDLE_STMT, dbc, &stnt );
SQ@Bi ndCol ( stnt, 1, SQ_C SSHORT, &dept|D, 0, &cbDeptl|D);
SQ@Bi ndCol ( stnt, 2, SQA_C CHAR deptnane, sizeof (deptnane),
&cbDept Nane) ;
SQ@Bi ndCol ( stnt, 3, SQ_C SSHORT, &manager!|D, 0, &cbManager!|D);

SQExecDrect( stm, (SQCHAR * )
"SELECT dept _id, dept_nane, dept_head_id FROM DEPARTMENT "
"ORDER BY dept i d", SQ_NTS);
while( ( retcode = SQLFetch( stnm ) ) !'= SQ_NO DATA ){
printf( "% 9%0s %l\n", deptlD, deptnanme, manager|D );

}

SQFreeHandl e( SQ._HANDLE_STMI, stnt );
SQ.Di sconnect ( dbc );

SQLFreeHandl e( SQL_HANDLE DBC, dbc );
SQFreeHandl e( SQL_HANDLE_ENV, env );

The number of row positions you can fetch in a cursor is governed by the
size of aninteger. Y ou can fetch rows numbered up to number 2147483646,
which is one less than the value that can be held in an integer. When using
negative numbers (rows from the end) you can fetch down to one more than
the largest negative value that can be held in an integer.

Updating and deleting rows through a cursor

274

The Microsoft ODBC Programmer’s Reference suggests that you use
SELECT... FOR UPDATE to indicate that a query is updateable using
positioned operations. Y ou do not need to use the FOR UPDATE clausein
Adaptive Server Anywhere: SELECT statements are automatically
updateable as long as the following conditions are met:

¢ The underlying query supports updates.

That isto say, aslong as a data modification statement on the columns
in the result is meaningful, then positioned data modification statements
can be carried out on the cursor.



Chapter 7 ODBC Programming

The ANSI_UPDATE_CONSTRAINTS database option limits the type
of queriesthat are updateable.

& For moreinformation, see"ANSI_UPDATE_CONSTRAINTS
option" on page 552 of the book ASA Database Administration Guide.

¢ The cursor type supports updates.
If you are using a read-only cursor, you cannot update the result set.

ODBC provides two aternatives for carrying out positioned updates and
deletes:

¢ Usethe SQL SetPos function.

Depending on the parameters supplied (SQL_POSITION,
SQL_REFRESH, SQL_UPDATE, SQL_DELETE) SQL SetPos sets the
cursor position and allows an application to refresh data, or update, or
delete datain the result set.

Thisisthe method to use with Adaptive Server Anywhere.

¢ Send positioned UPDATE and DELETE statements using SQL Execute.
This method should not be used with Adaptive Server Anywhere.

Using bookmarks

ODBC provides bookmar ks, which are values used to identify rowsin a
cursor. Adaptive Server Anywhere supports bookmarks for al kinds of
Cursors except dynamic cursors.

Before ODBC 3.0, a database could specify only whether it supported
bookmarks or not: there was no interface to provide this information for each
cursor type. There was no way for a database server to indicate for what kind
of cursor bookmarks were supported. For ODBC 2 applications, Adaptive
Server Anywhere returns that it does support bookmarks. There is therefore
nothing to prevent you from trying to use bookmarks with dynamic cursors;
however, you should not use this combination.

275



Calling stored procedures

Calling stored procedures

Procedures and
result sets

Example

276

This section describes how to create and call stored procedures and process
the results from an ODBC application.

& For afull description of stored procedures and triggers, see "Using
Procedures, Triggers, and Batches' on page 507 of the book ASA SQL User’s
Guide.

There are two types of procedures: those that return result sets and those that
do not. You can use SQL NumResultColsto tell the difference: the number
of result columnsis zero if the procedure does not return aresult set. If there
isaresult set, you can fetch the values using SQL Fetch or

SQL ExtendedFetch just like any other cursor.

Parameters to procedures should be passed using parameter markers
(question marks). Use SQL BindPar ameter to assign a storage area for each
parameter marker, whether it isan INPUT, OUTPUT, or INOUT parameter.

To handle multiple result sets, ODBC must describe the currently executing
cursor, not the procedure-defined result set. Therefore, ODBC does not
always describe column names as defined in the RESULT clause of the
stored procedure definition. To avoid this problem, you can use column
aliasesin your procedure result set cursor.

This example creates and calls a procedure that does not return aresult set.
The procedure takes one INOUT parameter, and incrementsits value. In the
example, the variable num_col will have the value zero, since the procedure
does not return aresult set. Error checking has been omitted to make the
example easier to read.

HDBC dbc;
HSTMI stnt;
long i;

SWCRD num col ;

/* Create a procedure */
SQAllocStnt( dbc, &stnt );
SQ.ExecDirect ( stnt,
" CREATE PROCEDURE Increnent ( INOQUT a INT )" \
' BEG N' \
" SETa=a+ 1"\
" END', SQL_NTS);

/* Call the procedure to increnment "i' */

i =1;

SQ.Bi ndParaneter( stnt, 1, SQL_C LONG SQ _I NTEGER, O,
0, &, NULL );

SQ.ExecDirect( stnt, "CALL Increnent( ? )",



Chapter 7 ODBC Programming

Example

SQL_NTS );
SQNunResul t Col s( stnt, &umcol );
do_sonething( i );

This example calls a procedure that returns aresult set. In the example, the
variable num_col will have the value 2 since the procedure returns a result
set with two columns. Again, error checking has been omitted to make the
example easier to read.

HDBC dbc;

HSTMI stnt;

SWORD num col ;
RETCCDE r et code;
char enmp_id[ 10 ];
char enmp_l ane[ 20 ];

/* Create the procedure */
SQ.ExecDirect ( stnt,
" CREATE PROCEDURE enpl oyees()" \
" RESULT( enp_id CHAR(10), enp_|l nane CHAR(20))"\
' BEG N' \
' SELECT enp_id, enp_|l ane FROM enpl oyee" \
" END', SQ_NTS);

/* Call the procedure - print the results */
SQ.ExecDirect( stnt, "CALL enpl oyees()", SQ_NTS );
SQ@NunResul t Col s( stnt, &umcol );
SQ.Bi ndCol ( stnt, 1, SQ_C CHAR &enp_id,

sizeof (enp_id), NULL );
SQ.Bi ndCol ( stnt, 2, SQ_C CHAR &enp_| nane,

si zeof (enp_| nane), NULL );

for( ;; ) {
retcode = SQFetch( stn );
if( retcode == SQ._NO DATA FOUND ) {
retcode = SQ.MreResults( stnt );
i f( retcode == SQ._NO DATA FOUND ) break;
} else {
do_sonething( enp_id, enp_lnane );
}

277



Handling errors

Handling errors

Errorsin ODBC are reported using the return value from each of the ODBC
function calls and either the SQL Error function or the SQL GetDiagRec
function. The SQLError function was used in ODBC versions up to, but not
including, version 3. As of version 3 the SQL Error function has been
deprecated and replaced by the SQL GetDiagRec function.

Every ODBC function returns a SQLRETURN, which is one of the
following status codes:

Status code Description

SQL_SUCCESS No error.

SQL_SUCCESS WITH_INFO | The function completed, but a call to SQLError
will indicate awarning.

The most common case for this statusis that a
value being returned is too long for the buffer
provided by the application.

SQL_ERROR The function did not complete because of an error.
Call SQLError to get more information on the
problem.

SQL_INVALID_HANDLE Aninvalid environment, connection, or statement

handle was passed as a parameter.

This often happensif ahandle is used after it has
been freed, or if the handleis the null pointer.

SQL_NO _DATA_FOUND Thereis no information available.

The most common use for this status is when
fetching from a cursor; it indicates that there are
no more rows in the cursor.

SQL_NEED_DATA Datais needed for a parameter.

Thisis an advanced feature described in the
ODBC SDK documentation under
SQL ParamData and SQL PutData.

Every environment, connection, and statement handle can have one or more
errors or warnings associated with it. Each call to SQLError or

SQL GetDiagRec returns the information for one error and removes the
information for that error. If you do not call SQLError or SQL GetDiagRec
to remove all errors, the errors are removed on the next function call that
passes the same handle as a parameter.

278



Chapter 7 ODBC Programming

Example 1

Each call to SQLError passes three handles for an environment, connection,
and statement. Thefirst call uses SQL_NULL_HSTMT to get the error
associated with a connection. Similarly, a call with both SQL_NULL_DBC
and SQL_NULL_HSTMT get any error associated with the environment
handle.

Each call to SQL GetDiagRec can pass either an environment, connection or
statement handle. Thefirst call passesin a handle of type
SQL_HANDLE _DBC to get the error associated with a connection. The
second call passesin ahandle of type SQL_ HANDLE_STMT to get the
error associated with the statement that was just executed.

SQLError and SQL GetDiagRec return SQL_SUCCESS if there isan error
to report (not SQL_ERROR), and SQL_NO_DATA_FOUND if there are no
more errors to report.

The following code fragment uses SQL Error and return codes:

/* Declare required variabl es */

SQLHDBC dbc;

SQLHSTMI stnt;

SQLRETURN r et code;

UCHAR errnsg[ 100] ;

/* code omtted here */

retcode = SQA | ocHandl e(SQ._HANDLE _STMT, dbc, &stnt );

if( retcode == SQ_ERROR ){
SQ.Error( env, dbc, SQ_NULL HSTMI, NULL, NULL,

errmsg, sizeof(errnmsg), NUL );

/* Assume that print_error is defined */
print_error( "Allocation failed", errnsg );

return;

/* Delete itens for order 2015 */
retcode = SQLExecDirect( stnt,
"del ete fromsal es_order_itens where i d=2015",
SQA_NTS );
if( retcode == SQ_ERROR ) {
SQError( env, dbc, stmt, NULL, NULL,

279



Handling errors

Example 2

280

errnsg, sizeof(errnmsg), NUL );
/* Assume that print_error is defined */
print_error( "Failed to delete itens", errnsg );

return;

}

The following code fragment uses SQL GetDiagRec and return codes:

/* Declare required variables */

SQ.HDBC dbc;

SQLHSTMT stnt;

SQLRETURN r et code;

SQSMVALLI NT errnsgl en;

SQLI NTECER errnati ve;

UCHAR er rnmsg[ 255] ;

UCHAR errstate[5];

/* code omtted here */

retcode = SQA | ocHandl e(SQ._HANDLE _STMT, dbc, &stnt );

if( retcode == SQ_ERROR ){
SQ CGet D agRec( SQL_HANDLE DBC, dbc, 1, errstate,

&rrnative, errnsg, sizeof(errnsg), &errnsglen);

/* Assune that print_error is defined */
print_error( "Allocation failed", errstate,

errnative, errnsg );

return;

}

/* Delete items for order 2015 */

retcode = SQExecDirect( stnt,
"del ete fromsal es_order_itens where i d=2015",
SQ_NTS );

if( retcode == SQL_ERROR ) {

SQ.Get D agRec( SQ._HANDLE_STMI, stnt, recnum
errstate,

&errnative, errnsg, sizeof(errnsg), &errnsglen);



Chapter 7 ODBC Programming

/* Assune that print_error is defined */
print_error("Failed to delete itens", errstate,
errnative, errnsg );

return;

281



Handling errors

282



CHAPTER 8

The Database Tools Interface

About this chapter

Contents

This chapter describes how to use the database tools library that is provided
with Adaptive Server Anywhere to add database management featuresto C

or C++ applications.

Topic Page
Introduction to the database tools interface 284
Using the database tools interface 285
DBTools functions 293
DBTools structures 304
DBTools enumeration types 334

283



Introduction to the database tools interface

Introduction to the database tools interface

Supported
platforms

Windows CE

The dbtools.h
header file

284

Sybase Adaptive Server Anywhere includes Sybase Central and a set of
utilities for managing databases. These database management utilities carry
out tasks such as backing up databases, creating databases, transating
transaction logs to SQL, and so on.

All the database management utilities use a shared library called the database
toolslibrary. It is supplied for each of the Windows operating systems. The
name of thislibrary is dbtool8.dll.

Y ou can develop your own database management utilities or incorporate
database management features into your applications by calling the database
toolslibrary. This chapter describes the interface to the database tools
library. In this chapter, we assume you are familiar with how to call DLLs
from the development environment you are using.

The database tools library has functions, or entry points, for each of the
database management utilities. In addition, functions must be called before
use of other database tools functions and when you have finished using other
database tools functions.

The dbtool8.dll library is supplied for Windows CE, but includes only entry
points for DBToolslnit, DBToolsFini, DBRemoteSQL, and
DBSynchronizel og. Other tools are not provided for Windows CE.

The dbtools header file included with Adaptive Server Anywhere lists the
entry points to the DBTools library and also the structures used to pass
information to and from the library. The dbtools.h fileisinstalled into the h
subdirectory under your installation directory. Y ou should consult the
dbtools.h file for the latest information about the entry points and structure
members.

The dbtools.h header file includes two other files:

¢ sglca.h Thisisincluded for resolution of various macros, not for the
SQLCA itsdlf.

¢ dllapi.h Defines preprocessor macros for operating-system dependent
and language-dependent macros.

Also, the sqgldef.h header fileincludes error return values.



Chapter 8 The Database Tools Interface

Using the database tools interface

This section provides an overview of how to develop applications that use
the DBTools interface for managing databases.

Using the import libraries

Supported
platforms

In order to use the DBTooals functions, you must link your application against
aDBToolsimport library which contains the required function definitions.

Import libraries are compiler-specific and are supplied for Windows
operating systems with the exception of Windows CE. Import libraries for
the DBTools interface are provided with Adaptive Server Anywhere, and can
be found in the /ib subdirectory of each operating system’s directory, under
your installation directory. The provided DBTools import libraries are as
follows:

Compiler | Library

Watcom win32\dbtistw.lib
Microsoft win32\dbtistM.lib
Borland win32\dbtlistB.lib

Starting and finishing the DBTools library

Before using any other DBTools functions, you must call DBToolslnit.
When you are finished using the DBTools DLL, you must call DBToolsFini.

The primary purpose of the DBToolslnit and DBToolsFini functionsisto
allow the DBTools DLL to load the Adaptive Server Anywhere language
DLL. Thelanguage DLL contains localized versions of all error messages
and prompts that DBTools uses internally. If DBToolsFini is not called, the
reference count of the language DLL is not decremented and it will not be
unloaded, so be careful to ensure there is a matched pair of
DBToolslnit/DBToolsFini calls.

The following code fragment illustrates how to initialize and clean up
DBTools:

/1 Decl arations
a_dbtools_info info;
short ret;

285



Using the database tools interface

//1nitialize the a_dbtools_info structure
menset ( & nfo, 0, sizeof( a_dbtools_info) );
info.errorrtn = (MSG_CALLBACK) M/Error Rt n;

/] initialize DBTool s
ret = DBToolslnit( & nfo );
if( ret '= EXIT_COKAY ) {
/!l DLL initialization failed

/I call some DBTools routines . . .

/I cleanup the DBTools dll
DBToolsFini( &info );

Calling the DBTools functions

All the tools are run by first filling out a structure, and then calling afunction
(or entry point) in the DBTools DLL. Each entry point takes a pointer to a
single structure as argument.

The following example shows how to use the DBBackup function on a
Windows operating system.

/l Initialize the structure
a_backup_db backup_info;
memset( &backup_info, 0, sizeof( backup_info ) );

/I Fill out the structure

backup_info.version = DB_TOOLS_VERSION_NUMBER;
backup_info.output_dir = "C:\BACKUP";
backup_info.connectparms
="uid=DBA;pwd=SQL;dbf=asademo.db";
backup_info.startline = "dbeng8.EXE";
backup_info.confirmrtn = (MSG_CALLBACK) ConfirmRtn ;
backup_info.errorrtn = (MSG_CALLBACK) ErrorRtn ;
backup_info.msgrtn = (MSG_CALLBACK) MessageRtn ;
backup_info.statusrtn = (MSG_CALLBACK) StatusRtn ;
backup_info.backup_database = TRUE;

I/ start the backup
DBBackup( &backup_info );

&> For information about the members of the DBTools structures, see
"DBTools structures" on page 304.

286



Chapter 8 The Database Tools Interface

Software component return codes

Using callback functions

Uses of callback
functions

All database tools are provided as entry pointsin aDLL. These entry points
use the following return codes:

O
o
o
)

Explanation

© 00 N o o~ W N P O

@ R 5

255

Success

Generd failure

Invalid file format

File not found, unable to open
Out of memory

Terminated by the user

Failed communications

Missing arequired database name
Client/server protocol mismatch
Unable to connect to the database server
Database server not running
Database server not found
Reached stop time

Invalid parameters on the command-line

Severa elementsin DBTools structures are of type MSG_CALLBACK.
These are pointers to callback functions.

Callback functions allow DBTools functions to return control of operation to
the user’s calling application. The DBTools library uses callback functions to
handle messages sent to the user by the DBTools functions for four purposes:

¢ Confirmation Called when an action needs to be confirmed by the
user. For example, if the backup directory does not exist, the tools DLL
asksif it needs to be created.

¢ Error message Called to handle a message when an error occurs, such
as when an operation is out of disk space.

¢ Information message Called for thetools to display some message to
the user (such as the name of the current table being backed up).

287



Using the database tools interface

¢ Status information Called for the tools to display the status of an
operation (such as the percentage done when unloading a table).

Assigning a Y ou can directly assign a callback routine to the structure. The following
callback function to statement is an example using a backup structure:
a structure backup_info.errorrtn = (MSG CALLBACK) MyFunction

MSG_CALLBACK isdefined in the dllapi.h header file supplied with
Adaptive Server Anywhere. Tools routines can call back to the Calling
application with messages that should appear in the appropriate user
interface, whether that be a windowing environment, standard output on a
character-based system, or other user interface.

Confirmation The following example confirmation routine asks the user to answer YES or
callback function NO to a prompt and returns the user’s selection:
example extern short _call back ConfirnRtn(
char far * question )
{
int ret;
i f( question !'= NULL ) {
ret = MessageBox( HandParent, question,
"Confirm', MB_| CONEXCLAMII ON| MB_YESNO ) :
return( 0);
}
Error callback The following is an example of an error message handling routine, which
function example displays the error message in a message box.

extern short _call back ErrorR n(
char far * errorstr )

if( errorstr I'= NULL ) {
ret = MessageBox( HandParent, errorstr,
"Backup Error", MB_| CONSTOP| MB_ K );

return( 0 );
}
Message callback A common implementation of a message callback function outputs the
function example message to the screen:

extern short _cal |l back MessageRt n(
char far * errorstr )

{
i f( messagestr !'= NULL ) {
Qut put MessageToW ndow( messagestr );
return( 0);

}

288



Chapter 8 The Database Tools Interface

Status callback
function example

A status callback routine is called when the tools needs to display the status
of an operation (like the percentage done unloading atable). Again, a
common implementation would just output the message to the screen:

extern short _callback StatusRt n(
char far * statusstr )

{
if( statusstr == NULL ) {
return FALSE;
}
Qut put MessageToW ndow( statustr );
return TRUE
}

Version numbers and compatibility

Compatibility

Using bit fields

Each structure has a member that indicates the version number. Y ou should
use this version member to hold the version of the DBTools library that your
application was developed against. The current version of the DBTools
library isincluded as the constant in the dbtools.h header file.

To assign the current version number to a structure:

¢ Assign the version constant to the version member of the structure
before calling the DBTools function. The following line assigns the
current version to a backup structure:

backup_i nfo.version = DB _TOOLS VERSI ON_NUVBER,

The version number allows your application to continue working against
newer versions of the DBTools library. The DBTools functions use the
version number supplied by your application to allow the application to
work, even if new members have been added to the DBTools structure.

Applications will not work against older versions of the DBTools library.

Many of the DBTools structures use bit fields to hold Boolean information in
a compact manner. For example, the backup structure has the following bit
fields:

a bit _field backup_dat abase : 1;
a bit field backup_logfile : 1;
a_bit_field backup_writefile: 1;
a bit _field no_confirm : 1;

a bit field qui et L

289



Using the database tools interface

a bit field renane_log : 1;
a_bit_field truncate_l og : 1;
a bit field renane_l ocal | og: 1;

Each bit field is one bit long, indicated by the 1 to the right of the colonin
the structure declaration. The specific data type used depends on the value
assigned to a_bit_field, which is set at the top of dbtools.h, and is operating
system-dependent.

You assign an integer value of 0 or 1 to abit field to pass Boolean
information to the structure.

A DBTools example

290

Y ou can find this sample and instructions for compiling it in the
Samples|ASAIDBTools subdirectory of your SQL Anywhere directory. The
sample program itself is Samples|\ASAIDBToolsImain.c. The sample
illustrates how to use the DBTools library to carry out a backup of a
database.

# define WNNT

#i ncl ude <stdio. h>
#i ncl ude "wi ndows. h"
#i nclude "string.h"
#i ncl ude "dbt ool s. h"

extern short _call back ConfirnCall Back(char far * str){
i f( MessageBox( NULL, str, "Backup",

MB_YESNQ MB_| CONQUESTION ) == IDYES ) {
return 1;

}

return O;

}

extern short _cal |l back MessageCal | Back( char far * str){
if( str '= NULL ) {
fprintf( stdout, "9%", str );
fprintf( stdout, "\n" );
fflush( stdout );
}

return O;



Chapter 8 The Database Tools Interface

extern short _callback StatusCal | Back( char far * str ){
if( str !'= NULL ) {
fprintf( stdout, "9%", str );
fprintf( stdout, "\n" );
fflush( stdout );

return O;

}

extern short _call back ErrorCall Back( char far * str ){
if( str !'= NULL ) {
fprintf( stdout, "9%", str );
fprintf( stdout, "\n" );
fflush( stdout );
}

return O;

}

/1 Main entry point into the program
int main( int argc, char * argv[] ){

a_backup_db backup_i nf o;
a_dbtools_info dbtinfo;

char dir_name[ _MAX_PATH + 1];
char connect|[ 256 ];

H NSTANCE hi nst ;

FARPRCC dbbackup;

FARPROC dbt ool sinit;

FARPRCC dbt ool sfini;

/1 Always initialize to 0 so new versi ons
/1of the structure will be conpatible.
nenset ( &ackup_info, 0, sizeof( a_backup_db ) );
backup_i nfo.version = DB_TOOLS VERS|I ON 8 _0_00;
backup_i nfo. quiet = 0;
backup_i nfo. no_confirm= 0;
backup_i nfo.confirmtn =

( MSG_CALLBACK) Conf i r mCal | Back;
backup_info.errorrtn = (MSG_CALLBACK) Err or Cal | Back;
backup_i nfo. msgrtn = (MSG_CALLBACK) MessageCal | Back;
backup_i nfo.statusrtn = (MSG CALLBACK) St at usCal | Back;

if( arge > 1) {
strncpy( dir_nane, argv[1l], _MAX PATH);
} else {
/1 DBTool s does not expect (or like) the
/1l trailing slash
strcpy( dir_nane, "c:\\tenp" );
}

backup_i nfo. output _dir = dir_nang;

201



Using the database tools interface

if( argc >2) {
strncpy( connect, argv[2], 255 );
} else {
/1 Assune that the engine is already running.
strcpy( connect, "DSN=ASA 8.0 Sanple" );
}
backup_i nf 0. connect parns = connect;
backup_info.startline = "";
backup_i nfo. quiet = 0;
backup_i nfo. no_confirm= 0;
backup_i nf 0. backup_dat abase = 1;
backup_i nf 0. backup_l ogfile = 1;
backup_i nfo. backup_witefile =
backup_i nfo.renane_l og = 0;
backup_info.truncate_l og = 0;

1

hi nst = LoadLi brary( "dbtool 8.dlI" );
if( hinst == NULL ) {

/'l Failed

return O;

}

dbtinfo.errorrtn = (MSG_CALLBACK) Error Cal | Back;

dbbackup = Get ProcAddress( (HMCDULE) hi nst,
"_DBBackup@" );

dbt ool sinit = Get ProcAddress( (HMODULE) hi nst,
" DBToolslnit@" );

dbt ool sfini = GetProcAddress( (HMODULE) hi nst,
" _DBTool sFini @" );

(*dbtool sinit)( &btinfo );

(*dbbackup) ( &ackup_info );

(*dbtool sfini)( &btinfo );

FreeLi brary( hinst );

return O;

292



Chapter 8 The Database Tools Interface

DBTools functions

This section describes the functions available in the DBTools library. The
functions are listed alphabetically.

DBBackup function

Function

Prototype

Parameters

Return value

Usage

See also

Database backup function. This function is used by the dbbackup
command-line utility.

short DBBackup ( const a_backup_db * backup-db );

Parameter | Description

backup-db ‘ Pointer to "a_backup_db structure" on page 304

A return code, aslisted in " Software component return codes' on page 287.
The DBBackup function manages all database backup tasks.

& For descriptions of these tasks, see "The Backup utility" on page 438 of
the book ASA Database Administration Guide.

"a_backup_db structure" on page 304

DBChangeLogName function

Function

Prototype

Parameters

Return value

Usage

See also

Changes the name of the transaction log file. Thisfunction is used by the
dblog command-line utility.

short DBChangeLogName ( const a_change_log * change-log);

Parameter | Description

change-log ‘ Pointer to "a_change_log structure" on page 306

A return code, aslisted in " Software component return codes' on page 287.

The-t option of the dblog command-line utility changes the name of the
transaction log. DBChangel ogName provides a programmatic interface to
this function.

& For descriptions of the dblog utility, see " The Transaction Log utility"
on page 507 of the book ASA Database Administration Guide.

"a _change_log structure" on page 306

293



DBTools functions

DBChangeWriteFile function

Function Changes awritefile to refer to another database file. This function is used by
the dbwrite command-line utility when the -d optionis applied.

Prototype short DBChangeWriteFile ( const a_writefile * writefile );

Parameters Parameter | Description
writefile ‘ Pointer to "a writefile structure” on page 332

Return value A return code, as listed in " Software component return codes' on page 287.

Usage & For information about the Write File utility and its features, see " The
Write File utility” on page 530 of the book ASA Database Administration
Guide.

See also "DBCreateWriteFile function" on page 295

"DBStatusWriteFile function" on page 299
"a writefile structure” on page 332

DBCollate function

Function Extracts a collation sequence from a database.

Prototype short DBCollate ( const a_db_collation * db-collation);

Parameters Parameter | Description
db-collation ‘ Pointer to "a_db_collation structure” on page 312

Return value A return code, as listed in " Software component return codes' on page 287.

Usage & For information about the collation utility and its features, see"The
Collation utility" on page 442 of the book ASA Database Administration
Guide

See also "a_db_collation structure" on page 312

DBCompress function

Function Compresses a database file. This function is used by the dbshrink
command-line utility.

Prototype short DBCompress ( const a_compress_db * compress-db );

294



Chapter 8 The Database Tools Interface

Parameters

Return value

Usage

See also

Parameter | Description

compress-db ‘ Pointer to "a_compress_db structure" on page 307

A return code, aslisted in " Software component return codes' on page 287.

& For information about the Compression utility and its features, see "The
Compression utility" on page 448 of the book ASA Database Administration
Guide.

"a_compress_db structure” on page 307

DBCreate function

Function
Prototype

Parameters

Return value

Usage

See also

Creates adatabase. This function is used by the dbinit command-line utility.

short DBCreate ( const a_create_db * create-db);

Parameter | Description

create-db ‘ Pointer to "a_create_db structure” on page 309

A return code, aslisted in " Software component return codes' on page 287.

& For information about the initialization utility, see " The Initialization
utility" on page 465 of the book ASA Database Administration Guide.

"a create_db structure" on page 309

DBCreateWriteFile function

Function

Prototype

Parameters

Return value

Usage

See also

Creates awrite file. This function is used by the dbwrite command-line utility
whenthe-c optionisapplied.

short DBCreateWriteFile ( const a_writefile * writefile );

Parameter | Description

writefile ‘ Pointer to "a_writefile structure” on page 332

A return code, aslisted in " Software component return codes' on page 287.

