
Adaptive Server
®
 Anywhere

Programming Guide

Last modified: October 2002
Part Number: 38130-01-0802-01

Copyright © 1989–2002 Sybase, Inc. Portions copyright © 2001–2002 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Library, APT-Translator, ASEP, Backup Server, BayCam, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data
Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct
Connect Anywhere, DirectConnect, Distribution Director, Dynamo, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAY, ECMAP,
ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server,
Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion Server, First Impression, Formula One, Gateway Manager, GeoPoint, iAnywhere, iAnywhere Solutions,
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intellidex,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, MainframeConnect, Maintenance
Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet, ML Query, MobiCATS, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket PowerBuilder,
PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft,
Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Relational Beans, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, S.W.I.F.T. Message Format Libraries,
SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere,
SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT, SQL Server/DBM, SQL SMART,
SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase
SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare,
Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise
Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are
trademarks of Sybase, Inc. or its subsidiaries.

All other trademarks are property of their respective owners.

Last modified October 2002. Part number 38130-01-0802-01.

iii

Contents

About This Manual... vii
SQL Anywhere Studio documentation....................................viii
Documentation conventions... xi
The Adaptive Server Anywhere sample database..................xiv
Finding out more and providing feedback............................... xv

1 Programming Interface Overview..................................... 1
The ODBC programming interface ...2
The OLE DB programming interface...3
The Embedded SQL programming interface4
The JDBC programming interface ..5
The Open Client programming interface...................................6

2 Using SQL in Applications.. 9
Executing SQL statements in applications10
Preparing statements..12
Introduction to cursors ..15
Working with cursors...19
Choosing cursor types ..24
Adaptive Server Anywhere cursors...28
Describing result sets..42
Controlling transactions in applications44

3 Introduction to Java in the Database 49
Introduction ...50
Java in the database Q & A ..53
A Java seminar ...59
The runtime environment for Java in the
database ...69
Tutorial: A Java in the database exercise...............................77

4 Using Java in the Database... 85
Introduction ...86
Java-enabling a database...89

iv

Installing Java classes into a database 94
Creating columns to hold Java objects 99
Inserting, updating, and deleting Java objects...................... 101
Querying Java objects .. 106
Comparing Java fields and objects....................................... 108
Special features of Java classes in the database................. 111
How Java objects are stored... 118
Java database design ... 121
Using computed columns with Java classes 124
Configuring memory for Java.. 127

5 Data Access Using JDBC.. 129
JDBC overview.. 130
Using the jConnect JDBC driver ... 136
Using the JDBC-ODBC bridge.. 141
Establishing JDBC connections.. 143
Using JDBC to access data .. 150
Creating distributed applications... 158

6 Embedded SQL Programming...................................... 163
Introduction ... 164
Sample embedded SQL programs 171
Embedded SQL data types... 177
Using host variables.. 181
The SQL Communication Area (SQLCA) 188
Fetching data .. 193
Static and dynamic SQL ... 202
The SQL descriptor area (SQLDA)....................................... 206
Sending and retrieving long values....................................... 214
Using stored procedures... 220
Embedded SQL programming techniques............................ 224
The SQL preprocessor.. 226
Library function reference ... 230
Embedded SQL command summary.................................... 247

7 ODBC Programming.. 251
Introduction to ODBC.. 252
Building ODBC applications.. 254
ODBC samples ... 258
ODBC handles .. 260
Connecting to a data source... 263
Executing SQL statements ... 267

v

Working with result sets ..272
Calling stored procedures ...276
Handling errors..278

8 The Database Tools Interface 283
Introduction to the database tools interface..........................284
Using the database tools interface..285
DBTools functions...293
DBTools structures..304
DBTools enumeration types..334

9 The OLE DB and ADO Programming Interfaces 337
Introduction to OLE DB ...338
ADO programming with Adaptive Server
Anywhere ..340
Supported OLE DB interfaces...347

10 The Open Client Interface ... 353
What you need to build Open Client applications354
Data type mappings ..355
Using SQL in Open Client applications.................................357
Known Open Client limitations of Adaptive Server
Anywhere ..360

11 Three-tier Computing and Distributed Transactions... 361
Introduction ...362
Three-tier computing architecture ...363
Using distributed transactions...367
Using EAServer with Adaptive Server Anywhere369

12 Deploying Databases and Applications 373
Deployment overview..374
Understanding installation directories and file
names ...376
Using InstallShield objects and templates for
deployment..380
Using a silent installation for deployment382
Deploying client applications...385
Deploying administration tools ..395
Deploying database servers ...396
Deploying embedded database applications398

vi

13 SQL Preprocessor Error Messages.............................. 401
SQL Preprocessor error messages indexed by
error message value ... 402
SQLPP errors.. 406

Index... 423

vii

About This Manual

This book describes how to build and deploy database applications using the
C, C++, and Java programming languages. Users of tools such as Visual
Basic and PowerBuilder can use the programming interfaces provided by
those tools.

This manual is intended for application developers writing programs that
work directly with one of the Adaptive Server Anywhere interfaces.

You do not need to read this manual if you are using a development tool such
as PowerBuilder or Visual Basic, each of which has its own database
interface on top of ODBC.

Subject

Audience

viii

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere Studio documentation set

The SQL Anywhere Studio documentation set consists of the following
books:

♦ Introducing SQL Anywhere Studio This book provides an overview
of the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

 ♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere database-
management system and introductory material on designing, building,
and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book
describes how to build and deploy database applications using the C,
C++, and Java programming languages. Users of tools such as Visual
Basic and PowerBuilder can use the programming interfaces provided
by those tools.

ix

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ Adaptive Server Anywhere C2 Security Supplement Adaptive
Server Anywhere 7.0 was awarded a TCSEC (Trusted Computer System
Evaluation Criteria) C2 security rating from the U.S. Government. This
book may be of interest to those who wish to run the current version of
Adaptive Server Anywhere in a manner equivalent to the C2-certified
environment. The book does not include the security features added to
the product since certification.

♦ MobiLink Synchronization User’s Guide This book describes all
aspects of the MobiLink data synchronization system for mobile
computing, which enables sharing of data between a single Oracle,
Sybase, Microsoft or IBM database and many Adaptive Server
Anywhere or UltraLite databases.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ UltraLite User’s Guide This book describes how to build database
applications for small devices such as handheld organizers using the
UltraLite deployment technology for Adaptive Server Anywhere
databases.

♦ UltraLite User’s Guide for PenRight! MobileBuilder This book is for
users of the PenRight! MobileBuilder development tool. It describes
how to use UltraLite technology in the MobileBuilder programming
environment.

♦ SQL Anywhere Studio Help This book is provided online only. It
includes the context-sensitive help for Sybase Central, Interactive SQL,
and other graphical tools.

In addition to this documentation set, SQL Modeler and InfoMaker include
their own online documentation.

Documentation formats

SQL Anywhere Studio provides documentation in the following formats:

x

♦ Online books The online books include the complete SQL Anywhere
Studio documentation, including both the printed books and the context-
sensitive help for SQL Anywhere tools. The online books are updated
with each maintenance release of the product, and are the most complete
and up-to-date source of documentation.

To access the online books on Windows operating systems, choose
Start➤Programs➤Sybase SQL Anywhere 8➤Online Books. You can
navigate the online books using the HTML Help table of contents,
index, and search facility in the left pane, and using the links and menus
in the right pane.

To access the online books on UNIX operating systems, run the
following command at a command prompt:

dbbooks

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in the pdf_docs directory.
You can choose to install them when running the setup program.

♦ Printed books The following books are included in the
SQL Anywhere Studio box:

♦ Introducing SQL Anywhere Studio.

♦ Adaptive Server Anywhere Getting Started.

♦ SQL Anywhere Studio Quick Reference. This book is available only
in printed form.

The complete set of books is available as the SQL Anywhere
Documentation set from Sybase sales or from e-Shop, the Sybase online
store, at http://e-shop.sybase.com/cgi-bin/eshop.storefront/.

xi

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions

The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords are shown like the words ALTER
TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the words owner and table-name in the
following example.

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element
of the list followed by an ellipsis (three dots), like column-constraint in
the following example:

ADD column-definition [column-constraint, …]

One or more list elements are allowed. If more than one is specified,
they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-name is optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square
brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces.

[QUOTES { ON | OFF }]

xii

If the QUOTES option is chosen, one of ON or OFF must be provided.
The brackets and braces should not be typed.

♦ One or more options If you choose more than one, separate your
choices with commas.

{ CONNECT, DBA, RESOURCE }

Graphic icons

The following icons are used in this documentation:

xiii

Icon Meaning

A client application.

A database server, such as Sybase Adaptive Server
Anywhere or Adaptive Server Enterprise.

An UltraLite application and database server. In
UltraLite, the database server and the application are
part of the same process.

A database. In some high-level diagrams, the icon
may be used to represent both the database and the
database server that manages it.

Replication or synchronization middleware. These
assist in sharing data among databases. Examples are
the MobiLink Synchronization Server, SQL Remote
Message Agent, and the Replication Agent (Log
Transfer Manager) for use with Replication Server.

A Sybase Replication Server.

API
A programming interface.

xiv

The Adaptive Server Anywhere sample database
Many of the examples throughout the documentation use the Adaptive
Server Anywhere sample database.

The sample database is held in a file named asademo.db, and is located in
your SQL Anywhere directory.

The sample database represents a small company. It contains internal
information about the company (employees, departments, and finances) as
well as product information and sales information (sales orders, customers,
and contacts). All information in the database is fictional.

The following figure shows the tables in the sample database and how they
relate to each other.

id = id

id = prod_id

code = fin_code_id

emp_id = sales_rep

id = cust_id

code = code

dept_id = dept_id
emp_id = dept_head_id

contact
id <pk> integer
last_name char(15)
first_name char(15)
title char(2)
street char(30)
city char(20)
state char(2)
zip char(5)
phone char(10)
fax char(10)

customer
id <pk> integer
fname char(15)
lname char(20)
address char(35)
city char(20)
state char(2)
zip char(10)
phone char(12)
company_name char(35)

sales_order
id <pk> integer
cust_id <fk> integer
order_date date
fin_code_id <fk> char(2)
region char(7)
sales_rep <fk> integer

fin_code
code <pk> char(2)
type char(10)
description char(50)

fin_data
year <pk> char(4)
quarter <pk> char(2)
code <pk,fk> char(2)
amount numeric(9)

product
id <pk> integer
name char(15)
description char(30)
size char(18)
color char(6)
quantity integer
unit_price numeric(15,2)

sales_order_items
id <pk,fk> integer
line_id <pk> smallint
prod_id <fk> integer
quantity integer
ship_date date

employee
emp_id <pk> integer
manager_id integer
emp_fname char(20)
emp_lname char(20)
dept_id <fk> integer
street char(40)
city char(20)
state char(4)
zip_code char(9)
phone char(10)
status char(1)
ss_number char(11)
salary numeric(20,3)
start_date date
termination_date date
birth_date date
bene_health_ins char(1)
bene_life_ins char(1)
bene_day_care char(1)
sex char(1)

department
dept_id <pk> integer
dept_name char(40)
dept_head_id <fk> integer

asademo.db

xv

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on the forums.sybase.com news server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on
the newsgroup service when they have time available. They offer their
help on a volunteer basis and may not be available on a regular basis to
provide solutions and information. Their ability to help is based on their
workload.

xvi

1

C H A P T E R 1

Programming Interface Overview

This chapter introduces each of the programming interfaces for Adaptive
Server Anywhere. Any client application uses one of these interfaces to
communicate with the database.

Topic Page

The ODBC programming interface 2

The OLE DB programming interface 3

The Embedded SQL programming interface 4

The JDBC programming interface 5

The Open Client programming interface 6

About this chapter

Contents

The ODBC programming interface

2

The ODBC programming interface
ODBC (Open Database Connectivity) is a standard call level interface (CLI)
developed by Microsoft. It is based on the SQL Access Group CLI
specification. ODBC applications can run against any data source that
provides an ODBC driver. You should use ODBC if you would like your
application to be portable to other data sources that have ODBC drivers.
Also, if you prefer working with an API, use ODBC.

ODBC is a low-level interface—about the same as Embedded SQL. Almost
all the Adaptive Server Anywhere functionality is available with this
interface. ODBC is available as a DLL under Windows operating systems
with the exception of Windows CE. It is provided as a library for UNIX.

The primary documentation for ODBC is the Microsoft ODBC Software
Development Kit. The current book provides some additional notes specific
to Adaptive Server Anywhere for ODBC developers.

$ ODBC is described in "ODBC Programming" on page 251

Chapter 1 Programming Interface Overview

3

The OLE DB programming interface
OLE DB is a set of Component Object Model (COM) interfaces developed
by Microsoft, which provide applications with uniform access to data stored
in diverse information sources and which also provide the ability to
implement additional database services. These interfaces support the amount
of DBMS functionality appropriate to the data store, enabling it to share its
data.

ADO is an object model for programmatically accessing, editing, and
updating a wide variety of data sources through OLE DB system interfaces.
ADO is also developed by Microsoft. Most developers using the OLE DB
programming interface do so by writing to the ADO API rather than directly
to the OLE DB API.

Adaptive Server Anywhere includes an OLE DB provider for OLE DB and
ADO programmers.

The primary documentation for OLE DB and ADO programming is the
Microsoft Developer Network. The current book provides some additional
notes specific to Adaptive Server Anywhere for OLE DB and ADO
developers.

$ For more information, see "The OLE DB and ADO Programming
Interfaces" on page 337

The Embedded SQL programming interface

4

The Embedded SQL programming interface
Embedded SQL is a system in which SQL commands are embedded right in
a C or C++ source file. A preprocessor translates these statements into calls
to a runtime library. Embedded SQL is an ISO/ANSI and IBM standard.

Embedded SQL is portable to other databases and other environments, and is
functionally equivalent in all operating environments. It provides all of the
functionality available in the product. Embedded SQL is quite easy to work
with, although it takes a little getting used to the idea of Embedded SQL
statements (rather than function calls) in C code.

$ Embedded SQL is described in "Embedded SQL Programming" on
page 163.

Chapter 1 Programming Interface Overview

5

The JDBC programming interface
JDBC is a call-level interface for Java applications. Developed by Sun
Microsystems, JDBC provides Java programmers with a uniform interface to
a wide range of relational databases, and provides a common base on which
higher level tools and interfaces can be built. JDBC is now a standard part of
Java and is included in the JDK.

SQL Anywhere Studio includes a pure Java JDBC driver, named Sybase
jConnect. It also includes a JDBC-ODBC bridge. Both are described in
"Data Access Using JDBC" on page 129. For information on choosing a
driver, see "Choosing a JDBC driver" on page 131.

In addition to using JDBC as a client side application programming interface,
you can also use JDBC inside the database server to access data from Java in
the database. For that reason JDBC is documented as part of the Java in the
database documentation.

$ JDBC is not described in this book. For a description of JDBC, see
"Data Access Using JDBC" on page 129.

The Open Client programming interface

6

The Open Client programming interface
Sybase Open Client provides customer applications, third-party products,
and other Sybase products with the interfaces needed to communicate with
Adaptive Server Anywhere and other Open Servers.

You should consider using the Open Client interface if you are concerned
with Adaptive Server Enterprise compatibility or if you are using other
Sybase products that support the Open Client interface, such as Replication
Server.

$ The Open Client interface is described in "The Open Client Interface"
on page 353. $ For more information about the Open Client interface, see
"Adaptive Server Anywhere as an Open Server" on page 105 of the book
ASA Database Administration Guide.

Open Client architecture

Open Client can be thought of as comprising two components: programming
interfaces and network services.

Open Client provides two core programming interfaces for writing client
applications: DB-Library and Client-Library.

Open Client DB-Library provides support for older Open Client applications,
and is a completely separate programming interface from Client-Library.
DB-Library is documented in the Open Client DB-Library/C Reference
Manual, provided with the Sybase Open Client product.

Client-Library programs also depend on CS-Library, which provides routines
that are used in both Client-Library and Server-Library applications.
Client-Library applications can also use routines from Bulk-Library to
facilitate high-speed data transfer.

Both CS-Library and Bulk-Library are included in the Sybase Open Client,
available separately.

Open Client network services include Sybase Net-Library, which provides
support for specific network protocols such as TCP/IP and DECnet. The
Net-Library interface is invisible to application programmers. However, on
some platforms, an application may need a different Net-Library driver for
different system network configurations. Depending on your host platform,
the Net-Library driver is specified either by the system’s Sybase
configuration or when you compile and link your programs.

$ Instructions for driver configuration can be found in the Open
Client/Server Configuration Guide.

When to use Open
Client

Client Library and
DB-Library

Network services

Chapter 1 Programming Interface Overview

7

$ Instructions for building Client-Library programs can be found in the
Open Client/Server Programmer’s Supplement.

The Open Client programming interface

8

9

C H A P T E R 2

Using SQL in Applications

Many aspects of database application development depend on your
application development tool, database interface, and programming
language, but there are some common problems and principles that affect
multiple aspects of database application development.

This chapter describes some principles and techniques common to most or all
interfaces and provides pointers for more information. It does not provide a
detailed guide for programming using any one interface.

Topic Page

Executing SQL statements in applications 10

Preparing statements 12

Introduction to cursors 15

Working with cursors 19

Choosing cursor types 24

Adaptive Server Anywhere cursors 28

Describing result sets 42

Controlling transactions in applications 44

About this chapter

Contents

Executing SQL statements in applications

10

Executing SQL statements in applications
The way you include SQL statements in your application depends on the
application development tool and programming interface you use.

♦ ODBC If you are writing directly to the ODBC programming interface,
your SQL statements appear in function calls. For example, the
following C function call executes a DELETE statement:

SQLExecDirect(stmt,
 "DELETE FROM employee
 WHERE emp_id = 105",
 SQL_NTS);

♦ JDBC If you are using the JDBC programming interface, you can
execute SQL statements by invoking methods of the statement object.
For example,

stmt.executeUpdate(
 "DELETE FROM employee
 WHERE emp_id = 105");

♦ Embedded SQL If you are using embedded SQL, you prefix your C
language SQL statements with the keyword EXEC SQL. The code is
then run through a preprocessor before compiling. For example,

EXEC SQL EXECUTE IMMEDIATE
 ’DELETE FROM employee
 WHERE emp_id = 105’;

♦ Sybase Open Client If you use the Sybase Open Client interface, your
SQL statements appear in function calls. For example, the following pair
of calls executes a DELETE statement:

ret = ct_command(cmd, CS_LANG_CMD,
 "DELETE FROM employee
 WHERE emp_id=105"
 CS_NULLTERM,
 CS_UNUSED);
ret = ct_send(cmd);

♦ Application Development Tools Application development tools such
as the members of the Sybase Enterprise Application Studio family
provide their own SQL objects, which use either ODBC (PowerBuilder)
or JDBC (Power J) under the covers.

$ For more detailed information on how to include SQL in your
application, see your development tool documentation. If you are using
ODBC or JDBC, consult the software development kit for those interfaces.

Chapter 2 Using SQL in Applications

11

$ For a detailed description of embedded SQL programming, see
"Embedded SQL Programming" on page 163.

In many ways, stored procedures and triggers act as applications or parts of
applications running inside the server. You can use many of the techniques
here in stored procedures also. Stored procedures use statements very similar
to embedded SQL statements.

$ For more information about stored procedures and triggers, see "Using
Procedures, Triggers, and Batches" on page 507 of the book ASA SQL User’s
Guide.

Java classes in the database can use the JDBC interface in the same way as
Java applications outside the server. This chapter discusses some aspects of
JDBC. For other information on using JDBC, see "Data Access Using
JDBC" on page 129.

Applications inside
the server

Preparing statements

12

Preparing statements
Each time a statement is sent to a database, the server must first prepare the
statement. Preparing the statement can include:

♦ Parsing the statement and transforming it into an internal form.

♦ Verifying the correctness of all references to database objects by
checking, for example, that columns named in a query actually exist.

♦ Causing the query optimizer to generate an access plan if the statement
involves joins or subqueries.

♦ Executing the statement after all these steps have been carried out.

If you find yourself using the same statement repeatedly, for example,
inserting many rows into a table, repeatedly preparing the statement causes a
significant and unnecessary overhead. To remove this overhead, some
database programming interfaces provide ways of using prepared statements.
A prepared statement is a statement containing a series of placeholders.
When you want to execute the statement, all you have to do is assign values
to the placeholders, rather than prepare the entire statement over again.

Using prepared statements is particularly useful when carrying out many
similar actions, such as inserting many rows.

Generally, using prepared statements requires the following steps:

1 Prepare the statement In this step you generally provide the
statement with some placeholder character instead of the values.

2 Repeatedly execute the prepared statement In this step you supply
values to be used each time the statement is executed. The statement
does not have to be prepared each time.

3 Drop the statement In this step you free the resources associated with
the prepared statement. Some programming interfaces handle this step
automatically.

In general, you should not prepare statements if you’ll only execute them
once. There is a slight performance penalty for separate preparation and
execution, and it introduces unnecessary complexity into your application.

In some interfaces, however, you do need to prepare a statement to associate
it with a cursor.

$ For information about cursors, see "Introduction to cursors" on page 15.

Reusing prepared
statements can
improve
performance

Do not prepare
statements that are
used only once

Chapter 2 Using SQL in Applications

13

The calls for preparing and executing statements are not a part of SQL, and
they differ from interface to interface. Each of the Adaptive Server
Anywhere programming interfaces provides a method for using prepared
statements.

How to use prepared statements

This section provides a brief overview of how to use prepared statements.
The general procedure is the same, but the details vary from interface to
interface. Comparing how to use prepared statements in different interfaces
illustrates this point.

v To use a prepared statement (generic):

1 Prepare the statement.

2 Set up bound parameters, which will hold values in the statement.

3 Assign values to the bound parameters in the statement.

4 Execute the statement.

5 Repeat steps 3 and 4 as needed.

6 Drop the statement when finished. This step is not required in JDBC, as
Java’s garbage collection mechanisms handle this for you.

v To use a prepared statement (embedded SQL):

1 Prepare the statement using the EXEC SQL PREPARE command.

2 Assign values to the parameters in the statement.

3 Execute the statement using the EXE SQL EXECUTE command.

4 Free the resources associated with the statement using the EXEC SQL
DROP command.

v To use a prepared statement (ODBC):

1 Prepare the statement using SQLPrepare.

2 Bind the statement parameters using SQLBindParameter.

3 Execute the statement using SQLExecute.

4 Drop the statement using SQLFreeStmt.

$ For more information, see "Executing prepared statements" on
page 269 and the ODBC SDK documentation.

Preparing statements

14

v To use a prepared statement (JDBC):

1 Prepare the statement using the prepareStatement method of the
connection object. This returns a prepared statement object.

2 Set the statement parameters using the appropriate setType methods of
the prepared statement object. Here, Type is the data type assigned.

3 Execute the statement using the appropriate method of the prepared
statement object. For inserts, updates, and deletes this is the
executeUpdate method.