& For information about the Write File utility and its features, see"The
Write File utility” on page 530 of the book ASA Database Administration
Guide.

"DBChangeWriteFile function" on page 294

295



DBTools functions

"DBStatusWriteFile function" on page 299
"a writefile structure” on page 332

DBCrypt function

Function Encrypts a database file. This function is used by the dbinit command-line
utility when - e options are applied.
Prototype short DBCrypt ( const a_crypt_db * crypt-db);
Parameters Parameter | Description
crypt-db ‘ Pointer to "a_crypt_db structure” on page 311
Return value A return code, as listed in " Software component return codes' on page 287.
Usage & For information about encrypting databases, see " Creating a database

using the dbinit command-line utility" on page 466 of the book ASA
Database Administration Guide.

See also "a_crypt_db structure" on page 311

DBErase function

Function Erases a database file and/or transaction log file. This function is used by the
dberase command-line utility.
Prototype short DBErase ( const an_erase_db * erase-db);
Parameters Parameter | Description
erase-db ‘ Pointer to "an_erase_db structure" on page 317
Return value A return code, aslisted in " Software component return codes' on page 287.
Usage & For information about the Erase utility and its features, see "The Erase

utility" on page 458 of the book ASA Database Administration Guide.

See also "an_erase_db structure” on page 317

DBExpand function

Function Uncompresses a database file. This function is used by the dbexpand
command-line utility.

Prototype short DBExpand ( const an_expand_db * expand-db );

296



Chapter 8 The Database Tools Interface

Parameters

Return value

Usage

See also

DBInfo function

Function

Prototype

Parameters

Return value

Usage

See also

Parameter | Description

expand_db ‘ Pointer to "an_expand_db structure" on page 318

A return code, aslisted in " Software component return codes' on page 287.

& For information about the Uncompression utility and its features, see
"The Uncompression utility" on page 511 of the book ASA Database
Administration Guide.

"an_expand_db structure" on page 318

Returns information about a database file. This function is used by the dbinfo
command-line utility.

short DBInfo ( const a_db_info * db-info );

Parameter | Description

db-info ‘ Pointer to "a_db_info structure" on page 314

A return code, aslisted in " Software component return codes' on page 287.

& For information about the Information utility and its features, see"The
Information utility" on page 463 of the book ASA Database Administration
Guide.

"DBInfoDump function" on page 297
"DBInfoFree function" on page 298
"a_db_info structure” on page 314

DBInfoDump function

Function

Prototype

Parameters

Return value

Returns information about a database file. This function is used by the dbinfo
command-line utility when the - u option is used.

short DBInfoDump ( const a_db_info * db-info);

Parameter | Description

db-info ‘ Pointer to "a_db_info structure" on page 314

A return code, aslisted in " Software component return codes' on page 287.

297



DBTools functions

Usage

See also

& For information about the Information utility and its features, see"The
Information utility" on page 463 of the book ASA Database Administration
Guide.

"DBInfo function" on page 297
"DBInfoFree function" on page 298
"a db_info structure" on page 314

DBInfoFree function

Function
Prototype

Parameters

Return value

Usage

See also

Called to free resources after the DBInfoDump function is called.

short DBInfoFree (const a_db_info * db-info);

Parameter | Description

db-info ‘ Pointer to "a _db_info structure" on page 314

A return code, aslisted in " Software component return codes' on page 287.

& For information about the Information utility and its features, see"The
Information utility" on page 463 of the book ASA Database Administration
Guide.

"DBInfo function" on page 297
"DBInfoDump function" on page 297
"a db_info structure" on page 314

DBLicense function

Function

Prototype

Parameters

Return value

Usage

See also

298

Called to modify or report the licensing information of the database server.

short DBLicense ( const a_db_lic_info * db-lic-info);

Parameter | Description

db-lic-info ‘ Pointer to "a_dblic_info structure" on page 316

A return code, aslisted in " Software component return codes' on page 287.

& For information about the Information utility and its features, see "The
Information utility" on page 463 of the book ASA Database Administration
Guide.

"a dblic_info structure" on page 316



Chapter 8 The Database Tools Interface

DBStatusWriteFile function

Function

Prototype

Parameters

Return value

Usage

See also

Getsthe status of awrite file. This function is used by the dbwrite
command-line utility when the-s option is applied.

short DBStatusWriteFile ( const a_writefile * writefile );

Parameter | Description

writefile ‘ Pointer to "a writefile structure” on page 332

A return code, aslisted in " Software component return codes' on page 287.

& For information about the Write File utility and its features, see"The
Write File utility” on page 530 of the book ASA Database Administration
Guide.

"DBChangeWriteFile function" on page 294
"DBCreateéWriteFile function™ on page 295
"a writefile structure” on page 332

DBSynchronizeLog function

Function

Prototype

Parameters

Return value

Usage

Synchronize a database with a MobiLink synchronization server.
short DBSynchronizeLog( const a _sync_db * sync-db);

Parameter | Description

sync-db ‘ Pointer to "a_sync_db structure" on page 320

A return code, aslisted in " Software component return codes' on page 287.

& For information about the features you can access, see "Initiating
synchronization" on page 138 of the book MobiLink Synchronization User’s
Guide.

DBToolsFini function

Function

Prototype

Parameters

Decrements the counter and frees resources when an application is finished
with the DBToolslibrary.

short DBToolsFini ( const a_dbtools_info * dbtools-info );

Parameter | Description

dbtools-info ‘ Pointer to "a_dbtools_info structure" on page 317

299



DBTools functions

Return value
Usage

See also

A return code, aslisted in " Software component return codes' on page 287.

The DBToolsFini function must be called at the end of any application that
uses the DBTools interface. Failure to do so can lead to lost memory
resources.

"DBToolslnit function" on page 300
"a_dbtools info structure" on page 317

DBToolsInit function

Function
Prototype

Parameters

Return value

Usage

Example

See also

300

Prepares the DBTools library for use.

short DBToolslInit t( const a_dbtools_info * dbtools-info);

Parameter | Description

dbtools-info ‘ Pointer to "a_dbtools_info structure" on page 317

A return code, aslisted in " Software component return codes' on page 287.

The primary purpose of the DBToolslnit function is to load the Adaptive
Server Anywhere language DLL. The language DLL contains localized
versions of error messages and prompts that DBTools uses internally.

The DBToolslnit function must be called at the start of any application that
uses the DBTools interface, before any other DBTools functions.

¢ Thefollowing code sample illustrates how to initialize and clean up
DBTools:

a_dbtools_info info;
short ret;

nmenset ( & nfo, 0, sizeof( a_dbtools_info) );
info.errorrtn = (MSG_CALLBACK) MakePr ocl nst ance(
(FARPROC) MyErrorRtn, hlnst );

// initialize DBTool s
ret = DBToolslnit( & nfo );
if( ret '= EXIT_COKAY ) {
/!l DLL initialization failed

/I call some DBTools routines . . .

/I cleanup the DBTools dll
DBToolsFini( &info );

"DBToolsFini function" on page 299
"a dbtools info structure" on page 317



Chapter 8 The Database Tools Interface

DBToolsVersion function

Function
Prototype
Return value

Usage

See also

Returns the version number of the DBTools library.
short DBToolsVersion ( void );
A short integer indicating the version number of the DBTools library.

Use the DBToolsVersion function to check that the DBTools library is not
older than one against which your application is developed. While
applications can run against newer versions of DBTools, they cannot run
against older versions.

"Version numbers and compatibility" on page 289

DBTranslateLog function

Function

Prototype

Parameters

Return value

Usage

See also

Trandates atransaction log file to SQL. This function is used by the dbtran
command-line utility.

short DBTranslateLog ( const a_translate_log * translate-log );

Parameter | Description

translate-log ‘ Pointer to "a _translate log structure” on page 324

A return code, aslisted in " Software component return codes' on page 287.

& For information about the log tranglation utility, see "The Log
Trandation utility" on page 488 of the book ASA Database Administration
Guide.

"a trandate_|og structure” on page 324

DBTruncateLog function

Function

Prototype

Parameters

Return value

Usage

Truncates atransaction log file. This function is used by the dbbackup
command-line utility.

short DBTruncateLog ( const a_truncate_log * truncate-log );

Parameter | Description

truncate-log ‘ Pointer to "a_truncate log structure” on page 326

A return code, aslisted in " Software component return codes' on page 287.

& For information about the backup utility, see "The Backup utility" on
page 438 of the book ASA Database Administration Guide

301



DBTools functions

See also

"a truncate log structure" on page 326

DBUnload function

Function

Prototype

Parameters

Return value

Usage

See also

Unloads adatabase. This function is used by the dbunload command-line
utility and also by the dbxtract utility for SQL Remote.

short DBUnload ( const an_unload_db * unload-db);

Parameter | Description

unload-db ‘ Pointer to "an_unload_db structure" on page 327

A return code, aslisted in " Software component return codes' on page 287.

& For information about the Unload utility, see "The Unload utility" on
page 513 of the book ASA Database Administration Guide.

"an_unload_db structure" on page 327

DBUpgrade function

Function

Prototype

Parameters

Return value

Usage

See also

Upgrades a database file. This function is used by the dbupgrade
command-line utility.

short DBUpgrade ( const an_upgrade_db * upgrade-db);

Parameter | Description

upgrade-db ‘ Pointer to "an_upgrade_db structure” on page 329

A return code, aslisted in " Software component return codes' on page 287.

& For information about the upgrade utility, see "The Upgrade utility" on
page 521 of the book ASA Database Administration Guide.

"an_upgrade _db structure" on page 329

DBValidate function

Function

Prototype

302

Validates all or part of adatabase. Thisfunction is used by the dbvalid
command-line utility.

short DBValidate ( const a_validate_db * validate-db);



Chapter 8 The Database Tools Interface

Parameters Parameter | Description
validate-db ‘ Pointer to "a validate db structure" on page 330
Return value A return code, as listed in " Software component return codes' on page 287.
Usage &~ For information about the upgrade utility, see " The Validation utility"
on page 526 of the book ASA Database Administration Guide.
See also "a validate_db structure" on page 330

303



DBTools structures

DBTools structures

This section lists the structures that are used to exchange information with
the DBTools library. The structures are listed alphabetically.

Many of the structure elements correspond to command-line options on the
corresponding utility. For example, several structures have a member named
quiet, which can take on values of 0 or 1. This member corresponds to the
quiet operation (- g) command-line option used by many of the utilities.

a_backup_db structure

Function Holds the information needed to carry out backup tasks using the DBTools
library.

Syntax typedef struct a_backup_db {
unsigned short version;
const char * output_dir;
const char * connectparms;
const char * startline;
MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bit_field backup_database: 1,
a_bit_field backup_lodfile 1;
a_bit_field backup_writefile : 1,
a_bit_field no_confirm 1;
a_bit_field quiet 01
a_bit_field rename_log 1;
a_bhit_field truncate_log 1
a_bhit_field rename_local_log: 1;
const char * hotlog_filename;
char backup_interrupted;

} a_backup_db;

304



Chapter 8 The Database Tools Interface

Parameters

See also

Member Description
Version DBTools version number
output_dir Path to the output directory. For example:
"c:\ backup"
connectparms Parameters needed to connect to the database. They take
the form of connection strings, such as the following:
" Ul D=DBA; PMD=SQL; DBF=c: \ asa\ asadeno. db"
& For the full range of connection string options, see
"Connection parameters” on page 70 of the book ASA
Database Administration Guide
startline Command-line used to start the database engine. The
following is an example start line:
"c:\asa\wi n32\ dbeng8. exe"
The default start lineis used if this member is NULL
confirmrtn Callback routine for confirming an action
errorrtn Callback routine for handling an error message
msgrtn Callback routine for handling an information message
statusrtn Callback routine for handling a status message
backup_database Backup the database file (1) or not (0)
backup_lodfile Backup the transaction log file (1) or not (0)

backup_writefile

no_confirm

quiet

rename_log
truncate_log
rename_local_log
hotlog_filename

backup_interrupted

Backup the database write file (1) or not (0), if awritefile
is being used

Operate with (0) or without (1) confirmation

Operate without printing messages (1), or print messages
)

Rename the transaction log

Delete the transaction log

Rename the local backup of the transaction log
File name for the live backup file

Indicates that the operation was interrupted

"DBBackup function" on page 293
& For moreinformation on callback functions, see "Using callback
functions' on page 287.

305



DBTools structures

a_change _log structure

Function

Syntax

Parameters

306

unsigned short
const char *
const char *

MSG_CALLBACK
MSG_CALLBACK

a_bit_field
a_bit_field
a_bit_field
a_bit_field
a_bit_field
a_bit_field
a_bit_field
a_bit_field
a_bit_field
const char *
unsigned short
const char *
char *

char *

char *
}a_change_log;

Holds the information needed to carry out dblog tasks using the DBTools
library.

typedef struct a_change_log {

version;

dbname;

logname;

errorrtn;

msgrtn;

query_only 01
quiet 01
mirrorname_present 1;
change_mirrorname 1
change_logname 01
ignore_lItm_trunc : 1;
ignore_remote_trunc
set_generation_number
ignore_dbsync_trunc : 1;
mirrorname;
generation_number;
key_file;
zap_current_offset;
sap_starting_offset;
encryption_key;

Lol

Member Description

version DBTools version number

dbname Database file name

logname The name of the transaction log. If set to NULL, there
isnolog

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

query_only If 1, just display the name of the transaction log. If O,
permit changing of the log name

quiet Operate without printing messages (1), or print

mirrorname_present

change_mirrorname

change_|ogname

messages (0)

Set to 1. Indicates that the version of DBTools is recent
enough to support the mirrorname field

If 1, permit changing of the log mirror name

If 1, permit changing of the transaction log name



Chapter 8 The Database Tools Interface

Member

Description

ignore_Itm_trunc

ignore_remote_trunc

set_generation_number

ignore_dbsync_trunc

mirrorname

generation_number

key_file
zap_current_offset

zap_starting_offset

encryption_key

See also

When using the Log Transfer Manager, performs the
same function as the dbcc settrunc( 'Itm’, 'gen_id’, n)
Replication Server function:

& For information on dbcc, see your Replication
Server documentation

For SQL Remote. Resets the offset kept for the
purposes of the DELETE_OLD_L OGS option,
allowing transaction logs to be deleted when they are
no longer needed

When using the Log Transfer Manager, used after a
backup is restored to set the generation number

When using dbmlsync, resets the offset kept for the
purposes of the DELETE_OLD_LOGS option,
alowing transaction logs to be deleted when they are
no longer needed

The new name of the transaction log mirror file

The new generation number. Used together with
set_generation_number

A file holding the encryption key

Change the current offset to the specified value. Thisis
for use only in resetting a transaction log after an
unload and reload to match dbremote or dbmisync
Settings.

Change the starting offset to the specified value. Thisis
for use only in resetting a transaction log after an
unload and reload to match dbremote or dbmisync
Ssettings.

The encryption key for the database file.

"DBChangel.ogName function" on page 293

& For moreinformation on callback functions, see "Using callback
functions' on page 287.

a_compress_db structure

Function
the DBToolslibrary.

Holds the information needed to carry out database compression tasks using

307



DBTools structures

Syntax

Parameters

See also

308

unsigned short
const char *

const char *
MSG_CALLBACK
MSG_CALLBACK
MSG_CALLBACK

typedef struct a_compress_db {

version;

dbname;
compress_name;
errorrtn;

msgrtn;
statusrtn;

a_bit_field
a_bit_field
a_bit_field

a_compress_stats *
MSG_CALLBACK

a_bit_field
const char *

} a_compress_db;

display_free_pages 01
quiet 0L
record_unchanged 01
stats;

confirmrtn;

noconfirm 21
encryption_key

Member Description
version DBTools version number
dbname The file name of the database to compress

compress_name
errorrtn

msgrtn

statusrtn
display_free pages
quiet

record_unchanged

a_compress dtats

confirmrtn

noconfirm

encryption_key

The file name of the compressed database

Callback routine for handling an error message
Callback routine for handling an information message
Callback routine for handling a status message
Display the free page information.

Operate without printing messages (1), or print messages
)

Set to 1. Indicates that the a_compress_stats structureis
recent enough to have an unchanged member

Pointer to a structure of type a_compress_stats. Thisis
filled in if the member isnot NULL and
display_free pagesis not zero

Callback routine for confirming an action
Operate with (0) or without (1) confirmation
The encryption key for the databasefile.

"DBCompress function” on page 294

"a_compress_stats structure” on page 309

& For moreinformation on callback functions, see "Using callback
functions' on page 287.



Chapter 8 The Database Tools Interface

a_compress_stats structure

Function

Syntax

Parameters

See also

Holds information describing compressed database file statistics.

typedef struct a_compress_stats {

a_stats_line tables;

a_stats_line indices;

a_stats_line other;

a_stats_line free;

a_stats_line total;

a_sql_int32 free_pages;

a_sql_int32 unchanged;

} a_compress_stats;
Member Description
tables Holds compression information regarding tables
indices Holds compression information regarding indexes
other Holds other compression information
free Holds information regarding free space
total Holds overall compression information
free_pages Holds information regarding free pages
unchanged The number of pages that the compression agorithm was unable

to shrink

"DBCompress function” on page 294
"a_compress_db structure” on page 307

a_create _db structure

Function

Holds the information needed to create a database using the DBTools library.

309



DBTools structures

Syntax

Parameters

310

typedef struct a_create_db {

unsigned short
const char *
const char *
const char *
short

const char *
MSG_CALLBACK
MSG_CALLBACK
short

char
a_bit_field
a_bit_field
a_bit_field
a_bit_field
a_bit_field
a_bit_field
a_bit_field
short

const char *
const char *
const char *
a_bit_field
a_bit_field
const char *
const char *
const char *

version;

dbname;

logname;

startline;

page_size;

default_collation;

errorrtn;

msgrtn;

database_version;

verbose;

blank_pad 1 2;
respect_case 1
encrypt 11
debug 01
dbo_avail 11
mirrorname_present 1
avoid_view_collisions 1
collation_id;

dbo_username;

mirrorname;
encryption_dliname;
java_classes : 1;

jconnect : 1;

data_store_type
encryption_key;
encryption_algorithm;

const char * jdK_version;
} a_create_db;
Member Description
version DBTools version number
dbname Database file name
logname New transaction log name
startline The command-line used to start the database engine. The
following is an example start line;
"c:\asa\w n32\ dbeng8. exe"
The default start lineis used if this member isNULL
page_size The page size of the database

default_collation
errorrtn
msgrtn
database version

verbose

The collation for the database

Callback routine for handling an error message
Callback routine for handling an information message
The version number of the database

Run in verbose mode



Chapter 8 The Database Tools Interface

See also

Member Description

blank_pad Treat blanks as significant in string comparisons and
hold index information to reflect this

respect_case Make string comparisons case sensitive and hold index
information to reflect this

encrypt Encrypt the database

debug Reserved

dbo_avall Set to 1. The dbo user is available in this database

mirrorname_present

avoid_view_collisions

collation_id
dbo_username
mirrorname
encryption_dliname
java classes

jconnect

data _store type
encryption_key
encryption_algorithm

jdk_version

Set to 1. Indicates that the version of DBTools is recent
enough to support the mirrorname field

Omit the generation of Watcom SQL compatibility
views SYS.SYSCOLUMNS and SYS.SYSINDEXES

Collation identifier

No longer used: set to NULL

Transaction log mirror name

The DLL used to encrypt the database.

Creste a Java-enabled database.

Include system procedures needed for jConnect
Reserved. Use NULL.

The encryption key for the database file.

Either AESor MDSR.

One of the values for the dbinit - j dk option.

"DBCreate function" on page 295
& For moreinformation on callback functions, see "Using callback
functions' on page 287.

a_crypt_db structure

Function

Holds the information needed to encrypt a database file as used by the dbinit

command-line utility.

311



DBTools structures

typedef struct a_crypt_db {

Syntax const char_fd_* dbname;
const char _fd_* dllname;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
char verbose;
a_bit_field quiet :1;
a_bit_field debug :1;
}a_crypt_db;
Parameters Member Description
dbname Database file name
dliname The name of the DLL used to carry out the encryption
errorrtn Callback routine for handling an error message
msgrtn Callback routine for handling an information message
statusrtn Callback routine for handling a status message
verbose Operate in verbose mode
quiet Operate without messages
debug Reserved
See also "DBCrypt function" on page 296

"Creating a database using the dbinit command-line utility" on page 466 of
the book ASA Database Administration Guide

a_db_collation structure

Function Holds the information needed to extract a collation sequence from a database
using the DBTools library.

312



Chapter 8 The Database Tools Interface

Syntax

Parameters

See also

typedef struct a_db_collation {

unsigned short version;

const char * connectparms;

const char * startline;

const char * collation_label;

const char * filename;

MSG_CALLBACK confirmrtn;

MSG_CALLBACK errorrtn;

MSG_CALLBACK msgrtn;

a_bit_field include_empty 11,
a_bit_field hex_for_extended 01
a_bit_field replace 01
a_bhit_field quiet 01

const char *

const char _fd_*
} a_db_collation;

input_filename;
mapping_filename;

Member Description
version DBTools version number
connectparms The parameters needed to connect to the database. They
take the form of connection strings, such as the following:
" Ul D=DBA; PMD=SQL; DBF=c: \ asa\ asadeno. db"
&~ For the full range of connection string options, see
"Connection parameters" on page 70 of the book ASA
Database Administration Guide
startline The command-line used to start the database engine. The
following is an example start line:
"c:\asa\wi n32\ dbeng8. exe"
The default start lineis used if this member is NULL
confirmrtn Callback routine for confirming an action
errorrtn Callback routine for handling an error message
msgrtn Callback routine for handling an information message
include_empty Write empty mappings for gapsin the collations sequence

hex_for_extended

replace
quiet
input_filename

mapping_filename

Use two-digit hexadecimal numbers to represent
high-value characters

Operate without confirming actions
Operate without messages
Input collation definition

syscollationmapping output

"DBCollate function" on page 294

313



DBTools structures

& For moreinformation on callback functions, see "Using callback
functions" on page 287.

a_db_info structure

Function Holds the information needed to return dbinfo information using the
DBToolslibrary.
Syntax typedef struct a_db_info {
unsigned short version;
MSG_CALLBACK errorrtn;
const char * dbname;
unsigned short dbbufsize;
char * dbnamebuffer;
unsigned short logbufsize;
char * lognamebuffer;
unsigned short wrtbufsize;
char * wrtnamebuffer;
a_bit_field quiet : 1;
a_bit_field mirrorname_present : 1;
a_sysinfo sysinfo;
unsigned long free_pages;
a_bit_field compressed : 1;
const char * connectparms;
const char * startline;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bhit_field page_usage : 1;
a_table_info * totals;
unsigned long file_size;
unsigned long unused_pages;
unsigned long other_pages;
unsigned short mirrorbufsize;
char * mirrornamebuffer;
char * unused_field;
char * collationnamebuffer;
unsigned short collationnamebufsize;
char * classesversionbuffer;
unsigned short classesversionbufsize;
}a_db_info;
Parameters Member Description
version DBTools version number
errortrn Callback routine for handling an error message
dbname Database file name
dbbufsize The length of the dbnamebuffer member

314



Chapter 8 The Database Tools Interface

Member Description

dbnamebuffer Database file name

logbufsize The length of the lognamebuffer member
lognamebuffer Transaction log file name

wrtbufsize The length of the wrtnamebuffer member
wrtnamebuffer The write file name

quiet Operate without confirming messages

mirrorname_present

sysinfo
free_pages
compressed

connectparms

startline

msgrtn
statusrtn
page_usage
totals
file_size
unused_pages
other_pages

mirrorbufsize

Set to 1. Indicates that the version of DBTools s recent
enough to support the mirrorname field

Pointer to a_sysinfo structure
Number of free pages
1if compressed, otherwise 0

The parameters needed to connect to the database. They
take the form of connection strings, such as the following:

" U D=DBA; PWD=SQ_; DBF=c: \ Pr ogr am
Fi | es\ Sybase\ SQL Anywhere 8\ asadeno. db"

& For the full range of connection string options, see
"Connection parameters” on page 70 of the book ASA
Database Administration Guide

The command-line used to start the database engine. The
following is an example start line:

"c:\asa\wi n32\ dbeng8. exe"
The default start lineis used if this member is NULL

Callback routine for handling an information message
Callback routine for handling a status message

1 to report page usage statistics, otherwise 0

Pointer to a_table_info structure

Size of database file

Number of unused pages

Number of pages that are neither table nor index pages

The length of the mirrornamebuffer member

315



DBTools structures

See also

Member

Description

mirrornamebuffer

collationnamebuffer

collationnamebufsize

classesversionbuffer

classesversionbufsize

The transaction log mirror name

The database collation name and label (the maximum size
is128+1)

The length of the collationnamebuffer member

The JDK version of the installed Java classes, such as
1.1.3,1.1.8, 1.3, or an empty string if Java classes are not
installed in the database (the maximum sizeis 10+1)

The length of the classesversionbuffer member

"DBInfo function" on page 297
& For moreinformation on callback functions, see "Using callback
functions' on page 287.

a_dblic_info structure

Function

Syntax

Parameters

316

Holds information con

taining licensing information. Y ou must use this

information only in a manner consistent with your license agreement.

typedef struct a_dblic_info {
unsigned short version;
char * exename;
char * username;
char * compname;
char * platform_str;
a_sql_int32 nodecount;
a_sql_int32 conncount;
a_license_type type;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
a_bit_field quiet : 1;
a_bit_field query_only : 1;
} a_dblic_info;

Member Description

version DBTools version number

exename Executable name

username User name for licensing

compname Company name for licensing

platform_str Operating system: WinNT or NLM or UNIX

nodecount Number of nodes licensed.




Chapter 8 The Database Tools Interface

Member Description

conncount Must be 1000000L

type See lictype.h for values

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

quiet Operate without printing messages (1), or print messages (0)

query_only If 1, just display the license information. If O, permit changing
the information

a_dbtools_info structure

Function

Syntax

Parameters

See also

Holds the information needed to start and finish working with the DBTools
library.

typedef struct a_dbtools_info {
MSG_CALLBACK errorrtn;
} a_dbtools_info;

Member | Description

errorrtn ‘ Callback routine for handling an error message

"DBToolsFini function" on page 299

"DBToolslInit function" on page 300

& For moreinformation on callback functions, see "Using callback
functions' on page 287.

an_erase_db structure

Function

Syntax

Holds information needed to erase a database using the DBTools library.

typedef struct an_erase_db {

unsigned short version;

const char * dbname;
MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
a_bit_field quiet : 1;
a_bhit_field erase : 1;
const char * encryption_key;

}an_erase_db;

317



DBTools structures

Parameters Member Description
version DBTools version number
dbname Database file name to erase
confirmrtn Callback routine for confirming an action
errorrtn Callback routine for handling an error message
msgrtn Callback routine for handling an information message
quiet Operate without printing messages (1), or print messages (0)
erase Erase without confirmation (1) or with confirmation (0)
encryption_key | The encryption key for the database file.

See also "DBErase function" on page 296
& For moreinformation on callback functions, see "Using callback
functions' on page 287.

an_expand_db structure

Function Holds information needed for database expansion using the DBTools library.
Syntax typedef struct an_expand_db {
unsigned short version;

const char *

compress_name;

const char * dbname;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;

a_bit_field quiet : 1;
MSG_CALLBACK confirmrtn;
a_bit_field noconfirm 01
const char * key file;

const char *
} an_expand_db;

encryption_key;

Parameters Member Description

version DBTools version number

compress_ name | Name of compressed database file

dbname Database file name

errorrtn Callback routine for handling an error message
msgrtn Callback routine for handling an information message
statusrtn Callback routine for handling a status message

318



Chapter 8 The Database Tools Interface

Member Description

quiet Operate without printing messages (1), or print messages (0)
confirmrtn Callback routine for confirming an action

noconfirm Operate with (0) or without (1) confirmation

key file A file holding the encryption key

encryption_key | Theencryption key for the database file.

See also "DBExpand function" on page 296

& For moreinformation on callback functions, see "Using callback
functions' on page 287.

a_name structure

Function Holds alinked list of names. Thisis used by other structures requiring lists of
names.
Syntax typedef struct a_name {
struct a_name * next;
char name[1];
}a_name, * p_name;
Parameters Member | Description
next ‘ Pointer to the next a_name structure in the list
name The name
p_name Pointer to the previous a_name structure
See also "a trandate_log structure" on page 324

"a validate db structure" on page 330
"an_unload_db structure" on page 327

a_stats_line structure

Function Holds information needed for database compression and expansion using the
DBToolslibrary.
Syntax typedef struct a_stats_line {
long pages;
long bytes;
long compressed_bytes;

} a_stats_line;

319



DBTools structures

Parameters Member | Description
pages Number of pages
bytes Number of bytes for uncompressed database

compressed_bytes ‘ Number of bytes for compressed database

See also "a_compress_stats structure” on page 309

a_sync_db structure

Function Holds information needed for the dbmisync utility using the DBTools library.

320



Chapter 8 The Database Tools Interface

Syntax

typedef struct a_sync_db {

unsigned short version;

char _fd_* connectparms;

char _fd_* publication;

const char _fd_* offline_dir;

char _fd_* extended_options;
char _fd_* script_full_path;
const char _fd_ * include_scan_range;
const char _fd_ * raw_file;

MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK logrtn;

a_SQL_uint32 debug_dump_size;
a_SQL_uint32 di_insert_width;

a_bit_field verbose 01

a_bit_field debug 1

a_bit_field debug_dump_hex :1;
a_bit_field debug_dump_char :1;
a_bit_field debug_page_offsets : 1;
a_bhit_field use_hex offsets :1;
a_bit_field use_relative_offsets : 1;
a_bit_field output_to_file  :1;
a_bit_field output_to_mobile_link : 1;
a_bit_field dl_use_put :1;
a_bit_field dl_use_upsert :1;
a_bit_field kill_other_connections :1;
a_bit_field retry_remote_behind : 1;
a_bit_field ignore_debug_interrupt : 1;
SET_WINDOW_TITLE_CALLBACK set_window_title_rtn;
char * default_window._title;

MSG_QUEUE_CALLBACK msgqueuertn;
MSG_CALLBACK progress_msg_rtn;
SET_PROGRESS_CALLBACK progress_index_rtn;

char ** argv;

char ** ce_argv;

a_bit_field connectparms_allocated : 1;
a_bit_field entered_dialog :1;
a_bit_field used_dialog_allocation : 1;
a_bit_field ignore_scheduling : 1;
a_bit_field ignore_hook_errors : 1;
a_bit_field changing_pwd  :1;
a_bit_field prompt_again  :1;
a_bit_field retry_remote_ahead :1;
a_bit_field rename_log :1;
a_bit_field hide_conn_str  :1;
a_bit_field hide_ml_pwd :1;
a_bit_field delay_ml_disconn :1;
a_SQL_uint32 dlg_launch_focus;

char _fd_* mlpassword;

char _fd_* new_mlpassword,;

321



DBTools structures

char _fd_* verify_mlpassword,;
a_SQL_uint32 pub_name_cnt;
char ** pub_name_list;
USAGE_CALLBACK usage_rtn;
a_sql_uint32 hovering_frequency;
a_bit_short ignore_hovering 01
a_bit_short verbose_upload 1,
a_bit_short verbose_upload_data : 1;
a_bit_short verbose_download :1;
a_bit_short verbose_download_data :1;
a_bit_short autoclose 1
a_bit_short ping 1
a_bit_short _unused 1 9;
char _fd_* encryption_key;
a_syncpub _fd_* upload_defs;
char _fd_* log_file_name;
char _fd_* user_name;
}a_sync_db;

Parameters The parameters correspond to features accessible from the dbmisync

command-line utility.
See the dbtools.h header file for additional comments.

& For more information, see "MaobiLink synchronization client" on
page 410 of the book MobiLink Synchronization User’s Guide.

See also "DBSynchronizelog function" on page 299

a_syncpub structure

Function Holds information needed for the dbmisync utility.
Syntax
typedef struct a_syncpub {
struct a_syncpub _fd_* next;
char _fd_* pub_name;
char _fd_* ext_opt;
a_bit_field alloced_by_dbsync: 1;
} a_syncpub;

322



Chapter 8 The Database Tools Interface

Parameters

Member Description

a syncpub pointer to the next node in thelist, NULL for the last
node

pub_name publication name(s) specified for this- n option. This
is the exact string following -n on the command line.

ext_opt extended options specified using the - eu option

encryption 1if the database is encrypted, O otherwise

aloced_by dbsync FALSE, except for nodes created in dbtool8.dll

a_sysinfo structure

Function Holds information needed for dbinfo and dbunload utilities using the
DBToolslibrary.
typedef struct a_sysinfo {
a_bit_field valid_data 01
a_bit field blank_padding :1;
a_bit_field case_sensitivity : 1;
a_bit_field encryption BN
char default_collation[11];
unsigned short page_size;
} a_sysinfo;
Parameters Member Description
valid_date Bit-field indicating whether the following values are set
blank_padding 1if blank padding is used in this database, 0 otherwise
case_sensitivity | 1if the database is case-sensitive, 0 otherwise
encryption 1if the database is encrypted, O otherwise
default_collation | The collation sequence for the database
page_size The page size for the database
See also "a_db_info structure" on page 314

a_table_info structure

Function Holds information about

atable needed as part of the a_db_info structure.

323



DBTools structures

typedef struct a_table_info {

Syntax struct a_table_info *  next;
unsigned short table_id;
unsigned long table_pages;
unsigned long index_pages;
unsigned long table_used;
unsigned long index_used;
char * table_name;
a_sqgl_uint32 table_used_pct;
a_sql_uint32 index_used_pct;
} a_table_info;
Parameters Member Description
next Next tablein thelist
table id ID number for thistable
table pages Number of table pages
index_pages Number of index pages
table_used Number of bytes used in table pages
index_used Number of bytes used in index pages
table_name Name of the table
table_used pct Table space utilization as a percentage
index_used_pct Index space utilization as a percentage
See also "a_db_info structure” on page 314

a_translate log structure

Function Holds information needed for transaction log translation using the DBTools
library.

324



Chapter 8 The Database Tools Interface

typedef struct a_translate lo
Syntax P h —og{

unsigned short version;
const char * logname;
const char * sqlname;
p_name userlist;

MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;

char userlisttype;

a_bit_field remove_rollback : 1;
a_bit_field ansi_SQL :1;

a_bit_field since_checkpoint: 1;
a_bhit_field omit_comments : 1;
a_bit_field replace 1

a_bit_field debug 11

a_bit_field include_trigger_trans : 1;
a_bit_field comment_trigger_trans : 1;
unsigned long since_time;

const char _fd_* reserved_1;

const char _fd_* reserved_2;

a_sql_uint32 debug_dump_size;
a_bit_field debug_sqgl_remote 1
a_bit_field debug_dump_hex 11,
a_bit_field debug_dump_char 11,
a_bit_field debug_page_offsets  :1;
a_bit_field reserved_3 11
a_bit_field use_hex_offsets 11
a_bit_field use_relative_offsets : 1;
a_bit_field include_audit 11
a_bit_field chronological_order :1;
a_bit_field force_recovery 1,
a_bit_field include_subsets 21,
a_bit_field force_chaining 1,
a_sqgl_uint32 recovery_ops;
a_sql_uint32 recovery_bytes;

const char _fd_* include_source_sets;
const char _fd_* include_destination_sets;
const char _fd_* include_scan_range;
const char _fd_* repserver_users;
const char _fd_ * include_tables;

*

*

const char _fd_ include_publications;

const char _fd_ gqueueparms;

a_bit_field generate_reciprocals :1;
a_bit_field match_mode 1
const char _fd_* match_pos;
MSG_CALLBACK statusrtn;

const char _fd_* encryption_key;
a_bit_field show_undo :1;
const char _fd_ * logs_dir;

} a_translate_log;

325



DBTools structures

Parameters The parameters correspond to features accessible from the dbtran
command-line utility.

See the dbtools.h header file for additional comments.

See also "DBTrandatelog function" on page 301
"a_name structure" on page 319
"dbtran_userlist_type enumeration" on page 335
& For moreinformation on callback functions, see "Using callback
functions' on page 287.

a_truncate_log structure

Function Holds information needed for transaction log truncation using the DBTools
library.
Syntax typedef struct a_truncate_log {
unsigned short version;
const char * connectparms;
const char * startline;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
a_bit_field quiet 01
char truncate_interrupted;
} a_truncate_log;
Parameters Member Description
version DBTools version number.
connectparms The parameters needed to connect to the database. They

take the form of connection strings, such as the following:
" Ul D=DBA; PMD=SQL; DBF=c: \ asa\ asadeno. db"

& For the full range of connection string options, see
"Connection parameters" on page 70 of the book ASA
Database Administration Guide

startline The command-line used to start the database engine. The
following is an example start line:

"c:\asa\wi n32\ dbeng8. exe"
The default start lineis used if this member is NULL

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

quiet Operate without printing messages (1), or print messages
©)

truncate interrupted | Indicates that the operation was interrupted

326



Chapter 8 The Database Tools Interface

See also "DBTruncateLog function" on page 301

& For moreinformation on callback functions, see "Using callback
functions' on page 287.

an_unload_db structure
Function Holds information needed to unload a database using the DBTools library or

extract aremote database for SQL Remote. Those fields used by the dbxtract
SQL Remote extraction utility are indicated.

327



DBTools structures

typedef struct an_unload_db {
Syntax

unsigned short version;

const char * connectparms;

const char * startline;

const char * temp_dir;

const char * reload_filename;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
MSG_CALLBACK confirmrtn;

char unload_type;

char verbose;

a_bit_field unordered : 1;

a_bhit_field no_confirm : 1;
a_bit_field use_internal_unload : 1;
a_bit_field dbo_avail : 1;

a_bit_field extract : 1;

a_bit_field table_list_provided : 1;
a_bit_field exclude_tables : 1;
a_bit_field more_flag_bits_present : 1;
a_sysinfo sysinfo;

const char * remote_dir;

const char * dbo_username;

const char * subscriber_username;
const char * publisher_address_type;
const char * publisher_address;
unsigned short isolation_level,
a_bit_field start_subscriptions : 1;
a_bit_field exclude_foreign_keys : 1;
a_bit_field exclude_procedures : 1;
a_bit_field exclude_triggers : 1;
a_bit_field exclude_views : 1;
a_bit_field isolation_set : 1;
a_bit_field include_where_subscribe : 1;
a_bit_field debug : 1;

p_name table_list;

a_bit_short escape_char_present : 1;
a_bit_short view_iterations_present : 1;
unsigned short view_iterations;

char escape_char;

char _fd_* reload_connectparms;
char _fd_* reload_db_filename;
a_bit_field output_connections:1;
char unload_interrupted;
a_bit_field replace_db:1;

const char _fd_ * locale;

const char _fd_* site_name;

const char _fd_ * template_name;
a_bit_field preserve_ids:1;
a_bit_field exclude_hooks:1;

char _fd_* reload_db_logname;

328



Chapter 8 The Database Tools Interface

const char _fd_ * encryption_key;
const char _fd_ * encryption_algorithm;
a_bit_field syntax_version_7:1;
a_bit_field remove_java:l;

} an_unload_db;

Parameters The parameters correspond to features accessible from the dbunload and
dbxtract, and mixtract command-line utilities.

See the dbtools.h header file for additional comments.

See also "DBUnload function" on page 302
"a_name structure" on page 319
"dbunload type enumeration" on page 335
& For moreinformation on callback functions, see "Using callback
functions" on page 287.

an_upgrade_db structure

Function Holds information needed to upgrade a database using the DBTools library.
Syntax typedef struct an_upgrade_db {
unsigned short version;
const char * connectparms;
const char * startline;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bit_field quiet : 1;
a_bit_field dbo_avail : 1;
const char * dbo_username;
a_bit_field java_classes 01
a_bit_field jconnect : 1;
a_bit_field remove_java 11
a_bit_field java_switch_specified : 1;
const char * jdk_version;

} an_upgrade_db;

329



DBTools structures

Parameters Member Description

version DBTools version number.

connectparms The parameters needed to connect to the database. They take the
form of connection strings, such as the following:
" Ul D=DBA; PMD=SQL; DBF=c: \ asa\ asadeno. db"

& For the full range of connection string options, see
"Connection parameters' on page 70 of the book ASA Database
Administration Guide

startline The command-line used to start the database engine. The
following is an example start line:

"c:\asa\wi n32\ dbeng8. exe"
The default start line is used if this member is NULL

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

statusrtn Callback routine for handling a status message

quiet Operate without printing messages (1), or print messages (0)
dbo_avail Set to 1. Indicates that the version of DBTools is recent enough

to support the dbo_username field

dbo_username | The nameto use for the dbo

java classes Upgrade the database to be Java-enabled

jeonnect Upgrade the database to include jConnect procedures
remove_java Upgrade the database, removing the Java features

jdk_version One of the values for the dbinit - j dk option.

See also "DBUpgrade function" on page 302
& For moreinformation on callback functions, see "Using callback
functions" on page 287.

a_validate_db structure

Function Holds information needed for database validation using the DBTools library.

330



Chapter 8 The Database Tools Interface

Syntax

Parameters

See also

typedef struct a_validate_db {

unsigned short version;

const char * connectparms;
const char * startline;
p_name tables;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bit_field quiet : 1;
a_bit_field index : 1;
a_validate_type type;

} a_validate_db;

Member Description
version DBTools version number.
connectparms | The parameters needed to connect to the database. They take the
form of connection strings, such as the following:
" Ul D=DBA; PMD=SQL; DBF=c: \ asa\ asadeno. db"
& For the full range of connection string options, see
"Connection parameters' on page 70 of the book ASA Database
Administration Guide
startline The command-line used to start the database engine. The
following is an example start line:
"c:\ Program Fi | es\ Sybase\ SA\ wi n32\ dbeng8. exe"
The default start lineis used if this member isNULL
tables Pointer to alinked list of table names
errorrtn Callback routine for handling an error message
msgrtn Callback routine for handling an information message
statusrtn Callback routine for handling a status message
quiet Operate without printing messages (1), or print messages (0)
index Validate indexes
type See"a validate_type enumeration” on page 335

"DBValidate function" on page 302
"a_name structure" on page 319

& For moreinformation on callback functions, see "Using callback
functions' on page 287.

331



DBTools structures

a_writefile structure

Function

Syntax

Parameters

332

Holds information needed for database write file management using the

DBToolslibrary.

typedef struct a_writefile {

unsigned short version;
const char * writename;
const char * wlogname;
const char * dbname;
const char * forcename;
MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
char action;
a_bit_field quiet :1;
a_bit_field erase :1,;
a_bit_field force : 1,
a_bit_field mirrorname_present 01
const char * wlogmirrorname;
a_bhit_field make_log_and_mirror_names: 1;
const char * encryption_key;
} a_writefile;
Member Description
version DBTools version number
writename Write file name
wlogname Used only when creating write files
dbname Used when changing and creating write files
forcename Forced file name reference
confirmrtn Callback routine for confirming an action. Only used
when creating awritefile
errorrtn Callback routine for handling an error message
msgrtn Callback routine for handling an information message
action Reserved for use by Sybase
quiet Operate without printing messages (1), or print messages
)
erase Used for cresting write files only. Erase without
confirmation (1) or with confirmation (0)




Chapter 8 The Database Tools Interface

See also

Member

Description

force

mirrorname_present

wlogmirrorname

make_log_and_mirro
r_names

encryption_key

If 1, force the write file to point to anamed file

Used when creating only. Set to 1. Indicates that the
version of DBTools is recent enough to support the
mirrorname field

Name of the transaction log mirror

If TRUE, use the values in wlogname and
wlogmirrorname to determine filenames.

The encryption key for the databasefile.

"DBChangeWriteFile function" on page 294

"DBCreateWriteFile function" on page 295

"DBStatusWriteFile function" on page 299

& For moreinformation on callback functions, see "Using callback
functions' on page 287.

333



DBTools enumeration types

DBTools enumeration types

This section lists the enumeration types that are used by the DBTools library.
The enumerations are listed alphabetically.

Verbosity enumeration

Function

Syntax

Parameters

See also

Specifies the volume of output.

enum {
VB_QUIET,
VB_NORMAL,
VB_VERBOSE
b
Value | Description
VB_QUIET | No output
VB_NORMAL | Normal amount of output
VB_VERBOSE | Verbose output, useful for debugging

"a create_db structure" on page 309
"an_unload_db structure” on page 327

Blank padding enumeration

Function

Syntax

Parameters

See also

334

Used in the "a_create_db structure” on page 309, to specify the value of
blank_pad.

enum {
NO_BLANK_PADDING,
BLANK_PADDING

b

Value | Description
NO_BLANK_PADDING | Does not use blank padding
BLANK_PADDING | Uses blank padding

"a create_db structure" on page 309



Chapter 8 The Database Tools Interface

dbtran_userlist_type enumeration

Function Thetype of auser list, asused by an "a_trandate log structure" on page 324.

Syntax typedef enum dbtran_userlist_type {
DBTRAN_INCLUDE_ALL,
DBTRAN_INCLUDE_SOME,
DBTRAN_EXCLUDE_SOME
} dbtran_userlist_type;

Parameters Value Description

DBTRAN_INCLUDE_ALL Include operations from all users

DBTRAN_INCLUDE_SOME Include operations only from the users listed
in the supplied user list

DBTRAN_EXCLUDE_SOME Exclude operations from the users listed in the

supplied user list
See also "a trandate_log structure" on page 324
dbunload type enumeration
Function The type of unload being performed, as used by the "an_unload_db
structure” on page 327.
Syntax enum {
UNLOAD_ALL,
UNLOAD_DATA_ONLY,
UNLOAD_NO_DATA
3
Parameters Value Description
UNLOAD_ALL Unload both data and schema

UNLOAD _DATA_ONLY ‘ Unload data. Do not unload schema

UNLOAD_NO DATA Unload schemaonly

See also "an_unload_db structure" on page 327

a_validate _type enumeration

Function The type of validation being performed, as used by the "a validate db
structure” on page 330.

335



DBTools enumeration types

Syntax

Parameters

See also

336

typedef enum {

VALIDATE_NORMAL =0,

VALIDATE_DATA,
VALIDATE_INDEX,

VALIDATE_EXPRESS,

VALIDATE_FULL
} a_validate_type;

Value

Description

VALIDATE_NORMAL
VALIDATE_DATA

VALIDATE_INDEX

VALIDATE_EXPRESS

VALIDATE_FULL

Vadidate with the default check only.

Validate with data check in addition to the default
check.

Validate with index check in addition to the default
check.

Validate with express check in addition to the default
and data checks.

Validate with both data and index check in addition
toe the default check.

"Vadidating a database using the dbvalid command-line utility" on page 527
of the book ASA Database Administration Guide
"VALIDATE TABLE statement" on page 586 of the book ASA SQL

Reference Manual



CHAPTER 9

The OLE DB and ADO Programming
Interfaces

About this chapter This chapter describes how to use the OLE DB interface to Adaptive Server
Anywhere.

Many applications that use the OLE DB interface do so through the
Microsoft ActiveX Data Objects (ADO) programming model, rather than
directly. This chapter also describes ADO programming with Adaptive

Server Anywhere.
Contents
Topic Page
Introduction to OLE DB 338
ADO programming with Adaptive Server Anywhere 340
Supported OLE DB interfaces 347

337



Introduction to OLE DB

Introduction to OLE DB

OLE DB is adata access model from Microsoft. It uses the Component
Object Model (COM) interfaces and, unlike ODBC, OLE DB does not
assume that the data source uses a SQL query processor.

Adaptive Server Anywhere includes an OLE DB provider named
ASAProv. This provider isavailable for current Windows and Windows CE
platforms.

Y ou can also access Adaptive Server Anywhere using the Microsoft
OLE DB Provider for ODBC (MSDASQL), together with the Adaptive
Server Anywhere ODBC driver.

Using the Adaptive Server Anywhere OLE DB provider brings several
benefits:

¢+ Some features, such as updating through a cursor, are not available using
the OLE DB/ODBC bridge.

¢ If you use the Adaptive Server Anywhere OLE DB provider, ODBC is
not required in your deployment.

¢ MSDASQL alows OLE DB clientsto work with any ODBC driver but
does not guarantee that you can use the full range of functionality of
each ODBC driver. Using the Adaptive Server Anywhere provider, you
can get full accessto Adaptive Server Anywhere features from OLE DB
programming environments.

Supported platforms

The Adaptive Server Anywhere OLE DB provider is designed to work with
OLE DB 2.5 and later. For Windows CE and its successors, the OLE DB
provider is designed for ADOCE 3.0 and later.

ADOCE isthe Microsoft ADO for Windows CE SDK and provides database
functionality for applications developed with the Windows CE Toolkits for
Visual Basic 5.0 and Visual Basic 6.0.

& For alist of supported platforms, see "Operating system versions' on
page 136 of the book Introducing SQL Anywhere Sudio.

Distributed transactions

The OLE DB driver can be used as a resource manager in a distributed
transaction environment.

338



Chapter 9 The OLE DB and ADO Programming Interfaces

& For moreinformation, see "Three-tier Computing and Distributed
Transactions' on page 361.

339



ADO programming with Adaptive Server Anywhere

ADO programming with Adaptive Server

Anywhere

ADO (ActiveX Data Objects) is a data access object model exposed through
an Automation interface, which allows client applications to discover the
methods and properties of objects at runtime without any prior knowledge of
the object. Automation allows scripting languages like Visual Basic to use a
standard data access object model. ADO uses OLE DB to provide data
access.

Using the Adaptive Server Anywhere OLE DB provider, you get full access
to Adaptive Server Anywhere features from an ADO programming
environment.

This section describes how to carry out basic tasks while using ADO from
Visual Basic. It is not a complete guide to programming using ADO.

Code samples from this section can be found in the following files:

Development tool | Sample

Microsoft Visual Basic ‘ Samples|\ASAI\VBSampler\vbsampler.vbp
6.0

Microsoft eMbedded Samples|\ASAIADOCEIOLEDB_PocketPC.ebp
Visuad Basic 3.0

& For information on programming in ADO, see your development tool
documentation.

&~ For adetailed discussion of how to use ADO and Visual Basic to
access datain an Adaptive Server Anywhere database, see the whitepaper
Accessing Data in Adaptive Server Anywhere Using ADO and Visual Basic,
which is available at http://www.sybase.com/detail 7id=1017429.

Connecting to a database with the Connection object

Sample code

340

This section describes a simple Visual Basic routine that connectsto a
database.

Y ou can try thisroutine by placing a command button named Command1
on aform, and pasting the routine into its Click event. Run the program and
click the button to connect and then disconnect.



Chapter 9 The OLE DB and ADO Programming Interfaces

Notes

Private Sub cndTest Connecti on_d i ck()
" Decl are vari abl es
D m nyConn As New ADCDB. Connecti on
D m nyCommand As New ADCDB. Command
D mcAffected As Long

On Error GoTo Handl eError

Establ i sh the connection
nyConn. Provi der = " ASAProv"
nyConn. ConnectionString = _

"Dat a Source=ASA 8.0 Sanpl e"
nyConn. Qpen
MsgBox " Connecti on succeeded"
nyConn. O ose
Exit Sub

Handl eError:
MsgBox "Connection failed"
Exit Sub

End Sub

The sample carries out the following tasks:
¢ It declaresthe variables used in the routine.

¢ |t establishes a connection, using the Adaptive Server Anywhere
OLE DB provider, to the sample database.

¢ It uses a Command object to execute a simple statement, which displays
amessage on the database server window.

¢ |t closes the connection.

When the ASAProv provider isinstaled, it registersitself. This registration
process includes making registry entriesin the COM section of the registry,
so that ADO can locate the DLL when the ASAProv provider iscalled. If
you change the location of your DLL, you must reregister it.

To register the OLE DB provider:

1 Openacommand prompt.

2 Changeto the directory where the OLE DB provider isinstalled.

3 Enter the following command to register the provider:
regsvr32 dbol edb8. di |

& For more information about connecting to a database using OLE DB,
see "Connecting to a database using OLE DB" on page 68 of the book ASA
Database Administration Guide.

341



ADO programming with Adaptive Server Anywhere

Executing statements with the Command object

This section describes a simple routine that sends a simple SQL statement to
the database.

Sample code Y ou can try this routine by placing a command button named Command2
on aform, and pasting the routine into its Click event. Run the program and
click the button to connect, display a message on the database server
window, and then disconnect.

Private Sub cndUpdate_d i ck()

Decl are vari abl es
D m nyConn As New ADCDB. Connecti on
D m nyCommand As New ADODB. Conmand
D m cAffected As Long

Establ i sh the connection
nyConn. Provi der = " ASAProv"
nyConn. ConnectionString = _

"Dat a Source=ASA 8.0 Sanpl e"
nyConn. Qpen

" Execute a command

nyConmand. CommandText = _

"updat e custoner set fname='Liz' where id=102"
Set nyComrand. Acti veConnecti on = nyConn
nmyCommand. Execut e cAffected

MsgBox CStr(cAffected) +

" rows affected.", vblnfornmation
nyConn. O ose
End Sub
Notes After establishing a connection, the example code creates a Command

object, setsits CommandT ext property to an update statement, and setsits
ActiveConnection property to the current connection. It then executes the
update statement and displays the number of rows affected by the updatein a

message box.

In this example, the update is sent to the database and committed as soon as
it is executed.

& For information on using transactions within ADO, see "Using
transactions' on page 346.

Y ou can also carry out updates through a cursor.

& For moreinformation, see "Updating data through a cursor" on
page 344.

342



Chapter 9 The OLE DB and ADO Programming Interfaces

Querying the database with the Recordset object

The ADO Recor dset object represents the result set of a query. You can use
it to view data from a database.

Sample code Y ou can try this routine by placing a command button named cmdQuery on
aform and pasting the routine into its Click event. Run the program and
click the button to connect, display a message on the database server
window, execute a query and display the first few rows in message boxes,
and then disconnect.

Private Sub cmdQuery_dick()
Decl are vari abl es
D m nyConn As New ADCDB. Connecti on
D m nyCommand As New ADODB. Conmand
D m nyRS As New ADODB. Recor dset

On Error GoTo ErrorHandl er:

Establ i sh the connection
nmyConn. Provi der = " ASAProv"
nyConn. ConnectionString = _
"Data Source=ASA 8.0 Sanpl e"
nyConn. Cur sor Locat i on = adUseSer ver
nyConn. Mode = adMbdeReadWite
nyConn. | sol ati onLevel = adXactQursorStability
nyConn. Qpen

" Execute a query

Set nyRS = New Recor dset

nyRS. CacheSi ze = 50

nyRS. Source = "Select * from custoner"
nyRS. Acti veConnection = nyConn

nyRS. Cur sor Type = ad(penkKeyset

nyRS. LockType = adLockOptinistic

nyRS. Qpen

"Scroll through the first fewresults

nyRS. MoveFi r st

For i =1 To 5
MsgBox nyRS. Fi el ds("conpany_nane"), vblnformation
nmyRS. MoveNext

Next

nyRS. C ose
nyConn. d ose
Exit Sub

Error Handl er:
MsgBox Error (Err)
Exit Sub

End Sub

343



ADO programming with Adaptive Server Anywhere

Notes The Recordset object in this example holds the results from a query on the
Customer table. The For loop scrolls through the first several rows and
displays the company name value for each row.

Thisisasimple example of using a cursor from ADO.