$ For more information on using prepared statements in JDBC, see
"Using prepared statements for more efficient access" on page 155.

v To use a prepared statement (Open Client):

1 Prepare the statement using the ct_dynamic function, with a
CS_PREPARE type parameter.

2 Set statement parameters using ct_param.

3 Execute the statement using ct_dynamic with a CS_EXECUTE type
parameter.

4 Free the resources associated with the statement using ct_dynamic with
a CS_DEALLOC type parameter.

$ For more information on using prepared statements in Open Client,
see "Using SQL in Open Client applications" on page 357.

Chapter 2 Using SQL in Applications

15

Introduction to cursors
When you execute a query in an application, the result set consists of a
number of rows. In general, you do not know how many rows the application
is going to receive before you execute the query. Cursors provide a way of
handling query result sets in applications.

The way you use cursors, and the kinds of cursors available to you, depend
on the programming interface you use. JDBC 1.0 provides rudimentary
handling of result sets, while ODBC and embedded SQL have many
different kinds of cursors. Open Client cursors can only move forward
through a result set.

With cursors, you can carry out the following tasks within any programming
interface:

♦ Loop over the results of a query.

♦ Carry out inserts, updates, and deletes on the underlying data at any
point within a result set.

In addition, some programming interfaces allow you to use special features
to tune the way result sets return to your application, providing substantial
performance benefits for your application.

$ For more information on the kinds of cursors available through
different programming interfaces, see "Availability of cursors" on page 24.

What are cursors?

A cursor is a name associated with a result set. The result set is obtained
from a SELECT statement or stored procedure call.

A cursor is a handle on the result set. At any time, the cursor has a
well-defined position within the result set. With a cursor you can examine
and possibly manipulate the data one row at a time. Adaptive Server
Anywhere cursors support forward and backward movement through the
query results.

Cursors can be positioned in the following places:

♦ Before the first row of the result set.

♦ On a row in the result set.

♦ After the last row of the result set.

Cursor positions

Introduction to cursors

16

0

1

2

3

n – 2

n – 1

n

n + 1

–n – 1

–n

–n + 1

–n + 2

–3

–2

–1

0After last row

Before first row

Absolute row
from start

Absolute row
from end

Cursor position and result set are maintained in the database server. Rows are
fetched by the client for display and processing either one at a time or a few
at a time. The entire result set does not need to be delivered to the client.

Benefits of using cursors

You do not need to use cursors in database applications, but they do provide
a number of benefits. These benefits follow from the fact that if you do not
use a cursor, the entire result set must be transferred to the client for
processing and display:

♦ Client-side memory For large results, holding the entire result set on
the client can lead to demanding memory requirements.

♦ Response time Cursors can provide the first few rows before the
whole result set is assembled. If you do not use cursors, the entire result
set must be delivered before any rows are displayed by your application.

Chapter 2 Using SQL in Applications

17

♦ Concurrency control If you make updates to your data and do not use
cursors in your application, you must send separate SQL statements to
the database server to apply the changes. This raises the possibility of
concurrency problems if the result set has changed since it was queried
by the client. In turn, this raises the possibility of lost updates.

Cursors act as pointers to the underlying data, and so impose proper
concurrency constraints on any changes you make.

Steps in using cursors

Using a cursor in embedded SQL is different than using a cursor in other
interfaces.

v To use a cursor (embedded SQL):

1 Prepare a statement.

Cursors generally use a statement handle rather than a string. You need
to prepare a statement to have a handle available.

$ For information on preparing a statement, see "Preparing
statements" on page 12.

2 Declare the cursor.

Each cursor refers to a single SELECT or CALL statement. When you
declare a cursor, you state the name of the cursor and the statement it
refers to.

$ For more information, see "DECLARE CURSOR statement
[ESQL] [SP]" on page 379 of the book ASA SQL Reference Manual.

3 Open the cursor.

$ For more information, see "OPEN statement [ESQL] [SP]" on
page 485 of the book ASA SQL Reference Manual.

In the case of a CALL statement, opening the cursor executes the query
up to the point where the first row is about to be obtained.

4 Fetch results.

Although simple fetch operations move the cursor to the next row in the
result set, Adaptive Server Anywhere permits more complicated
movement around the result set. How you declare the cursor determines
which fetch operations are available to you.

Introduction to cursors

18

$ For more information, see "FETCH statement [ESQL] [SP]" on
page 424 of the book ASA SQL Reference Manual, and "Fetching data"
on page 193.

5 Close the cursor.

When you have finished with the cursor, close it. This frees any locks
held on the underlying data.

$ For more information, see "CLOSE statement [ESQL] [SP]" on
page 261 of the book ASA SQL Reference Manual.

6 Drop the statement.

To free the memory associated with the cursor and its associated
statement, you must free the statement.

$ For more information, see "DROP STATEMENT statement
[ESQL]" on page 405 of the book ASA SQL Reference Manual.

v To use a cursor (ODBC, JDBC, Open Client):

1 Prepare and execute a statement.

Execute a statement using the usual method for the interface. You can
prepare and then execute the statement, or you can execute the statement
directly.

2 Test to see if the statement returns a result set.

A cursor is implicitly opened when a statement that creates a result set is
executed. When the cursor is opened, it is positioned before the first row
of the result set.

3 Fetch results.

Although simple fetch operations move the cursor to the next row in the
result set, Adaptive Server Anywhere permits more complicated
movement around the result set.

4 Close the cursor.

When you have finished with the cursor, close it to free associated
resources.

5 Free the statement.

If you used a prepared statement, free it to reclaim memory.

In some cases the interface library may carry out performance optimizations
under the covers (such as prefetching results), so these steps in the client
application may not correspond exactly to software operations.

Prefetching rows

Chapter 2 Using SQL in Applications

19

Working with cursors
This section describes how to carry out different kinds of operations using
cursors.

Cursor positioning

When a cursor is opened, it is positioned before the first row. You can move
the cursor position to an absolute position from the start or the end of the
query results, or to a position relative to the current cursor position. The
specifics of how you change cursor position, and what operations are
possible, is governed by the programming interface.

The number of row positions you can fetch in a cursor is governed by the
size of an integer. You can fetch rows numbered up to number 2147483646,
which is one less than the value that can be held in an integer. When using
negative numbers (rows from the end) you can fetch down to one more than
the largest negative value that can be held in an integer.

You can use special positioned update and delete operations to update or
delete the row at the current position of the cursor. If the cursor is positioned
before the first row or after the last row, a No current row of cursor error is
returned.

Cursor positioning problems
Inserts and some updates to asensitive cursors can cause problems with
cursor positioning. Adaptive Server Anywhere does not put inserted rows
at a predictable position within a cursor unless there is an ORDER BY
clause on the SELECT statement. In some cases, the inserted row does not
appear at all until the cursor is closed and opened again.

With Adaptive Server Anywhere, this occurs if a work table had to be
created to open the cursor (see "Use of work tables in query processing"
on page 160 of the book ASA SQL User’s Guide for a description).

The UPDATE statement may cause a row to move in the cursor. This
happens if the cursor has an ORDER BY clause that uses an existing
index (a work table is not created). Using STATIC SCROLL cursors
alleviates these problems but requires more memory and processing.

Working with cursors

20

Configuring cursors on opening

You can configure the following aspects of cursor behavior when you open
the cursor:

♦ Isolation level You can explicitly set the isolation level of operations
on a cursor to be different from the current isolation level of the
transaction. To do this, set the ISOLATION_LEVEL option.

$ For more information, see "ISOLATION_LEVEL option" on
page 571 of the book ASA Database Administration Guide.

♦ Holding By default, cursors in embedded SQL close at the end of a
transaction. Opening a cursor WITH HOLD allows you to keep it open
until the end of a connection, or until you explicitly close it. ODBC,
JDBC and Open Client leave cursors open at the end of transactions by
default.

Fetching rows through a cursor

The simplest way of processing the result set of a query using a cursor is to
loop through all the rows of the result set until there are no more rows.

v To loop through the rows of a result set:

1 Declare and open the cursor (embedded SQL), or execute a statement
that returns a result set (ODBC, JDBC, Open Client).

2 Continue to fetch the next row until you get a Row Not Found error.

3 Close the cursor.

How step 2 of this operation is carried out depends on the interface you use.
For example,

♦ ODBC SQLFetch, SQLExtendedFetch, or SQLFetchScroll
advances the cursor to the next row and returns the data.

$ For more information on using cursors in ODBC, see "Working
with result sets" on page 272.

♦ Embedded SQL The FETCH statement carries out the same
operation.

$ For more information on using cursors in embedded SQL, see
"Using cursors in embedded SQL" on page 194.

♦ JDBC The next method of the ResultSet object advances the cursor
and returns the data.

Chapter 2 Using SQL in Applications

21

$ For more information on using the ResultSet object in JDBC, see
"Queries using JDBC" on page 153.

♦ Open Client The ct_fetch function advances the cursor to the next
row and returns the data.

$ For more information on using cursors in Open Client applications,
see "Using cursors" on page 358.

Fetching multiple rows

This section discusses how fetching multiple rows at a time can improve
performance.

Multiple-row fetching should not be confused with prefetching rows, which
is described in the next section. Multiple row fetching is performed by the
application, while prefetching is transparent to the application, and provides
a similar performance gain.

Some interfaces provide methods for fetching more than one row at a time
into the next several fields in an array. Generally, the fewer separate fetch
operations you execute, the fewer individual requests the server must
respond to, and the better the performance. A modified FETCH statement
that retrieves multiple-rows is also sometimes called a wide fetch. Cursors
that use multiple-row fetches are sometimes called block cursors or fat
cursors.

♦ In ODBC, you can set the number of rows that will be returned on each
call to SQLFetchScroll or SQLExtendedFetch by setting the
SQL_ROWSET_SIZE attribute.

♦ In embedded SQL, the FETCH statement uses an ARRAY clause to
control the number of rows fetched at a time.

♦ Open Client and JDBC do not support multi-row fetches. They do use
prefetching.

Fetching with scrollable cursors

ODBC and embedded SQL provide methods for using scrollable cursors and
dynamic scrollable cursors. These methods allow you to move several rows
forward at a time, or to move backwards through the result set.

The JDBC and Open Client interfaces do not support scrollable cursors.

Prefetching does not apply to scrollable operations. For example, fetching a
row in the reverse direction does not prefetch several previous rows.

Multiple-row
fetches

Using multiple-row
fetching

Working with cursors

22

Modifying rows through a cursor

Cursors can do more than just read result sets from a query. You can also
modify data in the database while processing a cursor. These operations are
commonly called positioned update and delete operations, or PUT
operations if the action is an insert.

Not all query result sets allow positioned updates and deletes. If you carry
out a query on a non-updatable view, then no changes occur to the
underlying tables. Also, if the query involves a join, then you must specify
which table you wish to delete from, or which columns you wish to update,
when you carry out the operations.

Inserts through a cursor can only be executed if any non-inserted columns in
the table allow NULL or have defaults.

ODBC, embedded SQL, and Open Client permit data modification using
cursors, but JDBC 1.1 does not. With Open Client, you can delete and update
rows, but you can only insert rows on a single-table query.

If you attempt a positioned delete through a cursor, the table from which
rows are deleted is determined as follows:

1 If no FROM clause is included in the delete statement, the cursor must
be on a single table only.

2 If the cursor is for a joined query (including using a view containing a
join), then the FROM clause must be used. Only the current row of the
specified table is deleted. The other tables involved in the join are not
affected.

3 If a FROM clause is included, and no table owner is specified, the
table-spec value is first matched against any correlation names.

$ For more information, see the "FROM clause" on page 433 of the
book ASA SQL Reference Manual.

4 If a correlation name exists, the table-spec value is identified with the
correlation name.

5 If a correlation name does not exist, the table-spec value must be
unambiguously identifiable as a table name in the cursor.

6 If a FROM clause is included, and a table owner is specified, the
table-spec value must be unambiguously identifiable as a table name in
the cursor.

7 The positioned DELETE statement can be used on a cursor open on a
view as long as the view is updatable.

Which table are
rows deleted from?

Chapter 2 Using SQL in Applications

23

Canceling cursor operations

You can cancel a request through an interface function. From
Interactive SQL, you can cancel a request by pressing the Interrupt SQL
Statement button on the toolbar (or by choosing Stop from the SQL menu).

If you cancel a request that is carrying out a cursor operation, the position of
the cursor is indeterminate. After canceling the request, you must locate the
cursor by its absolute position, or close it.

Choosing cursor types

24

Choosing cursor types
This section describes mappings between Adaptive Server Anywhere cursors
and the options available to you from the programming interfaces supported
by Adaptive Server Anywhere.

$ For information on Adaptive Server Anywhere cursors, see "Adaptive
Server Anywhere cursors" on page 28.

Availability of cursors

Not all interfaces provide support for all types of cursors.

♦ ODBC and OLE DB (ADO) support all types of cursors.

$ For more information, see "Working with result sets" on page 272.

♦ Embedded SQL supports all the types of cursors.

♦ For JDBC:

♦ jConnect 4.x provides only asensitive cursors.

♦ jConnect 5.x supports all types of cursors, but there is a severe
performance penalty for scrollable cursors.

♦ The JDBC-ODBC bridge supports all types of cursors.

♦ Sybase Open Client supports only asensitive cursors. Also, a severe
performance penalty results when using updatable, non-unique cursors.

Cursor properties

You request a cursor type, either explicitly or implicitly, from the
programming interface. Different interface libraries offer different choices of
cursor types. For example, JDBC and ODBC specify different cursor types.

Each cursor type is defined by a number of characteristics:

♦ Uniqueness Declaring a cursor to be unique forces the query to return
all the columns required to uniquely identify each row. Often this means
returning all the columns in the primary key. Any columns required but
not specified are added to the result set. The default cursor type is
non-unique.

♦ Updatability A cursor declared as read only may not be used in a
positioned update or delete operation. The default cursor type us
updatable.

Chapter 2 Using SQL in Applications

25

♦ Scrollability You can declare cursors to behave different ways as you
move through the result set. Some cursors can fetch only the current row
or the following row. Others can move backwards and forwards through
the result set.

♦ Sensitivity Changes to the database may or may not be visible through
a cursor.

These characteristics may have significant side effects on performance and
on database server memory usage.

Adaptive Server Anywhere makes available cursors with a variety of mixes
of these characteristics. When you request a cursor of a given type, Adaptive
Server Anywhere matches those characteristics as well as it can. The details
of how Adaptive Server Anywhere cursors match the cursor types specified
in the programming interfaces are the subject of the following sections.

There are some occasions when not all characteristics can be supplied.
For example, insensitive cursors in Adaptive Server Anywhere must be
read-only, for reasons described below. If your application requests an
updatable insensitive cursor, a different cursor type (value-sensitive) is
supplied instead.

Requesting Adaptive Server Anywhere cursors

When you request a cursor type from your client application, Adaptive
Server Anywhere provides a cursor. Adaptive Server Anywhere cursors are
defined, not by the type as specified in the programming interface, but by the
sensitivity of the result set to changes in the underlying data. Depending on
the cursor type you ask for, Adaptive Server Anywhere provides a cursor
with behavior to match the type.

Adaptive Server Anywhere cursor sensitivity is set in response to the client
cursor type request.

ODBC and OLE DB

The following table illustrates the cursor sensitivity that is set in response to
different ODBC scrollable cursor types.

ODBC scrollable cursor type Adaptive Server Anywhere cursor

STATIC Insensitive

KEYSET Value-sensitive

DYNAMIC Sensitive

MIXED Value-sensitive

Choosing cursor types

26

$ For information on Adaptive Server Anywhere cursors and their
behavior, see "Adaptive Server Anywhere cursors" on page 28. For
information on how to request a cursor type in ODBC, see "Choosing a
cursor characteristics" on page 272.

If a STATIC cursor is requested as updatable, a value-sensitive cursor is
supplied instead and a warning is issued.

If a DYNAMIC or MIXED cursor is requested and the query cannot be
executed without using work tables, a warning is issued and an asensitive
cursor is supplied instead.

Embedded SQL

To request a cursor from an embedded SQL application, you specify the
cursor type on the DECLARE statement. The following table illustrates the
cursor sensitivity that is set in response to different requests:

Cursor type Adaptive Server Anywhere cursor

NO SCROLL Asensitive

DYNAMIC SCROLL Asensitive

SCROLL Value-sensitive

INSENSITIVE Insensitive

SENSITIVE Sensitive

If an DYNAMIC SCROLL or NO SCROLL cursor is requested as
UPDATABLE, then a sensitive or value-sensitive cursor is supplied. It is not
guaranteed which of the two is supplied. This uncertainty fits the definition
of asensitive behavior.

If an INSENSITIVE cursor is requested as UPDATABLE, then a
value-sensitive cursor is supplied.

If a DYNAMIC SCROLL cursor is requested, if the PREFETCH database
option is set to OFF, and if the query execution plan involves no work tables,
then a sensitive cursor may be supplied. Again, this uncertainty fits the
definition of asensitive behavior.

JDBC

Only one kind of cursor is available to JDBC applications. This is an
asensitive cursor. In JDBC you execute an ExecuteQuery statement to open
a cursor.

Exceptions

Exceptions

Chapter 2 Using SQL in Applications

27

Open Client

Only one kind of cursor is available to JDBC applications. This is an
asensitive cursor.

Bookmarks and cursors

ODBC provides bookmarks, or values, used to identify rows in a cursor.
Adaptive Server Anywhere supports bookmarks for all kinds of cursors
except DYNAMIC cursors.

Block cursors

ODBC provides a cursor type called a block cursor. When you use a BLOCK
cursor, you can use SQLFetchScroll or SQLExtendedFetch to fetch a
block of rows, rather than a single row. Block cursors behave identically to
embedded SQL ARRAY fetches.

Adaptive Server Anywhere cursors

28

Adaptive Server Anywhere cursors
Any cursor, once opened, has an associated result set. The cursor is kept
open for a length of time. During that time, the result set associated with the
cursor may be changed, either through the cursor itself or, subject to isolation
level requirements, by other transactions. Some cursors permit changes to the
underlying data to be visible, while others do not reflect these changes. The
different behavior of cursors with respect to changes to the underlying data is
the sensitivity of the cursor.

Adaptive Server Anywhere provides cursors with a variety of sensitivity
characteristics. This section describes what sensitivity is, and describes the
sensitivity characteristics of cursors.

This section assumes that you have read "What are cursors?" on page 15.

Changes to the underlying data can affect the result set of a cursor in the
following ways:

♦ Membership The set of rows in the result set, as identified by their
primary key values.

♦ Order The order of the rows in the result set.

♦ Value The values of the rows in the result set.

For example, consider the following simple table with employee information
(emp_id is the primary key column):

emp_id emp_lname

1 Whitney

2 Cobb

3 Chin

A cursor on the following query returns all results from the table in primary
key order:

SELECT emp_id, emp_lname
FROM employee
ORDER BY emp_id

The membership of the result set could be changed by adding a new row or
deleting a row. The values could be changed by changing one of the names
in the table. The order could be changed by changing the primary key value
of one of the employees.

Membership,
order, and value
changes

Chapter 2 Using SQL in Applications

29

Subject to isolation level requirements, the membership, order, and values of
the result set of a cursor can be changed after the cursor is opened.
Depending on the type of cursor in use, the result set as seen by the
application may change to reflect these changes or may not.

Changes to the underlying data may be visible or invisible through the
cursor. A visible change is a change that is reflected in the result set of the
cursor. Changes to the underlying data that are not reflected in the result set
seen by the cursor are invisible.

Cursor sensitivity overview

Adaptive Server Anywhere cursors are classified by their sensitivity with
respect to changes of the underlying data. In particular, cursor sensitivity is
defined in terms of which changes are visible.

♦ Insensitive cursors The result set is fixed when the cursor is opened.
No changes to the underlying data are visible.

$ For more information, see "Insensitive cursors" on page 33.

♦ Sensitive cursors The result set can change after the cursor is opened.
All changes to the underlying data are visible.

$ For more information, see "Sensitive cursors" on page 34.

♦ Asensitive cursors Changes may be reflected in the membership,
order, or values of the result set seen through the cursor, or may not be
reflected at all.

$ For more information, see "Asensitive cursors" on page 36.

♦ Value-sensitive cursors Changes to the order or values of the
underlying data. The membership of the result set is fixed when the
cursor is opened.

$ For more information, see "Value-sensitive cursors" on page 37.

The differing requirements on cursors place different constraints on
execution, and so performance. For more information, see "Cursor sensitivity
and performance" on page 39.

Cursor sensitivity example: a deleted row

This example uses a simple query to illustrate how different cursors respond
to a row in the result set being deleted.

Consider the following sequence of events:

Visible and
invisible changes

Adaptive Server Anywhere cursors

30

1 An application opens a cursor on the following query against the sample
database.

SELECT emp_id, emp_lname
FROM employee
ORDER BY emp_id

emp_id emp_lname

102 Whitney

105 Cobb

160 Breault

… …

2 The application fetches the first row through the cursor (102).

3 The application fetches the next row through the cursor (105).

4 A separate transaction deletes employee 102 (Whitney) and commits the
change.

The results of cursor actions in this situation depend on the cursor sensitivity:

♦ Insensitive cursors The DELETE is not reflected in either the
membership or values of the results as seen through the cursor:

Action Result

Fetch previous row Returns the original copy of the row (102).

Fetch the first row
(absolute fetch)

Returns the original copy of the row (102).

Fetch the second row
(absolute fetch)

Returns the unchanged row (105).

♦ Sensitive cursors The membership of the result set has changed so
that row 105 is now the first row in the result set:

Action Result

Fetch previous row Returns Row Not Found error. There is no
previous row.

Fetch the first row
(absolute fetch)

Returns row 105.

Fetch the second row
(absolute fetch)

Returns row 160.

Chapter 2 Using SQL in Applications

31

♦ Value-sensitive cursors The membership of the result set is fixed,
and so row 105 is still the second row of the result set. The DELETE is
reflected in the values of the cursor, and creates an effective "hole" in
the result set.

Action Result

Fetch previous row Returns No current row of cursor. There is a
hole in the cursor where the first row used to be.

Fetch the first row
(absolute fetch)

Returns No current row of cursor. There is a
hole in the cursor where the first row used to be.

Fetch the second row
(absolute fetch)

Returns row 105.

♦ Asensitive cursors The membership and values of the result set are
indeterminate with respect to the changes. The response to a fetch of the
previous row, the first row, or the second row depends on the particular
optimization method for the query, whether that method involved the
formation of a work table, and whether the row being fetched was
prefetched from the client.

The benefit of asensitive cursors is that for many applications,
sensitivity is unimportant. In particular, if you are using a forward-only,
read-only cursor, no underlying changes are seen. Also, if you are
running at a high isolation level, underlying changes are disallowed.

Cursor sensitivity example: an updated row

This example uses a simple query to illustrate how different cursor types
respond to a row in the result set being updated in such a way as to change
the order of the result set.

Consider the following sequence of events:

1 An application opens a cursor on the following query against the sample
database.

SELECT emp_id, emp_lname
FROM employee

emp_id emp_lname

102 Whitney

105 Cobb

160 Breault

… …

Adaptive Server Anywhere cursors

32

2 The application fetches the first row through the cursor (102).

3 The application fetches the next row through the cursor (105).

4 A separate transaction updates the employee ID of employee 102
(Whitney) to 165 and commits the change.

The results of the cursor actions in this situation depend on the cursor
sensitivity:

♦ Insensitive cursors The UPDATE is not reflected in either the
membership or values of the results as seen through the cursor:

Action Result

Fetch previous row Returns the original copy of the row (102).