&> For more advanced examples of using a cursor from ADO, see
"Working with Recordset object" on page 344.

Working with Recordset object

When working with Adaptive Server Anywhere, the ADO Recor dset
represents a cursor. Y ou can choose the type of cursor by declaring a
Cursor Type property of the Recor dset object before you open the
Recordset. The choice of cursor type controls the actions you can take on
the Recor dset and has performance implications.

Cursor types The set of cursor types supported by Adaptive Server Anywhere is described
in"Cursor properties’ on page 24. ADO has its own naming convention for
cursor types.

The available cursor types, the corresponding cursor type constants, and the
Adaptive Server Anywhere types they are equivalent to, are as follows:

ADO cursor type | ADO constant Adaptive Server
Anywhere type

Dynamic cursor adOpenDynamic Dynamic scroll cursor

Keyset cursor adOpenK eyset Scroll cursor

Static cursor adOpenStatic Insensitive cursor

Forward only adOpenForwardOnly No-scroll cursor

& For information on choosing a cursor type that is suitable for your
application, see "Choosing cursor types' on page 24.

Sample code The following code sets the cursor type for an ADO Recor dset object:

D m nyRS As New ADCDB. Recor dset
nyRS. CQur sor Type = adOpenDynam ¢

Updating data through a cursor

The Adaptive Server Anywhere OLE DB provider lets you update aresult
set through a cursor. This capability is not available through the MSDASQL
provider.

344



Chapter 9 The OLE DB and ADO Programming Interfaces

Updating record

sets

Notes

Y ou can update the database through a record set.
Private Sub Command6_d i ck()

D m nyConn As New ADCDB. Connecti on
D m nyRS As New ADCODB. Recor dset
DmSQString As String

Connect
nyConn. Provi der = " ASAProv"
nyConn. ConnectionString = _

"Data Source=ASA 8.0 Sanpl e"

myConn. Qpen
nmyConn. Begi nTr ans
SQ@QString = "Select * from custoner”
nyRS. Gpen SQ.String, _

nyConn, adQpenDynam c, adLockBatchQptim stic

If nyRS. BOF And nyRS. EOF Then
MsgBox "Recordset is enpty!",
16, "Enpty Recordset”
El se
MsgBox "CQursor type: " + _
CStr(nyRS. Qur sor Type), vblnfornation
nyRS. MoveFi r st
For i =1 To 3
MsgBox "Row " + CStr(nyRS. Fields("id")),
vbl nf or mat i on
If i =2 Then
nyRS. Update "City", "Toronto"
nyRS. Updat eBat ch
End If
nmyRS. MoveNext
Next i
nmyRS. MovePr evi ous
nyRS. d ose
End |f
nyConn. Commi t Tr ans
nmyConn. d ose

End Sub

If you use the adL ockBatchOptimistic setting on the recordset, the
myRS.Update method does not make any changes to the database itself.
Instead, it updates alocal copy of the Recor dset.

The myRS.UpdateBatch method makes the update to the database server,
but does not commit it, because it isinside atransaction. If an UpdateBatch
method was invoked outside a transaction, the change would be committed.

The myConn.CommitTrans method commits the changes. The Recor dset
object has been closed by thistime, so there is no issue of whether the local
copy of the datais changed or not.

345



ADO programming with Adaptive Server Anywhere

Using transactions

346

By default, any change you make to the database using ADO is committed as
soon asit is executed. Thisincludes explicit updates, as well asthe
UpdateBatch method on a Recor dset. However, the previous section
illustrated that you can use the BeginTrans and RollbackTrans or
CommitTrans methods on the Connection object to use transactions.

Transaction isolation level is set as a property of the Connection object. The
IsolationLevel property can take on one of the following values:

ADO isolation level Constant ASA level
Unspecified adX actUnspecified Not applicable. Setto 0
Chaos adXactChaos Unsupported. Set to 0
Browse adXactBrowse 0

Read uncommitted adX actReadUncommitted | O

Cursor stability adXactCursorStability 1

Read committed adX actReadCommitted 1

Repeatable read adX actRepestableRead 2

Isolated adX actl solated 3

Serializable adXactSerializable 3

&> For more information on isolation levels, see "Isolation levels and
consistency" on page 94 of the book ASA SQL User’s Guide.



Chapter 9 The OLE DB and ADO Programming Interfaces

Supported OLE DB interfaces

The OLE DB API consists of a set of interfaces. The following table
describes the support for each interface in the Adaptive Server Anywhere

OLE DB driver.
Interface Purpose Limitations
| Accessor Define bindings between DBACCESSOR_PASS
client memory and data store | BY REF not supported.
values. DBACCESSOR_OPTI
MIZED not supported.
| AlterIndex Alter tables, indexes, and Not supported.
|AlterTable columns.
| ChapteredRowset A chaptered rowset allows Not supported.
rows of arowset to be Adaptive Server
accessed in separate Anywhere does not
chapters. support chaptered
rowsets.
|Columnsinfo Get simple information Not on CE.
about the columns of a
rowset.
| ColumnsRowset Get information about Not on CE.
optional metadata columns
in arowset, and get a rowset
of column metadata.
|Command Execute SQL commands. Does not support
caling.
|commandProperties:
GetProperties with
DBPROPSET_PROPE
RTIESINERROR to
find properties that
could not have been set.
| CommandPersist Persist the state of a Not on CE.
command object (but not any
active rowsets). These
persistent command objects
can subsequently be
enumerated using the
PROCEDURES or VIEWS
rowset.
|CommandPrepare Prepare commands. Not on CE.

347



Supported OLE DB interfaces

Interface Purpose Limitations
|CommandProperties | Set Rowset properties for Supported.
rowsets created by a
command. Most commonly
used to specify the interfaces
the rowset should support.
| CommandText Set the SQL command text Only the
for ICommand. DBGUID_DEFAULT
SQL diaectis
supported.

|commandWithParame
ters

|ConvertType

IDBAsynchNatify
IDBAsyncStatus

|DBCreateCommand

IDBCreateSession

IDBDataSourceAdmin

Set or get parameter
information for acommand.

Asynchronous processing.

Notify client of eventsin the
asynchronous processing of
data source initialization,
populating rowsets, and so
on.

Create commands from a
session.

Create asession from adata
source object.

Create/destroy/modify data
source objects, which are
COM objects used by
clients. Thisinterface is not
used to manage data stores
(databases).

No support for
parameters stored as
vectors of scalar values.

No support for BLOB
parameters.

Not on CE.
Supported.
Limited on CE.
Not supported.

Supported.

Supported.

Not supported.



Chapter 9 The OLE DB and ADO Programming Interfaces

Interface Purpose Limitations

IDBInfo Find information about Not on CE.
keywords unique to this
provider (that is, to find
non-standard SQL
keywords).
Also, find information about
literals, specia characters
used in text matching
queries, and other literal
information.

IDBInitidize Initialize data source objects | Not on CE.
and enumerators.

IDBProperties Manage propertieson adata | Not on CE.
source object or enumerator.

| DB SchemaRowset Get information about Not on CE.
system tables, in a standard
form (arowset).

|Errorinfo ActiveX error object support. | Not on CE.

| ErrorLookup

|ErrorRecords

| GetDataSource Returns an interface pointer Supported.
to the session’s data source
object.

I IndexDefinition Create or drop indexesinthe | Not supported.
data store.

IMultipleResults Retrieve multiple results Supported.
(rowsets or row counts) from
acommand.

| OpenRowset Non-SQL way to access a Supported.
database table by its name. Opening atableby its

name is supported, not
by a GUID.

| ParentRowset Access Not supported.
chaptered/hierarchical
rowsets.

IRowset Access rowsets. Supported.

349



Supported OLE DB interfaces

Interface Purpose Limitations
IRowsetChange Allow changes to rowset Not on CE.
data, reflected back to the
data store.
InsertRow/SetData for blobs
not yet implemented.
IRowsetChapterMemb | Access Not supported.
er chaptered/hierarchical
rowsets.
| RowsetCurrentl ndex Dynamically change the Not supported.
index for arowset.
IRowsetFind Find arow within arowset Not supported.
matching a specified value.
I Rowsetldentity Compare row handles. Not supported.
I RowsetI ndex Access database indexes. Not supported.
IRowsetInfo Find information about a Not on CE.
rowset properties or to find
the object that created the
rowset.
IRowsetL ocate Position on rows of arowset, | Not on CE.
using bookmarks.
IRowsetNotify Provides a COM callback Supported.
interface for rowset events.
|RowsetRefresh Get the latest value of data Not supported.
that isvisibleto a
transaction.
IRowsetResynch Old OLEDB 1.x interface, Not supported.
superseded by
IRowsetRefresh.
IRowsetScroll Scroll through rowset to Not supported.
fetch row data.
|RowsetUpdate Delay changesto rowset data | Supported.
until Update is called. Not on CE.
IRowsetView Use views on an existing Not supported.

rowset.




Chapter 9 The OLE DB and ADO Programming Interfaces

Interface

Purpose

Limitations

| Sequential Stream

| SessionProperties

| SourcesRowset

ISQLErrorinfo
| SupportErrorinfo

| TableDefinition

| TableDefinitionWith
Constraints

| Transaction

I TransactionJdoin

I TransactionLocal

Retrieve ablob column.

Get session property
information.

Get arowset of data source
objects and enumerators.

ActiveX error object support.

Create, drop, and alter tables,
with constraints.

Commit or abort
transactions.

Support distributed
transactions.

Handle transactions on a
session.

Not all the flags are
supported.

Supported for reading
only.

No support for SetData
with thisinterface.

Not on CE.
Supported.

Not on CE.

Optiona on CE.

Not on CE.

Not al the flags are
supported.

Not on CE.

Not al the flags are
supported.

Not on CE.
Not on CE.

351



Supported OLE DB interfaces

352

Interface

Purpose

Limitations

I TransactionOptions

IViewChapter

IViewFilter

IViewRowset

IViewSort

Get or set optionson a
transaction.

Work with views on an
existing rowset, specificaly
to apply post-processing
filters/sorting on rows.

Restrict contents of a rowset
to rows matching a set of
conditions.

Restrict contents of a rowset
to rows matching a set of
conditions, when opening a
rowset.

Apply sort order to aview.

Not on CE.

Not supported.

Not supported.

Not supported.

Not supported.



CHAPTER 10
The Open Client Interface

About this chapter This chapter describes the Open Client programming interface for Adaptive
Server Anywhere.

The primary documentation for Open Client application development is the
Open Client documentation, available from Sybase. This chapter describes
features specific to Adaptive Server Anywhere, but it is not an exhaustive
guide to Open Client application programming.

Contents Topic Page
What you need to build Open Client applications 354
Data type mappings 355
Using SQL in Open Client applications 357
Known Open Client limitations of Adaptive Server Anywhere 360

353



What you need to build Open Client applications

What you need to build Open Client applications

354

To run Open Client applications, you must install and configure Open Client
components on the machine where the application is running. Y ou may have
these components present as part of your installation of other Sybase
products or you can optionally install these libraries with Adaptive Server
Anywhere, subject to the terms of your license agreement.

Open Client applications do not need any Open Client components on the
machine where the database server is running.

To build Open Client applications, you need the development version of
Open Client, available from Sybase.

By default, Adaptive Server Anywhere databases are created as
case-insensitive, while Adaptive Server Enterprise databases are case
sensitive,

& For more information on running Open Client applications with
Adaptive Server Anywhere, see "Adaptive Server Anywhere as an Open
Server" on page 105 of the book ASA Database Administration Guide.



Chapter 10 The Open Client Interface

Data type mappings

Adaptive Server
Anywhere data
types with no direct
counterpart in
Open Client

Open Client hasits own internal data types, which differ in some details
from those available in Adaptive Server Anywhere. For this reason, Adaptive
Server Anywhere internally maps some data types between those used by
Open Client applications and those available in Adaptive Server Anywhere.

To build Open Client applications, you need the development version of
Open Client. To use Open Client applications, the Open Client runtimes must
be installed and configured on the computer where the application runs.

The Adaptive Server Anywhere server does not require any external
communications runtime in order to support Open Client applications.

Each Open Client data type is mapped onto the equivalent Adaptive Server
Anywhere datatype. All Open Client data types are supported

The following table lists the mappings of data types supported in Adaptive
Server Anywhere that have no direct counterpart in Open Client.

ASA data type Open Client data type
unsigned short int

unsigned int bigint

unsigned bigint bigint

date smalldatetime

time smalldatetime
seriaization longbinary

java longbinary

string varchar

timestamp struct datetime

Range limitations in data type mapping

Some data types have different ranges in Adaptive Server Anywhere than in
Open Client. In such cases, overflow errors can occur during retrieval or
insertion of data.

The following table lists Open Client application data types that can be
mapped to Adaptive Server Anywhere data types, but with some restriction
in the range of possible values.

355



Data type mappings

In most cases, the Open Client data type is mapped to an Adaptive Server
Anywhere data type that has a greater range of possible values. As aresult, it
is possible to pass a value to Adaptive Server Anywhere that will be accepted
and stored in a database, but one that is too large to be fetched by an Open
Client application.

Example

Timestamps

356

Data type Open Client Open Client ASA lower ASA upper
lower range | upperrange | range range
MONEY —922 377 203 922 377 203 —1e15+0.0001 | 1el5-0.0001
685 477.5808 685 477.5807
SMALLMONEY —214 748.3648 214 748.3647 —214 748.3648 214 748.3647
DATETIME Jan 1, 1753 Dec 31, 9999 Jan 1, 0001 Dec 31, 9999
SMALLDATETIME | Jan 1, 1900 June 6, 2079 March 1, 160( Dec 31, 7910

For example, the Open Client MONEY and SMALLMONEY data types do
not span the entire numeric range of their underlying Adaptive Server
Anywhere implementations. Therefore, it is possible to have avaluein an
Adaptive Server Anywhere column which exceeds the boundaries of the
Open Client datatype MONEY . When the client fetches any such offending
values via Adaptive Server Anywhere, an error is generated.

The Adaptive Server Anywhere implementation of the Open Client
TIMESTAMP data type, when such avalue is passed in Adaptive Server
Anywhere, is different from that of Adaptive Server Enterprise. In Adaptive
Server Anywhere, the value is mapped to the Adaptive Server Anywhere
DATETIME datatype. The default value is NULL in Adaptive Server
Anywhere and no guarantee is made of its uniqueness. By contrast, Adaptive
Server Enterprise ensures that the value is monotonically increasing in value,
and so, isunique.

By contrast, the Adaptive Server Anywhere TIMESTAMP data type contains
year, month, day, hour, minute, second, and fraction of second information.
In addition, the DATETIME data type has a greater range of possible values
than the Open Client data types that are mapped to it by Adaptive Server
Anywhere.



Chapter 10 The Open Client Interface

Using SQL in Open Client applications

This section provides a very brief introduction to using SQL in Open Client
applications, with a particular focus on Adaptive Server Anywhere-specific
issues.

& For an introduction to the concepts, see "Using SQL in Applications'
on page 9. For a complete description, see your Open Client documentation.

Executing SQL statements

Y ou send SQL statements to a database by including them in Client Library
function calls. For example, the following pair of calls executesa DELETE
statement:

ret ct _command(cnd, CS_LANG C\WD,

"DELETE FROM enpl oyee
WHERE enp_i d=105"
CS_NULLTERM
CS_UNUSED) ;
ret = ct_send(cnd);

Thect _command function is used for a wide range of purposes.

Using prepared statements

Thect _dynami ¢ function is used to manage prepared statements. This
function takes a type parameter which describes the action you are taking.

+ To use a prepared statement in Open Client:

1 Prepare the statement using thect _dynam c function, with a
CS_PREPARE type parameter.

2  Set statement parametersusing ct _par am

3 Executethe statement using ct _dynam ¢ withaCS _EXECUTE type
parameter.

4 Freethe resources associated with the statement using ct _dynam ¢
with aCS_DEALLOC type parameter.

& For more information on using prepared statements in Open Client, see
your Open Client documentation

357



Using SQL in Open Client applications

Using cursors

Supported cursor
types

The steps in using
cursors

358

Thect _cur sor function isused to manage cursors. This function takes a
type parameter which describes the action you are taking.

Not all the types of cursor that Adaptive Server Anywhere supports are
available through the Open Client interface. Y ou cannot use scroll cursors,
dynamic scroll cursors, or insensitive cursors through Open Client.

Uniqueness and updateability are two properties of cursors. Cursors can be
unique (each row carries primary key or uniqueness information, regardless
of whether it is used by the application) or not. Cursors can be read only or
updateable. If a cursor is updateable and not unique, performance may suffer,
as no prefetching of rowsis donein this case, regardless of the
CS_CURSOR_ROWS setting (see below).

In contrast to some other interfaces, such as Embedded SQL, Open Client
associates a cursor with a SQL statement expressed as a string. Embedded
SQL first prepares a statement and then the cursor is declared using the
statement handle.

To use cursors in Open Client:

1 Todeclareacursor in Open Client, you usect _cur sor with
CS_CURSOR_DECLARE asthe type parameter.

2  After declaring a cursor, you can control how many rows are prefetched
to the client side each time arow isfetched from the server using
ct _cursor withCS CURSOR_ROWS as the type parameter.

Storing prefetched rows at the client side cuts down the number of calls
to the server and thisimproves overall throughput as well as turnaround
time. Prefetched rows are not immediately passed on to the application;
they are stored in a buffer at the client side ready for use.

The setting of the PREFETCH database option controls prefetching of
rows for other interfaces. It isignored by Open Client connections. The
CS CURSOR_ROWS setting isignored for non-unique, updateable
CUrsors.

3 Toopenacursor in Open Client, youusect _cur sor with
CS_CURSOR_OPEN as the type parameter.

4  Tofetch each row into the application, you usect _f et ch.
5 Tocloseacursor, you use ct_cursor with CS_ CURSOR_CLOSE.



Chapter 10 The Open Client Interface

6 InOpen Client, you also need to deall ocate the resources associated with
acursor. You do thisusing ct_cursor with CS_ CURSOR_DEALLOC.
You can aso use CS_ CURSOR_CLOSE with the additional parameter
CS_DEALLOC to carry out these operations in a single step.

Modifying rows through a cursor

With Open Client, you can delete or update rows in a cursor, aslong as the
cursor isfor asingle table. The user must have permissions to update the
table and the cursor must be marked for update.

% To modify rows through a cursor:

¢ Instead of carrying out afetch, you can delete or update the current row
of the cursor using ct_cursor with CS_ CURSOR_DELETE or
CS_CURSOR_UPDATE, respectively.

Y ou cannot insert rows through a cursor in Open Client applications.

Describing query results in Open Client

Open Client handles result setsin a different way than some other Adaptive
Server Anywhere interfaces.

In Embedded SQL and ODBC, you describe a query or stored procedurein
order to set up the proper number and types of variables to receive the
results. The description is done on the statement itself.

In Open Client, you do not need to describe a statement. Instead, each row
returned from the server can carry a description of its contents. If you use
ct _command and ct _send to execute statements, you can use the

ct _resul ts functionto handle al aspects of rows returned in queries.

If you do not wish to use this row-by-row method of handling result sets, you
canusect _dynanmi c to prepare a SQL statement and usect _descri be
to describe itsresult set. This corresponds more closely to the describing of
SQL statementsin other interfaces.

359



Known Open Client limitations of Adaptive Server Anywhere

Known Open Client limitations of Adaptive
Server Anywhere

360

Using the Open Client interface, you can use an Adaptive Server Anywhere
database in much the same way as you would an Adaptive Server Enterprise
database. There are some limitations, including the following:

¢

Commit Service Adaptive Server Anywhere does not support the
Adaptive Server Enterprise Commit Service.

Capabilities A client/server connection’s capabilities determine the
types of client requests and server responses permitted for that
connection. The following capabilities are not supported:

CS REG_NOTIF
CS CSR _ABS
CS_CSR_FIRST

CS CSR_LAST

CS CSR_PREV

CS CSR_REL

CS DATA_BOUNDARY
CS DATA_SENSITIVITY
CS PROTO_DYNPROC
CS REQ BCP

Security options, such as SSL and encrypted passwords, are not
supported.

* & & 6 6 O o o o o

Open Client applications may connect to Adaptive Server Anywhere
using TCP/IP or using local machine NamedPipes protocol where
available.

& For more information on capabilities, see the Open Server Server-
Library C Reference Manual.



CHAPTER 11

Three-tier Computing and Distributed

Transactions

About this chapter This chapter describes how to use Adaptive Server Anywhere in athree-tier
environment with an application server. It focuses on how to enlist Adaptive

Server Anywherein distributed transactions.

Contents

Topic Page
Introduction 362
Three-tier computing architecture 363
Using distributed transactions 367
Using EAServer with Adaptive Server Anywhere 369

361



Introduction

Introduction

362

Y ou can use Adaptive Server Anywhere as a database server or resour ce
manager, participating in distributed transactions coordinated by a
transaction server.

A three-tier environment, where an application server sits between client
applications and a set of resource managers, is acommon
distributed-transaction environment. Sybase EAServer and some other
application servers are also transaction servers.

Sybase EAServer and Microsoft Transaction Server both use the Microsoft
Distributed Transaction Coordinator (DTC) to coordinate transactions.
Adaptive Server Anywhere provides support for distributed transactions
controlled by the DTC service, so you can use Adaptive Server Anywhere
with either of these application servers, or any other product based on the
DTC model.

When integrating Adaptive Server Anywhere into athree-tier environment,
most of the work needs to be done from the Application Server. This chapter
provides an introduction to the concepts and architecture of three-tier
computing, and an overview of relevant Adaptive Server Anywhere features.
It does not describe how to configure your Application Server to work with
Adaptive Server Anywhere. For more information, see your Application
Server documentation.



Chapter 11 Three-tier Computing and Distributed Transactions

Three-tier computing architecture

In three-tier computing, application logic is held in an application server,
such as Sybase EA Server, which sits between the resource manager and the
client applications. In many situations, a single application server may access
multiple resource managers. In the Internet case, client applications are
browser-based, and the application server is generaly a Web server

extension.
]
Application
Server
b— A é |
- e - e - e

Sybase EA Server stores application logic in the form of components, and
makes these components available to client applications. The components
may be PowerBuilder components, JavaBeans, or COM components.

& For moreinformation, see the Sybase EA Server documentation.

363



Three-tier computing architecture

Distributed transactions in three-tier computing

Adaptive Server
Anywhere in
distributed
transactions

When client applications or application servers work with asingle

transaction processing database, such as Adaptive Server Anywhere, thereis

no need for transaction logic outside the database itself, but when working

with multiple resource managers, transaction control must span the resources
involved in the transaction. Application servers provide transaction logic to

their client applications—guaranteeing that sets of operations are executed
atomically.

Many transaction servers, including Sybase EAServer, use the Microsoft
Distributed Transaction Coordinator (DTC) to provide transaction services to
their client applications. DTC us@l_E transactions, which in turn use the
two-phase commit protocol to coordinate transactions involving multiple
resource managers. You must have DTC installed in order to use the features
described in this chapter.

Adaptive Server Anywhere can take part in transactions coordinated by
DTC, which means that you can use Adaptive Server Anywhere databases in
distributed transactions using a transaction server such as Sybase EAServer
or Microsoft Transaction Server. You can also use DTC directly in your
applications to coordinate transactions across multiple resource managers.

The vocabulary of distributed transactions

364

This chapter assumes some familiarity with distributed transactions. For
information, see your transaction server documentation. This section
describes some commonly used terms.

¢+ Resource managersare those services that manage the data involved in
the transaction.

The Adaptive Server Anywhere database server can act as a resource
manager in a distributed transaction when accessed through OLE DB or
ODBC. The ODBC driver and OLE DB provider act as resource
manager proxies on the client machine.

¢ Instead of communicating directly with the resource manager,
application components may communicate wiour ce dispensers,
which in turn manage connections or pools of connections to the
resource managers.

Adaptive Server Anywhere supports two resource dispensers: the ODBC
driver manager and OLE DB.



Chapter 11 Three-tier Computing and Distributed Transactions

¢ When atransactional component requests a database connection (using a
resource manager), the application server enlists each database
connection takes part in the transaction. DTC and the resource dispenser
carry out the enlistment process.

Two-phase commit Distributed transactions are managed using two-phase commit. When the
work of the transaction is complete, the transaction manager (DTC) asks all
the resource managers enlisted in the transaction whether they are ready to
commit the transaction. This phaseis called preparing to commit.

If al the resource managers respond that they are prepared to commit, DTC
sends a commit request to each resource manager, and responds to its client
that the transaction is completed. If one or more resource manager does not
respond, or responds that it cannot commit the transaction, all the work of the
transaction isrolled back across all resource managers.

How application servers use DTC

Sybase EAServer and Microsoft Transaction Server are both component
servers. The application logic is held in the form of components, and made
available to client applications.

Each component has a transaction attribute that indicates how the component
participates in transactions. The application devel oper building the

component must program the work of the transaction into the component—
the resource manager connections, the operations on the data for which each
resource manager is responsible. However, the application developer does
not need to add transaction management logic to the component. Once the
transaction attribute is set, to indicate that the component needs transaction
management, EAServer uses DTC to enlist the transaction and manage the
two-phase commit process.

Distributed transaction architecture

The following diagram illustrates the architecture of distributed transactions.
In this case, the resource manager proxy is either ODBC or OLE DB.

365



Three-tier computing architecture

366

Client
system

Application
Server

Resource Resource
Manager DTC Manager
Proxy Proxy

é | (ore) (DTc}é
. T

Server Server
W W system 1 system 2 oW v

In this case, asingle resource dispenser isused. The Application Server asks
DTC to prepare atransaction. DTC and the resource dispenser enlist each
connection in the transaction. Each resource manager must be in contact with
both DTC and the database, so asto carry out the work and to notify DTC of
its transaction status when required.

A DTC service must be running on each machine in order to operate
distributed transactions. Y ou can control DTC services from the Services
icon in the Windows control panel; the DTC serviceis named MSDTC.

& For moreinformation, see your DTC or EAServer documentation.



Chapter 11 Three-tier Computing and Distributed Transactions

Using distributed transactions

While Adaptive Server Anywhere is enlisted in adistributed transaction, it
hands transaction control over to the transaction server, and Adaptive Server
Anywhere ensures that it does not carry out any implicit transaction
management. The following conditions are imposed automatically by
Adaptive Server Anywhere when it participates in distributed transactions;

¢ Autocommit is automatically turned off, if it isin use.

+ Datadefinition statements (which commit as a side effect) are

disallowed during distributed transactions.

¢ Anexplicit COMMIT or ROLLBACK issued by the application directly
to Adaptive Server Anywhere, instead of through the transaction
coordinator, generates an error. The transaction is not aborted, however.

¢ A connection can participate in only asingle distributed transaction at a

time.

¢ There must be no uncommitted operations at the time the connection is

enlisted in a distributed transaction.

DTC isolation levels

DTC has a set of isolation levels, which the application server specifies.
Theseisolation levels map to Adaptive Server Anywhereisolation levels as

follows:

DTC isolation level

Adaptive Server
Anywhere isolation level

ISOLATIONLEVEL_UNSPECIFIED
ISOLATIONLEVEL_CHAOS
ISOLATIONLEVEL_READUNCOMMITTED
ISOLATIONLEVEL_BROWSE
ISOLATIONLEVEL_CURSORSTABILITY
ISOLATIONLEVEL_READCOMMITTED
ISOLATIONLEVEL_REPEATABLEREAD
ISOLATIONLEVEL_SERIALIZABLE
ISOLATIONLEVEL_ISOLATED

0

w W N P B O O O

367



Using distributed transactions

Recovery from distributed transactions

368

If the database server faults while uncommitted operations are pending, it
must either rollback or commit those operations on startup to preserve the
atomic nature of the transaction.

If uncommitted operations from a distributed transaction are found during
recovery, the database server attempts to connect to DTC and requests that it
be re-enlisted in the pending or in-doubt transactions. Once the re-enlistment
iscomplete, DTC instructs the database server to roll back or commit the
outstanding operations.

If the reenlistment process fails, Adaptive Server Anywhere has no way of
knowing whether the in-doubt operations should be committed or rolled
back, and recovery fails. If you want the database in such a state to recover,
regardless of the uncertain state of the data, you can force recovery using the
following database server options:

¢+ -tmf If DTC cannot belocated, the outstanding operations are rolled
back and recovery continues.

& For moreinformation, see "—tmf server option" on page 151 of the
book ASA Database Administration Guide.

¢+ -tmt If re-enlistment is not achieved before the specified time, the
outstanding operations are rolled back and recovery continues.

& For more information, see "—tmt server option" on page 151 of the
book ASA Database Administration Guide.



Chapter 11 Three-tier Computing and Distributed Transactions

Using EAServer with Adaptive Server Anywhere

This section provides an overview of the actions you need to takein
EAServer 3.0 or later to work with Adaptive Server Anywhere. For more
detailed information, see the EA Server documentation.

Configuring EAServer

All componentsinstalled in a Sybase EAServer share the same transaction
coordinator.

EAServer 3.0 and later offer a choice of transaction coordinators. Y ou must
use DTC as the transaction coordinator if you are including Adaptive Server
Anywhere in the transactions. This section describes how to configure
EAServer 3.0 to use DTC asiits transaction coordinator.

The component server in EAServer is named Jaguar.

To configure an EAServer to use the Microsoft DTC transaction
model:

1

Ensure that your Jaguar server is running.

On Windows, the Jaguar server commonly runs as a service. To
manually start the installed Jaguar server that comes with EAServer 3.0,
select Start[] Programsld Sybase[] EAServer[] EAServer.

Start Jaguar Manager.

From the Windows desktop, select
Start[] Programsl] Sybasel] EA Server[] Jaguar Manager.

Connect to the Jaguar server from Jaguar Manager.

From the Sybase Central menu, choose Tools] Connect[] Jaguar
Manager. In the connection dialog, enter jagadmin asthe User Name,
leave the Password field blank, and enter a Host Name of localhost.
Click OK to connect.

Set the transaction model for the Jaguar server.

In the left pane, open the Servers folder. In the right pane, right click on
the server you wish to configure, and select Server Properties from the
drop down menu. Click the Transactions tab, and choose Microsoft DTC
as the transaction model. Click OK to complete the operation.

369



Using EAServer with Adaptive Server Anywhere

Setting the component transaction attribute

370

In EAServer you may implement a component that carries out operations on
more than one database. Y ou assign atransaction attribute to this
component that defines how it participates in transactions. The transaction
attribute can have the following values:

¢

Not Supported The component’s methods never execute as part of a
transaction. If the component is activated by another component that is
executing within a transaction, the new instance’s work is performed
outside the existing transaction. This is the default.

Supports Transaction The component can execute in the context of a
transaction, but a connection is not required in order to execute the
component’s methods. If the component is instantiated directly by a base
client, EAServer does not begin atransaction. If component A is
instantiated by component B, and component B is executing within a
transaction, component A executes in the same transaction.

Requires Transaction The component always executesin a
transaction. When the component isinstantiated directly by a base client,
anew transaction begins. If component A is activated by component B,
and B is executing within a transaction, then A executes within the same
transaction; if B is not executing in atransaction, then A executesin a
new transaction.

Requires New Transaction Whenever the component is instantiated,
anew transaction begins. If component A is activated by component B,
and B is executing within atransaction, then A begins a new transaction
that is unaffected by the outcome of B’s transaction; if B is not executing
in atransaction, then A executesin a new transaction.

For example, in the Sybase Virtual University sample application, included
with EAServer as the SVU package, the SVUEnrollment component
enroll() method carries out two separate operations (reserves a seat in a
course, bills the student for the course). These two operations need to be
treated as a single transaction.

Microsoft Transaction Server provides the same set of attribute values.

« To set the transaction attribute of a component:

1

In Jaguar Manager, locate the component.

To find the SVUEnNr ollment component in the Jaguar sample
application, connect to the Jaguar server, open the Packages folder, and
open the SVU package. The componentsin the package are listed in the
right pane.

Set the transaction attribute for the desired component.



Chapter 11 Three-tier Computing and Distributed Transactions

Right click the component, and select Component Properties from the
popup menu. Click the Transaction tab, and choose the transaction
attribute value from the list. Click OK to complete the operation.

The SVUEnNrollment component is already marked as Requires
Transaction.
Once the component transaction attribute is set, you can carry out Adaptive
Server Anywhere operations from that component, and be assured of
transaction processing at the level you have specified.

371



Using EAServer with Adaptive Server Anywhere

372



CHAPTER 12
Deploying Databases and Applications

About this chapter This chapter describes how to deploy Adaptive Server Anywhere
components. It identifies the files required for deployment, and addresses
related issues such as connection settings.

Check your license agreement

Redistribution of filesis subject to your license agreement. No statements
in this document override anything in your license agreement. Please
check your license agreement before considering depl oyment.

Contents
Topic Page
Deployment overview 374
Understanding installation directories and file names 376
Using Install Shield objects and templates for deployment 380
Using asilent installation for deployment 382
Deploying client applications 385
Deploying administration tools 395
Deploying database servers 396
Deploying embedded database applications 398

373



Deployment overview

Deployment overview

When you have completed a database application, you must deploy the
application to your end users. Depending on the way in which your
application uses Adaptive Server Anywhere (as an embedded database, in a
client/server fashion, and so on) you may have to deploy components of the
Adaptive Server Anywhere software along with your application. Y ou may
also have to deploy configuration information, such as data source names,
that enable your application to communicate with Adaptive Server
Anywhere.

Check your license agreement

Redistribution of filesis subject to your license agreement with Sybase.
No statements in this document override anything in your license
agreement. Please check your license agreement before considering
deployment.

The following deployment steps are examined in this chapter:

¢ Determining required files based on the choice of application platform
and architecture.

¢ Configuring client applications.

Much of the chapter deals with individual files and where they need to be
placed. However, the recommended way of deploying Adaptive Server
Anywhere components is to use the I nstallshield objects or to use a silent
installation. For information, see "Using Install Shield objects and templates
for deployment™ on page 380, and "Using a silent installation for
deployment” on page 382.

Deployment models

374

The files you need to deploy depend on the deployment model you choose.
Here are some possible deployment models:

¢ Client deployment You may deploy only the client portions of
Adaptive Server Anywhere to your end-users, so that they can connect
to acentrally located network database server.

¢ Network server deployment Y ou may deploy network serversto
offices, and then deploy clients to each of the users within those offices.



Chapter 12 Deploying Databases and Applications

¢

Embedded database deployment Y ou may deploy an application
that runs with the personal database server. In this case, both client and
personal server need to beinstalled on the end-user’s machine.

SQL Remote deployment Deploying a SQL Remote application isan
extension of the embedded database deployment model.

Database tools deployment Y ou may deploy Interactive SQL,
Sybase Central and other management tools.

Ways to distribute files

There are two waysto deploy Adaptive Server Anywhere:

¢

Use the Adaptive Server Anywhere installation Y ou can make the
Setup program available to your end-users. By selecting the proper
option, each end-user is guaranteed of getting the files they need.

Thisisthe simplest solution for many deployment cases. In this case,
you must still provide your end users with a method for connecting to
the database server (such as an ODBC data source).

& For moreinformation, see "Using asilent installation for
deployment” on page 382.

Develop your own installation There may be reasons for you to
develop your own installation program that includes Adaptive Server
Anywhere files. Thisis a more complicated option, and most of this
chapter addresses the needs of those who are developing their own
installation.

If Adaptive Server Anywhere has already been installed for the server
type and operating system required by the client application architecture,
the required files can be found in the appropriately named subdirectory,
located in the Adaptive Server Anywhere installation directory.

For example, assuming the default installation directory was chosen, the
win32 subdirectory of your installation directory contains the files
required to run the server for Windows operating systems.

Aswell, users of InstallShield Professional 5.5 and up can use the
SQL Anywhere Studio Install Shield Template Projects to deploy their
own application. This feature allows you to quickly build your
application’s installation using the entire template project, or just the
parts that apply to your install.

Whichever option you choose, you must not violate the terms of your license
agreement.

375



Understanding installation directories and file names

Understanding installation directories and file

names

For a deployed application to work properly, the database server and client
libraries must each be able to locate the files they need. The deployed files
should be located relative to each other in the same fashion as your Adaptive
Server Anywhereinstallation.

In practice, this means that on PCs, most files belong in asingle directory.
For example, on Windows both client and database server required files are
installed in asingle directory, which is the win32 subdirectory of the
Adaptive Server Anywhere installation directory.

& For afull description of the places where the software looks for files,
see "How Adaptive Server Anywhere locates files' on page 206 of the book
ASA Database Administration Guide.

UNIX deployment issues

376

UNIX deployments are different from PC deployments in some ways.
¢ Directory structure For UNIX installations, the directory structure is

asfollows:
Directory | Contents
/opt/sybase/SYBSsa8/bin Executable files
/opt/sybase/SYBSsa8/lib Shared objects and libraries
/opt/sybase/SYBSsa8/res ‘ String files

On AlX, the default root directory is /usr/lpp/sybase/SYBSsa8 instead of
/opt/sybase/SYBSsa8.

¢ File extensions Inthetablesin this chapter, the shared objects are
listed with an extension .so. For HP-UX, the extension is .s!.

On the Al X operating system, shared objects that applications need to
link to are given the extension .a.

¢ Symbolic links Each shared object isinstalled as a symbolic link to a
file of the same name with the additional extension .1 (one). For
example, the libdblib8.so is a symbolic link to the file libdblib8.s0.1 in
the same directory.



Chapter 12 Deploying Databases and Applications

If patches are required to the Adaptive Server Anywhere installation,
these will be supplied with extension .2, and the symboalic link must be
redirected.

Threaded and unthreaded applications Most shared objects are
provided in two forms, one of which has the additional characters_r
before the file extension. For example, in addition to /ibdblib8.so, thereis
afile named libdblib8_r.so. In this case, threaded applications must be
linked to the _r shared object, while non-threaded applications must be
linked to the shared object without the _r characters.

Character set conversion If you want to use database server
character set conversion (the - ct server option), you need to include the
following files:

¢ libunic.so
¢ charsets/ directory subtree

¢ asacvf

& For adescription of the places where the software looks for files, see
"How Adaptive Server Anywhere locatesfiles' on page 206 of the book ASA
Database Administration Guide.

File naming conventions

Adaptive Server Anywhere uses consistent file naming conventions to help
identify and group system components.

These conventions include:

¢

Version number The Adaptive Server Anywhere version number is
indicated in the filename of the main server components (.exe and .dll
files).

For example, the file dbeng8.exe is aVersion 8 executable.

Language Thelanguage used in alanguage resource library is
indicated by atwo-letter code within its filename. The two characters
before the version number indicate the language used in the library. For
example, dblgen8.dll is the language resource library for English. These
two-letter codes are specified by 1SO standard 639.

& For more information about language labels, see "Understanding
the locale language” on page 263 of the book ASA Database
Administration Guide.

377



Understanding installation directories and file names

Identifying other
file types

378

Y ou can download an International Resources Deployment Kit containing
language resource deployment DL Ls free of charge from the Sybase Web
site.

To download the International Resources Deployment Kit from the
Sybase Web site:
1 Openthefollowing URL in your Web browser:

http://ww. sybase. conl pr oduct s/ anywher e/

2 Under the heading SQL Anywhere Studio on the left hand side of the
page, click Downloads.

3 Under the heading Emergency Bug Fix/Updates, click An assortment of
Emergency Bug Fixes and Updates for SQL Anywhere Studio.

4 Loginto your Sybase Web account.

Click Create a New Account to create a Sybase Web account if you do
not have one already.

5 Fromthelist of available downloads, select the International Resources
Deployment Kit that matches the platform and version of Adaptive
Server Anywhere that you are currently using.

& For alist of the languages available in Adaptive Server Anywhere, see
"Supplied collations' on page 269 of the book ASA Database Administration
Guide.

The following table identifies the platform and function of Adaptive Server
Anywhere files according to their file extension. Adaptive Server Anywhere
follows standard file extension conventions where possible.



Chapter 12 Deploying Databases and Applications

Database file
names

File extension Platform File type

.nim Novell NetWare NetWare Loadable
Module

.cnt, .ftg, .fts, .gid, .hlp, | Windows Help system file

.chm, .chw
ib

.cfg, .cpr, .dat, .loc,
.spr, .srt, .xlt

.cmd .bat

.res

.all

.50 .sl.a

Varies by development
tool

Windows
Windows

NetWare, UNIX

Windows
UNIX

Static runtime libraries
for the creation of
embedded SQL
executables

Sybase Adaptive Server
Enterprise components

Command files

Language resourcefile
for non-Windows
environments

Dynamic Link Library

Shared object (Sun
Solarisand IBM AlX) or
shared library (HP-UX)
file. The equivalent of a
DLL on PC platforms.

Adaptive Server Anywhere databases are composed of two elements:

¢ Databasefile Thisisused to storeinformation in an organized
format. Thisfile usesa.db file extension.

¢ Transaction log file Thisisused to record all changes made to data
stored in the database file. Thisfile usesa.log file extension, and is
generated by Adaptive Server Anywhere if no such file existsand alog
fileis specified to be used. A mirrored transaction log has the default

extension of .mig.

+ Write file If your application uses awritefile, it typically hasa.wrt file

extension.

¢ Compressed database file

If you supply aread-only compressed

databasefile, it typically has extension .cdb.

These files are updated, maintained and managed by the Adaptive Server
Anywhere relational database-management system.

379



Using InstallShield objects and templates for deployment

Using InstallShield objects and templates for
deployment

380

If you are using Install Shield 6 and up, you can include SQL Anywhere
Studio Install Shield Objectsin your install program. The objects for
deploying clients, personal database servers, network servers, and
administration tools are found in the deployment|Object directory under your
SQL Anywhere directory.

Users of InstallShield Professional 5.5 and up can use SQL Anywhere Studio
Install Shield Template Projects to ease the deployment workload. Templates
for deploying a network server, personal server, client interfaces, and
administration tools can be found in the SQL Anywhere
8ldeployment|Templates folder.

If you have InstallShield 6 or later, the Objects are recommended rather than
the templates, as they are more easily incorporated into an install along with
other components.

To add a template project to your InstallShield IDE:
1 Start InstallShield IDE.
2  Choose FileO Open.

3 Navigate to your SQL Anywhere 8 installation and to the deployment
folder

For example, navigate to
C. \ Program Fi | es\ Sybase\ SQL. Anywhere 8\ depl oynent

4 Openthe Template folder corresponding to the type of object you want
to deploy.
Y ou can choose NetworkServer, Personal Server, Client, or JavaTools.
5 Select thefile with the .jpr extension.

The project opensin the Install Shield IDE. The Projects pane displays
anicon for the template.

The templates will be modified at install time so that the paths to the
individual fileslisted in all of the .fg/ files point to the actua install of
ASA. Simply load the template in the InstallShield IDE, build the media,
and the template will run immediately.



Chapter 12 Deploying Databases and Applications

Notes:

When building the media, you will see warnings about empty file

groups. These warnings are caused by empty file groups which have

been added to the templates as placeholders for your application’s files.

To remove these warnings, you can either add your application’s files to
the file groups, or delete or rename the file groups.

381



Using a silent installation for deployment

Using a silent installation for deployment

Silent installations run without user input and with no indication to the user

that an installation is occurring. On Windows operating systems you can call

the Adaptive Server Anywhere Install Shield setup program from your own

setup program in such away that the Adaptive Server Anywhere installation

is silent. Silent installs are also used with Microsoft's Systems Management
Server (see "SMS Installation" on page 384).

You can use a silent installation for any of the deployment models described
in "Deployment models" on page 374. You can also use a silent installation
for deploying MobilLink synchronization servers.

Creating a silent install

382

The installation options used by a silent installation are obtained from a
responsefile. The response file is created by running the Adaptive Server
Anywheresetup program using ther option. A silent install is performed

by running setup using the —s option.

Do not use the browse buttons
When creating a silent install do not use the browse buttons. The
recording of the browse buttonsis not reliable.

< To create a silent install:

1 (Optional) Remove any existing installations of Adaptive Server
Anywhere.

2 Open asystem command prompt, and change to the directory containing
the install image (including setup.exe, setup.ins, and so on).

3 Install the software, using Record mode.
Type the following command:
setup —r

This command runs the Adaptive Server Anywhere setup program and
creates the response file from your selections. The response fileis
named setup.iss, and is located in your Windows directory. Thisfile
contains the responses you made to the dialog boxes during installation.

When run in record mode, the installation program does not offer to
reboot your operating system, even if areboot is needed.



Chapter 12 Deploying Databases and Applications

4 Install Adaptive Server Anywhere using the options, and settings that
you want to be used when you deploy Adaptive Server Anywhere on the
end-user’s machine for use with your application. Y ou can override the
paths during the silent install.

Running a silent install

Y our own installation program must call the Adaptive Server Anywhere
silent install using the —s option. This section describes how to use a silent
install.

<+ To use asilent install:

1 Add the command to invoke the Adaptive Server Anywhere silent install
to your installation procedure.

If the response fileis present in the install image directory, you can run
the silent install by entering the following command from the directory
containing the install image:

setup —s

If the response file islocated elsewhere you must specify the response
file location using the —f1 option. There must be no space between f1
and the quotation mark in the following command line.

setup —s —f1"c:\winnt\setup.iss"

To invoke the install from another InstallShield script you could use the
following:

Dolnstall( " ASA install_i mage_pat NSETUP.INS",
"-s", WAIT );

Y ou can use options to override the choices of paths for both the
Adaptive Server Anywhere directory and the shared directory:

setup TARGET_DIR=dirname SHARED_DIR=shared_dir —s

The TARGET_DIR and SHARED_DIR arguments must precede all
other options.

2 Check whether the target computer needs to reboot.

Setup creates afile named silent.log in the target directory. Thisfile
contains a single section called ResponseResult containing the
following line:

Reboot= val ue

383



Using a silent installation for deployment

SMS Installation

384

This line indicates whether the target computer needs to be rebooted to
complete the installation, and has a value of 0 or 1, with the following
meanings.

¢ Reboot=0 Noreboot isneeded.

¢ Reboot=1 TheBATCH_INSTALL flag was set during the
installation, and the target computer does need to be rebooted. The
installation procedure that called the silent install is responsible for
checking the Reboot entry and for rebooting the target computer, if
necessary.

Check that the setup completed properly.

Setup creates afile named setup.log in the directory containing the
response file. The log file contains a report on the silent install. The last
section of thisfileis called ResponseResult, and contains the following
line:

Resul t Code=val ue

This line indicates whether the installation was successful. A non-zero
ResultCode indicates an error occurred during installation. For a
description of the error codes, see your Install Shield documentation.

Microsoft System Management Server (SMS) requires asilent install that
does not reboot the target computer. The Adaptive Server Anywhere silent
install does not reboot the computer.

Your SMS distribution package should contain the response file, the install
image and the asa8.pdf package definition file (provided on the Adaptive
Server Anywhere CD ROM in the lextras folder). The setup command in the
PDF file contains the following options:

¢

¢

¢

The —s option for asilent install
The —SMSoption to indicate that it is being invoked by SMS.

The —-moption to generate aMIF file. The MIF fileisused by SMSto
determine whether the installation was successful.



Chapter 12 Deploying Databases and Applications

Deploying client applications

In order to deploy aclient application that runs against a network database
server, you must provide each end user with the following items:

¢

Client application The application software itself isindependent of
the database software, and so is not described here.

Database interface files The client application requires the files for
the database interface it uses (ODBC, JDBC, embedded SQL, or Open
Client).

Connection information Each client application needs database
connection information.

The interface files and connection information required varies with the
interface your application is using. Each interface is described separately in
the following sections.

The simplest way to deploy clientsisto use the supplied InstallShield
objects. For more information, see "Using InstallShield objects and templates
for deployment™ on page 380.

Deploying OLE DB and ADO clients

The simplest way to deploy OLE DB client librariesisto use the

Install Shield objects or templates. For information, see "Using InstallShield
objects and templates for deployment™ on page 380. If you wish to create
your own installation, this section describes the files to deploy to the end
users.

Each OLE DB client machine must have the following:

¢

A working OLE DB installation OLE DB filesand instructions for
their redistribution are available for redistribution from Microsoft
Corporation. They are not described in detail here.

The Adaptive Server Anywhere OLE DB provider Thefollowing
table shows the files needed for a working Adaptive Server Anywhere
OLE DB provider. These files should be placed in asingle directory.
The Adaptive Server Anywhere installation placesthem all in the
operating-system subdirectory of your SQL Anywhere installation
directory (for example: win32).

385



Deploying client applications

Description Windows \Windows CE
OLE DB driver file dboledb8.dll dboledb8.dll
OLE DB driver file dboledba8.dll dboledba8.dll
Language-resource library |dblgen8.dll dblgen8.dll
Connect dialog dbcon8.dll N/A

OLE DB providers require many registry entries. Y ou can make these by
self-registering the DLLs using the regsvr32 utility on Windows or the
regsvrce utility on Windows CE.

& For more information, see " Creating databases for Windows CE"
on page 273 of the book ASA Database Administration Guide, and
"Linking ODBC applications on Windows CE" on page 255.

Deploying ODBC clients

386

The simplest way to deploy ODBC clientsisto use the InstallShield objects
or templates. For information, see "Using Install Shield objects and templates
for deployment™ on page 380.

Each ODBC client machine must have the following:

¢

A working ODBC installation ODBC filesand instructions for their
redistribution are available for redistribution from Microsoft
Corporation. They are not described in detail here.

Microsoft providestheir ODBC Driver Manager for Windows operating
systems. SQL Anywhere Studio includes an ODBC Driver Manager for
UNIX. Thereisno ODBC Driver Manager for Windows CE.

ODBC applications can run without the driver manager. On platforms
for which an ODBC driver manager is available, thisis not
recommended.

Update ODBC if needed

The SQL Anywhere Setup program updates old installations of the
Microsoft Data Access Components, including ODBC. If you are
deploying your own application, you must ensure that the ODBC
installation is sufficient for your application.

The Adaptive Server Anywhere ODBC driver Thisisthefile
dbodbc8.dll together with some additional files.



Chapter 12 Deploying Databases and Applications

& For moreinformation, see "ODBC driver required files' on
page 387.

¢ Connection information The client application must have accessto
the information needed to connect to the server. Thisinformation is
typicaly included in an ODBC data source.

ODBC driver required files

Notes

The following table shows the files needed for a working Adaptive Server
Anywhere ODBC driver. Thesefiles should be placed in asingle directory.
The Adaptive Server Anywhere installation places them al in the
operating-system subdirectory of your SQL Anywhere installation directory
(for example: win32).

Description Windows Windows CE UNIX

ODBC driver dbodbc8.dll dbodbc8.dll libdbodbc8.so
libdbtasks8.so

Language-resource |dblgen8.dll dblgen8.dll dblgen8.res

library

Connect dialog dbcon8.dll N/A N/A

¢ Your end user must have a working ODBC installation, including the
driver manager. Instructions for deploying ODBC are included in the
Microsoft ODBC SDK.

¢ The Connect dialog is needed if your end users are to create their own
data sources, if they need to enter user IDs and passwords when
connecting to the database, or if they need to display the Connect dialog
for any other purpose.

¢ For multi-threaded applications on UNIX, use libdbodbc8 r.so and
libdbtasks8_r.so.

Configuring the ODBC driver

Windows

In addition to copying the ODBC driver files onto disk, your Setup program
must also make a set of registry entries to install the ODBC driver properly.

The Adaptive Server Anywhere Setup program makes changes to the
Registry to identify and configure the ODBC driver. If you are building a
setup program for your end users, you should make the same settings.

Y ou can use the regedit utility to inspect registry entries.

387



Deploying client applications

Third party ODBC
drivers

The Adaptive Server Anywhere ODBC driver isidentified to the system by a

set of registry values in the following registry key:

HKEY LOCAL_MACHI NE\
SOFTWARE\
aDBC
CDBCI NST. | NI'\
Adaptive Server Anywhere 8.0

The values are as follows:

Value name | Value type | Value data
Driver | string | pathldbodbes.di
Setup \ String \ pathldbodbcs.dil

Thereisaso aregistry valuein the following key:
HKEY LOCAL_MACHI NE\

SOFTWARE\
coBQ
CDBCI NST. | NI'\
CDBC Drivers

Thevaueisasfollows:

Value name | Value type | Value data

Adaptive Server Anywhere 8.0 ‘ String ‘ Installed

If you are using a third-party ODBC driver on an operating system other than
Windows, consult the documentation for that driver on how to configure the

ODBC driver.

Deploying connection information

388

ODBC client connection information is generally deployed as an ODBC data
source. Y ou can deploy an ODBC data source in one of the following ways:

¢ Programmatically Add adata source description to your end-user’s

Registry or ODBC initialization files.

¢ Manually Provide your end-users with instructions, so that they can

create an appropriate data source on their own machine.



Chapter 12 Deploying Databases and Applications

Types of data
source

Data source
registry entries

Y ou create a data source manually using the ODBC Administrator, from
the User DSN tab or the System DSN tab. The Adaptive Server
Anywhere ODBC driver displays the configuration dialog for entering
settings. Data source settings include the location of the database file,
the name of the database server, as well as any start up parameters and
other options.

This section provides you with the information you need to know for either
approach.

There are three kinds of data sources. User data sources, System data
sources, and File data sources.

User data source definitions are stored in the part of the registry containing
settings for the specific user currently logged on to the system. System data
sources, however, are available to all users and to Windows services, which
run regardless of whether a user islogged onto the system or not. Given a
correctly configured System data source named MyApp, any user can use
that ODBC connection by providing DSN=MyApp in the ODBC connection
string.

File data sources are not held in the registry, but are held in a special
directory. A connection string must provide a FileDSN connection parameter
to use a File data source.

Each user data source isidentified to the system by registry entries.

Y ou must enter a set of registry valuesin a particular registry key. For User
data sources the key is as follows:

HKEY_CURRENT USER\
SCFTWARE\
RO
CDBC. | NI'\
user dat asour cenane

For System data sources the key is as follows:

HKEY_LOCAL_MACHI NE\
SCFTWARE\
oDBQ\
CDBC. | NI\
syst entdat asour cenane

The key contains a set of registry values, each of which correspondsto a
connection parameter. For example, the ASA 8.0 Sample key corresponding
to the ASA 8.0 Sample data source contains the following settings:

389



Deploying client applications

390

Value name Value type | Value data

Autostop String Yes

DatabaseFile String Path\asademo.db

Description String Adaptive Server Anywhere Sample Database
Driver String Path\win32\dbodbc8.dl|

PWD String sql

Start String Path\win32\dbeng8.exe -c 8m

uiD String dba

In these entries, path is the Adaptive Server Anywhere installation directory.

In addition, you must add the data source to the list of data sourcesin the
registry. For User data sources, you use the following key:

HKEY _CURRENT _USER\
SOFTVWARE\
CDBC\
CDBC. | NI'\
CDBC Dat a Sources

For System data sources, use the following key:

HKEY_LOCAL_NACHI NE\
SOFTVWARE\
CcDBC\
CDBC. I NI'\
CDBC Dat a Sour ces.

The value associates each data source with an ODBC driver. The value name
is the data source name, and the value datais the ODBC driver name. For
example, the User data source installed by Adaptive Server Anywhereis
named ASA 8.0 Sample, and has the following value:

Value name | Value type | Value data

ASA 8.0 Sample | String | Adaptive Server Anywhere 8.0

Caution: ODBC settings are easily viewed

User data source configurations can contain sensitive database settings
such asa user’s ID and password. These settings are stored in the registry
in plain text, and can be view using the Windows registry editors
regedit.exe or regedt32.exe, which are provided by Microsoft with the
operating system. You can choose to encrypt passwords, or require users
to enter them on connecting.