Fetch the first row
(absolute fetch)

Returns the original copy of the row (102).

Fetch the second row
(absolute fetch)

Returns the unchanged row (105).

♦ Sensitive cursors The membership of the result set has changed so
that row 105 is now the first row in the result set:

Action Result

Fetch previous row Returns Row Not Found. The membership of the
result set has changed so that 105 is now the first
row. The cursor is moved to the position before
the first row.

Fetch the first row
(absolute fetch)

Returns row 105.

Fetch the second row
(absolute fetch)

Returns row 160.

In addition, a fetch on a sensitive cursor returns the warning
SQLE_ROW_UPDATED_WARNING if the row has changed since the
last reading. The warning is given only once. Subsequent fetches of the
same row do not produce the warning.

Similarly, a positioned update or delete through the cursor on a row
since it was last fetched returns the
SQLE_ROW_UPDATED_SINCE_READ error. An application must fetch
the row again for an update or delete on a sensitive cursor to work.

Chapter 2 Using SQL in Applications

33

An update to any column causes the warning/error, even if the column is
not referenced by the cursor. For example, a cursor on a query returning
emp_lname would report the update even if only the salary column was
modified.

♦ Value-sensitive cursors The membership of the result set is fixed,
and so row 105 is still the second row of the result set. The DELETE is
reflected in the values of the cursor, and creates an effective "hole" in
the result set.

Action Result

Fetch previous row Returns Row Not Found. The membership of the
result set has changed so that 105 is now the first
row: The cursor is positioned on the hole: it is
before row 105.

Fetch the first row
(absolute fetch)

Returns Row Not Found. The membership of the
result set has changed so that 105 is now the first
row: The cursor is positioned on the hole: it is
before row 105.

Fetch the second row
(absolute fetch)

Returns row 105.

♦ Asensitive cursors The membership and values of the result set are
indeterminate with respect to the changes. The response to a fetch of the
previous row, the first row, or the second row depends on the particular
optimization method for the query, whether that method involved the
formation of a work table, and whether the row being fetched was
prefetched from the client.

No warnings or errors in bulk operations mode
Update warning and error conditions do not occur in bulk operations
mode (-b database server option).

Insensitive cursors

These cursors have insensitive membership, order, and values. No changes
made after cursor open time are visible.

Insensitive cursors are used only for read-only cursor types.

Insensitive cursors correspond to the ISO/ANSI standard definition of
insensitive cursors, and to ODBC static cursors.

Standards

Adaptive Server Anywhere cursors

34

Interface Cursor type Comment

ODBC, OLE DB,
and ADO

Static If an updatable static cursor is requested,
a value-sensitive cursor is used instead.

Embedded SQL INSENSITIVE
or NO SCROLL

JDBC Unsupported

Open Client Unsupported

Insensitive cursors always return rows that match the query’s selection
criteria, in the order specified by any ORDER BY clause.

The result set of an insensitive cursor is fully materialized as a work table
when the cursor is opened. This has the following consequences:

♦ If the result set is very large, the disk space and memory requirements
for managing the result set may be significant.

♦ No row is returned to the application before the entire result set is
assembled as a work table. For complex queries, this may lead to a delay
before the first row is returned to the application.

♦ Subsequent rows can be fetched directly from the work table, and so are
returned quickly. The client library may prefetch several rows at a time,
further improving performance.

♦ Insensitive cursors are not affected by ROLLBACK or ROLLBACK TO
SAVEPOINT.

Sensitive cursors

These cursors have sensitive membership, order, and values.

Sensitive cursors can be used for read-only or updatable cursor types.

Sensitive cursors correspond to the ISO/ANSI standard definition of
sensitive cursors, and to ODBC dynamic cursors.

Interface Cursor type Comment

ODBC, OLE DB,
and ADO

Dynamic

Embedded SQL SENSITIVE Also supplied in response to a request for
a DYNAMIC SCROLL cursor when no
work table is required and PREFETCH is
off.

Programming
interfaces

Description

Standards

Programming
interfaces

Chapter 2 Using SQL in Applications

35

All changes are visible through the cursor, including changes through the
cursor and from other transactions. Higher isolation levels may hide some
changes made in other transactions because of locking.

Changes to cursor membership, order, and all column values are all visible.
For example, if a sensitive cursor contains a join, and one of the values of
one of the underlying tables is modified, then all result rows composed from
that base row show the new value. Result set membership and order may
change at each fetch.

Sensitive cursors always return rows that match the query’s selection criteria,
and are in the order specified by any ORDER BY clause. Updates may affect
the membership, order, and values of the result set.

The requirements of sensitive cursors place restrictions on the
implementation of sensitive cursors:

♦ Rows cannot be prefetched, as changes to the prefetched rows would not
be visible through the cursor. This may impact performance.

♦ Sensitive cursors must be implemented without any work tables being
constructed, as changes to those rows stored as work tables would not be
visible through the cursor.

♦ The no work table limitation restricts the choice of join method by the
optimizer and therefore may impact performance.

♦ For some queries, the optimizer is unable to construct a plan that does
not include a work table that would make a cursor sensitive.

Work tables are commonly used for sorting and grouping intermediate
results. A work table is not needed for sorting if the rows can be
accessed through an index. It is not possible to state exactly which
queries employ work tables, but the following queries do employ them:

♦ UNION queries, although UNION ALL do not necessarily use work
tables.

♦ Statements with an ORDER BY clause, if there is no index on the
ORDER BY column.

♦ Any query that is optimized using a hash join.

♦ Many queries involving DISTINCT or GROUP BY clauses.

In these cases, Adaptive Server Anywhere either returns an error to the
application, or changes the cursor type to an asensitive cursor and
returns a warning.

Description

Adaptive Server Anywhere cursors

36

$ For more information on query optimization and the use of work
tables, see "Query Optimization and Execution" on page 313 of the book
ASA SQL User’s Guide.

Asensitive cursors

These cursors do not have well-defined sensitivity in their membership,
order, or values. The flexibility that is allowed in the sensitivity permits
asensitive cursors to be optimized for performance.

Asensitive cursors are used only for read-only cursor types.

Insensitive cursors correspond to the ISO/ANSI standard definition of
asensitive cursors, and to ODBC cursors with unspecific sensitivity.

Interface Cursor type

ODBC, OLE DB, and ADO Unspecified sensitivity

Embedded SQL DYNAMIC SCROLL

A request for an asensitive cursor places few restrictions on the methods
Adaptive Server Anywhere can use to optimize the query and return rows to
the application. For these reasons, asensitive cursors provide the best
performance. In particular, the optimizer is free to employ any measure of
materialization of intermediate results as work tables, and rows can be
prefetched by the client.

Adaptive Server Anywhere makes no guarantees about the visibility of
changes to base underlying rows. Some changes may be visible, others not.
Membership and order may change at each fetch. In particular, updates to
base rows may result in only some of the updated columns being reflected in
the cursor’s result.

Asensitive cursors do not guarantee to return rows that match the query’s
selection and order. The row membership is fixed at cursor open time, but
subsequent changes to the underlying values are reflected in the results.

Asensitive cursors always return rows that matched the customer’s WHERE
and ORDER BY clauses at the time the cursor membership is established. If
column values change after the cursor is opened, rows may be returned that
no longer match WHERE and ORDER BY clauses.

Standards

Programming
interfaces

Description

Chapter 2 Using SQL in Applications

37

Value-sensitive cursors

These cursors are insensitive with respect to their membership, and sensitive
with respect to the order and values of the result set.

Value-sensitive cursors can be used for read-only or updatable cursor types.

Value-sensitive cursors do not correspond to an ISO/ANSI standard
definition. They correspond to ODBC keyset-driven cursors.

Interface Cursor type

ODBC, OLE DB, and ADO Keyset-driven

Embedded SQL SCROLL

JDBC Keyset-driven

Open Client Keyset-driven

If the application fetches a row composed of a base underlying row that has
changed, then the application must be presented with the updated value, and
the SQL_ROW_UPDATED status must be issued to the application. If the
application attempts to fetch a row that was composed of a base underlying
row that was deleted, a SQL_ROW_DELETED status must be issued to the
application.

Changes to primary key values remove the row from the result set (treated as
a delete, followed by an insert). A special case occurs when a row in the
result set is deleted (either from cursor or outside) and a new row with the
same key value is inserted. This will result in the new row replacing the old
row where it appeared.

There is no guarantee that rows in the result set match the query’s selection
or order specification. Since row membership is fixed at open time,
subsequent changes that make a row not match the WHERE clause or
ORDER BY do not change a row’s membership nor position.

All values are sensitive to changes made through the cursor. The sensitivity
of membership to changes made through the cursor is controlled by the
ODBC option SQL_STATIC_SENSITIVITY. If this option is on, then
inserts through the cursor add the row to the cursor. Otherwise, they are not
part of the result set. Deletes through the cursor remove the row from the
result set, preventing a hole returning the SQL_ROW_DELETED status.

Standards

Programming
interfaces

Description

Adaptive Server Anywhere cursors

38

Value-sensitive cursors use a key set table. When the cursor is opened,
Adaptive Server Anywhere populates a work table with identifying
information for each row contributing to the result set. When scrolling
through the result set, the key set table is used to identify the membership of
the result set, but values are obtained, if necessary, from the underlying
tables.

The fixed membership property of value-sensitive cursors allows your
application to remember row positions within a cursor and be assured that
these positions will not change. For more information, see "Cursor sensitivity
example: a deleted row" on page 29.

♦ If a row was updated or may have been updated since the cursor was
opened, Adaptive Server Anywhere returns a
SQLE_ROW_UPDATED_WARNING when the row is fetched. The
warning is generated only once: fetching the same row again does not
produce the warning.

An update to any column of the row causes the warning, even if the
updated column is not referenced by the cursor. For example, a cursor
on emp_lname and emp_fname would report the update even if only the
birthdate column was modified. These update warning and error
conditions do not occur in bulk operations mode (-b database server
option) when row locking is disabled. See "Performance considerations
of moving data" on page 422 of the book ASA SQL User’s Guide.

$ For more information, see "Row has been updated since last time
read" on page 243 of the book ASA Errors Manual

♦ An attempt to execute a positioned update or delete on a row that has
been modified since it was last fetched returns a
SQLE_ROW_UPDATED_SINCE_READ error and cancels the
statement. An application must FETCH the row again before the
UPDATE or DELETE is permitted.

An update to any column of the row causes the error, even if the updated
column is not referenced by the cursor. The error does not occur in bulk
operations mode.

$ For more information, see "Row has changed since last read --
operation cancelled" on page 244 of the book ASA Errors Manual.

♦ If a row has been deleting after the cursor is opened, either through the
cursor or from another transaction, a hole is created in the cursor. The
membership of the cursor is fixed, so a row position is reserved, but the
DELETE operation is reflected in the changed value of the row. If you
fetch the row at this hole, you receive a No Current Row of Cursor error
(SQL state 24503), indicating that there is no current row, and the cursor
is left positioned on the hole. You can avoid holes by using sensitive
cursors, as their membership changes along with the values.

Chapter 2 Using SQL in Applications

39

$ For more information, see "No current row of cursor" on page 215
of the book ASA Errors Manual.

Rows cannot be prefetched for value-sensitive cursors. This requirement may
impact performance in some cases.

Cursor sensitivity and performance

There is a trade-off between performance and other cursor properties. In
particular, making a cursor updatable places restrictions on the cursor query
processing and delivery that constrain performance. Also, putting
requirements on cursor sensitivity may constrain cursor performance.

To understand how the updatability and sensitivity of cursors affects
performance, you need to understand how the results that are visible through
a cursor are transmitted from the database to the client application.

In particular, results may be stored at two intermediate locations for
performance reasons:

♦ Work tables Either intermediate or final results may be stored as work
tables. Value-sensitive cursors employ a work table of primary key
values. Query characteristics may also lead the optimizer to use work
tables in its chosen execution plan.

♦ Prefetching The client side of the communication may retrieve rows
into a buffer on the client side to avoid separate requests to the database
server for each row.

Client
application

ODBC driver or
network library

Database server

Prefetched
rows

Work table

Sensitivity and updatability limit the use of intermediate locations.

Any updatable cursor is prevented from using work tables and from
prefetching results. If either of these were used, the cursor would be
vulnerable to lost updates. The following example illustrates this problem:

Adaptive Server Anywhere cursors

40

1 An application opens a cursor on the following query against the sample
database.

SELECT id, quantity
FROM product

id quantity

300 28

301 54

302 75

… …

2 The application fetches the row with id = 300 through the cursor.

3 A separate transaction updates the row is updated using the following
statement:

UPDATE product
SET quantity = quantity - 10
WHERE id = 300

4 The application updates the row through the cursor to a value of
(quantity - 5).

5 The correct final value for the row would be 13. If the cursor had
prefetched the row, the new value of the row would be 23. The update
from the separate transaction is lost.

Similar restrictions govern sensitivity. For more information, see the
descriptions of distinct cursor types.

Prefetching rows

Prefetches and multiple-row fetches are different. Prefetches can be carried
out without explicit instructions from the client application. Prefetching
retrieves rows from the server into a buffer on the client side, but does not
make those rows available to the client application until the application
fetches the appropriate row.

By default, the Adaptive Server Anywhere client library prefetches multiple
rows whenever an application fetches a single row. The Adaptive Server
Anywhere client library stores the additional rows in a buffer.

Prefetching assists performance by cutting down on client/server traffic, and
increases throughput by making many rows available without a separate
request to the server for each row or block of rows.

Chapter 2 Using SQL in Applications

41

$ For more information on controlling prefetches, see "PREFETCH
option" on page 592 of the book ASA Database Administration Guide.

♦ The PREFETCH option controls whether or not prefetching occurs. You
can set the PREFETCH option to ON or OFF for a single connection. By
default, it is set to ON.

♦ In embedded SQL, you can control prefetching on a per-cursor basis
when you open a cursor on an individual FETCH operation using the
BLOCK clause.

The application can specify a maximum number of rows contained in a
single fetch from the server by specifying the BLOCK clause.
For example, if you are fetching and displaying 5 rows at a time, you
could use BLOCK 5. Specifying BLOCK 0 fetches 1 record at a time
and also causes a FETCH RELATIVE 0 to always fetch the row from
the server again.

Although you can also turn off prefetch by setting a connection
parameter on the application, it is more efficient to set BLOCK=0 than
to set the PREFETCH option to OFF.

$ For more information, see "PREFETCH option" on page 592 of the
book ASA Database Administration Guide

♦ In Open Client, you can control prefetching behavior using ct_cursor
with CS_CURSOR_ROWS after the cursor is declared, but before it is
opened.

Cursor sensitivity and isolation levels

Both cursor sensitivity and transaction isolation levels address the problem
of concurrency, but in different ways.

By choosing an isolation level for a transaction (often at the connection
level), you determine when locks are placed on rows in the database. Locks
prevent other transactions from accessing or modifying values in the
database.

By choosing a cursor sensitivity, you determine which changes are visible to
the application using the cursor. By setting cursor sensitivity you are not
determining when locks are placed on rows in the database, and you do not
limit the changes that can be made to the database itself.

Controlling
prefetching from an
application

Describing result sets

42

Describing result sets
Some applications build SQL statements which cannot be completely
specified in the application. In some cases, for example, statements depend
on a response from the user before the application knows exactly what
information to retrieve, such as when a reporting application allows a user to
select which columns to display.

In such a case, the application needs a method for retrieving information
about both the nature of the result set and the contents of the result set. The
information about the nature of the result set, called a descriptor, identifies
the data structure, including the number and type of columns expected to be
returned. Once the application has determined the nature of the result set,
retrieving the contents is straightforward.

This result set metadata (information about the nature and content of the
data) is manipulated using descriptors. Obtaining and managing the result set
metadata is called describing.

Since cursors generally produce result sets, descriptors and cursors are
closely linked, although some interfaces hide the use of descriptors from the
user. Typically, statements needing descriptors are either SELECT
statements or stored procedures that return result sets.

A sequence for using a descriptor with a cursor-based operation is as
follows:

1 Allocate the descriptor. This may be done implicitly, although some
interfaces allow explicit allocation as well.

2 Prepare the statement.

3 Describe the statement. If the statement is a stored procedure call or
batch, and the result set is not defined by a result clause in the procedure
definition, then the describe should occur after opening the cursor.

4 Declare and open a cursor for the statement (embedded SQL) or execute
the statement.

5 Get the descriptor and modify the allocated area if necessary. This is
often done implicitly.

6 Fetch and process the statement results.

7 Deallocate the descriptor.

8 Close the cursor.

9 Drop the statement. Some interfaces do this automatically.

Chapter 2 Using SQL in Applications

43

♦ In embedded SQL, a SQLDA (SQL Descriptor Area) structure holds the
descriptor information.

$ For more information, see "The SQL descriptor area (SQLDA)" on
page 206.

♦ In ODBC, a descriptor handle allocated using SQLAllocHandle
provides access to the fields of a descriptor. You can manipulate these
fields using SQLSetDescRec, SQLSetDescField, SQLGetDescRec,
and SQLGetDescField.

Alternatively, you can use SQLDescribeCol and SQLColAttributes to
obtain column information.

♦ In Open Client, you can use ct_dynamic to prepare a statement and
ct_describe to describe the result set of the statement. However, you can
also use ct_command to send a SQL statement without preparing it first
and use ct_results to handle the returned rows one by one. This is the
more common way of operating in Open Client application
development.

♦ In JDBC, the java.SQL.ResultSetMetaData class provides information
about result sets.

♦ You can also use descriptors for sending data to the engine (for example,
with the INSERT statement); however, this is a different kind of
descriptor than for result sets.

$ For more information about input and output parameters of the
DESCRIBE statement, see the "DESCRIBE statement [ESQL]" on
page 392 of the book ASA SQL Reference Manual.

Implementation
notes

Controlling transactions in applications

44

Controlling transactions in applications
Transactions are sets of atomic SQL statements. Either all statements in the
transaction are executed, or none. This section describes a few aspects of
transactions in applications.

$ For more information about transactions, see "Using Transactions and
Isolation Levels" on page 89 of the book ASA SQL User’s Guide.

Setting autocommit or manual commit mode

Database programming interfaces can operate in either manual commit
mode or autocommit mode.

♦ Manual commit mode Operations are committed only when your
application carries out an explicit commit operation or when the
database server carries out an automatic commit, for example when
executing an ALTER TABLE statement or other data definition
statement. Manual commit mode is also sometimes called chained
mode.

To use transactions in your application, including nested transactions
and savepoints, you must operate in manual commit mode.

♦ Autocommit mode Each statement is treated as a separate transaction.
Autocommit mode is equivalent to appending a COMMIT statement to
the end of each of your commands. Autocommit mode is also sometimes
called unchained mode.

Autocommit mode can affect the performance and behavior of your
application. Do not use autocommit if your application requires transactional
integrity.

$ For information on autocommit impact on performance, see "Turn off
autocommit mode" on page 149 of the book ASA SQL User’s Guide.

Controlling autocommit behavior

The way to control the commit behavior of your application depends on the
programming interface you are using. The implementation of autocommit
may be client-side or server-side, depending on the interface.

$ For more information, see "Autocommit implementation details" on
page 45.

Chapter 2 Using SQL in Applications

45

v To control autocommit mode (ODBC):

♦ By default, ODBC operates in autocommit mode. The way you turn off
autocommit depends on whether you are using ODBC directly, or using
an application development tool. If you are programming directly to the
ODBC interface, set the SQL_ATTR_AUTOCOMMIT connection
attribute.

v To control autocommit mode (JDBC):

♦ By default, JDBC operates in autocommit mode. To turn off
autocommit, use the setAutoCommit method of the connection object:

conn.setAutoCommit(false);

v To control autocommit mode (Open Client):

♦ By default, a connection made through Open Client operates in
autocommit mode. You can change this behavior by setting the
CHAINED database option to ON in your application using a statement
such as the following:

SET OPTION CHAINED=’ON’

v To control autocommit mode (embedded SQL):

♦ By default, embedded SQL applications operate in manual commit
mode. To turn on autocommit, set the CHAINED database option to
OFF using a statement such as the following:

SET OPTION CHAINED=’OFF’

Autocommit implementation details

The previous section, "Controlling autocommit behavior" on page 44,
describes how autocommit behavior can be controlled from each of the
Adaptive Server Anywhere programming interfaces. Autocommit mode has
slightly different behavior depending on the interface you are using and how
you control the autocommit behavior.

Autocommit mode can be implemented in one of two ways:

♦ Client-side autocommit When an application uses autocommit, the
client-library sends a COMMIT statement after each SQL statement
executed.

Adaptive Server Anywhere uses client-side autocommit for ODBC and
OLE DB applications.

Controlling transactions in applications

46

♦ Server-side autocommit When an application uses autocommit, the
database server issues a commit after each SQL statement. This behavior
is controlled, implicitly in the case of JDBC, by the CHAINED database
option.

Adaptive Server Anywhere uses server-side autocommit for embedded
SQL, JDBC, and Open Client applications.

There is a difference between client-side and server-side autocommit in the
case of compound statements such as stored procedures or triggers. From the
client side, a stored procedure is a single statement, and so autocommit sends
a single commit statement after the whole procedure is executed. From the
database server perspective, the stored procedure may be composed of many
SQL statements, and so server-side autocommit issues a COMMIT after each
SQL statement within the procedure.

Do not mix client-side and server-side implementations
Do not combine use of the CHAINED option with autocommit in your
ODBC or OLE DB application.

Controlling the isolation level

You can set the isolation level of a current connection using the
ISOLATION_LEVEL database option.

Some interfaces, such as ODBC, allow you to set the isolation level for a
connection at connection time. You can reset this level later using the
ISOLATION_LEVEL database option.

Cursors and transactions

In general, a cursor closes when a COMMIT is performed. There are two
exceptions to this behavior:

♦ The CLOSE_ON_ENDTRANS database option is set to OFF.

♦ A cursor is opened WITH HOLD, which is the default with Open Client
and JDBC.

If either of these two cases is true, the cursor remains open on a COMMIT.

If a transaction rolls back, then cursors close except for those cursors opened
WITH HOLD. However, don’t rely on the contents of any cursor after a
rollback.

ROLLBACK and
cursors

Chapter 2 Using SQL in Applications

47

The draft ISO SQL3 standard states that on a rollback, all cursors (even those
cursors opened WITH HOLD) should close. You can obtain this behavior by
setting the ANSI_CLOSE_CURSORS_AT_ROLLBACK option to ON.

If a transaction rolls back to a savepoint, and if the
ANSI_CLOSE_CURSORS_AT_ROLLBACK option is ON, then all cursors
(even those cursors opened WITH HOLD) opened after the SAVEPOINT
close.

You can change the isolation level of a connection during a transaction using
the SET OPTION statement to alter the ISOLATION_LEVEL option.
However, this change affects only closed cursors.

Savepoints

Cursors and
isolation levels

Controlling transactions in applications

48

49

C H A P T E R 3

Introduction to Java in the Database

This chapter provides motivation and concepts for using Java in the database.

Adaptive Server Anywhere is a runtime environment for Java. Java provides
a natural extension to SQL, turning Adaptive Server Anywhere into a
platform for the next generation of enterprise applications.

Topic Page

Introduction 50

Java in the database Q & A 53

A Java seminar 59

The runtime environment for Java in the database 69

Tutorial: A Java in the database exercise 77

About this chapter

Contents

Introduction

50

Introduction
Adaptive Server Anywhere is a runtime environment for Java. This means
that Java classes can be executed in the database server. Building a runtime
environment for Java classes into the database server provides powerful new
ways of managing and storing data and logic.

Java in the database offers the following:

♦ You can reuse Java components in the different layers of your
application—client, middle-tier, or server—and use them wherever
makes the most sense to you. Adaptive Server Anywhere becomes a
platform for distributed computing.

♦ Java is a more powerful language than stored procedures for building
logic into the database.

♦ Java classes become rich user-defined data types.

♦ Methods of Java classes provide new functions accessible from SQL.

♦ Java can be used in the database without jeopardizing the integrity,
security, and robustness of the database.

Java in the database is a separately licensable component and must be
ordered before you can install it. To order this component, see the card in
your SQL Anywhere Studio package or see
http://www.sybase.com/detail?id=1015780.

Java in the database is based on the SQLJ Part 1 and SQLJ Part 2 proposed
standards. SQLJ Part 1 provides specifications for calling Java static methods
as SQL stored procedures and user-defined functions. SQLJ Part 2 provides
specifications for using Java classes as SQL domains.

Learning about Java in the database

Java is a relatively new programming language with a growing, but still
limited, knowledge base. Intended for a variety of Java developers, this
documentation will be useful for everyone from the experienced Java
developer to the many readers who are unfamiliar with the language, its
possibilities, syntax, and use.

For those readers familiar with Java, there is much to learn about using Java
in a database. Adaptive Server Anywhere not only extends the capabilities of
the database with Java, but also extends the capabilities of Java with the
database.

Separately-licensa
ble component

The SQLJ
standard

Chapter 3 Introduction to Java in the Database

51

The following table outlines the documentation regarding the use of Java in
the database.

Title Purpose

"Introduction to Java in the
Database" on page 49 (this
chapter)

Java concepts and how to apply them in
Adaptive Server Anywhere.

"Using Java in the Database"
on page 85

Practical steps to using Java in the database.

"Data Access Using JDBC"
on page 129

Accessing data from Java classes, including
distributed computing.

"Debugging Logic in the
Database" on page 571 of the
book ASA SQL User’s Guide

Testing and debugging Java code running in the
database.

Adaptive Server Anywhere
Reference.

The Reference Manual includes material on the
SQL extensions that support Java in the
database.

Reference guide to Sun’s Java
API

Online guide to Java API classes, fields and
methods. Available as Windows Help only.

Thinking in Java by Bruce
Eckel.

Online book that teaches how to program in
Java. Supplied in Adobe PDF format in the
Samples\ASA\Java subdirectory of your
SQL Anywhere directory.

Using the Java documentation

The following table is a guide to which parts of the Java documentation
apply to you, depending on your interests and background. It is a guide only
and should not limit your efforts to learn more about Java in the database.

Java
documentation

Introduction

52

If you ... Consider reading ...

Are new to object-oriented programming. "A Java seminar" on page 59

Thinking in Java by Bruce Eckel.

Want an explanation of terms such as
instantiated, field, and class method.

"A Java seminar" on page 59

Are a Java developer who wants to just
get started.

"The runtime environment for Java in
the database" on page 69

"Tutorial: A Java in the database
exercise" on page 77

Want to know the key features of Java in
the database.

"Java in the database Q & A" on
page 53

Want to find out how to access data from
Java.

"Data Access Using JDBC" on
page 129

Want to prepare a database for Java. "Java-enabling a database" on
page 89

Want a complete list of supported Java
APIs.

"Java class data types" on page 77 of
the book ASA SQL Reference Manual

Are trying to use a Java API class and
need Java reference information.

The online guide to Java API classes
(Windows Help only)

Want to see an example of distributed
computing.

"Creating distributed applications" on
page 158

Chapter 3 Introduction to Java in the Database

53

Java in the database Q & A
This section describes the key features of Java in the database.

What are the key features of Java in the database?

Detailed explanations of all the following points appear in later sections.

♦ You can run Java in the database server An internal Java Virtual
Machine (VM) runs Java code in the database server.

♦ You can call Java from SQL You can call Java functions (methods)
from SQL statements. Java methods provide a more powerful language
than SQL stored procedures for adding logic to the database.

♦ You can access data from Java An internal JDBC driver lets you
access data from Java.

♦ You can debug Java in the database You can use the Sybase
debugger to test and debug your Java classes in the database.

♦ You can use Java classes as data types Every Java class installed
in a database becomes available as a data type that can be used as the
data type of a column in a table or a variable.

♦ You can save Java objects in tables An instance of a Java class (a
Java object) can be saved as a value in a table. You can insert Java
objects into a table, execute SELECT statements against the fields and
methods of objects stored in a table, and retrieve Java objects from a
table.

With this ability, Adaptive Server Anywhere becomes an
object-relational database, supporting objects while not degrading
existing relational functionality.

♦ SQL is preserved The use of Java does not alter the behavior of
existing SQL statements or other aspects of non-Java relational database
behavior.

How do I store Java instructions in the database?

Java is an object-oriented language, so its instructions (source code) come in
the form of classes. To execute Java in a database, you write the Java
instructions outside the database and compile them outside the database into
compiled classes (byte code) which are binary files holding Java
instructions.

Java in the database Q & A

54

You then install these compiled classes into a database. Once installed, you
can execute these classes in the database server.

Adaptive Server Anywhere is a runtime environment for Java classes, not a
Java development environment. You need a Java development environment,
such as Sybase PowerJ or the Sun Microsystems Java Development Kit, to
write and compile Java.

$ For more information, see "Installing Java classes into a database" on
page 94.

How does Java get executed in a database?

Adaptive Server Anywhere includes a Java Virtual Machine (VM) which
runs in the database environment. The Sybase Java VM interprets compiled
Java instructions and runs them in the database server.

In addition to the VM, the SQL request processor in the database server has
been extended so it can call into the VM to execute Java instructions. It can
also process requests from the VM to enable data access from Java.

There is a difference between executing Java code using a standard VM such
as the Sun Java VM java.exe and executing Java code in the database. The
Sun VM runs from a command line, while the Adaptive Server Anywhere
Java VM is available at all times to perform a Java operation whenever it is
required as part of the execution of a SQL statement.

You cannot access the Sybase Java interpreter externally. It is only used
when the execution of a SQL statement requires a Java operation to take
place. The database server starts the VM automatically when needed: you do
not have to take any explicit action to start or stop the VM.

Why Java?

Java provides a number of features that make it ideal for use in the database:

♦ Thorough error checking at compile time.

♦ Built-in error handing with a well-defined error handling methodology.

♦ Built-in garbage collection (memory recovery).

♦ Elimination of many bug-prone programming techniques.

♦ Strong security features.

♦ Java code is interpreted, so no operations get executed without being
acceptable to the VM.

Differences from a
standalone VM

Chapter 3 Introduction to Java in the Database

55

On what platforms is Java in the database supported?

Java in the database is not supported on Windows CE. It is supported on
other Windows operating systems, UNIX, and NetWare.

How do I use Java and SQL together?

A guiding principle for the design of Java in the database is that it provides a
natural, open extension to existing SQL functionality.

♦ Java operations are invoked from SQL Sybase has extended the
range of SQL expressions to include properties and methods of Java
objects, so you can include Java operations in a SQL statement.

♦ Java classes become domains You store Java classes using the
same SQL statements as those used for traditional SQL data types.

You can use many of the classes that are part of the Java API as included in
the Sun Microsystems Java Development Kit. You can also use classes
created and compiled by Java developers.

What is the Java API?

The Java Application Programmer’s Interface (API) is a set of classes created
by Sun Microsystems. It provides a range of base functionality that can be
used and extended by Java developers. It is at the core of what you can do
with Java.

The Java API offers a tremendous amount of functionality in its own right. A
large portion of the Java API is available to any database able to use Java
code. This exposes the majority of non-visual classes from the Java API that
should be familiar to developers currently using the Sun Microsystems Java
Development Kit (JDK).

$ For more information about supported Java APIs, see "Supported Java
packages" on page 77 of the book ASA SQL Reference Manual.

How do I access Java from SQL?

In addition to using the Java API in classes, you can use it in stored
procedures and SQL statements. You can treat the Java API classes as
extensions to the available built-in functions provided by SQL.

Java in the database Q & A

56

For example, the SQL function PI(*) returns the value for pi. The Java API
class java.lang.Math has a parallel field named PI returning the same value.
But java.lang.Math also has a field named E that returns the base of the
natural logarithms, as well as a method that computes the remainder
operation on two arguments as prescribed by the IEEE 754 standard.

Other members of the Java API offer even more specialized functionality.
For example, java.util.Stack generates a last-in, first-out queue that can
store ordered lists; java.util.HashTable maps values to keys;
java.util.StringTokenizer breaks a string of characters into individual word
units.

$ For more information, see "Inserting, updating, and deleting Java
objects" on page 101.

Which Java classes are supported?

The database does not support all Java API classes. Some classes, for
example the java.awt package containing user interface components for
applications, are inappropriate inside a database server. Other classes,
including parts of java.io, deal with writing information to disk, and this also
is unsupported in the database server environment.

$ For more information about supported and unsupported classes, see
"Supported Java packages" on page 77 of the book ASA SQL Reference
Manual and "Unsupported Java packages and classes" on page 78 of the
book ASA SQL Reference Manual.

How can I use my own Java classes in databases?

You can install your own Java classes into a database. For example, a
developer could design, write in Java, and compile with a Java compiler a
user-created Employee class or Package class.

User-created Java classes can contain both information about the subject and
some computational logic. Once installed in a database, Adaptive Server
Anywhere lets you use these classes in all parts and operations of the
database and execute their functionality (in the form of class or instance
methods) as easily as calling a stored procedure.

Chapter 3 Introduction to Java in the Database

57

Java classes and stored procedures are different
Java classes are different from stored procedures. Whereas stored
procedures are written in SQL, Java classes provide a more powerful
language, and can be called from client applications as easily and in the
same way as stored procedures.

When a Java class gets installed in a database, it becomes available as a new
domain. You can use a Java class in any situation where you would use
built-in SQL data types: as a column type in a table or as a variable type.

For example, if a class called Address has been installed into a database, a
column in a table called Addr can be of type Address, which means only
objects based on the Address class can be saved as row values for that
column.

$ For more information, see "Installing Java classes into a database" on
page 94.

Can I access data using Java?

The JDBC interface is an industry standard, designed specifically to access
database systems. The JDBC classes are designed to connect to a database,
request data using SQL statements, and return result sets that can be
processed in the client application.

Normally, client applications use JDBC classes, and the database system
vendor supplies a JDBC driver that allows the JDBC classes to establish a
connection.

You can connect from a client application to Adaptive Server Anywhere via
JDBC, using jConnect or a JDBC/ODBC bridge. Adaptive Server Anywhere
also provides an internal JDBC driver which permits Java classes installed in
a database to use JDBC classes that execute SQL statements.

$ For more information, see "Data Access Using JDBC" on page 129.

Can I move classes from client to server?

You can create Java classes that can be moved between levels of an
enterprise application. The same Java class can be integrated into either the
client application, a middle tier, or the database—wherever is most
appropriate.

Java in the database Q & A

58

You can move a class containing business logic, data, or a combination of
both to any level of the enterprise system, including the server, allowing you
complete flexibility to make the most appropriate use of resources. It also
enables enterprise customers to develop their applications using a single
programming language in a multi-tier architecture with unparalleled
flexibility.

Can I create distributed applications?

You can create an application that has some pieces operating in the database
and some on the client machine. You can pass Java objects from the server to
the client just as you pass SQL data such as character strings and numeric
values.

$ For more information, see "Creating distributed applications" on
page 158.

What can I not do with Java in the database?

Adaptive Server Anywhere is a runtime environment for Java classes, not a
Java development environment.

You cannot carry out the following tasks in the database:

♦ Edit class source files (*.java files).

♦ Compile Java class source files (*.java files).

♦ Execute unsupported Java APIs, such as applet and visual classes.

♦ Execute Java methods that require the execution of native methods. All
user classes installed into the database must be 100% Java.

The Java classes used in Adaptive Server Anywhere must be written and
compiled using a Java application development tool, and then installed into a
database for use, testing, and debugging.

Chapter 3 Introduction to Java in the Database

59

A Java seminar
This section introduces key Java concepts. After reading this section you
should be able to examine Java code, such as a simple class definition or the
invocation of a method, and understand what is taking place.

Java samples directory
Some of the classes used as examples in this manual are located in the
Java samples directory, which is the Samples\ASA\Java subdirectory of
your SQL Anywhere directory.

Two files represent each Java class example: the Java source and the
compiled class. You can immediately install to a database (without
modification) the compiled version of the Java class examples.

Understanding Java classes

A Java class combines data and functionality—the ability to hold
information and perform computational operations. One way of
understanding the concept of a class is to view it as an entity, an abstract
representation of a thing.

You could design an Invoice class, for example, to mimic paper invoices,
such as those used every day in business operations. Just as a paper invoice
contains certain information (line-item details, who is being invoiced, the
date, payment amount, payment due-date), so also does an instance of an
Invoice class. Classes hold information in fields.

In addition to describing data, a class can make calculations and perform
logical operations. For example, the Invoice class could calculate the tax on a
list of line items for every Invoice object, and add it to the sub total to
produce a final total, without any user intervention. Such a class could also
ensure all essential pieces of information are present in the Invoice and even
indicate when payment is over due or partially paid. Calculations and other
logical operations are carried out by the methods of the class.

The following Java code declares a class called Invoice. This class
declaration would be stored in a file named Invoice.java, and then compiled
into a Java class using a Java compiler.

Example

A Java seminar

60

Compiling Java classes
Compiling the source for a Java class creates a new file with the same
name as the source file, but with a different extension. Compiling
Invoice.java creates a file called Invoice.class which could be used in a
Java application and executed by a Java VM.

The Sun JDK tool for compiling class declarations is javac.exe.

public class Invoice {
 // So far, this class does nothing and knows nothing
}

The class keyword is used, followed by the name of the class. There is an
opening and closing brace: everything declared between the braces, such as
fields and methods, becomes part of the class.

In fact, no Java code exists outside class declarations. Even the Java
procedure that a Java interpreter runs automatically to create and manage
other objects—the main method that is often the start of your application—is
itself located within a class declaration.

Subclasses in Java

You can define classes as subclasses of other classes. A class that is a
subclass of another class can use the fields and method of its parent: this is
called inheritance. You can define additional methods and fields that apply
only to the subclass, and redefine the meaning of inherited fields and
methods.

Java is a single-hierarchy language, meaning that all classes you create or use
eventually inherit from one class. This means the low-level classes (classes
further up in the hierarchy) must be present before higher-level classes can
be used. The base set of classes required to run Java applications is called the
runtime Java classes, or the Java API.

Understanding Java objects

A class is a template that defines what an object is capable of doing, just as
an invoice form is a template that defines what information the invoice
should contain.

Chapter 3 Introduction to Java in the Database

61

Classes contain no specific information about objects. Rather, your
application creates, or instantiates, objects based on the class (template), and
the objects hold the data or perform calculations. The instantiated object is an
instance of the class. For example, an Invoice object is an instance of the
Invoice class. The class defines what the object is capable of but the object is
the incarnation of the class that gives the class meaning and usefulness.

In the invoice example, the invoice form defines what all invoices based on
that form can accomplish. There is one form and zero or many invoices
based on the form. The form contains the definition but the invoice
encapsulates the usefulness.

The Invoice object is created, stores information, is stored, retrieved, edited,
updated, and so on.

Just as one invoice template can create many invoices, with each invoice
separate and distinct from the other in its details, you can generate many
objects from one class.

A method is a part of a class that does something—a function that performs
a calculation or interacts with other objects—on behalf of the class. Methods
can accept arguments, and return a value to the calling function. If no return
value is necessary, a method can return void. Classes can have any number
of methods.

A field is a part of a class that holds information. When you create an object
of type JavaClass, the fields in JavaClass hold the state unique to that object.

Class constructors

You create an object by invoking a class constructor. A constructor is a
method that has the following properties:

♦ A constructor method has the same name as the class, and has no
declared data type. For example, a simple constructor for the Product
class would be declared as follows:

Product () {
...constructor code here...
}

♦ If you include no constructor method in your class definition, a default
method is used that is provided by the Java base object.

♦ You can supply more than one constructor for each class, with different
numbers and types of arguments. When a constructor is invoked, the one
with the proper number and type of arguments is used.

Methods and fields

A Java seminar

62

Understanding fields

There are two categories of Java fields:

♦ Instance fields Each object has its own set of instance fields, created
when the object was created. They hold information specific to that
instance. For example, a lineItem1Description field in the Invoice class
holds the description for a line item on a particular invoice. You can
access instance fields only through an object reference.

♦ Class fields A class field holds information that is independent of any
particular instance. A class field is created when the class is first loaded,
and no further instances are created no matter how many objects are
created. Class fields can be accessed either through the class name or the
object reference.

To declare a field in a class, state its type, then its name, followed by a
semicolon. To declare a class field, use the static Java keyword in the
declaration. You declare fields in the body of the class and not within a
method; declaring a variable within a method makes it a part of the method,
not of the class.

The following declaration of the class Invoice has four fields, corresponding
to information that might be contained on two line items on an invoice.

public class Invoice {

 // Fields of an invoice contain the invoice data
 public String lineItem1Description;
 public int lineItem1Cost;

 public String lineItem2Description;
 public int lineItem2Cost;

}

Understanding methods

There are two categories of Java methods:

♦ Instance methods A totalSum method in the Invoice class could
calculate and add the tax, and return the sum of all costs, but would only
be useful if it is called in conjunction with an Invoice object, one that
had values for its line item costs. The calculation can only be performed
for an object, since the object (not the class) contains the line items of
the invoice.

Examples

Chapter 3 Introduction to Java in the Database

63

♦ Class methods Class methods (also called static methods) can be
invoked without first creating an object. Only the name of the class and
method is necessary to invoke a class method.

Similar to instance methods, class methods accept arguments and return
values. Typically, class methods perform some sort of utility or
information function related to the overall functionality of the class.

Class methods cannot access instance fields.

To declare a method, you state its return type, its name and any parameters it
takes. Like a class declaration, the method uses an opening and closing brace
to identify the body of the method where the code goes.

public class Invoice {

 // Fields
 public String lineItem1Description;
 public double lineItem1Cost;

 public String lineItem2Description;
 public double lineItem2Cost;

 // A method
 public double totalSum() {
 double runningsum;

 runningsum = lineItem1Cost + lineItem2Cost;
 runningsum = runningsum * 1.15;

 return runningsum;
 }
}

Within the body of the totalSum method, a variable named runningsum is
declared. First, this holds the sub total of the first and second line item cost.
This sub total is then multiplied by 15 per cent (the rate of taxation) to
determine the total sum.

The local variable (as it is known within the method body) is then returned to
the calling function. When you invoke the totalSum method, it returns the
sum of the two line item cost fields plus the cost of tax on those two items.

The parseInt method of the java.lang.Integer class, which is supplied with
Adaptive Server Anywhere, is one example of a class method. When given a
string argument, the parseInt method returns the integer version of the
string.

For example given the string value "1", the parseInt method returns 1, the
integer value, without requiring an instance of the java.lang.Integer class to
first be created, as illustrated by this Java code fragment:

Example

A Java seminar

64

String num = "1";
int i = java.lang.Integer.parseInt(num);

The following version of the Invoice class now includes both an instance
method and a class method. The class method named rateOfTaxation
returns the rate of taxation used by the class to calculate the total sum of the
invoice.

The advantage of making the rateOfTaxation method a class method (as
opposed to an instance method or field) is that other classes and procedures
can use the value returned by this method without having to create an
instance of the class first. Only the name of the class and method is required
to return the rate of taxation used by this class.

Making rateofTaxation a method, as opposed to a field, allows the
application developer to change how the rate is calculated without adversely
affecting any objects, applications, or procedures that use its return value.
Future versions of Invoice could make the return value of the
rateOfTaxation class method based on a more complicated calculation
without affecting other methods that use its return value.

public class Invoice {
 // Fields
 public String lineItem1Description;
 public double lineItem1Cost;
 public String lineItem2Description;
 public double lineItem2Cost;
 // An instance method
 public double totalSum() {
 double runningsum;
 double taxfactor = 1 + Invoice.rateOfTaxation();

 runningsum = lineItem1Cost + lineItem2Cost;
 runningsum = runningsum * taxfactor;

 return runningsum;
 }
 // A class method
 public static double rateOfTaxation() {
 double rate;
 rate = .15;

 return rate;
 }
}

Example

Chapter 3 Introduction to Java in the Database

65

Object oriented and procedural languages

If you are more familiar with procedural languages such as C, or the SQL
stored procedure language, than object-oriented languages, this section
explains some of the key similarities and differences between procedural and
object-oriented languages.

The main structural unit of code in Java is a class.

A Java class could be looked at as just a collection of procedures and
variables that have been grouped together because they all relate to a
specific, identifiable category.

However the manner in which a class gets used sets object-oriented
languages apart from procedural languages. When an application written in a
procedural language is executed, it is typically loaded into memory once and
takes the user down a pre-defined course of execution.

In object-oriented languages such as Java, a class is used like a template: a
definition of potential program execution. Multiple copies of the class can be
created and loaded dynamically, as needed, with each instance of the class
capable of containing its own data, values, and course of execution. Each
loaded class could be acted on or executed independently of any other class
loaded into memory.

A class that is loaded into memory for execution is said to have been
instantiated. An instantiated class is called an object: it is an application
derived from the class that is prepared to hold unique values or have its
methods executed in a manner independent of other class instances.

A Java glossary

The following items outline some of the details regarding Java classes. It is
by no means an exhaustive source of knowledge about the Java language, but
may aid in the use of Java classes in Adaptive Server Anywhere.

$ For more information about the Java language, see the online book
Thinking in Java, by Bruce Eckel, included with Adaptive Server Anywhere
in the file Samples\ASA\Java\Tjava.pdf.

A package is a grouping of classes that share a common purpose or
category. One member of a package has special privileges to access data and
methods in other members of the package, hence the protected access
modifier.

A package is the Java equivalent of a library. It is a collection of classes
which can be made available using the import statement. The following Java
statement imports the utility library from the Java API:

Java is based on
classes

Packages

A Java seminar

66

import java.util.*

Packages are typically held in JAR files, which have the extension .jar or
.zip.

An access modifier determines the visibility (essentially the public, private,
or protected keyword used in front of any declaration) of a field, method or
class to other Java objects.

♦ A public class, method, or field is visible everywhere.

♦ A private class, method, or field is visible only in methods defined
within that class.

♦ A protected method or field is visible to methods defined within that
class, within sublclasses of the class, or within other classes in the same
package.

♦ The default visibility, known as package, means that the method or field
is visible within the class and to other classes in the same package.