Chapter 12 Deploying Databases and Applications

Required and
optional connection
parameters

Y ou can identify the data source name in an ODBC configuration string in

this manner,

DSN=user dat asour cenane

When a DSN parameter is provided in the connection string, the Current
User data source definitions in the Registry are searched, followed by
System data sources. File data sources are searched only when FileDSN is
provided in the ODBC connection string.

The following table illustrates the implications to the user and developer
when a data source exists and isincluded in the application’s connection
string asa DSN or FileDSN parameter.

When the data

The connection string

The user must

source... must also identify... supply...
Containsthe ODBC No additional information | No additiona
driver name and location; information.

the name of the database
file/server; startup
parameters, and the user
ID and password.

Contains only the name
and location of the
ODBC driver.

Does not exist

The name of the database
file/ server; and,
optionally, the user 1D and
the password.

The name of the ODBC
driver to be used, in the
following format:

Driver={ ODBCdri ver

nane}
Also, the name of the
database, the database file
or the database server;
and, optionally, other
connection parameters
such asuser ID and
password.

User ID and password
if not provided in the
DSN or ODBC
connection string.

User ID and password
if not provided in the
ODBC connection
string.

& For moreinformation on ODBC connections and configurations, see

the following:

¢ "Connecting to a Database" on page 37 of the book ASA Database
Administration Guide.

¢ The Open Database Connectivity (ODBC) SDK, available from

Microsoft.

391



Deploying client applications

Deploying embedded SQL clients

The simplest way to deploy embedded SQL clientsis to use the Install Shield
objects or templates. For information, see "Using Install Shield objects and
templates for deployment" on page 380.

Deploying embedded SQL clients involves the following:

¢

Installed files Each client machine must have the files required for an
Adaptive Server Anywhere embedded SQL client application.

Connection information The client application must have access to
the information needed to connect to the server. This information may
be included in an ODBC data source.

Installing files for embedded SQL clients
The following table shows which files are needed for embedded SQL clients.

Notes

392

Description Windows UNIX

Interface library dblib8.dll libdblib8.so,

libdbtasks8.so

Language resource library (dblgen8.dll dblgen8.res

IPX network dbipx8.dll N/A

communications

Connect dialog dbcon8.dll N/A

¢ Thenetwork ports DLL is not required if the client is working only with
the personal database server.

+ If theclient application uses an ODBC data source to hold the
connection parameters, your end user must have aworking ODBC
installation. Instructions for deploying ODBC are included in the
Microsoft ODBC SDK.

&> For moreinformation on deploying ODBC information, see
"Deploying ODBC clients' on page 386.

¢ The Connect dialog is needed if your end users will be creating their
own data sources, if they will need to enter user IDs and passwords
when connecting to the database, or if they need to display the Connect
dialog for any other purpose.

¢ For multi-threaded applications on UNIX, use libdblib8_r.so and

libdbtasks8_r.so.



Chapter 12 Deploying Databases and Applications

Connection information

Y ou can deploy embedded SQL connection information in one of the
following ways:

¢ Manual Provide your end-users with instructions for creating an
appropriate data source on their machine.

¢ File Distributeafilethat contains connection information in aformat
that your application can read.

4 ODBC data source You canusean ODBC data source to hold
connection information. In this case, you need a subset of the ODBC
redistributable files, available from Microsoft. For details see
"Deploying ODBC clients' on page 386.

¢ Hard coded You can hard code connection information into your
application. Thisis an inflexible method, which may be limiting, for
example when databases are upgraded.

Deploying JDBC clients
In addition to a Java Runtime Environment, each JDBC client requires the
Sybase jConnect JDBC driver or the JDBC-ODBC bridge.

& For instructions on deploying jConnect see
http://manual s.sybase.com/onlinebooks/group-j c/jcg0420e/jconnig on the
Sybase Web site.

To deploy the IDBC-ODBC bridge, you must deploy the following files:
¢ jodbc.jar Thismust bein the application’s classpath.

¢ dbjodbc8.dll This must bein the system path. On UNIX or Linux
environments, the file is a shared library (dbjodbc8.so).

¢ The ODBC driver files. For more information, see "ODBC driver
required files' on page 387.

Y our Java application needs a URL in order to connect to the database. This
URL specifies the driver, the machine to use, and the port on which the
database server islistening.

& For more information on URLS, see " Supplying a URL for the server"
on page 138.

393



Deploying client applications

Deploying Open Client applications

394

In order to deploy Open Client applications, each client machine needs the
Sybase Open Client product. Y ou must purchase the Open Client software
separately from Sybase. It contains its own installation instructions.

& Connection information for Open Client clientsis held in the interfaces
file. For information on the interfaces file, see the Open Client
documentation and " Configuring Open Servers' on page 110 of the book
ASA Database Administration Guide.



Chapter 12 Deploying Databases and Applications

Deploying administration tools

Deploying
Interactive SQL

Subject to your license agreement, you can deploy a set of administration
toolsincluding Interactive SQL, Sybase Central, and the dbconsole
monitoring utility.

The simplest way to deploy the administration toolsis to use the supplied
InstallShield objects. For more information, see "Using Install Shield objects
and templates for deployment™ on page 380.

If your customer application is running on machines with limited resources,
you may want to deploy the C version of Interactive SQL, (dbisglc.exe)
instead of the standard version (dbisql.exe and its associated Java classes).

The dbisqlc executable requires the standard embedded SQL client-side
libraries.

& For information on system requirements for administration tools, see
"Administration tool system requirements’ on page 139 of the book
Introducing SQL Anywhere Sudio.

395



Deploying database servers

Deploying database servers

Notes

396

Y ou can deploy a database server by making the SQL Anywhere Studio
Setup program available to your end-users. By selecting the proper option,
each end-user is guaranteed of getting the files they need.

The simplest way to deploy a personal database server or a network database
server isto use the supplied Install Shield objects. For more information, see
"Using InstallShield objects and templates for deployment” on page 380.

In order to run a database server, you need to install a set of files. The files
arelisted in the following table. All redistribution of these filesis governed
by the terms of your license agreement. Y ou must confirm whether you have
the right to redistribute the database server files before doing so.

Windows UNIX NetWare

dbeng8.exe dbeng8 N/A

dbsrv8.exe dbsrv8 dbsrv8.nlm

dbserv8.dll libdbserv8.so, N/A
libdbtasks8_r.so

dblgen8.dll dblgen8.res dblgen8.res

dbjava8.dil @ libdbjava8.so™® dbjava8.nim @

dbctrs8.dll N/A N/A

dbextf.dil @ libdbextf.so @ dbextf.nim @

asajdbc.zip asajdbc.zip asajdbe. zip

asajrt12.zip asajrt12.zip*d asajrt12.zip 9

classes.zip ¥ classes.zip ¥ classes.zip

dbmem.vxd ¥ N/A N/A

libunic.dll libunic.so N/A

asa.cvf asa.cvf asa.cvf

charsets| directory charsets/ directory N/A

1. Required only if using Javain the database. For databases initialized using JDK 1.1, distribute
asgjdbc.zip. For databasesinitialized using JDK 1.2 or JDK 1.3, distribute asgjrt13.zip.

2. Required only if using system extended stored procedures and functions (xp_).

3. Install such that the CLASSPATH environment variable can locate classesin thisfile.

4. Required on Windows 95/98/Meif using dynamic cache sizing.

¢ Depending on your situation, you should choose whether to deploy the
personal database server (dbeng8) or the network database server

(dbsrvs).



Chapter 12 Deploying Databases and Applications

¢ TheJavaDLL (dbjava8.dll) isrequired only if the database server isto
use the Javain the Database functionality.

¢ Thetable does not include files needed to run utilities such as dbbackup.

& For information about deploying utilities, see "Deploying
administration tools"' on page 395.

¢ Thezipfilesarerequired only for applications that use Javain the
database, and must be installed into alocation in the user’s
CLASSPATH environment variable.

Deploying databases

Y ou deploy a database file by installing the database file onto your end user’s
disk.

Aslong as the database server shuts down cleanly, you do not need to deploy
atransaction log file with your database file. When your end-user starts
running the database, a new transaction log is created.

For SQL Remote applications, the database should be created in a properly
synchronized state, in which case no transaction log is needed. Y ou can use
the Extraction utility for this purpose.

Deploying databases on read-only media

Y ou can distribute databases on read-only media, such as a CD-ROM, as
long as you run them in read-only mode or use awrite file.

& For more information on running databases in read-only mode, see "—r
server option" on page 149 of the bd&®#A Database Administration Guide.

To enable changes to be made to Adaptive Server Anywhere databases
distributed on read-only media such as a CD-ROM, you canws#efile.
The write file records changes made to a read-only database file, and is
located on a read/write storage media such as a hard disk.

In this case, the database file is placed on the CD-ROM, while the write file
is placed on disk. The connection is made to the write file, which maintains a
transaction log file on disk.

& For more information on write files, see "Working with write files" on
page 224 of the bookSA Database Administration Guide.

397



Deploying embedded database applications

Deploying embedded database applications

This section provides information on deploying embedded database
applications, where the application and the database both reside on the same
machine.

An embedded database application includes the following:

¢ Client application Thisincludesthe Adaptive Server Anywhere client
requirements.

& For information on deploying client applications, see "Deploying
client applications" on page 385.

¢ Database server The Adaptive Server Anywhere personal database
server.

& For information on deploying database servers, see "Deploying
database servers' on page 396.

¢ SQL Remote If your application uses SQL Remote replication, you
must deploy the SQL Remote Message Agent.

¢ Thedatabase You must deploy adatabase file holding the data the
application uses.

Deploying personal servers

When you deploy an application that uses the personal server, you need to
deploy both the client application components and the database server
components.

The language resource library (dblgen8.dll) is shared between the client and
the server. Y ou need only one copy of thisfile.

It is recommended that you follow the Adaptive Server Anywhere
installation behavior, and install the client and server filesin the same
directory.

Remember to provide the Java zip files and the Java DLL if your application
takes advantage of Javain the Database.

Deploying database utilities

If you need to deploy database utilities (such as dbbackup.exe) along with
your application, then you need the utility executable together with the
following additional files:

398



Chapter 12 Deploying Databases and Applications

Notes

Description Windows UNIX

Database tools library dbtool8.dll libdbtools8.so,
libdbtasks8.so

Additional library dbwtsp8.dll libdbwtsp8.so

Language resource library dblgen8.dll dblgen8.res

Connect dialog (dbisglc only) dbcon8.dll

¢ The database tools are embedded SQL applications, and you must
supply the files required for such applications, aslisted in "Deploying
embedded SQL clients' on page 392.

¢ For multi-threaded applications on UNIX, use libdbtools8_r.so and

libdbtasks8_r.so.

Deploying SQL Remote

If you are deploying the SQL Remote Message Agent, you need to include

the following files:

Description Windows UNIX

Message Agent dbremote.exe dbremote

Database tools library dbtool8.dll libdbtools8.so,
libdbtasks8.so

Additional library dbwtsp8.dil libdbwtsp8.so

Language resource library dblgen8.dll dblgen8.res

VIM message link library * dbvim8.dll

SMTP message link library * dbsmtp8.dil

FILE message link library * dbfile8.dll libdbfile8.so

FTP message link library * dbftp8.dil

MAPI message link library * dbmapi8.dil

Interface Library ablib8.dll

1 Only deploy the library for the message link you are using.

It is recommended that you follow the Adaptive Server Anywhere
installation behavior, and install the SQL Remote files in the same directory
as the Adaptive Server Anywherefiles.

399



Deploying embedded database applications

For multi-threaded applications on UNIX, use libdbtools8 _r.so and
libdbtasks8_r.so.

400



CHAPTER 13
SQL Preprocessor Error Messages

About this chapter This chapter presents alist of al SQL preprocessor errors and warnings.

Contents Topic Page
SQL Preprocessor error messages indexed by error message value 402
SQLPP errors 406

401



SQL Preprocessor error messages indexed by error message value

SQL Preprocessor error messages indexed by

error message value

402

Message value

Message

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613
2614
2615

2617

2618

"subscript value %1 too large" on
page 419

"combined pointer and arrays not
supported for host types* on page 411

"only one dimensiona arrays
supported for char type" on page 418

"VARCHAR type must have a
length" on page 410

"arrays of VARCHAR not supported”
on page 410

"VARCHAR host variables cannot be
pointers' on page 409

"initializer not allowed on
VARCHAR host variable" on
page 415

"FIXCHAR type must have alength”
on page 407

"arrays of FIXCHAR not supported”
on page 410

"arrays of thistype not supported" on
page 411

"precision must be specified for
decimal type" on page 419

"arrays of decimal not alowed" on
page 410

"Unknown hostvar type" on page 409
"invalid integer" on page 416

"'%1" host variable must be a C string
type" on page 406

""%1’ symbol aready defined” on
page 406

"invalid type for sql statement
variable" on page 416



Chapter 13 SQL Preprocessor Error Messages

Message value Message

2619 "Cannot find include file '%1™ on
page 407

2620 "host variable '%1’ is unknown™ on
page 413

2621 "indicator variable '%1’ is unknown"
on page 414

2622 "invalid type for indicator variable
"%1™ on page 416

2623 "invalid host variable type on '%1™
on page 416

2625 "host variable '%1’ has two different
definitions' on page 413

2626 "statement '%1’ not previoudy
prepared” on page 419

2627 "cursor %1’ not previously declared"
on page 411

2628 "unknown statement '%1™ on
page 421

2629 "host variables not alowed for this
cursor" on page 413

2630 "host variables specified twice - on
declare and open" on page 414

2631 "must specify ahost list or using
clause on %1" on page 417

2633 "no INTO clause on SELECT
statement” on page 418

2634 "incorrect SQL language usage -- that
isa'%l’ extension" on page 414

2635 "incorrect Embedded SQL language
usage -- that isa %1’ extension" on
page 414

2636 "incorrect Embedded SQL syntax" on
page 414

2637 "missing ending quote of string" on
page 417

2639 "token too long" on page 420

2640 "'0%1" host variable must be an integer

type" on page 406

403



SQL Preprocessor error messages indexed by error message value

404

Message value

Message

2641

2642

2646

2647

2648

2649

2650

2651

2652

2660

2661

2662

2663

2664

2665

2666
2667

2668
2669

"must specify an SQLDA on a
DESCRIBE" on page 417

"Two SQLDASs specified of the same
type (INTO or USING)" on page 409

"cannot describe static cursors' on
page 411

"Macros cannot be redefined" on
page 409

"Invalid array dimension” on
page 408

"invalid descriptor index" on
page 415

"invalid field for SET
DESCRIPTOR" on page 415

"field used more than once in SET
DESCRIPTOR statement” on
page 412

"data value must be a host variable'
on page 411

"Into clause not alowed on declare
cursor - ignored” on page 408

"unrecognized SQL syntax" on
page 421

"unknown gl function '%1™ on
page 420

"wrong number of parmsto sgl
function '%1™ on page 421

"static statement names will not work
properly if used by 2 threads' on
page 419

"host variable '%1’ has been
redefined” on page 413

"vendor extension" on page 421

"intermediate SQL feature" on
page 415

"full SQL feature" on page 412

"transact SQL extension” on
page 420



Chapter 13 SQL Preprocessor Error Messages

Message value Message

2680 "no declare section and no INCLUDE
SQLCA statement” on page 418

2681 "unable to open temporary file" on
page 420

2682 "error reading temporary file" on
page 412

2683 "error writing output file" on
page 412

2690 "Inconsistent number of host
variables for this cursor” on page 408

2691 "Inconsistent host variable types for
this cursor" on page 407

2692 "Inconsistent indicator variables for
this cursor" on page 408

2693 "Feature not available with UltraLite"
on page 407

2694 "no OPEN for cursor '%1™ on
page 418

2695 "no FETCH or PUT for cursor "%1"
on page 417

2696 "Host variable '%1’ isin use more
than once with different indicators"
on page 407

2697 "long binary/long varchar sizelimit is

65535 for UltralLite" on page 417

405



SQLPP errors

SQLPP errors

This section lists messages generated by the SQL preprocessor. The
messages may be errors or warnings, or either depending on which
command-line options are set.

&> For more information about the SQL Preprocessor and its command-
line options, see "The SQL preprocessor” on page 226.

'%1’ host variable must be a C string type

Message value | Message Type
2615 | Error
Probable cause A C string was required in an embedded SQL statement (for a cursor name,

option name etc.) and the value supplied was not a C string.

'%1’ host variable must be an integer type

Message value | Message Type
2640 ‘ Error
Probable cause Y ou have used a host variable that is not of integer type in a statement where

only an integer type host variable is allowed.

'%1’ symbol already defined

Message value | Message Type
2617 | Error
Probable cause Y ou defined a host variable twice.

406



Chapter 13 SQL Preprocessor Error Messages

Cannot find include file %1’

Message value | Message Type
2619 ‘ Error
Probable cause The specified include file was not found. Note that the preprocessor will use

the INCLUDE environment variable to search for include files.

FIXCHAR type must have a length

Message value | Message Type
2608 ‘ Error
Probable cause Y ou have used the DECL_FIXCHAR macro to declare a host variable of

type FIXCHAR but have not specified a length.

Feature not available with UltraLite

Message value | Message Type
2693 ‘ Flag (warning or error)
Probable cause Y ou have used afeature that is not supported by UltralL ite.

Host variable '%1’ is in use more than once with different indicators

Message value | Message Type
2696 ‘ Error
Probable cause Y ou have used the same host variable multiple times with different indicator

variablesin the same statement. Thisis not supported.

Inconsistent host variable types for this cursor

Message value | Message Type
2691 ‘ Error

407



SQLPP errors

Probable cause Y ou have used a host variable with a different type or length than the type or
length previously used with the cursor. Host variable types must be
consistent for the cursor.

Inconsistent indicator variables for this cursor

Message value | Message Type
2692 ‘ Error
Probable cause Y ou have used an indicator variable when one was not previously used with

the cursor, or you have not used an indicator variable when one was
previously used with the cursor. Indicator variable usage must be consistent
for the cursor.

Inconsistent number of host variables for this cursor

Message value | Message Type
2690 ‘ Error
Probable cause Y ou have used a different number of host variables than the number

previously used with the cursor. The number of host variables must be
consistent for the cursor.

Into clause not allowed on declare cursor - ignored

Message value | Message Type
2660 ‘ Warning
Probable cause Y ou have used an INTO clause on a DECLARE CURSOR statement. The

INTO clause will be ignored.

Invalid array dimension

Message value | Message Type
2648 ‘ Error

408



Chapter 13 SQL Preprocessor Error Messages

Probable cause The array dimension of the variable is negative.

Macros cannot be redefined

Message value | Message Type
2647 ‘ Error
Probable cause A preprocessor macro has been defined twice, possibly in a header file.

Two SQLDAs specified of the same type (INTO or USING)

Message value | Message Type
2642 ‘ Error
Probable cause Y ou have specified two INTO DESCRIPTOR or two USING DESCRIPTOR

clauses for this statement.

Unknown hostvar type

Message value | Message Type
2613 | Error

Probable cause Y ou declared a host variable of atype not understood by the SQL
preprocessor.

VARCHAR host variables cannot be pointers

Message value | Message Type
2606 ‘ Error
Probable cause Y ou have attempted to declare a host variable as a pointer to aVARCHAR

or BINARY. Thisisnot alegal host variable type.

409



SQLPP errors

VARCHAR type must have alength

Message value | Message Type
2604 ‘ Error
Probable cause Y ou have attempted to declare aVARCHAR or BINARY host variable using

the DECL_VARCHAR or DECL_BINARY macro but have not specified a
sizefor the array.

arrays of FIXCHAR not supported

Message value | Message Type
2609 ‘ Error
Probable cause Y ou have attempted to declare a host variable as an array of FIXCHAR

arrays. Thisisnot alegal host variable type.

arrays of VARCHAR not supported

Message value | Message Type
2605 ‘ Error
Probable cause Y ou have attempted to declare a host variable as an array of VARCHAR or

BINARY. Thisisnot alega host variable type.

arrays of decimal not allowed

Message value | Message Type
2612 | Error
Probable cause Y ou have attempted to declare a host variable as an array of DECIMAL. A

decimal array is not alegal host variable type.

410



Chapter 13 SQL Preprocessor Error Messages

arrays of this type not supported

Message value | Message Type
2610 ‘ Error

Probable cause Y ou have attempted to declare a host variable array of atype that is not
supported.

cannot describe static cursors

Message value | Message Type
2646 ‘ Error
Probable cause Y ou have described a static cursor. When describing a cursor, the cursor

name must be specified in a host variable.

combined pointer and arrays not supported for host types

Message value | Message Type
2602 ‘ Error
Probable cause Y ou have used an array of pointers asahost variable. Thisis not legal.

cursor '%1’ not previously declared

Message value | Message Type
2627 ‘ Error
Probable cause An embedded SQL cursor name has been used (in a FETCH, OPEN, CLOSE

etc.) without first being declared.

data value must be a host variable

Message value | Message Type
2652 ‘ Error

411



SQLPP errors

Probable cause The variable used in the SET DESCRIPTOR statement hasn't been declared
as a host variable.

error reading temporary file

Message value | Message Type
2682 ‘ Error
Probable cause An error occurred while reading from atemporary file.

error writing output file

Message value | Message Type
2683 ‘ Error
Probable cause An error occurred while writing to the output file.

field used more than once in SET DESCRIPTOR statement

Message value | Message Type
2651 ‘ Error
Probable cause The same keyword has been used more than once inside asingle SET

DESCRIPTOR statement.

full SQL feature

Message value | Message Type
2668 ‘ Flag (warning or error)
Probable cause Y ou have used a full-SQL/92 feature and preprocessed with the -ee, -6i, -we

or -wi flagging switch.

412



Chapter 13 SQL Preprocessor Error Messages

host variable '%1’ has been redefined

Message value | Message Type
2665 | Warning
Probable cause Y ou have redefined the same host variable with a different host type. Asfar

as the preprocessor is concerned, host variables are global; two host variables
with different types cannot have the same name.

host variable '%1’ has two different definitions

Message value | Message Type
2625 ‘ Error
Probable cause The same host variable name was defined with two different types within the

same module. Note that host variable names are global to a C module.

host variable '%1’ is unknown

Message value | Message Type
2620 ‘ Error
Probable cause Y ou have used a host variable in a statement and that host variable has not

been declared in a declare section.

host variables not allowed for this cursor

Message value | Message Type
2629 | Error
Probable cause Host variables are not allowed on the declare statement for the specified

cursor. If the cursor name is provided through a host variable, then you
should use full dynamic SQL and prepare the statement. A prepared
statement may have host variablesin it.

413



SQLPP errors

host variables specified twice - on declare and open

Message value | Message Type
2630 ‘ Error
Probable cause Y ou have specified host variables for a cursor on both the declare and the

open statements. In the static case, you should specify the host variables on
the declare statement. In the dynamic case, specify them on the open.
incorrect Embedded SQL language usage -- that is a '%1’ extension

Message value | Message Type
2635 ‘ Error

incorrect Embedded SQL syntax

Message value | Message Type
2636 ‘ Error

Probable cause An embedded SQL specific statement (OPEN, DECLARE, FETCH etc.) has
asyntax error.

incorrect SQL language usage -- that is a '%1’ extension

Message value | Message Type
2634 ‘ Error

indicator variable '%1’ is unknown

Message value | Message Type
2621 ‘ Error
Probable cause Y ou have used aiindicator variable in a statement and that indicator variable

has not been declared in a declare section.

414



Chapter 13 SQL Preprocessor Error Messages

initializer not allowed on VARCHAR host variable

Message value | Message Type
2607 ‘ Error
Probable cause Y ou can not specify a C variableinitializer for ahost variable of type

VARCHAR or BINARY. You must initialize this variable in regular C
executable code.

intermediate SQL feature

Message value | Message Type
2667 ‘ Flag (warning or error)
Probable cause Y ou have used an intermediate-SQL/92 feature and preprocessed with the -

ee or -we flagging switch.

invalid descriptor index

Message value | Message Type
2649 ‘ Error
Probable cause Y ou have allocated |ess than one variable with the ALLOCATE

DESCRIPTOR statement.

invalid field for SET DESCRIPTOR

Message value | Message Type
2650 ‘ Error
Probable cause Aninvalid or unknown keyword is present in a SET DESCRIPTOR

statement. The keywords can only be TY PE, PRECISION, SCALE,
LENGTH, INDICATOR, or DATA.

415



SQLPP errors

invalid host variable type on '%1’

Message value | Message Type
2623 ‘ Error
Probable cause Y ou have used a host variable that is not a string type in a place where the

preprocessor was expecting a host variable of a string type.

invalid integer

Message value | Message Type
2614 ‘ Error
Probable cause An integer was required in an embedded SQL statement (for afetch offset, or

ahost variable array index, etc.) and the preprocessor was unable to convert
what was supplied into an integer.

invalid type for indicator variable '%1’

Message value | Message Type
2622 ‘ Error
Probable cause Indicator variables must be of type short int. Y ou have used avariable of a

different type as an indicator variable.

invalid type for sqgl statement variable

Message value | Message Type
2618 | Error
Probable cause A host variable used as a statement identifier should be of type

a sgl_statement_number. Y ou attempted to use a host variable of some other
type as a statement identifier.

416



Chapter 13 SQL Preprocessor Error Messages

long binary/long varchar size limit is 65535 for UltraLite

Message value | Message Type
2697 ‘ Error
Probable cause When using DECL_| ONGBINARY or DECL_LONGVARCHAR with

UltraLite, the maximum size for the array is 64K.

missing ending quote of string

Message value | Message Type
2637 ‘ Error
Probable cause Y ou have specified a string constant in an embedded SQL statement, but

there is no ending quote before the end of line or end of file.

must specify a host list or using clause on %1

Message value | Message Type
2631 ‘ Error
Probable cause The specified statement requires host variables to be specified either in a host

variable list or from an SQLDA.

must specify an SQLDA on a DESCRIBE

Message value | Message Type
2641 ‘ Error

no FETCH or PUT for cursor '%1’

Message value | Message Type
2695 ‘ Error

417



SQLPP errors

Probable cause A cursor is declared and opened, but is never used.

no INTO clause on SELECT statement

Message value | Message Type
2633 ‘ Error
Probable cause Y ou specified an embedded static SELECT statement but you did not specify

an INTO clause for the results.

no OPEN for cursor %1’

Message value | Message Type
2694 ‘ Error
Probable cause A cursor isdeclared, and possibly used, but is never opened.

no declare section and no INCLUDE SQLCA statement

Message value | Message Type
2680 ‘ Error

Probable cause The EXEC SQL INCLUDE SQL CA statement is missing from the source
file.

only one dimensional arrays supported for char type

Message value | Message Type
2603 ‘ Error
Probable cause Y ou have attempted to declare a host variable as an array of character arrays.

Thisisnot alegal host variable type.

418



Chapter 13 SQL Preprocessor Error Messages

precision must be specified for decimal type

Message value | Message Type
2611 ‘ Error
Probable cause Y ou must specify the precision when declaring a packed decimal host

variable using the DECL_DECIMAL macro. The scale is optional.

statement '%1’ not previously prepared

Message value | Message Type
2626 ‘ Error

Probable cause An embedded SQL statement name has been used (EXECUTE) without first
being prepared.

static statement names will not work properly if used by 2 threads

Message value | Message Type
2664 ‘ Warning
Probable cause Y ou have used a static statement name and preprocessed with the -r

reentrancy switch. Static statement names cause static variablesto be
generated that arefilled in by the database. If two threads use the same
statement, contention arises over thisvariable. Use aloca host variable as
the statement identifier instead of a static name.

subscript value %1 too large

Message value | Message Type
2601 ‘ Error

Probable cause Y ou have attempted to index a host variable that is an array with a value too
large for the array.