A constructor is a special method of a Java class that is called when an
instance of the class is created.

Classes can define their own constructors, including multiple, overriding
constructors. Which arguments were used in the attempt to create the object
determine which constructor is used. When the type, number, and order of
arguments used to create an instance of the class match one of the class’s
constructors, that constructor is used when creating the object.

Garbage collection automatically removes any object with no references to
it, with the exception of objects stored as values in a table.

There is no such thing as a destructor method in Java (as there is in C++).
Java classes can define their own finalize method for clean up operations
when an object is discarded during garbage collection.

Java classes can inherit only from one class. Java uses interfaces instead of
multiple-inheritance. A class can implement multiple interfaces. Each
interface defines a set of methods and method profiles that must be
implemented by the class for the class to be compiled.

An interface defines what methods and static fields the class must declare.
The implementation of the methods and fields declared in an interface is
located within the class that uses the interface: the interface defines what the
class must declare; it is up to the class to determine how it is implemented.

Java error handling

Java error handling code is separate from the code for normal processing.

Public versus
private

Constructors

Garbage collection

Interfaces

Chapter 3 Introduction to Java in the Database

67

Errors generate an exception object representing the error. This is called
throwing an exception. A thrown exception terminates a Java program
unless it is caught and handled properly at some level of the application.

Both Java API classes and custom-created classes can throw exceptions. In
fact, users can create their own exception classes which throw their own
custom-created classes.

If there is no exception handler in the body of the method where the
exception occurred, then the search for an exception handler continues up the
call stack. If the top of the call stack is reached and no exception handler has
been found, the default exception handler of the Java interpreter running the
application is called and the program terminates.

In Adaptive Server Anywhere, if a SQL statement calls a Java method, and
an unhandled exception is thrown, a SQL error is generated.

All errors in Java come from two types of error classes: Exception and
Error. Usually, Exception-based errors are handled by error handling code
in your method body. Error type errors are specifically for internal errors and
resource exhaustion errors inside the Java run-time system.

Exception class errors are thrown and caught. Exception handling code is
characterized by try, catch, and finally code blocks.

A try block executes code that may generate an error. A catch block is code
that executes if the execution of a try block generates (or throws) an error.

A finally block defines a block of code that executes regardless of whether
an error was generated and caught and is typically used for cleanup
operations. It is used for code that, under no circumstances, can be omitted.

There are two types of exception class errors: those that are runtime
exceptions and those that are not runtime exceptions.

Errors generated by the runtime system are known as implicit exceptions, in
that they do not have to be explicitly handled as part of every class or method
declaration.

For example, an array out of bounds exception can occur whenever an array
is used, but the error does not have to be part of the declaration of the class
or method that uses the array.

All other exceptions are explicit. If the method being invoked can throw an
error, it must be explicitly caught by the class using the exception-throwing
method, or this class must explicitly throw the error itself by identifying the
exception it may generate in its class declaration. Essentially, explicit
exceptions must be dealt with explicitly. A method must declare all the
explicit errors it throws, or catch all the explicit errors that may potentially
be thrown.

Error types in Java

A Java seminar

68

Non-runtime exceptions are checked at compile time. Runtime exceptions
are usually caused by errors in programming. Java catches many such errors
during compilation, before running the code.

Every Java method is given an alternative path of execution so that all Java
methods complete, even if they are unable to complete normally. If the type
of error thrown is not caught, it’s passed to the next code block or method in
the stack.

Chapter 3 Introduction to Java in the Database

69

The runtime environment for Java in the
database

This section describes the Sybase runtime environment for Java, and how it
differs from a standard Java runtime environment.

Supported versions of Java and JDBC

The Sybase Java VM provides you with the choice of using the JDK 1.1,
JDK 1.2, or JDK 1.3 programming interfaces. The specific versions provided
are JDK versions 1.1.8 and 1.3.

Between release 1.0 of the JDK and release 1.1, several new APIs were
introduced. As well, a number were deprecated—the use of certain APIs
became no longer recommended and support for them may be dropped in
future releases.

A Java class file using deprecated APIs generates a warning when compiled,
but does still execute on a Java virtual machine built to release 1.1 standards,
such as the Sybase VM.

The internal JDBC driver supports JDBC version 2.

$ For more information on the JDK APIs that are supported, please see
"Supported Java packages" on page 77 of the book ASA SQL Reference
Manual.

$ For information on how to create a database that supports Java, see
"Java-enabling a database" on page 89.

The runtime Java classes

The runtime Java classes are the low-level classes that are made available to
a database when it is created or Java-enabled. These classes include a subset
of the Java API. These classes are part of the Sun Java Development Kit.

The runtime classes provide basic functionality on which to build
applications. The runtime classes are always available to classes in the
database.

You can incorporate the runtime Java classes in your own user-created
classes: either inheriting their functionality or using it within a calculation or
operation in a method.

Some Java API classes included in the runtime Java classes include:Examples

The runtime environment for Java in the database

70

♦ Primitive Java data types All primitive (native) data types in Java
have a corresponding class. In addition to being able to create objects of
these types, the classes have additional, often useful, functionality.

The Java int data type has a corresponding class in java.lang.Integer.

♦ The utility package The package java.util.* contains a number of
very helpful classes whose functionality has no parallel in the SQL
functions available in Adaptive Server Anywhere.

Some of the classes include:

♦ Hashtable which maps keys to values.

♦ StringTokenizer which breaks a String down into individual
words.

♦ Vector which holds an array of objects whose size can change
dynamically

♦ Stack which holds a last-in, first-out stack of objects.

♦ JDBC for SQL operations The package java.SQL.* contains the
classes needed by Java objects to extract data from the database using
SQL statements.

Unlike user-defined classes, the runtime classes are not stored in the
database. Instead, they are stored in files in the java subdirectory of the
Adaptive Server Anywhere installation directory.

User-defined classes

User-defined classes are installed into a database using the INSTALL
statement. Once installed, they become available to other classes in the
database. If they are public classes, they are available from SQL as domains.

$ For more information about installing classes, see "Installing Java
classes into a database" on page 94.

Identifying Java methods and fields

In SQL statements, the dot identifies columns of tables, as in the following
query:

SELECT employee.emp_id
FROM employee

The dot also indicates object ownership in qualified object names:

SELECT emp_id
FROM DBA.employee

The dot in SQL

Chapter 3 Introduction to Java in the Database

71

In Java, the dot is an operator that invokes the methods or access for the
fields of a Java class or object. It is also part of an identifier, used to identify
class names, as in the fully qualified class name java.util.Hashtable.

In the following Java code fragment, the dot is part of an identifier on the
first line of code. On the second line of code, it is an operator.

java.util.Random rnd = new java.util.Random();
int i = rnd.nextInt();

In SQL, the dot operator can be replaced with the double right angle bracket
(>>). The dot operator is more Java-like, but can lead to ambiguity with
respect to existing SQL names. The use of >> removes this ambiguity.

>> in SQL is not the same as >> in Java
You can only use the double right angle bracket operator in SQL
statements where a Java dot operator is otherwise expected. Within a Java
class, the double right angle bracket is not a replacement for the dot
operator and has a completely different meaning in its role as the right bit
shift operator.

For example, the following batch of SQL statements is valid:

CREATE VARIABLE rnd java.util.Random;
SET rnd = NEW java.util.Random();
SELECT rnd>>nextInt();

The result of the SELECT statement is a randomly generated integer.

Using the variable created in the previous SQL code example, the following
SQL statement illustrates the correct use of a class method:

SELECT java.lang.Math>>abs(rnd>>nextInt());

Java is case sensitive

Java syntax works as you would expect it to, and SQL syntax is unaltered by
the presence of Java classes. This is true even if the same SQL statement
contains both Java and SQL syntax. It’s a simple statement, but with
far-reaching implications.

Java is case sensitive. The Java class FindOut is a completely different class
from the class Findout. SQL is case insensitive with respect to keywords and
identifiers.

The dot in Java

Invoking Java
methods from SQL

The runtime environment for Java in the database

72

Java case sensitivity is preserved even when embedded in a SQL statement
that is case insensitive. The Java parts of the statement must be case
sensitive, even though the parts previous to and following the Java syntax
can be in either upper or lower case.

For example, the following SQL statements successfully execute because the
case of Java objects, classes, and operators is respected even though there is
variation in the case of the remaining SQL parts of the statement.

SeLeCt java.lang.Math.random();

When you use a Java class as a data type for a column, it is a user-defined
SQL data type. However, it is still case sensitive. This convention prevents
ambiguities with Java classes that differ only in case.

Strings in Java and SQL

A set of double quotes identifies string literals in Java, as in the following
Java code fragment:

String str = "This is a string";

In SQL, however, single quotes mark strings, and double quotes indicate an
identifier, as illustrated by the following SQL statement:

INSERT INTO TABLE DBA.t1
VALUES(’Hello’)

You should always use the double quote in Java source code, and single
quotes in SQL statements.

For example, the following SQL statements are valid.

CREATE VARIABLE str char(20);
SET str = NEW java.lang.String(’Brand new object’)

The following Java code fragment is also valid, if used within a Java class.

String str = new java.lang.String(
 "Brand new object");

Printing to the command line

Printing to the standard output is a quick way of checking variable values
and execution results at various points of code execution. When the method
in the second line of the following Java code fragment is encountered, the
string argument it accepts prints out to standard output.

String str = "Hello world";
System.out.println(str);

Data types

Chapter 3 Introduction to Java in the Database

73

In Adaptive Server Anywhere, standard output is the server window, so the
string appears there. Executing the above Java code within the database is the
equivalent of the following SQL statement.

MESSAGE ’Hello world’

Using the main method

When a class contains a main method matching the following declaration,
most Java run time environments, such as the Sun Java interpreter, execute it
automatically. Normally, this static method executes only if it is the class
being invoked by the Java interpreter

public static void main(String args[]) { }

Useful for testing the functionality of Java objects, you are always
guaranteed this method will be called first, when the Sun Java runtime
system starts.

In Adaptive Server Anywhere, the Java runtime system is always available.
The functionality of objects and methods can be tested in an ad hoc, dynamic
manner using SQL statements. In many ways this is far more flexible for
testing Java class functionality.

Scope and persistence

SQL variables are persistent only for the duration of the connection. This is
unchanged from previous versions of Adaptive Server Anywhere, and is
unaffected by whether the variable is a Java class or a native SQL data type.

The persistence of Java classes is analogous to tables in a database: tables
exist in the database until you drop them, regardless of whether they hold
data or even whether they are ever used. Java classes installed to a database
are similar: they are available for use until you explicitly remove them with a
REMOVE statement.

$ For more information on removing classes, see "REMOVE statement"
on page 507 of the book ASA SQL Reference Manual.

A class method in an installed Java class can be called at any time from a
SQL statement. You can execute the following statement anywhere you can
execute SQL statements.

SELECT java.lang.Math.abs(-342)

A Java object is only available in two forms: as the value of a variable, or as
a value in a table.

The runtime environment for Java in the database

74

Java escape characters in SQL statements

In Java code, you can use escape characters to insert certain special
characters into strings. Consider the following code, which inserts a new line
and tab in front of a sentence containing an apostrophe.

String str = "\n\t\This is an object\’s string literal";

Adaptive Server Anywhere permits the use of Java escape characters only
when being used by Java classes. From within SQL, however, you must
follow the rules that apply to strings in SQL.

For example, to pass a string value to a field using a SQL statement, you
could use the following statement, but the Java escape characters could not.

SET obj.str = ’\nThis is the object’’s string field’;

$ For more information on SQL string handling rules, see "Strings" on
page 9 of the book ASA SQL Reference Manual.

Keyword conflicts

SQL keywords can conflict with the names of Java classes, including API
classes. This occurs when the name of a class, such as the Date class, which
is a member of the java.util.* package, is referenced. SQL reserves the word
Date for use as a keyword, even though it also the name of a Java class.

When such ambiguities appear, you can use double quotes to identify that
you are not using the word in question as the SQL reserved word. For
example, the following SQL statement causes an error because Date is a
keyword and SQL reserves its use.

-- This statement is incorrect
CREATE VARIABLE dt java.util.Date

However the following two statements work correctly because the word Date
is within quotation marks.

CREATE VARIABLE dt java.util."Date";
SET dt = NEW java.util."Date"(1997, 11, 22, 16, 11, 01)

The variable dt now contains the date: November 22, 1997, 4:11 p.m.

Use of import statements

It is common in a Java class declaration to include an import statement to
access classes in another package. You can reference imported classes using
unqualified class names.

Chapter 3 Introduction to Java in the Database

75

For example, you can reference the Stack class of the java.util package in
two ways:

♦ explicitly using the name java.util.Stack, or

♦ using the name Stack, and including the following import statement:

import java.util.*;

A class referenced by another class, either explicitly with a fully qualified
name or implicitly using an import statement, must also be installed in the
database.

The import statement works as intended within compiled classes. However,
within the Adaptive Server Anywhere runtime environment, no equivalent to
the import statement exists. All class names used in SQL statements or stored
procedures must be fully qualified. For example, to create a variable of type
String, you would reference the class using the fully qualified name:
java.lang.String.

Using the CLASSPATH variable

Sun’s Java runtime environment and the Sun JDK Java compiler use the
CLASSPATH environment variable to locate classes referenced within Java
code. A CLASSPATH variable provides the link between Java code and the
actual file path or URL location of the classes being referenced. For
example, import java.io.* allows all the classes in the java.io package to
be referenced without a fully qualified name. Only the class name is required
in the following Java code to use classes from the java.io package. The
CLASSPATH environment variable on the system where the Java class
declaration is to be compiled must include the location of the Java directory,
the root of the java.io package.

The CLASSPATH environment variable does not affect the Adaptive Server
Anywhere runtime environment for Java during the execution of Java
operations because the classes are stored in the database, instead of in
external files or archives.

The CLASSPATH variable can, however, be used to locate a file during the
installation of classes. For example, the following statement installs a
user-created Java class to a database, but only specifies the name of the file,
not its full path and name. (Note that this statement involves no Java
operations.)

INSTALL JAVA NEW
FROM FILE ’Invoice.class’

Classes further up
in the hierarchy
must also be
installed.

CLASSPATH
ignored at runtime

CLASSPATH used
to install classes

The runtime environment for Java in the database

76

If the file specified is in a directory or zip file specified by the CLASSPATH
environmental variable, Adaptive Server Anywhere will successfully locate
the file and install the class.

Public fields

It is a common practice in object-oriented programming to define class fields
as private and make their values available only through public methods.

Many of the examples used in this documentation render fields public to
make examples more compact and easier to read. Using public fields in
Adaptive Server Anywhere also offers a performance advantage over
accessing public methods.

The general convention followed in this documentation is that a user-created
Java class designed for use in Adaptive Server Anywhere exposes its main
values in its fields. Methods contain computational automation and logic that
may act on these fields.

Chapter 3 Introduction to Java in the Database

77

Tutorial: A Java in the database exercise
This tutorial is a primer for invoking Java operations on Java classes and
objects using SQL statements. It describes how to install a Java class into the
database. It also describes how to access the class and its members and
methods from SQL statements. The tutorial uses the Invoice class created in
"A Java seminar" on page 59.

The tutorial assumes that you have installed Java in the database software. It
also assumes that you have a Java Development Kit (JDK) installed,
including the Java compiler (javac).

Source code and batch files for this sample are provided in the directory
Samples\ASA|InvoiceJava under your SQL Anywhere directory.

Create and compile the sample Java class

The first step is to write the Java code and compile it. This is done outside
the database

v To create and compile the class:

1 Create a file called Invoice.java holding the following code.

Requirements

Resources

Tutorial: A Java in the database exercise

78

public class Invoice {

 // Fields
 public String lineItem1Description;
 public double lineItem1Cost;

 public String lineItem2Description;
 public double lineItem2Cost;

 // An instance method
 public double totalSum() {
 double runningsum;
 double taxfactor = 1 + Invoice.rateOfTaxation();

 runningsum = lineItem1Cost + lineItem2Cost;
 runningsum = runningsum * taxfactor;

 return runningsum;
 }

 // A class method
 public static double rateOfTaxation() {
 double rate;
 rate = .15;

 return rate;
 }
}

You can find source code for this class as the file
Samples\ASA|JavaInvoice\Invoice.java under your SQL Anywhere
directory.

2 Compile the file to create the file Invoice.class.

From a command prompt in the same directory as Invoice.java, execute
the following command.

javac *.java

The class is now compiled and ready to be installed into the database.

Install the sample Java class

Java classes must be installed into a database before they can be used. You
can install classes from Sybase Central or Interactive SQL. This section
provides instructions for both. Choose whichever you prefer.

v To install the class to the sample database (Sybase Central):

1 Start Sybase Central and connect to the sample database.

Chapter 3 Introduction to Java in the Database

79

2 Open the Java Objects folder and double-click Add Java Class. The Java
Class Creation wizard appears.

3 Use the Browse button to locate Invoice.class in the
Samples\ASA\JavaInvoice subdirectory of your SQL Anywhere
installation directory.

4 Click Finish to exit the wizard.

v To install the class to the sample database (Interactive SQL):

1 Start Interactive SQL and connect to the sample database.

2 In the SQL Statements pane of Interactive SQL, type the following
command:

INSTALL JAVA NEW
FROM FILE
’path\\samples\\ASA\\JavaInvoice\\Invoice.class’

where path is your SQL Anywhere directory.

The class is now installed into the sample database.

♦ At this point no Java in the database operations have taken place. The
class has been installed into the database and is ready for use as the data
type of a variable or column in a table.

♦ Changes made to the class file from now on are not automatically
reflected in the copy of the class in the database. You must re-install the
classes if you want the changes reflected.

$ For more information on installing classes, and for information on
updating an installed class, see "Installing Java classes into a database" on
page 94.

Creating a SQL variable of type Invoice

This section creates a SQL variable that references a Java object of type
Invoice.

Case sensitivity
Java is case sensitive, so the portions of the following examples in this
section pertaining to Java syntax are written using the correct case. SQL
syntax is rendered in upper case.

1 From Interactive SQL, execute the following statement to create a SQL
variable named Inv of type Invoice, where Invoice is the Java class you
installed to a database:

Notes

Tutorial: A Java in the database exercise

80

CREATE VARIABLE Inv Invoice

Once you create a variable, it can only be assigned a value if its data
type and declared data type are identical or if the value is a subclass of
the declared data type. In this case, the variable Inv can only contain a
reference to an object of type Invoice or a subclass of Invoice.

Initially, the variable Inv is NULL because no value has been passed to
it.

2 Execute the following statement to identify the current value of the
variable Inv.

SELECT IFNULL(Inv,
 ’No object referenced’,
 ’Variable not null: contains object reference’)

The variable currently has no object referenced.

3 Assign a value to Inv.

You must instatiate an instance of the Invoice class using the NEW
keyword.

SET Inv = NEW Invoice()

The Inv variable now has a reference to a Java object. To verify this,
you can execute the statement from step 2.

The Inv variable contains a reference to a Java object of type Invoice.
Using this reference, you can access any of the object’s fields or invoke
any of its methods.

Access fields and methods of the Java object

If a variable (or column value in a table) contains a reference to a Java
object, then the fields of the object can be passed values and its methods can
be invoked.

For example, the variable of type Invoice that you created in the previous
section contains a reference to an Invoice object and has four fields, the
value of which can be set using SQL statements.

v To access fields of the Invoice object:

1 From Interactive SQL, execute the following SQL statements to set field
values for the variable Inv.

SET Inv.lineItem1Description = ’Work boots’;

SET Inv.lineItem1Cost = ’79.99’;

SET Inv.lineItem2Description = ’Hay fork’;

Chapter 3 Introduction to Java in the Database

81

SET Inv.lineItem2Cost = ’37.49’;

Each SQL statement passes a value to a field in the Java object
referenced by Inv.

2 Execute SELECT statements against the variable. Any of the following
SQL statements return the current value of a field in the Java object
referenced by Inv.

SELECT Inv.lineItem1Description;

SELECT Inv.lineItem1Cost;

SELECT Inv.lineItem2Description;

SELECT Inv.lineItem2Cost;

3 Use a field of the Inv variable in a SQL expression.

Execute the following SQL statement and have executed the above SQL
statements.

SELECT * FROM PRODUCT
WHERE unit_price < Inv.lineItem2Cost;

In addition to having public fields, the Invoice class has one instance
method, which you can invoke

v To invoking methods of the Invoice object:

♦ From Interactive SQL, execute the following SQL statement, which
invokes the totalSum() method of the object referenced by the variable
Inv. It returns the sum of the two cost fields plus the tax charged on this
sum.

SELECT Inv.totalSum();

Method names are always followed by parentheses, even when they take no
arguments. Field names are not followed by parentheses.

The totalSum() method takes no arguments, but returns a value. The
brackets are used because a Java operation is being invoked even though the
method takes no arguments.

For Java in the database, direct field access is faster than method invokation.
Accessing a field does not require the Java VM to be invoked, while
invoking a method requires the VM to execute the method.

As indicated by the Invoice class definition outlined at the beginning of this
section, the totalSum instance method makes use of the class method
rateOfTaxation.

You can access this class method directly from a SQL statement.

SELECT Invoice.rateOfTaxation();

Calling methods
versus referencing
fields

Tutorial: A Java in the database exercise

82

Notice the name of the class is used, not the name of a variable containing a
reference to an Invoice object. This is consistent with the way Java handles
class methods, even though it is being used in a SQL statement. A class
method can be invoked even if no object based on that class has been
instantiated.

Class methods do not require an instance of the class to work properly, but
they can still be invoked on an object. The following SQL statement yields
the same results as the previously executed SQL statement.

SELECT Inv.rateOfTaxation();

Saving Java objects in tables

When you install a class in a database, it is available as a new data type.
Columns in a table can be of type Javaclass where Javaclass is the name of
an installed public Java class. You can then create a Java object and add it to
a table as the value of a column.

v To use the Invoice class in a table:

1 Create a table with a column of type Invoice.

From Interactive SQL, execute the following SQL statement.

CREATE TABLE T1 (
 ID int,
 JCol Invoice
);

The column named JCol only accepts objects of type Invoice or one of
its subclasses.

2 Using the variable Inv, which contains a reference to a Java object of
type Invoice, execute the following SQL statement to add a row to the
table T1.

INSERT INTO T1
VALUES(1, Inv);

Once an object has been added to the table T1, you can issue select
statements involving the fields and methods of the objects in the table.

3 Execute the following SQL statement to return the value of the field
lineItem1Description for all the objects in the table T1 (right now, there
should only be one object in the table).

SELECT ID, JCol.lineItem1Description
FROM T1;

Chapter 3 Introduction to Java in the Database

83

You can execute similar select statements involving other fields and
methods of the object.

4 A second method for creating a Java object and adding it to a table
involves the following expression, which always creates a Java object
and returns a reference to it.

NEW Javaclassname()

5 You can use this expression in a number of ways. For example, execute
the following SQL statement to create a Java object and inserts it into
the table T1.

INSERT INTO T1
VALUES (2, NEW Invoice());

6 Execute the following SQL statement to verify that these two objects
have been saved as values of column JCol in the table T1.

SELECT ID, JCol.totalSum()
FROM t1

The results of the JCol column (the second row returned by the above
statement) should be 0, because the fields in that object have no values
and the totalSum method is a calculation of those fields.

Returning an object using a query

In addition to accessing fields and methods, you can also retrieve an entire
object from a table using a query.

v To access Invoice objects stored in a table:

♦ From Interactive SQL, execute the following series of statements to
create a new variable and pass a value (it can only contain an object
reference where the object is of type Invoice). The object reference
passed to the variable was generated using the table T1.

CREATE VARIABLE Inv2 Invoice;

SET Inv2 = (select JCol from T1 where ID = 2);

SET Inv2.lineItem1Description = ’Sweet feed’;

SET Inv2.lineItem2Description = ’Drive belt’;

The value for the lineItem1Description field and lineItem2Description
have been changed in the variable Inv2, but not in the table that was the
source for the value of this variable.

Tutorial: A Java in the database exercise

84

This is consistent with the way SQL variables are currently handled: the
variable Inv contains a reference to a Java object. The value in the table
that was the source of the variable’s reference is not altered until an
UPDATE statement is executed.

85

C H A P T E R 4

Using Java in the Database

This chapter describes how to add Java classes and objects to your database,
and how to use these objects in a relational database.

Topic Page

Introduction 86

Java-enabling a database 89

Installing Java classes into a database 94

Creating columns to hold Java objects 99

Inserting, updating, and deleting Java objects 101

Querying Java objects 106

Comparing Java fields and objects 108

Special features of Java classes in the database 111

How Java objects are stored 118

Java database design 121

Using computed columns with Java classes 124

Configuring memory for Java 127

To run the examples in this chapter, first run the file
Samples\ASA\Java\jdemo.sql under your SQL Anywhere directory.

$ For more information, and full instructions, see "Setting up the Java
samples" on page 86.

About this chapter

Contents

Before you begin

Introduction

86

Introduction
This chapter describes how to accomplish tasks using Java in the database,
including the following:

♦ How to Java-enable a database You need to follow certain steps to
enable your database to use Java.

♦ Installing Java classes You need to install Java classes in a database
to make them available for use in the server.

♦ Properties of Java columns This section describes how columns with
Java class data types fit into the relational model.

♦ Java database design This section provides tips for designing
databases that use Java classes.

Setting up the Java samples

Many of the examples in this chapter require you to use a set of classes and
tables added to the sample database. The tables hold the same information as
tables of the same name in the sample database, but the user ID named jdba
owns them. They use Java class data types instead of simple relational types
to hold the information. You can find the sample in the Samples\ASA\Java
subdirectory of your SQL Anywhere directory.

Sample tables designed for tutorial use only
The sample tables illustrate different Java features. They are not a
recommendation for how to redesign your database. You should consider
your own situation in evaluating where to incorporate Java data types and
other features.

Setting up the Java examples involves two steps:

1 Java-enable the sample database.

2 Add the Java sample classes and tables.

v To Java-enable the sample database:

1 Start Interactive SQL and connect to the sample database.

2 In the SQL Statements pane of Interactive SQL, type the following
statement:

ALTER DATABASE UPGRADE JAVA JDK ’1.3’

Chapter 4 Using Java in the Database

87

3 Shut down Interactive SQL and the sample database.

The asademo.db database must be shut down before you can use Java
features.

v To add Java classes and tables to the sample database:

1 Start Interactive SQL and connect to the sample database.

2 In the SQL Statements pane of Interactive SQL, type the following
statement:

READ "path\\Samples\\ASA\\Java\\jdemo.sql"

where path is your SQL Anywhere directory. This runs the instructions
in the jdemo.sql command file. The instructions may take some time to
complete.

You can view the script Samples\ASA\Java\jdemo.sql using a text editor. It
executes the following steps:

1 Installs the JDBCExamples class.

2 Creates a user ID named JDBA with password SQL and DBA authority,
and sets the current user to be JDBA.

3 Installs a JAR file named asademo.jar. This file contains the class
definitions used in the tables.

4 Creates the following tables under the JDBA user ID:

♦ product

♦ contact

♦ customer

♦ employee

♦ sales_order

♦ sales_order_items

This is a subset of the tables in the sample database.

5 Adds the data from the standard tables of the same names into the Java
tables. This step uses INSERT from SELECT statements. This step may
take some time.

6 Creates some indexes and foreign keys to add integrity constraints to the
schema.

Introduction

88

Managing the runtime environment for Java

The runtime environment for Java consists of:

♦ The Sybase Java Virtual Machine Running within the database
server, the Sybase Java Virtual Machine interprets and executes the
compiled Java class files.

♦ The runtime Java classes When you create a database, a set of Java
classes becomes available to the database. Java applications in the
database require these runtime classes to work properly.

To provide a runtime environment for Java, you need to carry out the
following tasks:

♦ Java-enable your database This task involves ensuring the
availability of built-in classes and the upgrading of the database to
Version 8 standards.

$ For more information, see "Java-enabling a database" on page 89.

♦ Install other classes your users need This task involves ensuring
that classes other than the runtime classes are installed and up to date.

$ For more information, see "Installing Java classes into a database"
on page 94.

♦ Configuring your server You must configure your server to make the
necessary memory available to run Java tasks.

$ For more information, see "Configuring memory for Java" on
page 127.

You can carry out all these tasks from Sybase Central or from
Interactive SQL.

Management tasks
for Java

Tools for managing
Java

Chapter 4 Using Java in the Database

89

Java-enabling a database
The Adaptive Server Anywhere Runtime environment for Java requires a
Java VM and the Sybase runtime Java classes. You need to Java-enable a
database for it to be able to use the runtime Java classes.

Java in the database is a separately-licensed component of SQL Anywhere
Studio.

New databases are not Java-enabled by default
By default, databases created with Adaptive Server Anywhere are not
Java-enabled.

Java is a single-hierarchy language, meaning that all classes you create or use
eventually inherit from one class. This means the low-level classes (classes
further up in the hierarchy) must be present before you can use higher-level
classes. The base set of classes required to run Java applications are the
runtime Java classes, or the Java API.

Java-enabling a database adds many entries into the system tables. This adds
to the size of the database and, more significantly, adds about 200K to the
memory requirements for running the database, even if you do not use any
Java functionality.

If you are not going to use Java, and if you are running in a limited-memory
environment, you may wish to not Java-enable your database.

The Sybase runtime Java classes

The Sybase runtime Java classes are held on disk rather than stored in a
database like other classes. The following files contain the Sybase runtime
Java classes. The files are in the Java subdirectory of your SQL Anywhere
directory:

♦ 1.1\classes.zip This file, licensed from Sun Microsystems, contains a
subset of the Sun Microsystems Java runtime classes for JDK 1.1.8.

♦ 1.3\rt.jar This file, licensed from Sun Microsystems, contains a subset
of the Sun Microsystems Java runtime classes for JDK 1.3.

♦ asajdbc.zip This file contains Sybase internal JDBC driver classes for
JDK 1.1.

♦ asajrt12.zip This file contains Sybase internal JDBC driver classes for
JDK 1.2 and JDK 1.3.

When not to
Java-enable a
database

Java-enabling a database

90

When you Java-enable a database, you also update the system tables with a
list of available classes from the system JAR files. You can then browse the
class hierarchy from Sybase Central, but the classes themselves are not
present in the database.

The database stores runtime class names the under the following JAR files:

♦ ASAJRT Class names from asajdbc.zip are held here.

♦ ASAJDBCDRV Class names from jdbcdrv.zip are held here.

♦ ASASystem Class names from classes.zip are held here.

These runtime classes include the following packages:

♦ java Packages stored here include the supported Java runtime classes
from Sun Microsystems.

$ For a list of the supported Java runtime classes, see "Supported
Java packages" on page 77 of the book ASA SQL Reference Manual.

♦ com.sybase Packages stored here provide server-side JDBC support.

♦ sun Sun Microsystems provides the packages stored here.

♦ sybase.sql Packages stored here are part of the Sybase server-side
JDBC support.

Caution: do not install classes from another version of Sun’s JDK
Classes in Sun’s JDK share names with the Sybase runtime Java classes
that must be installed in any database intended to execute Java
operations.

You must not replace the classes.zip file included with Adaptive Server
Anywhere. Using another version of these classes could cause
compatibility problems with the Sybase Java Virtual Machine.

You must only Java-enable a database using the methods outlined in this
section.

Ways of Java-enabling a database

You can Java-enable databases when you create them, when you upgrade
them, or in a separate operation at a later time.

You can create a Java-enabled database using:

♦ the CREATE DATABASE statement.

JAR files

Installed packages

Creating
databases

Chapter 4 Using Java in the Database

91

$ For details of the syntax, see "CREATE DATABASE statement"
on page 273 of the book ASA SQL Reference Manual.

♦ the dbinit utility.

$ For details, see "Creating a database using the dbinit command-line
utility" on page 466 of the book ASA Database Administration Guide.

♦ Sybase Central.

$ For details, see "Creating a database" on page 29 of the book ASA
SQL User’s Guide.

You can upgrade a database to a Java-enabled Version 8 database using:

♦ the ALTER DATABASE statement.

$ For details of the syntax, see "ALTER DATABASE statement" on
page 205 of the book ASA SQL Reference Manual.

♦ the dbupgrad.exe upgrade utility.

$ For details, see "Upgrading a database using the dbupgrad
command-line utility" on page 522 of the book ASA Database
Administration Guide.

♦ Sybase Central.

$ For details, see "Java-enabling a database" on page 92.

If you choose not to install Java in the database, all database operations not
involving Java operations remain fully functional and work as expected.

New databases and Java

By default, Adaptive Server Anywhere does not install Sybase runtime Java
classes each time you create a database. The installation of this
separately-licensable component is optional, and controlled by the method
you use to create the database.

The CREATE DATABASE SQL statement has an option called JAVA. To
Java-enable a database, you can set the option to ON. To disable Java, set the
option to OFF. This option is set to OFF by default.

For example, the following statement creates a Java-enabled database file
named temp.db:

CREATE DATABASE ’c:\\sybase\\asa8\\temp’ JAVA ON

The following statement creates a database file named temp2.db, which does
not support Java.

Upgrading
databases

CREATE
DATABASE
options

Java-enabling a database

92

CREATE DATABASE ’c:\\sybase\\asa8\\temp2’

You can create databases using the dbinit.exe database initialization utility.
This utility has options that control whether or not to install the runtime Java
classes in the newly-created database. By default, the classes are not
installed.

The same options are available when creating databases using Sybase
Central.

Upgrading databases and Java

You can upgrade existing databases created with earlier versions of the
software using the Upgrade utility or the ALTER DATABASE statement.

You can upgrade databases to Adaptive Server Anywhere Version 8
standards using the dbupgrad.exe utility. Using the –jr Upgrade utility
option prevents the installation of Sybase runtime Java classes.

$ For information on the conditions under which Java in the database is
included in the upgraded database, see "Upgrading a database using the
dbupgrad command-line utility" on page 522 of the book ASA Database
Administration Guide.

Java-enabling a database

If you have created a database, or upgraded a database to standards, but have
chosen not to Java-enable the database, you can add the necessary Java
classes at a later date, using either Sybase Central or Interactive SQL.

v To add the Java runtime classes to a database (Sybase Central):

1 Connect to the database from Sybase Central as a user with DBA
authority.

2 Right-click the database and choose Upgrade Database.

3 Click Next on the introductory page of the wizard.

4 Select the database you want to upgrade from the list.

5 You can choose to create a backup of the database if you wish. Click
Next.

6 You can choose to install jConnect meta-information support if you
wish. Click Next.

Database
initialization utility

Database upgrade
utility

Chapter 4 Using Java in the Database

93

7 Select the Install Java Support option. You must also choose which
version of the JDK you want to install. The default classes are the JDK
1.3 classes. For version 7.x databases, the default classes are the JDK
1.1.8 classes.

8 Follow the remaining instructions in the wizard.

v To add the Java runtime classes to a database (SQL):

1 Connect to the database from Interactive SQL as a user with DBA
authority.

2 Execute the following statement:

ALTER DATABASE UPGRADE JAVA ON

$ For more information, see "ALTER DATABASE statement" on
page 205 of the book ASA SQL Reference Manual.

3 Restart the database for the Java support to take effect.

Using Sybase Central to Java-enable a database

You can use Sybase Central to create databases using wizards. During the
creation or upgrade of a database, the wizard prompts you to choose whether
or not you have the Sybase runtime Java classes installed. By default, this
option Java-enables the database.

Using Sybase Central, you can create or upgrade a database by choosing:

♦ Create Database from the Utilities folder, or

♦ Upgrade Database from the Utilities folder to upgrade a database from a
previous version of the software to a database with Java capabilities.

Installing Java classes into a database

94

Installing Java classes into a database
Before you install a Java class into a database, you must compile it. You can
install Java classes into a database as:

♦ A single class You can install a single class into a database from a
compiled class file. Class files typically have extension .class.

♦ A JAR You can install a set of classes all at once if they are in either a
compressed or uncompressed JAR file. JAR files typically have the
extension .jar or .zip. Adaptive Server Anywhere supports all
compressed JAR files created with the Sun JAR utility, and some other
JAR compression schemes as well.

This section describes how to install Java classes once you have compiled
them. You must have DBA authority to install a class or JAR.

Creating a class

Although the details of each step may differ depending on whether you are
using a Java development tool such as Sybase PowerJ, the steps involved in
creating your own class generally include the following:

v To create a class:

1 Define your class Write the Java code that defines your class. If you
are using the Sun Java SDK then you can use a text editor. If you are
using a development tool such as Sybase PowerJ, the development tool
provides instructions.

Use only supported classes
If your class uses any runtime Java classes, make certain they are
among the list of supported classes as listed in "Supported Java
packages" on page 77 of the book ASA SQL Reference Manual.

User classes must be 100% Java. Native methods are not allowed.

2 Name and save your class Save your class declaration (Java code) in
a file with the extension .java. Make certain the name of the file is the
same as the name of the class and that the case of both names is
identical.

For example, a class called Utility should be saved in a file called
Utility.java.

Chapter 4 Using Java in the Database

95

3 Compile your class This step turns your class declaration containing
Java code into a new, separate file containing byte code. The name of
the new file is the same as the Java code file but has an extension of
.class. You can run a compiled Java class in a Java runtime
environment, regardless of the platform you compiled it on or the
operating system of the runtime environment.

The Sun JDK contains a Java compiler, Javac.exe.

Java-enabled databases only
You can install any compiled Java class file in a database. However,
Java operations using an installed class can only take place if the
database has been Java-enabled as described in "Java-enabling a
database" on page 89.

Installing a class

To make your Java class available within the database, you install the class
into the database either from Sybase Central, or using the INSTALL
statement from Interactive SQL or other application. You must know the
path and file name of the class you wish to install.

You require DBA authority to install a class.

v To install a class (Sybase Central):

1 Connect to a database with DBA authority.

2 Open the Java Objects folder for the database.

3 Double-click Add Java Class.

4 Follow the instructions in the wizard.

v To install a class (SQL):

1 Connect to a database with DBA authority.

2 Execute the following statement:

INSTALL JAVA NEW
FROM FILE ’path\\ClassName.class’

where path is the directory where the class file is, and ClassName.class
is the name of the class file.

The double backslash ensures that the backslash is not treated as an
escape character.

Installing Java classes into a database

96

For example, to install a class in a file named Utility.class, held in the
directory c:\source, you would enter the following statement:

INSTALL JAVA NEW

FROM FILE ’c:\\source\\Utility.class’

If you use a relative path, it must be relative to the current working
directory of the database server.

$ For more information, see "INSTALL statement" on page 467 of
the book ASA SQL Reference Manual, and "Deleting Java objects,
classes, and JAR files" on page 105.

Installing a JAR

It is useful and common practice to collect sets of related classes together in
packages, and to store one or more packages in a JAR file. For information
on JAR files and packages, see the accompanying online book, Thinking in
Java, or another book on programming in Java.

You install a JAR file the same way as you install a class file. A JAR file can
have the extension JAR or ZIP. Each JAR file must have a name in the
database. Usually, you use the same name as the JAR file, without the
extension. For example, if you install a JAR file named myjar.zip, you would
generally give it a JAR name of myjar.

$ For more information, see "INSTALL statement" on page 467 of the
book ASA SQL Reference Manual, and "Deleting Java objects, classes, and
JAR files" on page 105.

v To install a JAR (Sybase Central):

1 Connect to a database with DBA authority.

2 Open the Java Objects folder for the database.

3 Double-click Add JAR File.

4 Follow the instructions in the wizard.

v To install a JAR (SQL):

1 Connect to a database with DBA authority.

2 Enter the following statement:

INSTALL JAVA NEW
JAR ’jarname’
FROM FILE ’path\\JarName.jar’

Chapter 4 Using Java in the Database

97

Updating classes and Jars

You can update classes and JAR files using Sybase Central or by entering an
INSTALL statement in Interactive SQL or some other client application.

To update a class or JAR, you must have DBA authority and a newer version
of the compiled class file or JAR file available in a file on disk.

You may have instances of a Java class stored as Java objects in your
database, or as values in a column that uses the class as its data type.

Despite updating the class, these old values will still be available, even if the
fields and methods stored in the tables are incompatible with the new class
definition.

Any new rows you insert, however, need to be compatible with the new
definition.

Only new connections established after installing the class, or which use the
class for the first time after installing the class, use the new definition. Once
the Virtual Machine loads a class definition, it stays in memory until the
connection closes.

If you have been using a Java class or objects based on a class in the current
connection, you need to disconnect and reconnect to use the new class
definition.

$ To understand why the updated classes take effect in this manner, you
need to know a little about how the VM works. For information, see
"Configuring memory for Java" on page 127.

Java objects can use the updated class definition because they are stored in
serialized form. The serialization format, designed specifically for the
database, is not the Sun Microsystems serialization format. The internal
Sybase VM carries out all serialization and deserialization, so there are no
compatibility issues.

v To update a class or JAR (Sybase Central):

1 Connect to a database with DBA authority.

2 Open the Java Objects folder.

3 Locate the class or JAR file you wish to update.

4 Right-click the class or JAR file and choose Update from the popup
menu.

5 In the resulting dialog, specify the name and location of the class or JAR
file to be updated. You can click Browse to search for it.

Existing Java
objects and
updated classes

When updated
classes take effect

Objects stored in
serialized form

Installing Java classes into a database

98

Tip
You can also update a Java class or JAR file by clicking Update Now on
the General tab of its property sheet.

v To update a class or JAR (SQL):

1 Connect to a database with DBA authority.

2 Execute the following statement:

INSTALL JAVA UPDATE
[JAR ’jarname’]
FROM FILE ’filename’

If you are updating a JAR, you must enter the name by which the JAR is
known in the database.

$ For more information, see "INSTALL statement" on page 467 of
the book ASA SQL Reference Manual.

Chapter 4 Using Java in the Database

99

Creating columns to hold Java objects
This section describes how columns of Java class data types fit into the
standard SQL framework.

Creating columns with Java data types

You can use any installed Java class as a data type. You must use the fully
qualified name for the data type.

For example, the following CREATE TABLE statement includes a column
that has columns of Java data types asademo.Name and
asademo.ContactInfo. Here, Name and ContactInfo are classes within the
asademo package.

CREATE TABLE jdba.customer
(

id integer NOT NULL,
company_name CHAR(35) NOT NULL,
JName asademo.Name NOT NULL,
JContactInfo asademo.ContactInfo NOT NULL,
PRIMARY KEY (id)

)

Unlike other SQL data types, Java data types are case sensitive. You must
supply the proper case of all parts of the data type.

Using defaults and NULL on Java columns

You can use defaults on Java columns, and Java columns can hold NULL
entries.

Java columns and defaults Columns can have as default values any
function of the proper data type, or any preset default. You can use any
function of the proper data type (for example, of the same class as the
column) as a default value for Java columns.

Java columns and NULL Java columns can allow NULL. If a nullable
column with Java data type has no default value, the column contains NULL.

If a Java value is not set, it has a Java null value. This Java null maps onto
the SQL NULL, and you can use the IS NULL and IS NOT NULL search
conditions against the values. For example, suppose the description of a
Product Java object in a column named JProd was not set, you can query all
products with non-null values for the description as follows:

Case sensitivity

Creating columns to hold Java objects

100

SELECT *
FROM product
WHERE JProd>>description IS NULL

Chapter 4 Using Java in the Database

101

Inserting, updating, and deleting Java objects
This section describes how the standard SQL data manipulation statements
apply to Java columns.

Throughout the section, concrete examples based on the Product table of the
sample database and a class named Product illustrate points. You should
first look at the file Samples\ASA\Java\\asademo\Product.java under your
SQL Anywhere directory.

The examples in this section assume that you have added the Java tables to
the sample database, and that you are connected as user ID jDBA with
password SQL.

$ For more information, see "Setting up the Java samples" on page 86.

A sample class

This section describes a class that is used in examples throughout the
following sections.

The Product class definition, included in the file
Samples\ASA\Java\asademo\Product.jave under your SQL Anywhere
directory, is reproduced in part below:

package asademo;

public class Product implements java.io.Serializable {

 // public fields
 public String name ;
 public String description ;
 public String size ;
 public String color;
 public int quantity ;
 public java.math.BigDecimal unit_price ;

 // Default constructor
 Product () {

unit_price = new java.math.BigDecimal(10.00);
name = "Unknown";
size = "One size fits all";

 }

 // Constructor using all available arguments
 Product (String inColor,

 String inDescription,
 String inName,

Create the Java
sample tables

Inserting, updating, and deleting Java objects

102

 int inQuantity,
 String inSize,
 java.math.BigDecimal inUnit_price
) {

 color = inColor;
 description = inDescription;
 name = inName;
 quantity = inQuantity;
 size = inSize;
 unit_price=inUnit_price;
 }

 public String toString() {
 return size + " " + name + ": " +
 unit_price.toString();
 }

♦ The Product class has several public fields that correspond to some of
the columns of the DBA.Product table that will be collected together in
this class.

♦ The toString method is provided for convenience. When you include an
object name in a select-list, the toString method is executed and its
return string displayed.

♦ Some methods are provided to set and get the fields. It is common to use
such methods in object-oriented programming rather than to address the
fields directly. Here, the fields are public for convenience in tutorials.

Inserting Java objects

When you INSERT a row in a table that has a Java column, you need to
insert a Java object into the Java column.

You can insert a Java object in two ways: from SQL or from other Java
classes running inside the database, using JDBC.

Inserting a Java object from SQL

You can insert a Java object using a constructor, or you can use SQL
variables to build up a Java object before inserting it.

When you insert a value into a column that has a Java class data type, you
are inserting a Java object. To insert an object with the proper set of
properties, the new object must have proper values for any public fields, and
you will want to call any methods that set private fields.

Notes

Inserting an object
using a constructor

Chapter 4 Using Java in the Database

103

v To insert a Java object:

♦ INSERT a new instance of the Product class into the table product as
follows:

INSERT
INTO product (ID, JProd)
VALUES (702, NEW asademo.Product())

You can run this example against the sample database from the user ID
jdba once the jdemo.sql script has been run.

The NEW keyword invokes the default constructor for the Product class in
the asademo package.