419



SQLPP errors

token too long

Message value | Message Type
2639 ‘ Error
Probable cause The SQL preprocessor has a maximum token length of 2K. Any token longer

than 2K will produce this error. For constant strings in embedded SQL
commands (the main place this error shows up) use string concatenation to
make alonger string.

transact SQL extension

Message value | Message Type
2669 ‘ Flag (warning or error)
Probable cause Y ou have used a Sybase Transact SQL feature that is not defined by SQL/92

and preprocessed with the -ee, -6, -ef, -we, -wi or -wf flagging switch.

unable to open temporary file

Message value | Message Type
2681 ‘ Error
Probable cause An error occurred while attempting to open atemporary file.

unknown sql function %1’

Message value | Message Type
2662 ‘ Warning
Probable cause Y ou have used a SQL function that is unknown to the preprocessor and will

probably cause an error when the statement is sent to the database engine.

420



Chapter 13 SQL Preprocessor Error Messages

unknown statement ‘%1’

Message value | Message Type
2628 ‘ Error
Probable cause Y ou attempted to drop an embedded SQL statement that doesn't exist.

unrecognized SQL syntax

Message value | Message Type
2661 ‘ Warning
Probable cause Y ou have used a SQL statement that will probably cause a syntax error when

the statement is sent to the database engine.

vendor extension

Message value | Message Type

2666 ‘ Flag (warning or error)

Probable cause Y ou have used an Adaptive Server Anywhere feature that is not defined by
SQL/92 and preprocessed with the -ee, -6i, -€f, -we, -wi or -wf flagging
switch.

wrong number of parms to sql function '%1’

Message value | Message Type
2663 ‘ Warning
Probable cause Y ou have used a SQL function with the wrong number of parameters. This

will likely cause an error when the statement is sent to the database engine.

421



SQLPP errors

422



Index

>

>>
Javain the database methods, 71

A

a backup_db structure, 304

a _change_log structure, 306
a_compress_db structure, 307
a_compress_stats structure, 309
a create db structure, 309

a crypt_db structure, 311

a db_collation structure, 312
a db_info structure, 314

a dblic_info structure, 316

a _dbtools_info structure, 317
a_name structure, 319

a stats line structure, 319

a sync_db structure, 320

a syncpub structure, 322

a sysinfo structure, 323

a table_info structure, 323

a trandate log structure, 324
a truncate_log structure, 326
a validate db structure, 330

a validate_type enumeration, 335
a writefile structure, 332

access modifiers
Java, 66

ActiveX Data Objects
about, 340

adding
JAR files, 96
Javain the database classes, 95

ADO
about, 340
Command object, 342
commands, 342
Connection object, 340
connections, 340
cursor types, 24
cursors, 25, 344
introduction to programming, 3
queries, 343, 344
Recordset object, 343, 344
updates, 344

using SQL statements in applications, 10

aggregate functions
Javain the database columns, 109

dloc_sgldafunction
about, 230

dloc_sglda_noind function
about, 230

ALTER DATABASE statement
Javain the database, 90, 92

an_erase_db structure, 317
an_expand_db structure, 318
an_unload_db structure, 327

423



B-C

an_upgrade_db structure, 329

applications
deploying, 373, 385
deploying embedded SQL, 392
SQL, 10

ARRAY clause
FETCH statement, 197

array fetches
about, 197

asademo.db file
about, xiv

asgdbc.zip
deploying database servers, 396
runtime classes, 89

ASAJDBCDRYV JARfile
about, 90

ASAJRT JAR file
about, 90

asgjrtl2.zip
runtime classes, 89

ASAProv
OLE DB provider, 338

ASASystem JAR file
about, 90

asensitive cursors
about, 36
delete example, 29
introduction, 29
update example, 31

attributes
Javain the database, 121

autocommit
controlling, 44
implementation, 45
JDBC, 148
ODBC, 262
transactions, 44

B

background processing
callback functions, 224

424

backups
DBBackup DBTools function, 293
DBTools example, 290
embedded SQL functions, 224

BINARY datatypes
embedded SQL, 182

bind parameters
prepared statements, 13

bind variables
about, 202

bit fields
using, 289

Blank padding enumeration, 334

blank-padding
strings in embedded SQL, 177

BLOBs
embedded SQL, 214
retrieving in embedded SQL, 215
sending in embedded SQL, 217

block cursors, 21
ODBC, 27

bookmarks, 27
ODBC cursors, 275

Borland C++
support, 166

byte code
Javaclasses, 53

C

C programming language
datatypes, 182

cache
Javain the database, 127

CALL statement
embedded SQL, 220

callback functions
embedded SQL, 224
registering, 237



callbacks
DB_CALLBACK_CONN_DROPPED, 238
DB_CALLBACK_DEBUG MESSAGE, 238
DB_CALLBACK_FINISH, 238
DB_CALLBACK_MESSAGE, 239
DB_CALLBACK_START, 238
DB_CALLBACK_WAIT, 238

canceling requests
embedded SQL, 224
capabilities
supported, 360
case sensitivity
Javain the database and SQL, 71
Javain the database data types, 99

catch block
Java, 67

CD-ROM
deploying databases on, 397

chained mode
controlling, 44
implementation, 45
transactions, 44

CHAINED option
JDBC, 148

character strings, 228

character-set trandation
JDBC-ODBC bridge, 142

classfields
about, 62

class methods
about, 62

Class.forName method
loading jConnect, 138

classes
about, 59
as data types, 99
compiling, 59
constructors, 61
creating, 94
example, 101
importing, 160
installing, 94
instances, 65

Java, 65
runtime, 69
supported, 56
updating, 97
versions, 97

classes.zip
deploying database servers, 396
runtime classes, 89

CLASSPATH environment variable
about, 75
Javain the database, 75
jConnect, 136
setting, 146

clauses
WITH HOLD, 20

client-side autocommit
about, 45

CLOSE statement
about, 194

columns
Javain the database data types, 99
updating Javain the database, 104

com.sybase package
runtime classes, 89

command line utilities
deploying, 398

Command object
ADO, 342

commands
ADO Command object, 342

COMMIT statement
autocommit mode, 44
cursors, 46
JDBC, 148

committing
transactions from ODBC, 262

compareTo method
object comparisons, 109

compile and link process, 165

compilers
supported, 166

425



c-C

components
transaction attribute, 370

COMPUTE clause
CREATE TABLE, 124

computed columns
creating, 124
INSERT statements, 125
Javain the database, 124
limitations, 126
recalculation, 126
triggers, 125
UPDATE statements, 125

connection handles
ODBC, 260

Connection object
ADO, 340

connections
ADO Connection object, 340
functions, 243
jConnect, 139
jConnect URL, 138
JDBC, 134, 143
JDBC client applications, 143
JDBC defaults, 149
JDBC example, 143, 146
JDBC in the server, 146
ODBC attributes, 265
ODBC functions, 263
ODBC programming, 264

console utility
deploying, 395

constructors
about, 61
inserting data, 102
Java, 66

conventions
documentation, xi
file names, 377

conversion
data types, 186

CREATE DATABASE statement
Javain the database, 90, 91

CREATE PROCEDURE statement
embedded SQL, 220

426

CS CSR_ABS, 360
CS_CSR_FIRST, 360

CS CSR_LAST, 360

CS CSR_PREV, 360

CS CSR REL, 360

CS DATA_BOUNDARY, 360
CS DATA_SENSITIVITY, 360
CS_PROTO_DYNPROC, 360
CS REG_NOTIF, 360

CS REQ_BCP, 360

ct_command function
Open Client, 357, 359

ct_cursor function
Open Client, 358

ct_dynamic function
Open Client, 357

ct_results function
Open Client, 359

ct_send function
Open Client, 359

cursor positioning
troubleshooting, 19

cursors, 27
about, 15
ADO, 25
asensitive, 36
availahility, 24
canceling, 23, 233

choosing ODBC cursor characteristics, 272

delete, 359

describing, 42

dynamic, 34

DYNAMIC SCROLL, 19, 24, 36
embedded SQL, 26, 194
example C code, 171

fat, 21

fetching multiple rows, 21
fetching rows, 19, 20
insensitive, 24, 33
internals, 28

introduction, 15

isolation level, 20



keyset-driven, 37
membership, 28

NO SCROLL, 24, 33
ODBC, 25, 272

ODBC bookmarks, 275
ODBC ddletes, 274
ODBC result sets, 273
ODBC updates, 274
OLEDB, 25

Open Client, 358
order, 28

performance, 39, 40
platforms, 24
positioning, 19
prepared statements, 18
read-only, 24
requesting, 25

result sets, 15
savepoints, 47
SCROLL, 24, 37
scrollable, 21

sensitive, 34
sensitivity, 28, 29
sensitivity examples, 29, 31
static, 33

step-by-step, 17

stored procedures, 221
transactions, 46
unique, 24

unspecified sensitivity, 36
update, 359

updating, 344

updating and deleting, 22
uses, 15

using, 19

values, 28
value-sensitive, 37
visible changes, 29
work tables, 39

data type conversion

indicator variables, 186

data types

C datatypes, 182
dynamic SQL, 206
embedded SQL, 177
host variables, 182

Javain the database, 99
mapping, 355

Open Client, 355
ranges, 355

SQLDA, 208

database design
Javain the database, 121

database options
set for jConnect, 139

database properties
db_get_property function, 235

database servers
deploying, 396
functions, 243

database tools interface
a_backup_db structure, 304
a_change_log structure, 306
a_compress_db structure, 307
a_compress_stats structure, 309
a_create_db structure, 309
a_crypt_db structure, 311
a_db_collation structure, 312
a_db_info structure, 314
a_dblic_info structure, 316
a_dbtools info structure, 317
a_name structure, 319
a_stats line structure, 319
a sync_db structure, 320
a_syncpub structure, 322
a_sysinfo structure, 323
a table_info structure, 323
a trandate |log structure, 324
a_truncate_log structure, 326
a validate db structure, 330
a validate type enumeration, 335
a writefile structure, 332
about, 283
an_erase_db structure, 317
an_expand_db structure, 318
an_unload_db structure, 327
an_upgrade_db structure, 329
Blank padding enumeration, 334
DBBackup function, 293
DBChangel. ogName function, 293
DBChangeWriteFile function, 294
DBCollate function, 294
DBCompress function, 294
DBCreate function, 295

427



D-D

DBCreateWriteFile function, 295
DBCrypt function, 296

DBErase function, 296
DBExpand function, 296
DBInfo function, 297
DBInfoDump function, 297
DBInfoFree function, 298
DBLicense function, 298
DBStatuswriteFile function, 299
DBToolsFini function, 299
DBToolslnit function, 300
DBToolsVersion function, 301
dbtran_userlist_type enumeration, 335
DBTranslatel og function, 301
DBTruncatel og function, 301
DBUnload function, 302
dbunload type enumeration, 335
DBUpgrade function, 302
DBValidate function, 302
dbxtract, 302

verbosity enumeration, 334

databases
deploying, 397
Javain the database, 121
Java-enabling, 89, 90, 92
URL, 139

db_backup function
about, 224, 230

DB_BACKUP_CLOSE_FILE parameter, 230
DB_BACKUP_END parameter, 230
DB_BACKUP_OPEN_FILE parameter, 230
DB_BACKUP_READ_PAGE parameter, 230

DB_BACKUP_READ_RENAME_LOG parameter,
230

DB_BACKUP_START parameter, 230

DB_CALLBACK_CONN_DROPPED callback
parameter, 238

DB_CALLBACK_DEBUG_MESSAGE callback
parameter, 238

DB_CALLBACK_FINISH callback parameter, 238

DB_CALLBACK_MESSAGE callback parameter,
239

DB_CALLBACK_START callback parameter, 238

428

DB_CALLBACK_WAIT callback parameter, 238

db_cancel_request function
about, 233
request management, 224

db_delete file function
about, 234

db_find_engine function
about, 234

db_fini function
about, 234

db_fini_dll
caling, 169

db_get_property function
about, 235

db_init function
about, 236

db_init_dll
caling, 169
db_is working function

about, 236
request management, 224

db_locate serversfunction
about, 237

db_register_a_callback function
about, 237
request management, 224

db_start_database function
about, 239

db_start_engine function
about, 240

db_stop_database function
about, 241

db_stop_engine function
about, 242

db_string_connect function
about, 243

db_string_disconnect function
about, 243

db_string_ping_server function
about, 244



DBBackup function, 293
DBChangel ogName function, 293
DBChangeWriteFile function, 294
DBCaollate function, 294
DBCompress function, 294

dbcong.dll
deploying database utilities, 398
deploying embedded SQL clients, 392
deploying ODBC clients, 387
deploying OLE DB clients, 385

dbconsole utility
deploying, 395

DBCreate function, 295
DBCreateWriteFile function, 295
DBCrypt function, 296

dbctrs8.dll
deploying database servers, 396

dbeng8
deploying database servers, 396

DBErase function, 296
DBExpand function, 296

dbextf.dll
deploying database servers, 396

dbfile.dll
deploying SQL Remote, 399

DBInfo function, 297
DBInfoDump function, 297
DBInfoFree function, 298
dbinit utility

Javain the database, 90, 91
dbipx8.dll

deploying embedded SQL clients, 392
deploying ODBC clients, 387

dbjava8.dll
deploying database servers, 396

dblgen8.dll
deploying database servers, 396
deploying database utilities, 398

deploying embedded SQL clients, 392
deploying ODBC clients, 387
deploying OLE DB clients, 385
deploying SQL Remote, 399

dblibg.dll
deploying embedded SQL clients, 392
interface library, 164

DBLicense function, 298

dbmapi.dil
deploying SQL Remote, 399

dbmlsync utility
building your own, 320

C AP for, 320
dbodbc8.dll

deploying ODBC clients, 387
dbodbc8.lib

Windows CE ODBC import library, 256
dbodbc8.s0

UNIX ODBC driver, 257
dboledb8.dll

deploying OLE DB clients, 385
dboledba8.dll

deploying OLE DB clients, 385
dbremote

deploying SQL Remote, 399
dbserv8.dil

deploying database servers, 396
dbsmtp.dil

deploying SQL Remote, 399
dbsrv8

deploying database servers, 396

DBStatusWriteFile function, 299
DBSynchronizel og function, 299

dbtool8.dl
deploying database utilities, 398
deploying SQL Remote, 399
Windows CE, 284

DBTools interface
about, 283
calling DBTools functions, 286
enumerations, 334

429



D-D

example program, 290 declaration section

finishing, 285 about, 181

functions, 293

introduction, 284 DE;ZbLAtRllzgsAIfatement

starting, 285 out,

using, 285 declaring

- ; embedded SQL datatypes, 177

DBToolsFini function, 299 host variables, 181
DBToolslnit function, 300 defaults
DBToolsVersion function, 301 Javain the database, 99
dbtran_userlist_type enumeration, 335 DELETE statement

DBTranslatel og function, 301 Javain the database objects, 105

positioned, 22
DBTruncatel og function, 301 deleting
DBUnload function, 302 JAR files, 105
) Java classes, 105
dbunload type enumeration, 335
» deploying
dbunload utility about, 373
building your own, 327 administration tools, 395
header file, 327 applications, 385
dbupgrad utility applications and databases, 373
Javain the database, 90, 92 datebase servers, 396
databases, 397
DBUpgrade function, 302 databases on CD-ROM, 397
. . dbconsole utility, 395
DBVadlidate function, 302 embedded databases, 398
dbvim.dil embedded SQL, 392
deploying SQL Remote, 399 filelocations, 376
Install Shield, 380
dowtsps.dil . Interactive SQL, 395
deploying database utilities, 398 Javain the database. 396
deploying SQL Remote, 399 jConnect, 393 '
doxtract utility JDBC clients, 393
building your own, 327 JDBC-ODBC bridge, 393
database tools interface, 302 MobiLink synchronization servers, 382
header file, 327 models, 374
ODBC, 386
DECIMAL datatype ODBC driver, 387
embedded SQL, 182 ODBC settings, 387, 388
OLE DB provider, 385
DECL_BINARY macro, 182 . !
- Open Client, 394
DECL_DECIMAL macro, 182 overview, 374
personal database server, 398
DECL_FIXCHAR macro, 182 read-only databases, 397
DECL_LONGBINARY macro, 182 registry settings, 387, 388
silent installation, 382
DECL_LONGVARCHAR macro, 182 SQL Remote, 399
DECL_VARCHAR macro, 182 Sybase Central, 395

430



System Management Server, 384
write files, 379

deprecated Java classes
about, 69

DESCRIBE statement
about, 204
multiple result sets, 223
SQLDA fields, 208
sgllenfield, 210
sltypefield, 210

describing
result sets, 42

descriptors
describing result sets, 42

destructors
Java, 66

directory structure
UNIX, 376

disk space
Javain the database values, 118

DISTINCT keyword
Javain the database columns, 109

distributed applications
about, 158
example, 160
requirements, 158

Distributed Transaction Coordinator
three-tier computing, 365

distributed transactions
about, 361, 362, 367
architecture, 364, 365
EAServer, 369
enlistment, 364
recovery, 368
three-tier computing, 364

DLL entry points, 230

DLLs
multiple SQLCASs, 191

documentation
conventions, Xi
SQL Anywhere Studio, viii

dot operator
Javaand SQL, 70, 71

DT_BIGINT embedded SQL datatype, 177
DT_BINARY embedded SQL datatype, 178
DT_BIT embedded SQL datatype, 177

DT_DATE embedded SQL datatype, 177
DT_DECIMAL embedded SQL datatype, 177
DT_DOUBLE embedded SQL datatype, 177
DT_FIXCHAR embedded SQL datatype, 178
DT_FLOAT embedded SQL datatype, 177
DT_INT embedded SQL datatype, 177
DT_LONGBINARY embedded SQL datatype, 179

DT_LONGVARCHAR embedded SQL datatype,
178

DT_SMALLINT embedded SQL datatype, 177
DT_STRING datatype, 246

DT_TIME embedded SQL datatype, 177
DT_TIMESTAMP embedded SQL datatype, 177

DT_TIMESTAMP_STRUCT embedded SQL data
type, 179

DT_TINYINT embedded SQL datatype, 177
DT_UNSINT embedded SQL datatype, 177

DT_UNSSMALLINT embedded SQL datatype,
177

DT_VARCHAR embedded SQL datatype, 178
DT_VARIABLE embedded SQL datatype, 179

DTC
three-tier computing, 365

dynamic cursors
about, 34
ODBC, 25
sample, 174

DYNAMIC SCROLL cursors
about, 24, 36
embedded SQL, 26
troubleshooting, 19

431



E-F

dynamic SQL environment handles
about, 202 ODBC, 260
SQLDA, 206 equality
Javain the database objects, 108
E error handling
Java, 66
EAServer ODBC, 278
component transaction attribute, 370 error messages
dlstrlb_uted transat_:tl ons, 369 embedded SQL function, 246
three-tier computing, 365
transaction coordinator, 369 erors
codes, 188
embeddeo[ databases SQLCODE, 188
deploying, 398 sglcode SQLCA field, 188
embedded SQL escape characters
about, 163 Javain the database, 74
authorization, 227 SQL, 74
autocommit mode, 44 _
character strings, 228 exceptions
command summary, 247 Java, 66
gﬁ:r;glr | tey E\)nads I |2 rA],k process, 165 EXEC SQL
cursors, 26, 171, 194 embedded SQL development, 168
development, 164 EXECUTE statement, 202
dynamic cursors, 174 stored procedures in embedded SQL, 220

dynamic statements, 202

example program, 168 executeQuery method

fetching data, 193 about, 153
functions, 230 executeUpdate JDBC method, 14
header files, 166 about, 151
host variables, 181
import libraries, 167
introduction, 4
line numbers, 227 F
SQL statements, 10
static statements, 202 fat cursors, 21
encryption feedback .
DBToolsinterface, 296 documentation, xv
providing, xv
enlistment .
distributed transactions, 364 fetch operation
cursors, 20
entities multiple rows, 21
Javain the database, 121 scrollable cursors, 21
entry points FETCH statement
calling DBTools functions, 286 about, 193, 194

dynamic queries, 204
multi-row, 197
wide, 197

enumerations
DBTools interface, 334

432



fetching
embedded SQL, 193
limits, 19
ODBC, 273

fields
class, 62
instance, 62
Javain the database, 61
private, 66
protected, 66
public, 66, 76

file names
conventions, 377
language, 377
version number, 377

files
deployment location, 376
naming conventions, 377

fill_s sgldafunction
about, 244

fill_sgldafunction
about, 244

finally block
Java, 67

FIXCHAR data type
embedded SQL, 182

ForceStart [FORCESTART] connection parameter
db_start_engine, 241

format
Javain the database objects, 118

free filled_sgldafunction
about, 245

free_sgldafunction
about, 245

free_sglda_noind function
about, 245

functions
calling DBTooals functions, 286
DBTools, 293
embedded SQL, 230

G

getConnection method
instances, 149

getObject method
using, 160

-gn option
threads, 112

GNU compiler
support, 166

GRANT statement
JDBC, 157

GROUP BY clause
Javain the database columns, 109

H

handles
about ODBC, 260
allocating ODBC, 260

header files
embedded SQL, 166
ODBC, 254

heap size
Javain the database, 128

host variables
about, 181
datatypes, 182
declaring, 181
SQLDA, 208
uses, 184

icons

used in manuals, xii
identifiers

needing quotes, 245
import libraries

aternatives, 169

DBTools, 285
embedded SQL, 167

433



J-J

introduction, 165 InstallShield
NetWare, 170 deploying Adaptive Server Anywhere, 380
ODBC, 254 silent installation, 382
Windows CE ODBC, 256 instance fidlds
import statement about, 62
Java, 65 .
Javain the database, 74 instance methods
jConnect, 136 about, 62
INCLUDE statement Instances
SOLCA, 188 Java classes, 65
indexes ! nstantll ated
Javain the database, 109, 118, 124 definition, 65
indicator variables Interactive SQL
about, 185 deploying, 395
data type conversion, 186 interface library
NULL, 185 about, 164
SQLDA, 208 dynamic loading, 169
summary of values, 187 filename, 164
truncation, 186 )
interfaces
INOUT parameters Java, 66
Javain the database, 114
. N isolation levels
insensitive cursors applications, 46
about, 24, 33 cursor sensitivity and, 41
delete example, 29 cursors, 20
embedded SQL, 26
introduction, 29
update example, 31 J
INSERT statement
Javain the database, 102 Jaguar
JDBC, 151, 152 EAServer, 369
(r)ntl); Iet(l:trsovlvsg o7 JAR r?\nd ZIPfile creation wizard
performance, 12 using, 9
wide, 197 JAR files
INSTALL statement adding, 96
classversions, 119 plei et ng, 105
introduction, 70 hr;\s/t:] Iér;g, 94, 9%
using, 95, 96 updating, 97
installation versions, 97
silent, 382 Jva
installation programs catch block, 67
deploying, 375 classes, 65
. . constructors, 66
installing

destructors, 66

JAR filesinto a database, 96 error handling, 66

Java classes into a database, 94, 95
434



J-J

finally block, 67
interfaces, 66

JDBC, 130

querying objects, 158
try block, 67

Java 2
supported versions, 69

Java class creation wizard
using, 78, 95, 147

Java classes
adding, 95
installing, 95

Java data types
inserting, 156
retrieving, 156

Javain the database
API, 55, 69
classversions, 118
compareTo method, 109
comparing objects, 108
compiling classes, 59
computed columns, 124
creating columns, 99
data types, 99
database design, 121
defaults, 99
deleting classes, 105
deleting rows, 105
deploying, 396
enabling a database, 89, 90, 92
escape characters, 74
fields, 61
heap size, 128
indexes, 109, 118
inserting, 102
inserting objects, 104
installing classes, 94
introduction, 50, 59
key features, 53
main method, 73, 111
memory issues, 127
methods, 61
namespace, 128
NULL, 99
objects, 60
overview, 86
performance, 118
persistence, 73

primary keys, 109

Procedure Not Found error, 112
Q&A,53

queries, 106

replicating objects, 119

runtime classes, 89

runtime environment, 69, 88
sample tables, 86

security management about, 115
storage, 118

supported classes, 56

supported platforms, 55

tutorial, 77

unloading and reloading objects, 119
updating columns, 105

updating values, 104

using the documentation, 51
version, 69

virtual machine, 53, 54, 128

java package
runtime classes, 89

Java security management
about, 116

Java stored procedures
about, 113
example, 113

JAVA_HEAP_SIZE option
using, 128

JAVA_NAMESPACE_SIZE option
using, 128

jeatalog.sql file
jConnect, 137

jConnect
about, 136
choosing a JDBC driver, 131
CLASSPATH environment variable, 136
connections, 143, 146
database setup, 137
deploying JDBC clients, 393
loading, 138
packages, 136
system objects, 137
URL, 138
versions supplied, 136

435



K-L

JDBC
about, 130
applications overview, 131
autocommit, 148
autocommit mode, 44
client connections, 143
client-side, 134
connecting, 143
connecting to adatabase, 139
connection code, 143
connection defaults, 149
connections, 134
cursor types, 24
data access, 150
deploying JDBC clients, 393
examples, 130, 143
INSERT statement, 151, 152
introduction, 5
jConnect, 136
non-standard classes, 132
permissions, 157
prepared statements, 155
requirements, 130
runtime classes, 89
SELECT statement, 153
server-side, 134
server-side connections, 146
SQL statements, 10
version, 69, 132
version 2.0 features, 132
waysto use, 130

JDBC drivers
choosing, 131
compatibility, 131
performance, 131

JDBCExamples class
about, 150

JDBCExamplesjavafile, 130

JDBC-ODBC hridge
choosing a JDBC driver, 131
connecting, 141
deploying JDBC clients, 393
required files, 141
using, 141

jdemo.sql
sample tables, 86

436

JDK

K

definition, 55
version, 69, 89

keyset-driven cursors

about, 37
ODBC, 25

keywords

L

SQL and Javain the database, 74

language DLL

obtaining, 378

languages

file names, 377

length SQLDA field

about, 208, 209

libraries

embedded SQL, 167

library functions

embedded SQL, 230

line length

SQL preprocessor output, 227

line numbers

SQL preprocessor, 227

liveness

connections, 238

LONG BINARY datatype

embedded SQL, 182, 214
retrieving in embedded SQL, 215
sending in embedded SQL, 217

LONG VARCHAR datatype

embedded SQL, 182, 214
retrieving in embedded SQL, 215
sending in embedded SQL, 217



M

macros
_SQL_OS_NETWARE, 169
_SQL_OS_UNIX, 169
“SQL_OS_WINNT, 169

main method
Javain the database, 73, 111

manual commit mode
controlling, 44
implementation, 45
transactions, 44

MAX function
Javain the database columns, 109

membership
result sets, 28

memory
Javain the database, 127

messages
callback, 239
server, 239

methods
>> 71
class, 62
declaring, 63
dot operator, 70
instance, 62
Javain the database, 61
private, 66
protected, 66
public, 66
static, 62
void return type, 112

Microsoft Transaction Server
three-tier computing, 365

Microsoft Visual C++
support, 166

MIN function
Javain the database columns, 109

mixed cursors
ODBC, 25

mixtract utility
building your own, 327
header file, 327

MobiLink synchronization servers
deploying, 382

MSDASQL
OLE DB provider, 338

multiple result sets
DESCRIBE statement, 223
ODBC, 276

multi-row fetches, 197
multi-row inserts, 197
multi-row puts, 197

multi-row queries
cursors, 194

multi-threaded applications
embedded SQL, 190, 191
Javain the database, 112
ODBC, 252, 265
UNIX, 256

N

name SQLDA field
about, 208

namespace
Javain the database, 128

NetWare
embedded SQL programs, 170

newsgroups
technical support, xv

NLM
embedded SQL programs, 170

NO SCROLL cursors
about, 24, 33
embedded SQL, 26

ntodbc.h
about, 254

NULL
dynamic SQL, 206
indicator variables, 185
Javain the database, 99

NULL-terminated string
embedded SQL datatype, 177

437



0-0O

O

object-oriented programming
Javain the database, 65
style, 76

objects
classversions, 118
inserting, 156
Javain the database, 60
querying, 158
replication, 119
retrieving, 156
storage format, 97
storage of Javain the database, 118
types, 60
unloading and reloading, 119