You can also set the values of the fields of the object individually, as
opposed to through the constructor, in a SQL variable of the proper class.

v To insert a Java object using SQL variables:

1 Create a SQL variable of the Java class type:

CREATE VARIABLE ProductVar asademo.Product

2 Assign a new object to the variable, using the class constructor:

SET ProductVar = NEW asademo.Product()

3 Assign values to the fields of the object, where required:

SET ProductVar>>color = ’Black’;
SET ProductVar>>description = ’Steel tipped boots’;
SET ProductVar>>name = ’Work boots’;
SET ProductVar>>quantity = 40;
SET ProductVar>>size = ’Extra Large’;
SET ProductVar>>unit_price = 79.99;

4 Insert the variable into the table:

INSERT
INTO Product (id, JProd)
VALUES (800, ProductVar)

5 Check that the value is inserted:

SELECT *
FROM product
WHERE id=800

6 Undo the changes you have made in this exercise:

ROLLBACK

Inserting an object
from a SQL
variable

Inserting, updating, and deleting Java objects

104

The use of SQL variables is typical of stored procedures and other uses of
SQL to build programming logic into the database. Java provides a more
powerful way of accomplishing this task. You can use server-side Java
classes together with JDBC to insert objects into tables.

Inserting an object from Java

You can insert an object into a table using a JDBC prepared statement.

A prepared statement uses placeholders for variables. You can then use the
setObject method of the PreparedStatement object.

You can use prepared statements to insert objects from either client-side or
server-side JDBC.

$ For more information on using prepared statements to work with
objects, see "Inserting and retrieving objects" on page 156.

Updating Java objects

You may wish to update a Java column value in either of the following ways:

♦ Update the entire object.

♦ Update some of the fields of the object.

You can update the object in much the same way as you insert objects:

♦ From SQL, you can use a constructor to update the object to a new
object as the constructor creates it. You can then update individual fields
if you need to.

♦ From SQL, you can use a SQL variable to hold the object you need, and
then update the row to hold the variable.

♦ From JDBC, you can use a prepared statement and the
PreparedStatement.setObject method.

Individual fields of an object have data types that correspond to SQL data
types, using the SQL to Java data type mapping described in "Java / SQL
data type conversion" on page 84 of the book ASA SQL Reference Manual.

You can update individual fields using a standard UPDATE statement:

UPDATE Product
SET JProd.unit_price = 16.00
WHERE ID = 302

In the initial release of Java in the database, it was necessary to use a special
function (EVALUATE) to carry out updates. This is no longer necessary.

Updating the entire
object

Updating fields of
the object

Chapter 4 Using Java in the Database

105

To update a Java field, the Java data type of the field must map to a SQL
type: the expression on the right hand side of the SET clause must match this
type. You may need to use the CAST function to cast the data types
appropriate.

$ For more information about data type mappings between Java and
SQL, see "Java / SQL data type conversion" on page 84 of the book ASA
SQL Reference Manual.

It is common practice in Java programming not to address fields directly, but
to use methods to get and set the value. It is also common practice for these
methods to return void. You can use set methods in SQL to update a column:

UPDATE jdba.Product
SET JProd.setName(’Tank Top’)
WHERE id=302

Using methods is slower than addressing the field directly, because the Java
VM must run.

$ For more information, see "Return value of methods returning void" on
page 112.

Deleting Java objects, classes, and JAR files

Deleting rows containing Java objects is no different than deleting other
rows. The WHERE clause in the DELETE statement can include Java
objects or Java fields and methods.

$ For more information, see "DELETE statement" on page 388 of the
book ASA SQL Reference Manual.

Using Sybase Central, you can also delete an entire Java class or JAR file.

v To delete a Java class or JAR file (Sybase Central):

1 Open the Java Objects folder.

2 Locate the class or JAR you would like to delete.

3 Right-click the class or JAR file and choose Delete from the popup
menu.

$ See also

♦ "Installing a class" on page 95

♦ "Installing a JAR" on page 96

Using set methods

Querying Java objects

106

Querying Java objects
You may wish to retrieve a Java column value in either of the following
ways:

♦ Retrieve the entire object.

♦ Retrieve some of the fields of the object.

From SQL, you can create a variable of the appropriate type, and select the
value from the object into that variable. However, the obvious place in which
you may wish to make use of the entire object is in a Java application.

You can retrieve an object into a server-side Java class using the getObject
method of the ResultSet of a query. You can also retrieve an object to a
client-side Java application.

$ For more information about retrieving objects using JDBC, see
"Queries using JDBC" on page 153.

Individual fields of an object have data types that correspond to SQL data
types, using the SQL to Java data type mapping described in "Java / SQL
data type conversion" on page 84 of the book ASA SQL Reference Manual.

♦ You can retrieve individual fields by including them in the select-list of
a query, as in the following simple example:

SELECT JProd>>unit_price
FROM product
WHERE ID = 400

♦ If you use methods to set and get the values of your fields, as is common
in object oriented programming, you can include a getField method in
your query:

SELECT JProd>>getName()
FROM Product
WHERE ID = 401

$ For more information about using objects in the WHERE clause and
other issues in comparing objects, see "Comparing Java fields and objects"
on page 108.

Performance tip
Getting a field directly is faster than invoking a method that gets the field
because method invocations require starting the Java VM.

Retrieving the
entire object

Retrieving fields of
the object

Chapter 4 Using Java in the Database

107

You can list the column name in a query select list, as in the following query:

SELECT JProd
FROM jdba.product

This query returns the Sun serialization of the object to the client application.

When you execute a query that retrieves an object in Interactive SQL, it
displays the return value of the object’s toString method. For the Product
class, the toString method lists, in one string, the size, name, and unit price
of the object. The results of the query are as follows:

JProd

Small Tee Shirt: 9.00

Medium Tee Shirt: 14.00

One size fits all Tee Shirt: 14.00

One size fits all Baseball Cap: 9.00

One size fits all Baseball Cap: 10.00

One size fits all Visor: 7.00

One size fits all Visor: 7.00

Large Sweatshirt: 24.00

Large Sweatshirt: 24.00

Medium Shorts: 15.00

The results of
SELECT column-
name

Comparing Java fields and objects

108

Comparing Java fields and objects
Public Java classes are domains with much more richness than traditional
SQL domains. This raises issues about how Java columns behave in a
relational database, compared to columns based on traditional SQL data
types.

In particular, the issue of how objects are compared has implications for the
following:

♦ Queries with an ORDER BY clause, a GROUP BY clause, a DISTINCT
keyword, or using an aggregate function.

♦ Statements that use equality or inequality comparison conditions.

♦ Indexes and unique columns.

♦ Primary and foreign key columns.

Sorting and ordering rows, whether in a query or in an index, implies a
comparison between values on each row. If you have a Java column, you can
carry out comparisons in the following ways:

♦ Compare on a public field You can compare on a public field in the
same way you compare on a regular row. For example, you could
execute the following query:

SELECT name, JProd.unit_price
FROM Product
ORDER BY JProd.unit_price

You can use this kind of comparison in queries, but not for indexes and
key columns.

♦ Compare using a compareTo method You can compare Java objects
that have implemented a compareTo method. The Product class on
which the JProd column is based has a compareTo method that
compares objects based on the unit_price field. This permits the
following query:

SELECT name, JProd.unit_price
FROM Product
ORDER BY JProd

The comparison needed for the ORDER BY clause is automatically
carried out based on the compareTo method.

Ways of comparing
Java objects

Chapter 4 Using Java in the Database

109

Comparing Java objects

To compare two objects of the same type, you must implement a compareTo
method:

♦ For columns of Java data types to be used as primary keys, indexes, or
as unique columns, the column class must implement a compareTo
method.

♦ To use ORDER BY, GROUP BY, or DISTINCT clauses in a query, you
must be comparing the values of the column. The column class must
have a compareTo method for any of these clauses to be valid.

♦ Functions that employ comparisons, such as MAX and MIN, can only
be used on Java classes with a compareTo method.

The compareTo method must have the following properties:

♦ Scope The method must be visible externally, and so should be a
public method.

♦ Arguments The method takes a single argument, which is an object of
the current type. The current object is compared to the supplied object.
For example, Product.compareTo has the following argument:

compareTo(Product anotherProduct)

The method compares the anotherProduct object, of type Product, to
the current object.

♦ Return values The compareTo method must return an int data type,
with the following meanings:

♦ Negative integer The current object is less than the supplied
object. It is recommended that you return -1 for this case for
compatibility with compareTo methods in base Java classes.

♦ Zero The current object has the same value as the supplied object.

♦ Positive integer The current object is greater than the supplied
object. It is recommended that you return 1 for this case for
compatibility with compareTo methods in base Java classes.

The Product class installed into the sample database with the example
classes has a compareTo method as follows:

public int compareTo(Product anotherProduct) {
 // Compare first on the basis of price
 // and then on the basis of toString()
 int lVal = unit_price.intValue();
 int rVal = anotherProduct.unit_price.intValue();
 if (lVal > rVal) {
 return 1;

Requirements of
the compareTo
method

Example

Comparing Java fields and objects

110

 }
 else if (lVal < rVal) {
 return -1;
 }
 else {
 return toString().compareTo(
anotherProduct.toString());{
 }
 }
 }

This method compares the unit price of each object. If the unit prices are the
same, then the names are compared (using Java string comparison, not the
database string comparison). Only if both the unit price and the name are the
same are the two objects considered the same when comparing.

When you include a Java column in the select list of a query, and execute it
in Interactive SQL, the value of the toString method appears. When
comparing columns, the compareTo method is used. If the toString and
compareTo methods are not implemented consistently with each other, you
can get inappropriate results such as DISTINCT queries that appear to return
duplicate rows.

For example, suppose the Product class in the sample database had a
toString method that returned the product name, and a compareTo method
based on the price. Then the following query, executed in Interactive SQL,
would display duplicate values:

SELECT DISTINCT JProd
FROM product

JProd

Tee Shirt

Tee Shirt

Baseball Cap

Visor

Sweatshirt

Shorts

Here, the returned value being displayed is determined by toString. The
DISTINCT keyword eliminates duplicates as determined by compareTo. As
these have been implemented in ways that are not related to each other,
duplicate rows appear to have been returned.

Make toString and
compareTo
compatible

Chapter 4 Using Java in the Database

111

Special features of Java classes in the database
This section describes features of Java classes when used in the database.

Supported classes

You cannot use all classes from the JDK. The runtime Java classes available
for use in the database server belong to a subset of the Java API.

$ For more information about supported packages, see "Supported Java
packages" on page 77 of the book ASA SQL Reference Manual.

Calling the main method

You typically start Java applications (outside the database) by running the
Java VM on a class that has a main method.

For example, the JDBCExamples class in the file
Samples\ASA\Java\JDBCExamples.java under your SQL Anywhere
directory has a main method. When you execute the class from the command
line using a command such as the following, it is the main method that
executes:

java JDBCExamples

$ For more information about how to run the JDBCExamples class, see
"Establishing JDBC connections" on page 143.

v To call the main method of a class from SQL:

1 Declare the method with an array of strings as an argument:

public static void main(java.lang.String[] args){
...
}

2 Invoke the main method using the CALL statement.

Each member of the array of strings must be of CHAR or VARCHAR
data type, or a literal string.

The following class contains a main method which writes out the arguments
in reverse order:

Example

Special features of Java classes in the database

112

public class ReverseWrite {
 public static void main(String[] args){
 int i:
 for(i = args.length; i > 0 ; i--){
 System.out.print(args[i-1]);
 }
 }
}

You can execute this method from SQL as follows:

call ReverseWrite.main(’ one’, ’ two’, ’three’)

The database server window displays the output:

three two one

Using threads in Java applications

With features of the java.lang.Thread package, you can use multiple threads
in a Java application. Each Java thread is an engine thread, and comes from
the number of threads permitted by the -gn database server option.

You can synchronize, suspend, resume, interrupt, or stop threads in Java
applications.

$ For more information about database server threads, see "–gn server
option" on page 141 of the book ASA Database Administration Guide.

All calls to the server-side JDBC driver are serialized, such that only one
thread is actively executing JDBC at any one time.

Procedure Not Found error

If you supply an incorrect number of arguments when calling a Java method,
or if you use an incorrect data type, the server responds with a Procedure Not
Found error. You should check the number and type of arguments.

$ For more information about type conversions between SQL and Java,
see "Java / SQL data type conversion" on page 84 of the book ASA SQL
Reference Manual.

Return value of methods returning void

You can use Java methods in SQL statements wherever you can use an
expression. You must ensure that the Java method return data type maps to
the appropriate SQL data type.

Serialization of
JDBC calls

Chapter 4 Using Java in the Database

113

$ For more information about Java/SQL data type mappings, see "Java /
SQL data type conversion" on page 84 of the book ASA SQL Reference
Manual.

When a method returns void, however, the value this is returned to SQL; that
is, the object itself. The feature only affects calls made from SQL, not from
Java.

This feature is particularly useful in UPDATE statements, where set methods
commonly return void. You can use the following UPDATE statement in the
sample database:

update jdba.product
set JProd = JProd.setName(’Tank Top’)
where id=302

The setName method returns void, and so implicitly returns the product
object to SQL.

Returning result sets from Java methods

This section describes how to make result sets available from Java methods.
You must write a Java method that returns a result set to the calling
environment, and wrap this method in a SQL stored procedure declared to be
EXTERNAL NAME of LANGUAGE JAVA.

v To return result sets from a Java method:

1 Ensure that the Java method is declared as public and static in a public
class.

2 For each result set you expect the method to return, ensure that the
method has a parameter of type java.sql.ResultSet[]. These result set
parameters must all occur at the end of the parameter list.

3 In the method, first create an instance of java.sql.ResultSet and then
assign it to one of the ResultSet[] parameters.

4 Create a SQL stored procedure of type EXTERNAL NAME
LANGUAGE JAVA. This type of procedure is a wrapper around a Java
method. You can use a cursor on the SQL procedure result set in the
same way as any other procedure that returns result sets.

$ For more information about the syntax for stored procedures that
are wrappers for Java methods, see "CREATE PROCEDURE statement"
on page 305 of the book ASA SQL Reference Manual.

The following simple class has a single method which executes a query and
passes the result set back to the calling environment.

Example

Special features of Java classes in the database

114

import java.sql.*;

public class MyResultSet {
 public static void return_rset(ResultSet[] rset1)
 throws SQLException {
 Connection conn = DriverManager.getConnection(
 "jdbc:default:connection");
 Statement stmt = conn.createStatement();
 ResultSet rset =
 stmt.executeQuery (
 "SELECT CAST(JName.lastName " +
 "AS CHAR(50))" +
 "FROM jdba.contact ");
 rset1[0] = rset;
 }
}

You can expose the result set using a CREATE PROCEDURE statement that
indicates the number of result sets returned from the procedure and the
signature of the Java method.

A CREATE PROCEDURE statement indicating a result set could be defined
as follows:

CREATE PROCEDURE result_set()
 DYNAMIC RESULT SETS 1
 EXTERNAL NAME
 ’MyResultSet.return_rset ([Ljava/sql/ResultSet;)V’
 LANGUAGE JAVA

You can open a cursor on this procedure, just as you can with any ASA
procedure returning result sets.

The string (Ljava/sql/ResultSet;)V is a Java method signature which is a
compact character representation of the number and type of the parameters
and return value.

$ For more information about Java method signatures, see "CREATE
PROCEDURE statement" on page 305 of the book ASA SQL Reference
Manual.

Returning values from Java via stored procedures

You can use stored procedures created using the EXTERNAL NAME
LANGUAGE JAVA as wrappers around Java methods. This section
describes how to write your Java method to exploit OUT or INOUT
parameters in the stored procedure.

Chapter 4 Using Java in the Database

115

Java does not have explicit support for INOUT or OUT parameters. Instead,
you can use an array of the parameter. For example, to use an integer OUT
parameter, create an array of exactly one integer:

public class TestClass {
 public static boolean testOut(int[] param){
 param[0] = 123;
 return true;
 }
}

The following procedure uses the testOut method:

CREATE PROCEDURE sp_testOut (OUT p INTEGER)
EXTERNAL NAME ’TestClass/testOut ([I)Z’
LANGUAGE JAVA

The string ([I)Z is a Java method signature, indicating that the method has a
single parameter, which is an array of integers, and returns a Boolean value.
You must define the method so that the method parameter you wish to use as
an OUT or INOUT parameter is an array of a Java data type that corresponds
to the SQL data type of the OUT or INOUT parameter.

$ For more information about the syntax, including the method signature,
see "CREATE PROCEDURE statement" on page 305 of the book ASA SQL
Reference Manual.

$ For more information, see "Java / SQL data type conversion" on
page 84 of the book ASA SQL Reference Manual.

Security management for Java

Java provides security managers than you can use to control user access to
security-sensitive features of your applications, such as file access and
network access. Adaptive Server Anywhere provides the following support
for Java security managers in the database:

♦ Adaptive Server Anywhere provides a default security manager.

♦ You can provide your own security manager.

$ For information, see "Implementing your own security manager"
on page 116.

The default security manager is the class
com.sybase.asa.jrt.SAGenericSecurityManager. It carries out the
following tasks:

1 It checks the value of the database option JAVA_INPUT_OUTPUT.

The default
security manager

Special features of Java classes in the database

116

2 It checks whether the database server was started in C2 security mode
using the -sc database server option.

3 If the connection property is OFF, it disallows access to Java file I/O
features.

4 If the database server is running in C2 security mode, it disallows access
to java.net packages.

5 When the security manager prevents a user from accessing a feature, it
returns a java.lang.SecurityException.

$ For more information, see "JAVA_INPUT_OUTPUT option" on
page 577 of the book ASA Database Administration Guide, and "–sc server
option" on page 150 of the book ASA Database Administration Guide.

Java file I/O is controlled through the JAVA_INPUT_OUTPUT database
option. By default this option is set to OFF, disallowing file I/O.

v To permit file access using the default security manager:

♦ Set the JAVA_INPUT_OUTPUT option to ON:

SET OPTION JAVA_INPUT_OUTOUT=’ON’

Implementing your own security manager

There are several steps to implementing your own security manager.

v To provide your own security manager:

1 Implement a class that extends java.lang.SecurityManager.

The SecurityManager class has a number of methods to check whether a
particular action is allowed. If the action is permitted, the method returns
silently. If the method returns a value a SecurityException is thrown.

You must override methods that govern actions you wish to permit with
methods that return silently. You can do this by implementing a public

void method.

2 Assign appropriate users to your security manager.

You use the add_user_security_manager,
update_user_security_manager, and delete_user_security_manager
system stored procedures to assign security managers to a user. For
example, to assign the MySecurityManager class as the security
manager for a user, you would execute the following command:

call dbo.add_user_security_manager(
 user_name, ’MySecurityManager’, NULL)

Controlling Java
file I/O using the
default security
manager

Chapter 4 Using Java in the Database

117

The following class allows reading from files but disallows writing:

public class MySecurityManager extends SecurityManager
{ public void checkRead(FileDescriptor) {}
 public void checkRead(String) {}
 public void checkRead(String, Object) {}
}

The SecurityManager.checkWrite methods are not overridden, and prevent
write operations on files. The checkRead methods return silently, permitting
the action.

Example

How Java objects are stored

118

How Java objects are stored
Java values are stored in serialized form. This means that each row contains
the following information:

♦ A version identifier.

♦ An identifier for the class (or subclass) that is stored.

♦ The values of non-static, non-transient fields in the class.

♦ Other overhead information.

The class definition is not stored for each row. Instead, the identifier
provides a reference to the class definition, which is held only once.

You can use Java objects without knowing the details of how these pieces
work, but storage methods for these objects do have some implications for
performance and so information follows.

♦ Disk space The overhead per row is 10 to 15 bytes. If the class has a
single variable, then the storage required for the overhead can be similar
to the amount needed for the variable itself. If the class has many
variables, the overhead is negligible.

♦ Performance Any time you insert or update a Java value, the Java VM
needs to serialize it. Any time a Java value is retrieved in a query, it
needs to be deserialized by the VM. This can amount to a significant
performance penalty.

You can avoid the performance penalty for queries by using computed
columns.

♦ Indexing Indexes on Java columns will not be very selective, and will
not provide the performance benefits associated with indexes on simple
SQL data types.

♦ Serialization If a class has a readObject or writeObject method,
these are called when deserializing or serializing the instance. Using a
readObject or writeObject method can impact performance because
the Java VM is being invoked.

Java objects and class versions

Java objects stored in the database are persistent; that is, they exist even
when no code is running. This means that you could carry out the following
sequence of actions:

1 Install a class.

Notes

Chapter 4 Using Java in the Database

119

2 Create a table using that class as the data type for a column.

3 Insert rows into the table.

4 Install a new version of the class.

How will the existing rows work with the new version of the class?

Adaptive Server Anywhere provides a form of class versioning to allow the
new class to work with the old rows. The rules for accessing these older
values are as follows:

♦ If a serializable field is in the old version of the class, but is either
missing or not serializable in the new version, the field is ignored.

♦ If a serializable field is in the new version of the class, but was either
missing or not serializable in the old version, the field is initialized to a
default value. The default value is 0 for primitive types, false for
Boolean values, and NULL for object references.

♦ If there was a superclass of the old version that is not a superclass of the
new version, the data for that superclass is ignored.

♦ If there is a superclass of the new version that was not a superclass of
the old version, the data for that superclass is initialized to default
values.

♦ If a serializable field changes type between the older version and the
newer version, the field is initialized to a default values. Type
conversions are not supported; this is consistent with Sun Microsystems
serialization.

A serialized object is inaccessible if the class of the object or any of its
superclasses has been removed from the database at any time. This behavior
is consistent with Sun Microsystems serialization.

These changes make cross database transfer of objects possible even when
the versions of classes differ. Cross database transfer can occur as follows:

♦ Objects are replicated to a remote database.

♦ A table of objects is unloaded and reloaded into another database.

♦ A log file containing objects is translated and applied against another
database.

Each connection’s VM loads the class definition for each class the first time
that class is used.

When you INSTALL a class, the VM on your connection is implicitly
restarted. Therefore, you have immediate access to the new class.

Accessing rows
when a class is
updated

When objects are
inaccessible

Moving objects
across databases

When the new
class is used

How Java objects are stored

120

For connections other than the one that carries out the INSTALL, the new
class loads the next time a VM accesses the class for the first time. If the
class is already loaded by a VM, that connection does not see the new class
until the VM is restarted for that connection (for example, with a STOP
JAVA and START JAVA).

Chapter 4 Using Java in the Database

121

Java database design
There is a large body of theory and practical experience available to help you
design a relational database. You can find descriptions of Entity-Relationship
design and other approaches not only in introductory form (see "Designing
Your Database" on page 3 of the book ASA SQL User’s Guide) but also in
more advanced books.

No comparable body of theory and practice to develop object-relational
databases exists, and this certainly applies to Java-relational databases. Here,
we offer some suggestions for how to use Java to enhance the practical
usefulness of relational databases.

Entities and attributes in relational and object-oriented data

In relational database design, each table describes an entity. For example, in
the sample database there are tables named Employee, Customer,
Sales_order, and Department. The attributes of these entities become the
columns of the tables: employee addresses, customer identification numbers,
sales order dates, and so on. Each row of the table may be considered as a
separate instance of the entity—a specific employee, sales order, or
department.