ODBC
autocommit mode, 44
backwards compatibility, 253
compatibility, 253
conformance, 252
cursor types, 24
cursors, 25, 272
data sources, 389
deploying, 386
driver deployment, 387
error checking, 278
handles, 260
header files, 254
import libraries, 254
introduction, 252
introduction to programming, 2
linking, 254
multiple result sets, 276
multi-threaded applications, 265
no Driver Manager, 257
prepared statements, 269
programming, 251
registry entries, 389
result sets, 276
sampl e application, 262
sample program, 258
SQL statements, 10
stored procedures, 276
UNIX development, 256, 257
version supported, 252
Windows CE, 255, 256

ODBC driver
UNIX, 257

438

ODBC settings

deploying, 387, 388

odbc.h

about, 254

OLEDB

about, 338

Adaptive Server Anywhere, 338
cursor types, 24

cursors, 25, 344

deploying, 385

introduction to programming, 3
ODBC and, 338

provider deployment, 385
supported interfaces, 347
supported platforms, 338
updates, 344

OLE transactions

three-tier computing, 364

online backups

embedded SQL, 224

Open Client

Adaptive Server Anywhere limitations, 360
autocommit mode, 44

cursor types, 24

data type ranges, 355

datatypes, 355

data types compatibility, 355

deploying Open Client applications, 394
interface, 353

introduction, 6

limitations, 360

requirements, 354

SQL, 357

SQL statements, 10

OPEN statement

about, 194

operating system

file names, 377

ORDER BY clause

Javain the database columns, 109

ordering

Javain the database objects, 108

OUT parameters

Javain the database, 114



P-pP

overflow errors
data type conversion, 355

P

packages
installing, 96
Java, 65
Javain the database, 74
jConnect, 136

performance
cursors, 39, 40
Javain the database values, 118
JDBC, 155
JDBC drivers, 131
prepared statements, 12, 269

permissions
JDBC, 157

persistence
Javain the database classes, 73

personal server
deploying, 398

place holders
dynamic SQL, 202

platforms
cursors, 24
Javain the database support, 55

positioned delete operation, 22
positioned update operation, 22

positioned updates
about, 19

prefetch
cursor performance, 39
cursors, 40
fetching multiple rows, 21

PREFETCH option
cursors, 40

PREPARE statement, 202

PREPARE TRANSACTION statement
and Open Client, 360

prepared statements
bind parameters, 13
cursors, 18
dropping, 13
Javain the database objects, 104
JDBC, 155
ODBC, 269
Open Client, 357
using, 12

PreparedStatement class
setObject method, 104

PreparedStatement interface
about, 155

prepareStatement method, 14

preparing
to commit, 365
preprocessor
about, 164
running, 166

primary keys
Javain the database columns, 109

printin method
Javain the database, 72

private
Java access, 66

procedure not found error
Java methods, 153

procedures
embedded SQL, 220
ODBC, 276
result sets, 221

program structure
embedded SQL, 168

properties
db_get_property function, 235

protected
Java, 65
Java access, 66

public
Java access, 66

public fields
issues, 76

439



O-R

PUT operation, 22

PUT statement, 22
multi-row, 197
wide, 197

Q

queries
ADO Recordset object, 343, 344
Javain the database, 106
JDBC, 153
single-row, 193

quoted identifiers
SQL_needs _quotes function, 245

QUOTED_IDENTIFIER option
jConnect setting, 139

quotes
Javain the database strings, 72

R

read-only
deploying databases, 397

read-only cursors
about, 24

Recordset object
ADO, 343, 344

recovery
distributed transactions, 368

registry
deploying, 387, 388
ODBC, 389

relocatable
defined, 127

REMOTEPWD
using, 139

replication
Javain the database objects, 119

request processing
embedded SQL, 224

440

requests
aborting, 233

requirements
Open Client applications, 354

reserved words
SQL and Javain the database, 74

resource dispensers
three-tier computing, 364

resource managers
about, 362
three-tier computing, 364

responsefile
definition, 382

result sets
ADO Recordset object, 343, 344
cursors, 15
Javain the database methods, 113

Javain the database stored procedures, 113

metadata, 42

multiple ODBC, 276
ODBC, 272, 276
Open Client, 359
retrieving ODBC, 273
stored procedures, 221
using, 19

retrieving
objects, 158
ODBC, 273
SQLDA and, 212

return codes, 287
ODBC, 278

ROLLBACK statement
cursors, 46

ROLLBACK TO SAVEPOINT statement

cursors, 47

rt.jar
runtime classes, 89

runtime classes
contents, 89
installing, 89
Javain the database, 69

runtime environment
Javain the database, 88



S-S5

S

sample
exldll.c, 170

sampl e database
about asademo.db, xiv
Javain the database, 86

samples
DBTools program, 290
embedded SQL, 171, 172
embedded SQL applications, 171
ODBC, 258
static cursorsin embedded SQL, 173, 174
Windows services, 259

savepoints
cursors, 47

scope
Java, 66

SCROLL cursors
about, 24, 37
embedded SQL, 26

scrollable cursors, 21
JDBC support, 131

security
Javain the database, 115, 116

SecurityManager class
about, 115, 116

SELECT statement
dynamic, 204
Javain the database, 106
JDBC, 153
objects, 156
single row, 193

sensitive cursors
about, 34
delete example, 29
embedded SQL, 26
introduction, 29
update example, 31
sensitivity
cursors, 28, 29
delete example, 29
isolation levels and, 41
update example, 31

serialization
distributed computing, 160
Javain the database objects, 118
objects, 159
objectsin tables, 97

server address
embedded SQL function, 235

servers
locating, 244

server-side autocommit
about, 45

services
example code, 175
sampl e code, 259

setAutocommit method
about, 148

setObject method
using, 160

setting
values using the SQLDA, 211

setup program
silent installation, 382

software
return codes, 287

sp_tsgl_environment system procedure
setting options for jConnect, 139

spt_mda stored procedure
setting options for jConnect, 139

SQL
ADO applications, 10
applications, 10
embedded SQL applications, 10
JDBC applications, 10
ODBC applications, 10
Open Client applications, 10

SQL Anywhere Studio
documentation, viii

SQL Communications Area
about, 188

441



S-S

SQL preprocessor SQLBindParameter ODBC function, 13
about, 226 about, 268
command line, 226 prepared statements, 269
running, 166 stored procedures, 276
SQL Remote SQLBrowseConnect ODBC function
deploying, 399 about, 263
Javain the database objects, 119 SQLCA
SQL statements about, 188
executing, 357 changing, 190
SOL/92 fields, 188
L sssor. 227 length of, 188
SQL preprocessor, multiple, 191
SQL_ATTR_MAX_LENGTH attribute threads, 190
about, 273 sqlcabe SQLCA field
SQL_CALLBACK type declaration, 237 about, 188
SQL_CALLBACK_PARM type declaration, 237 sqlcaid SQLCA field
about, 188
SQL_ERROR ]
ODBC return code, 278 sqlcode SQLCA field
about, 188
SQL_INVALID_HANDLE
ODBC return code, 278 SQL Connect ODBC function
about, 263
SQL_NEED_DATA
ODBC return code, 278 SQLCOUNT

ql_needs quotes function sglerror SQLCA field element, 189

about, 245 sold SQLDA field
about, 207
SQL_NO_DATA_FOUND
ODBC return code, 278 SQLDA
about, 202, 206
SQL_SUCCESS alocating, 230
ODBC return Code, 278 de&riptorsy 43
SQL_SUCCESS WITH_INFO fields, 207
ODBC return code, 278 f'”'r‘g' 244
freeing, 244
SQL92 host variables, 208
SQL preprocessor, 227 sgllen field, 209
SQL AllocHandle ODBC function strings, 244
about, 260 sglda_storage function
binding parameters, 268 about, 246
executing statements, 267 . .
using, 260 sglda_string_length function
about, 246
SQLBindCol ODBC function )
about, 272, 273 sgldabe SQLDA field
about, 207
sgldaif SQLDA field
about, 207

442



S-S5

sgldata SQLDA field
about, 208

sqldef.h
datatypes, 177

SQLDriverConnect ODBC function
about, 263

sglerrd SQLCA field
about, 189

sglerrmc SQLCA field
about, 188

sglerrml SQLCA field
about, 188

SQLError ODBC function
about, 278

sglerror SQLCA field
elements, 189
SQLCOUNT, 189
SQLIOCOUNT, 189
SQLIOESTIMATE, 190

sglerror_message function
about, 246

sglerrp SQLCA field
about, 189

SQLExecDirect ODBC function
about, 267
bound parameters, 268

SQL Execute ODBC function, 13

SQL ExtendedFetch ODBC function
about, 273
stored procedures, 276

SQL Fetch ODBC function
about, 273
stored procedures, 276

SQLFreeHandle ODBC function
using, 260

SQLFreeStmt ODBC function, 13

SQL GetData ODBC function
about, 272, 273

sglind SQLDA field
about, 208

SQLIOCOUNT
sglerror SQLCA field element, 189

SQLIOESTIMATE
sglerror SQLCA field element, 190

SQLJ standard
about, 50

sgllen SQLDA field
about, 208, 209
DESCRIBE statement, 210
describing values, 210
retrieving values, 212
sending values, 211

sglname SQLDA field
about, 208

SQLNumResultCols ODBC function
stored procedures, 276

SQLPP
about, 164

command line, 226

SQL Prepare ODBC function, 13
about, 269

SQLRETURN
ODBC return code type, 278

SQL SetConnectAttr ODBC function
about, 265

SQL SetPos ODBC function
about, 274

SQL SetStmtAttr ODBC function
cursor characteristics, 272

sglstate SQLCA field
about, 189

SQL Transact ODBC function
about, 262

sgltype SQLDA field
about, 208
DESCRIBE statement, 210

sglvar SQLDA field
about, 207, 208
contents, 208

sglwarn SQLCA field
about, 189

443



T-T

standard output
Javain the database, 72

standards
SQLJ, 50

START JAVA statement
using, 128

starting
databases using jConnect, 139

statement handles
ODBC, 260

statements
COMMIT, 46
DELETE positioned, 22
insert, 12
PUT, 22
ROLLBACK, 46
ROLLBACK TO SAVEPOINT, 47
UPDATE positioned, 22

static cursors
about, 33
ODBC, 25

static methods
about, 62

static SQL
about, 202

STOP JAVA statement
using, 128

storage
Javain the database objects, 118

stored procedures
creating in embedded SQL, 220
embedded SQL, 220
executing in embedded SQL, 220
INOUT parameters and Java, 114
Javain the database, 113
OUT parameters and Java, 114
result sets, 221

string
datatype, 246

strings
blank padding of DT_STRING, 177
Javain the database, 72

444

structure packing

header files, 166

sun package

runtime classes, 89

support

newsgroups, xv

supported platforms

OLEDB, 338

Sybase Central

adding JAR files, 96

adding Java classes, 95
adding ZIP files, 96
deploying, 395
Java-enabling a database, 92

Sybase runtime Java classes

about, 89

sybase.sql package

runtime classes, 89

sybase.sgl.ASA package

JDBC 2.0 features, 132

System Management Server

T

deploying, 384

technical support

newsgroups, Xv

this

Javain the database methods, 112

threaded applications

UNIX, 377

threads
embedded SQL, 190, 191
Javain the database, 112

ODBC, 252
ODBC applications, 265
UNIX development, 256

three-tier computing
about, 361
architecture, 363

Distributed Transaction Coordinator, 365

distributed transactions, 364

EAServer, 365



Microsoft Transaction Server, 365
resource dispensers, 364
resource managers, 364

TIMESTAMP datatype
conversion, 355

transaction attribute
component, 370

transaction coordinator
EAServer, 369

transactions
application development, 44
autocommit mode, 44
cursors, 46
distributed, 362, 367
isolation level, 46
ODBC, 262

troubleshooting
cursor positioning, 19
Javain the database methods, 112

truncation
FETCH statement, 186
indicator variables, 186
on FETCH, 186

try block
Java, 67

two-phase commit
and Open Client, 360
three-tier computing, 364, 365

type
objects, 60

U

unchained mode
controlling, 44
implementation, 45
transactions, 44

Unicode
ODBC, 255
Windows CE, 255

unigue columns
Javain the database columns, 109

unique cursors
about, 24

UNIX
deployment issues, 376
directory structure, 376
multi-threaded applications, 377
ODBC, 256, 257
ODBC applications, 257

unixodbc.h
about, 254

UPDATE statement
Javain the database, 104
positioned, 22
set methods, 105

updates
cursor, 344

upgrade database wizard
Java-enabling a database, 92

URL
database, 139
jConnect, 138

user-defined classes
Javain the database, 70

using Javain the database, 85
utilities
deploying database utilities, 398
SQL preprocessor, 226

Vv

value-sensitive cursors
about, 37
delete example, 29
introduction, 29
update example, 31

VARCHAR datatype
embedded SQL, 182

verbosity enumeration, 334

version
Javain the database, 69
JDBC, 69
JDK, 69

445



w-2Z

version number
file names, 377

versions
classes, 118

visible changes
cursors, 29

Visua C++
support, 166

VM
Javavirtual machine, 54
starting, 128
stopping, 128

void
Javain the database methods, 61, 112

wW

Watcom C/C++
support, 166

wide fetches, 21
about, 197

wide inserts, 197

wide puts, 197

446

Windows
services, 259

Windows CE
dbtool8.dll, 284
Javain the database unsupported, 55
ODBC, 255, 256
OLE DB, 338
supported versions, 338

Windows services
example code, 175

WITH HOLD clause
cursors, 20

wizards
JAR and ZIP file creation, 96
Javaclass creation, 78, 95, 147
upgrade database wizard, 92

work tables
cursor performance, 39

write files
deployment, 379

zip files
Java, 65



	Adaptive Server Anywhere Programming Guide
	About This Manual
	SQL Anywhere Studio documentation
	The SQL Anywhere Studio documentation set
	Documentation formats

	Documentation conventions
	Syntax conventions
	Graphic icons

	The Adaptive Server Anywhere sample database

	1. Programming Interface Overview
	The ODBC programming interface
	The OLE DB programming interface
	The Embedded SQL programming interface
	The JDBC programming interface
	The Open Client programming interface
	Open Client architecture


	2. Using SQL in Applications
	Executing SQL statements in applications
	Preparing statements
	How to use prepared statements

	Introduction to cursors
	What are cursors?
	Benefits of using cursors
	Steps in using cursors

	Working with cursors
	Cursor positioning
	Configuring cursors on opening
	Fetching rows through a cursor
	Fetching multiple rows
	Fetching with scrollable cursors
	Modifying rows through a cursor
	Canceling cursor operations

	Choosing cursor types
	Availability of cursors
	Cursor properties
	Requesting Adaptive Server Anywhere cursors
	Bookmarks and cursors
	Block cursors

	Adaptive Server Anywhere cursors
	Cursor sensitivity overview
	Cursor sensitivity example: a deleted row
	Cursor sensitivity example: an updated row
	Insensitive cursors
	Sensitive cursors
	Asensitive cursors
	Value-sensitive cursors
	Cursor sensitivity and performance
	Cursor sensitivity and isolation levels

	Describing result sets
	Controlling transactions in applications
	Setting autocommit or manual commit mode
	Controlling the isolation level
	Cursors and transactions


	3. Introduction to Java in the Database
	Introduction
	Learning about Java in the database
	Using the Java documentation

	Java in the database Q & A
	What are the key features of Java in the database?
	How do I store Java instructions in the database?
	How does Java get executed in a database?
	Why Java?
	On what platforms is Java in the database supported?
	How do I use Java and SQL together?
	What is the Java API?
	How do I access Java from SQL?
	Which Java classes are supported?
	How can I use my own Java classes in databases?
	Can I access data using Java?
	Can I move classes from client to server?
	Can I create distributed applications?
	What can I not do with Java in the database?

	A Java seminar
	Understanding Java classes
	Understanding Java objects
	Understanding fields
	Understanding methods
	Object oriented and procedural languages
	A Java glossary
	Java error handling

	The runtime environment for Java in the database
	Supported versions of Java and JDBC
	The runtime Java classes
	Identifying Java methods and fields
	Java is case sensitive
	Strings in Java and SQL
	Printing to the command line
	Using the main method
	Scope and persistence
	Java escape characters in SQL statements
	Keyword conflicts
	Use of import statements
	Using the CLASSPATH variable
	Public fields

	Tutorial: A Java in the database exercise
	Create and compile the sample Java class
	Install the sample Java class
	Creating a SQL variable of type Invoice
	Access fields and methods of the Java object
	Saving Java objects in tables
	Returning an object using a query


	4. Using Java in the Database
	Introduction
	Setting up the Java samples
	Managing the runtime environment for Java

	Java-enabling a database
	The Sybase runtime Java classes
	Ways of Java-enabling a database
	New databases and Java
	Upgrading databases and Java
	Java-enabling a database
	Using Sybase Central to Java-enable a database

	Installing Java classes into a database
	Creating a class
	Installing a class
	Installing a JAR
	Updating classes and Jars

	Creating columns to hold Java objects
	Creating columns with Java data types
	Using defaults and NULL on Java columns

	Inserting, updating, and deleting Java objects
	A sample class
	Inserting Java objects
	Updating Java objects
	Deleting Java objects, classes, and JAR files

	Querying Java objects
	Comparing Java fields and objects
	Comparing Java objects

	Special features of Java classes in the database
	Supported classes
	Calling the main method
	Using threads in Java applications
	Procedure Not Found error
	Return value of methods returning void
	Returning result sets from Java methods
	Returning values from Java via stored procedures
	Security management for Java
	Implementing your own security manager

	How Java objects are stored
	Java objects and class versions

	Java database design
	Entities and attributes in relational and object-oriented data
	Entities and attributes in the real world
	Relational database limitations
	Using classes to overcome relational database limitations
	Levels of abstraction for relational data

	Using computed columns with Java classes
	Defining computed columns
	Inserting and updating computed columns
	When computed columns are recalculated

	Configuring memory for Java
	How memory is used


	5. Data Access Using JDBC
	JDBC overview
	Choosing a JDBC driver
	JDBC program structure
	JDBC in the database features
	Differences between client- and server-side JDBC connections

	Using the jConnect JDBC driver
	The jConnect driver files
	Installing jConnect system objects into a database
	Loading the jConnect driver
	Supplying a URL for the server

	Using the JDBC-ODBC bridge
	Establishing JDBC connections
	Connecting from a JDBC client application using jConnect
	Establishing a connection from a server-side JDBC class
	Notes on JDBC connections

	Using JDBC to access data
	Preparing for the examples
	Inserts, updates, and deletes using JDBC
	Passing arguments to Java methods
	Queries using JDBC
	Using prepared statements for more efficient access
	Inserting and retrieving objects
	Miscellaneous JDBC notes

	Creating distributed applications
	Implementing the Serializable interface
	Importing the class on the client side
	A sample distributed application
	Other features of distributed applications


	6. Embedded SQL Programming
	Introduction
	Development process overview
	Running the SQL preprocessor
	Supported compilers
	Embedded SQL header files
	Import libraries
	A simple example
	Structure of embedded SQL programs
	Loading the interface library dynamically
	Building NetWare Loadable Modules

	Sample embedded SQL programs
	Building the sample programs
	Running the sample programs
	Static cursor sample
	Dynamic cursor sample
	Service examples

	Embedded SQL data types
	Using host variables
	Declaring host variables
	C host variable types
	Host variable usage
	Indicator variables

	The SQL Communication Area (SQLCA)
	SQLCA fields
	SQLCA management for multi-threaded or reentrant code
	Using multiple SQLCAs

	Fetching data
	SELECT statements that return at most one row
	Using cursors in embedded SQL
	Fetching more than one row at a time

	Static and dynamic SQL
	Static SQL statements
	Dynamic SQL statements
	Dynamic SELECT statement

	The SQL descriptor area (SQLDA)
	The SQLDA header file
	SQLDA fields
	SQLDA host variable descriptions
	SQLDA sqllen field values

	Sending and retrieving long values
	Retrieving LONG data
	Sending LONG data

	Using stored procedures
	Using simple stored procedures
	Stored procedures with result sets

	Embedded SQL programming techniques
	Implementing request management
	Backup functions

	The SQL preprocessor
	Library function reference
	alloc_sqlda function
	alloc_sqlda_noind function
	db_backup function
	db_cancel_request function
	db_delete_file function
	db_find_engine function
	db_fini function
	db_get_property function
	db_init function
	db_is_working function
	db_locate_servers function
	db_register_a_callback function
	db_start_database function
	db_start_engine function
	db_stop_database function
	db_stop_engine function
	db_string_connect function
	db_string_disconnect function
	db_string_ping_server function
	fill_s_sqlda function
	fill_sqlda function
	free_filled_sqlda function
	free_sqlda function
	free_sqlda_noind function
	sql_needs_quotes function
	sqlda_storage function
	sqlda_string_length function
	sqlerror_message function

	Embedded SQL command summary

	7. ODBC Programming
	Introduction to ODBC
	ODBC conformance

	Building ODBC applications
	Including the ODBC header file
	Linking ODBC applications on Windows
	Linking ODBC applications on Windows CE
	Linking ODBC applications on UNIX

	ODBC samples
	Building the sample ODBC program
	Running the sample ODBC program

	ODBC handles
	Allocating ODBC handles
	A first ODBC example

	Connecting to a data source
	Choosing an ODBC connection function
	Establishing a connection
	Setting connection attributes
	Threads and connections in ODBC applications

	Executing SQL statements
	Executing statements directly
	Executing statements with bound parameters
	Executing prepared statements

	Working with result sets
	Choosing a cursor characteristics
	Retrieving data
	Updating and deleting rows through a cursor
	Using bookmarks

	Calling stored procedures
	Handling errors

	8. The Database Tools Interface
	Introduction to the database tools interface
	Using the database tools interface
	Using the import libraries
	Starting and finishing the DBTools library
	Calling the DBTools functions
	Software component return codes
	Using callback functions
	Version numbers and compatibility
	Using bit fields
	A DBTools example

	DBTools functions
	DBBackup function
	DBChangeLogName function
	DBChangeWriteFile function
	DBCollate function
	DBCompress function
	DBCreate function
	DBCreateWriteFile function
	DBCrypt function
	DBErase function
	DBExpand function
	DBInfo function
	DBInfoDump function
	DBInfoFree function
	DBLicense function
	DBStatusWriteFile function
	DBSynchronizeLog function
	DBToolsFini function
	DBToolsInit function
	DBToolsVersion function
	DBTranslateLog function
	DBTruncateLog function
	DBUnload function
	DBUpgrade function
	DBValidate function

	DBTools structures
	a_backup_db structure
	a_change_log structure
	a_compress_db structure
	a_compress_stats structure
	a_create_db structure
	a_crypt_db structure
	a_db_collation structure
	a_db_info structure
	a_dblic_info structure
	a_dbtools_info structure
	an_erase_db structure
	an_expand_db structure
	a_name structure
	a_stats_line structure
	a_sync_db structure
	a_syncpub structure
	a_sysinfo structure
	a_table_info structure
	a_translate_log structure
	a_truncate_log structure
	an_unload_db structure
	an_upgrade_db structure
	a_validate_db structure
	a_writefile structure

	DBTools enumeration types
	Verbosity enumeration
	Blank padding enumeration
	dbtran_userlist_type enumeration
	dbunload type enumeration
	a_validate_type enumeration


	9. The OLE DB and ADO Programming Interfaces
	Introduction to OLE DB
	Supported platforms
	Distributed transactions

	ADO programming with Adaptive Server Anywhere
	Connecting to a database with the Connection object
	Executing statements with the Command object
	Querying the database with the Recordset object
	Working with Recordset object
	Updating data through a cursor
	Using transactions

	Supported OLE DB interfaces

	10. The Open Client Interface
	What you need to build Open Client applications
	Data type mappings
	Range limitations in data type mapping

	Using SQL in Open Client applications
	Executing SQL statements
	Using prepared statements
	Using cursors
	Describing query results in Open Client

	Known Open Client limitations of Adaptive Server Anywhere

	11. Three-tier Computing and Distributed Transactions
	Introduction
	Three-tier computing architecture
	Distributed transactions in three-tier computing
	The vocabulary of distributed transactions
	How application servers use DTC
	Distributed transaction architecture

	Using distributed transactions
	DTC isolation levels
	Recovery from distributed transactions

	Using EAServer with Adaptive Server Anywhere
	Configuring EAServer
	Setting the component transaction attribute


	12. Deploying Databases and Applications
	Deployment overview
	Deployment models
	Ways to distribute files

	Understanding installation directories and file names
	UNIX deployment issues
	File naming conventions

	Using InstallShield objects and templates for deployment
	Using a silent installation for deployment
	Creating a silent install
	Running a silent install
	SMS Installation

	Deploying client applications
	Deploying OLE DB and ADO clients
	Deploying ODBC clients
	Deploying embedded SQL clients
	Deploying JDBC clients
	Deploying Open Client applications

	Deploying administration tools
	Deploying database servers
	Deploying databases

	Deploying embedded database applications
	Deploying personal servers
	Deploying database utilities
	Deploying SQL Remote


	13. SQL Preprocessor Error Messages
	SQL Preprocessor error messages indexed by error message value
	SQLPP errors
	'%1' host variable must be a C string type
	'%1' host variable must be an integer type
	'%1' symbol already defined
	Cannot find include file '%1'
	FIXCHAR type must have a length
	Feature not available with UltraLite
	Host variable '%1' is in use more than once with different indicators
	Inconsistent host variable types for this cursor
	Inconsistent indicator variables for this cursor
	Inconsistent number of host variables for this cursor
	Into clause not allowed on declare cursor - ignored
	Invalid array dimension
	Macros cannot be redefined
	Two SQLDAs specified of the same type (INTO or USING)
	Unknown hostvar type
	VARCHAR host variables cannot be pointers
	VARCHAR type must have a length
	arrays of FIXCHAR not supported
	arrays of VARCHAR not supported
	arrays of decimal not allowed
	arrays of this type not supported
	cannot describe static cursors
	combined pointer and arrays not supported for host types
	cursor '%1' not previously declared
	data value must be a host variable
	error reading temporary file
	error writing output file
	field used more than once in SET DESCRIPTOR statement
	full SQL feature
	host variable '%1' has been redefined
	host variable '%1' has two different definitions
	host variable '%1' is unknown
	host variables not allowed for this cursor
	host variables specified twice - on declare and open
	incorrect Embedded SQL language usage -- that is a '%1' extension
	incorrect Embedded SQL syntax
	incorrect SQL language usage -- that is a '%1' extension
	indicator variable '%1' is unknown
	initializer not allowed on VARCHAR host variable
	intermediate SQL feature
	invalid descriptor index
	invalid field for SET DESCRIPTOR
	invalid host variable type on '%1'
	invalid integer
	invalid type for indicator variable '%1'
	invalid type for sql statement variable
	long binary/long varchar size limit is 65535 for UltraLite
	missing ending quote of string
	must specify a host list or using clause on %1
	must specify an SQLDA on a DESCRIBE
	no FETCH or PUT for cursor '%1'
	no INTO clause on SELECT statement
	no OPEN for cursor '%1'
	no declare section and no INCLUDE SQLCA statement
	only one dimensional arrays supported for char type
	precision must be specified for decimal type
	statement '%1' not previously prepared
	static statement names will not work properly if used by 2 threads
	subscript value %1 too large
	token too long
	transact SQL extension
	unable to open temporary file
	unknown sql function '%1'
	unknown statement '%1'
	unrecognized SQL syntax
	vendor extension
	wrong number of parms to sql function '%1'


	Index