In object-oriented programming, each class describes an entity, and the
methods and fields of that class describe the attributes of the entity. Each
instance of the class (each object) holds a separate instance of the entity.

It may seem unnatural, therefore, for relational columns to be based on Java
classes. A more natural correspondence may seem to be between table and
class.

Entities and attributes in the real world

The distinction between entity and attribute may sound clear, but a little
reflection shows that it is commonly not at all clear in practice:

♦ An address may be seen as an attribute of a customer, but an address is
also an entity, with its own attributes of street, city, and so on.

♦ A price may be seen as an attribute of a product, but may also be seen as
an entity, with attributes of amount and currency.

Java database design

122

The utility of the object-relational database lies in exactly the fact that there
are two ways of expressing entities. You can express some entities as tables
and some entities as classes in a table. The next section describes an
example.

Relational database limitations

Consider an insurance company wishing to keep track of its customers. A
customer may be considered as an entity, so it is natural to construct a single
table to hold all customers of the company.

However, insurance companies handle several kinds of customer. They
handle policy holders, policy beneficiaries, and people who are responsible
for paying policy premiums. For each of these customer types, the insurance
company needs different information. For a beneficiary, little is needed
beyond an address. For a policy holder, health information is required. For
the customer paying the premiums, information may be needed for tax
purposes.

Is it best to handle the separate kinds of customers as separate entities, or to
handle the customer type as an attribute of the customer? There are
limitations to both approaches:

♦ Building separate tables for each type of customer can lead to a very
complex database design, and to multi-table queries when information
relating to all customers is required.

♦ It is difficult, if using a single customer table, to ensure that the
information for each customer is correct. Making columns required for
some customers but not for others, nullable, permits the entry of correct
data, but does not enforce it. There is no simple way in relational
databases to tie default behavior to an attribute of the new entry.

Using classes to overcome relational database limitations

You can use a single customer table, with Java class columns for some of the
information, to overcome the limitations of relational databases.

For example, suppose different contact information is necessary for policy
holders than for beneficiaries. You could approach this by defining a column
based on a ContactInformation class. Then define classes named
HolderContactInformation and BeneficiaryContactInformation which
are subclasses of the ContactInformation class. By entering new customers
according to their type, you can be sure that the information is correct.

Chapter 4 Using Java in the Database

123

Levels of abstraction for relational data

Data in a relational database can be categorized by its purpose. Which of this
data belongs in a Java class, and which is best kept in simple data type
columns?

♦ Referential integrity columns Primary key columns and foreign key
columns commonly hold identification numbers. These identification
numbers may be called referential data since they primarily define the
structure of the database and the relationships between tables.

Referential data does not generally belong in Java classes. Although you
can make a Java class column a primary key column, integers and other
simple data types are more efficient for this purpose.

♦ Indexed data Columns that are commonly indexed may also belong
outside a Java class. However, the dividing line between data that needs
to be indexed and data that is not to be indexed is vaguely defined.

With computed columns, you can selectively index on a Java field or
method (or, in fact, some other expression). If you define a Java class
column and then find that it would be useful to index on a field or
method of that column, you can use computed columns to make a
separate column from that field or method.

$ For more information, see "Using computed columns with Java
classes" on page 124.

♦ Descriptive data It is common for some of the data in each row to be
descriptive. It is not used for referential integrity purposes, and is
possibly not frequently indexed, but it is data commonly used in queries.
For an employee table, this may include information such as start date,
address, benefit information, salary, and so on. This data can often
benefit from being combined into fewer columns of Java class data
types.

Java classes are useful for abstracting at a level between that of the single
relational column and the relational table.

Using computed columns with Java classes

124

Using computed columns with Java classes
Computed columns are a feature designed to make Java database design
easier, to make it easier to take advantage of Java features for existing
databases, and to improve performance of Java data types.

A computed column is a column whose values are obtained from other
columns. You cannot INSERT or UPDATE values in computed columns.
However, any update that attempts to modify the computed column does fire
triggers associated with the column.

There are two main uses of computed columns with Java classes:

♦ Exploding a Java column If you create a column using a Java class
data type, computed columns enable you to index one of the fields of the
class. You can add a computed column that holds the value of the field,
and create an index on that field.

♦ Adding a Java column to a relational table If you wish to use some
of the features of Java classes while disturbing an existing database as
little as possible, you can add a Java column as a computed column,
collecting its values from other columns in the table.

Defining computed columns

Computed columns are declared in the CREATE TABLE or
ALTER TABLE statement.

The following CREATE TABLE statement is used to create the product table
in the Java sample tables:

CREATE TABLE product
(
 id INTEGER NOT NULL,
 JProd asademo.Product NOT NULL,
 name CHAR(15) COMPUTE (JProd>>name),
 PRIMARY KEY ("id")
)

The following statement alters the product table by adding another computed
column:

ALTER TABLE product
ADD inventory_Value INTEGER
 COMPUTE (JProd.quantity * JProd.unit_price)

Uses of computed
columns

Creating tables
with computed
columns

Adding computed
columns to tables

Chapter 4 Using Java in the Database

125

You can change the expression used in a computed column using the
ALTER TABLE statement. The following statement changes the expression
that a computed column is based on.

ALTER TABLE table_name
ALTER column-name SET COMPUTE (expression)

The column is recalculated when this statement is executed. If the new
expression is invalid, the ALTER TABLE statement fails.

The following statement stops a column from being a computed column.

ALTER TABLE table_name
ALTER column-name DROP COMPUTE

The values in the column are not changed when this statement is executed.

Inserting and updating computed columns

Computed columns have some impact on valid INSERT and UPDATE
statements. The jdba.product table in the Java sample tables has a computed
column (name) which we use to illustrate the issues. The table definition is
as follows:

CREATE TABLE "jdba"."product"
(

"id" INTEGER NOT NULL,
"JProd" asademo.Product NOT NULL,
"name" CHAR(15) COMPUTE(JProd.name),
PRIMARY KEY ("id")

)

♦ No direct inserts or updates You cannot insert a value directly into a
computed column. The following statement fails with a Duplicate Insert
Column error:

-- Incorrect statement
INSERT INTO PRODUCT (id, name)
VALUES(3006, ’bad insert statement’)

Similarly, no UPDATE statement can directly update a computed
column.

♦ Listing column names You must always specify column names in
INSERT statements on tables with computed columns. The following
statement fails with a Wrong Number of Values for Insert error:

-- Incorrect statement
INSERT INTO PRODUCT
VALUES(3007,new asademo.Product())

Instead, you must list the columns, as follows:

Modifying the
expression for
computed columns

Using computed columns with Java classes

126

INSERT INTO PRODUCT(id, JProd)
VALUES(3007,new asademo.Product())

♦ Triggers You can define triggers on a computed column, and any
INSERT or UPDATE statement that affects the column fires the trigger.

When computed columns are recalculated

Recalculating computed columns occurs when:

♦ Any column is deleted, added, or renamed.

♦ The table is renamed.

♦ Any column’s data type or COMPUTE clause is modified.

♦ A row is inserted.

♦ A row is updated.

Computed columns are not recalculated when queried. If you use a
time-dependent expression, or one that depends on the state of the database
in some other way, then the computed column may not give a proper result.

Chapter 4 Using Java in the Database

127

Configuring memory for Java
This section describes the memory requirements for running Java in the
database and how to set up your server to meet those requirements.

The Java VM requires a significant amount of cache memory.

$ For information on tuning the cache, see "Using the cache to improve
performance" on page 152 of the book ASA SQL User’s Guide.

The Java VM uses memory on both a per-database and on a per-connection
basis.

♦ The per-database requirements are not relocatable: they cannot be
paged out to disk. They must fit into the server cache. This type of
memory is not for the server; it is for each database. When estimating
cache requirements, you must sum the requirements for each database
you run on the server.

♦ The per-connection requirements are relocatable, but only as a unit. The
requirements for one connection are either all in cache, or all in the
temporary file.

How memory is used

Java in the database requires memory for several purposes:

♦ When Java is first used when a server is running, the VM is loaded into
memory, requiring over 1.5 Mb of memory. This is part of the
database-wide requirements. An additional VM is loaded for each
database that uses Java.

♦ For each connection that uses Java, a new instance of the VM loads for
that connection. The new instance requires about 200K per connection.

♦ Each class definition that is used in a Java application is loaded into
memory. This is held in database-wide memory: separate copies are not
required for individual connections.

♦ Each connection requires a working set of Java variables and application
stack space (used for method arguments and so on).

You can control memory use in the following ways:

♦ Set the overall cache size You must use a cache size sufficient to
meet all the requirements for non-relocatable memory.

The cache size is set when the server is started using the -c option.

Database and
connection-level
requirements

Managing memory

Configuring memory for Java

128

In many cases, a cache size of 8 Mb is sufficient.

♦ Set the namespace size The Java namespace size is the maximum
size, in bytes, of the per database memory allocation.

You can set this using the JAVA_NAMESPACE_SIZE option. The
option is global, and can only be set by a user with DBA authority.

♦ Set the heap size This JAVA_HEAP_SIZE option sets the maximum
size, in bytes, of per-connection memory.

This option can be set for individual connections, but as it affects the
memory available for other users it can be set only by a user with DBA
authority.

In addition to setting memory parameters for Java, you can unload the VM
when Java is not in use using the STOP JAVA statement. Only a user with
DBA authority can execute this statement. The syntax is simply:

STOP JAVA

The VM loads whenever a Java operation is carried out. If you wish to
explicitly load it in readiness for carrying out Java operations, you can do so
by executing the following statement:

START JAVA

Starting and
stopping the VM

129

C H A P T E R 5

Data Access Using JDBC

This chapter describes how to use JDBC to access data.

JDBC can be used both from client applications and inside the database. Java
classes using JDBC provide a more powerful alternative to SQL stored
procedures for incorporating programming logic in the database.

Topic Page

JDBC overview 130

Using the jConnect JDBC driver 136

Using the JDBC-ODBC bridge 141

Establishing JDBC connections 143

Using JDBC to access data 150

Creating distributed applications 158

About this chapter

Contents

JDBC overview

130

JDBC overview
JDBC provides a SQL interface for Java applications: if you want to access
relational data from Java, you do so using JDBC calls.

Rather than a thorough guide to the JDBC database interface, this chapter
provides some simple examples to introduce JDBC and illustrates how you
can use it on the client and in the database.

$ The examples illustrate the distinctive features of using JDBC in
Adaptive Server Anywhere. For more information about JDBC
programming, see any JDBC programming book.

You can use JDBC with Adaptive Server Anywhere in the following ways:

♦ JDBC on the client Java client applications can make JDBC calls to
Adaptive Server Anywhere. The connection takes place through a JDBC
driver. SQL Anywhere Studio includes two JDBC drivers: the jConnect
driver for pure Java applications and a JDBC-ODBC bridge.

In this chapter, the phrase client application applies both to applications
running on a user’s machine and to logic running on a middle-tier
application server.

♦ JDBC in the database Java classes installed into a database can make
JDBC calls to access and modify data in the database using an internal
JDBC driver.

♦ Required software You need TCP/IP to use the Sybase jConnect
driver.

The Sybase jConnect driver may already be available, depending on
your installation of Adaptive Server Anywhere.

$ For more information about the jConnect driver and its location,
see "The jConnect driver files" on page 136.

♦ Example source code You can find source code for the examples in
this chapter in the file Samples\ASA\Java\JDBCExamples.java in your
SQL Anywhere directory.

$ For more information about how to set up the Java examples,
including the JDBCExamples class, see "Setting up the Java samples"
on page 86.

JDBC and
Adaptive Server
Anywhere

JDBC resources

Chapter 5 Data Access Using JDBC

131

Choosing a JDBC driver

Two JDBC drivers are provided for Adaptive Server Anywhere:

♦ jConnect This driver is a 100% pure Java driver. It communicates
with Adaptive Server Anywhere using the TDS client/server protocol.

♦ JDBC-ODBC bridge This driver communicates with Adaptive Server
Anywhere using the Command Sequence client/server protocol. Its
behavior is consistent with ODBC, embedded SQL, and OLE DB
applications.

When choosing which driver to use, you may want to consider the following
factors:

♦ Features Both drivers are JDK 2 compliant. The JDBC-ODBC bridge
provides fully-scrollable cursors, which are not available in jConnect.

♦ Pure Java The jConnect driver is a pure Java solution. The
JDBC-ODBC bridge requires the Adaptive Server Anywhere ODBC
driver and is not a pure Java solution.

♦ Performance The JDBC-ODBC bridge provides better performance
for most purposes than the jConnect driver.

♦ Compatibility The TDS protocol used by the jConnect driver is shared
with Adaptive Server Enterprise. Some aspects of the driver’s behavior
are governed by this protocol, and are configured to be compatible with
Adaptive Server Enterprise.

Both drivers are available on Windows 95/98/Me and Windows
NT/2000/XP, as well as supported UNIX and Linux operating systems. They
are not available on NetWare or Windows CE.

JDBC program structure

The following sequence of events typically occur in JDBC applications:

1 Create a Connection object Calling a getConnection class method
of the DriverManager class creates a Connection object, and
establishes a connection with a database.

2 Generate a Statement object The Connection object generates a
Statement object.

3 Pass a SQL statement A SQL statement that executed within the
database environment passes to the Statement object. If the statement is
a query, this action returns a ResultSet object.

JDBC overview

132

The ResultSet object contains the data returned from the SQL
statement, but exposes it one row at a time (similar to the way a cursor
works).

4 Loop over the rows of the result set The next method of the
ResultSet object performs two actions:

♦ The current row (the row in the result set exposed through the
ResultSet object) advances one row.

♦ A Boolean value (true/false) returns to indicate whether there is, in
fact, a row to advance to.

5 For each row, retrieve the values Values are retrieved for each
column in the ResultSet object by identifying either the name or
position of the column. You can use the getDate method to get the value
from a column on the current row.

Java objects can use JDBC objects to interact with a database and get data
for their own use, for example to manipulate or for use in other queries.

JDBC in the database features

The version of JDBC that you can use from Java in the database is
determined by the JDK version that the database is set up to use.

♦ If your database is initialized with JDK 1.2 or JDK 1.3, you can use the
JDBC 2.0 API.

$ For information on upgrading databases to JDK 1.2 or JDK 1.3,
see "ALTER DATABASE statement" on page 205 of the book ASA SQL
Reference Manual or "Upgrading a database using the dbupgrad
command-line utility" on page 522 of the book ASA Database
Administration Guide.

♦ If your database is initialized with JDK 1.1, you can use JDBC 1.2
features. The internal JDBC driver for JDK 1.1 (asajdbc) makes some
features of JDBC 2.0 available from server-side Java applications, but
does not provide full JDBC 2.0 support.

$ For more information, see "Using JDBC 2.0 features from JDK 1.1
databases" on page 132.

Using JDBC 2.0 features from JDK 1.1 databases

This section describes how to access JDBC 2.0 features from databases
initialized with JDK 1.1 support. For many purposes, a better solution is to
upgrade your version of Java in the database to 1.3.

Chapter 5 Data Access Using JDBC

133

For databases initialized with JDK 1.1 support, the sybase.sql.ASA package
contains features that are part of JDBC 2.0. To use these JDBC 2.0 features
you must cast your JDBC objects into the corresponding classes in the
sybase.sql.ASA package, rather than the java.sql package. Classes that are
declared as java.sql are restricted to JDBC 1.2 functionality only.

The classes in sybase.sql.ASA are as follows:

JDBC class Sybase internal driver class

java.sql.Connection sybase.sql.ASA.SAConnection

java.sql.Statement sybase.sql.ASA.SAStatement

java.sql.PreparedStatement sybase.sql.ASA.SAPreparedStatement

java.sql.CallableStatement sybase.sql.ASA.SACallableStatement

java.sql.ResultSetMetaData sybase.sql.ASA.SAResultSetMetaData

java.sql.ResultSet sybase.sql.SAResultSet

java.sql.DatabaseMetaData sybase.sql.SADatabaseMetaData

The following function provides a ResultSetMetaData object for a prepared
statement without requiring a ResultSet or executing the statement. This
function is not part of the JDBC 1.2 standard.

ResultSetMetaData
sybase.sql.ASA.SAPreparedStatement.describe()

The following code fetches the previous row in a result set, a feature not
supported in JDBC 1.2:

import java.sql.*;
import sybase.sql.asa.*;
ResultSet rs;
// more code here
((sybase.sql.asa.SAResultSet)rs).previous();

The following classes are part of the JDBC 2.0 core interface, but are not
available in the sybase.sql.ASA package:

♦ java.sql.Blob

♦ java.sql.Clob

♦ java.sql.Ref

♦ java.sql.Struct

♦ java.sql.Array

♦ java.sql.Map

JDBC 2.0
restrictions

JDBC overview

134

The following JDBC 2.0 core functions are not available in the
sybase.sql.ASA package:

Class in
sybase.sql.ASA

Missing functions

SAConnection java.util.Map getTypeMap()

void setTypeMap(java.util.Map map)

SAPreparedStatement void setRef(int pidx, java.sql.Ref r)

void setBlob(int pidx, java.sql.Blob b)

void setClob(int pidx, java.sql.Clob c)

void setArray(int pidx, java.sql.Array a)

SACallableStatement Object getObject(pidx, java.util.Map map)

java.sql.Ref getRef(int pidx)

java.sql.Blob getBlob(int pidx)

java.sql.Clob getClob(int pidx)

java.sql.Array getArray(int pidx)

SAResultSet Object getObject(int cidx, java.util.Map map)

java.sql.Ref getRef(int cidx)

java.sql.Blob getBlob(int cidx)

java.sql.Clob getClob(int cidx)

java.sql.Array getArray(int cidx)

Object getObject(String cName, java.util.Map map)

java.sql.Ref getRef(String cName)

java.sql.Blob getBlob(String cName)

java.sql.Clob getClob(String cName)

java.sql.Array getArray(String cName)

Differences between client- and server-side JDBC connections

A difference between JDBC on the client and in the database server lies in
establishing a connection with the database environment.

Chapter 5 Data Access Using JDBC

135

♦ Client side In client-side JDBC, establishing a connection requires the
Sybase jConnect JDBC driver or the Adaptive Server Anywhere
JDBC-ODBC bridge. Passing arguments to the
DriverManager.getConnection establishes the connection. The
database environment is an external application from the perspective of
the client application.

♦ Server-side When using JDBC within the database server, a
connection already exists. A value of jdbc:default:connection passes to
DriverManager.getConnection, which provides the JDBC application
with the ability to work within the current user connection. This is a
quick, efficient, and safe operation because the client application has
already passed the database security to establish the connection. The
user ID and password, having been provided once, do not need to be
provided again. The internal JDBC driver can only connect to the
database of the current connection.

You can write JDBC classes in such a way that they can run both at the client
and at the server by employing a single conditional statement for
constructing the URL. An external connection requires the machine name
and port number, while the internal connection requires
jdbc:default:connection.

Using the jConnect JDBC driver

136

Using the jConnect JDBC driver
If you wish to use JDBC from a client application or applet, you must have
the jConnect JDBC driver to connect to Adaptive Server Anywhere
databases.

jConnect is included with SQL Anywhere Studio. If you received Adaptive
Server Anywhere as part of another package, jConnect may or may not be
included. You must have jConnect in order to use JDBC from client
applications. You can use JDBC in the database without jConnect.

The jConnect driver files

The jConnect JDBC driver is installed into a set of directories under the
Sybase\Shared directory. Two versions of jConnect are supplied:

♦ jConnect 4.5 This version of jConnect is for use when developing
JDK 1.1 applications. jConnect 4.5 is installed into the
Sybase\Shared\jConnect-4_5 directory.

jConnect 4.5 is supplied as a set of classes.

♦ jConnect 5.5 This version of jConnect is for use when developing
JDK 1.2 or later applications. jConnect 5.5 is installed into the
Sybase\Shared\jConnect-5_5 directory.

jConnect 5.5 is supplied as a jar file named jconn2.jar.

Examples in this chapter use jConnect 5.5. Users of jConnect 4.5 must make
appropriate substitutions.

For your application to use jConnect, the jConnect classes must be in your
classpath at compile time and run time, so the Java compiler and Java
runtime can locate the necessary files.

The following command adds the jConnect 5.5 driver to an existing
CLASSPATH environment variable where path is your Sybase\Shared
directory.

set classpath=%classpath%;path\jConnect-5_5\classes\jconn2.jar

The following command adds the jConnect 4.5 driver to an existing
CLASSPATH environment variable:

set classpath=%classpath%;path\jConnect-4_5\classes

The classes in jConnect are all in the com.sybase package.

Setting the
CLASSPATH for
jConnect

Importing the
jConnect classes

Chapter 5 Data Access Using JDBC

137

If you are using jConnect 5.5, your application must access classes in
com.sybase.jdbc2.jdbc. You must import these classes at the beginning of
each source file:

import com.sybase.jdbc2.jdbc.*

If you are using jConnect 4.5, the classes are in com.sybase.jdbc. You must
import these classes at the beginning of each source file:

import com.sybase. jdbc.*

Installing jConnect system objects into a database

If you wish to use jConnect to access system table information (database
metadata), you must add the jConnect system objects to your database.

By default, the jConnect system objects are added to any new database. You
can choose to add the jConnect objects to the database when creating, when
upgrading, or at a later time.

You can install the jConnect system objects from Sybase Central or from
Interactive SQL.

v To add jConnect system objects to a database (Sybase Central):

1 Connect to the database from Sybase Central as a user with DBA
authority.

2 In the left pane of Sybase Central, right-click the database icon and
choose Re-Install jConnect Meta-data Support from the popup menu.

v To add jConnect system objects to a database (Interactive SQL):

♦ Connect to the database from Interactive SQL as a user with DBA
authority, and enter the following command in the SQL Statements
pane:

read path\scripts\jcatalog.sql

where path is your SQL Anywhere directory.

Tip
You can also use a command prompt to add the jConnect system objects
to a database. At the command prompt, type:

dbisql -c "uid=user;pwd=pwd" path\scripts\jcatalog.sql

where user and pwd identify a user with DBA authority, and path is your
SQL Anywhere directory.

Using the jConnect JDBC driver

138

Loading the jConnect driver

Before you can use jConnect in your application, load the driver by entering
the following statement:

Class.forName("com.sybase.jdbc2.jdbc.SybDriver").newInstance();

Using the newInstance method works around issues in some browsers.

Supplying a URL for the server

To connect to a database via jConnect, you need to supply a Uniform
Resource Locator (URL) for the database. An example given in the section
"Connecting from a JDBC client application using jConnect" on page 143 is
as follows:

StringBuffer temp = new StringBuffer();
// Use the jConnect driver...
temp.append("jdbc:sybase:Tds:");
// to connect to the supplied machine name...
temp.append(_coninfo);
// on the default port number for ASA...
temp.append(":2638");
// and connect.
System.out.println(temp.toString());
conn = DriverManager.getConnection(temp.toString() ,
_props);

The URL is put together in the following way:

jdbc:sybase:Tds:machine-name:port-number

The individual components are:

♦ jdbc:sybase:Tds The Sybase jConnect JDBC driver, using the TDS
application protocol.

♦ machine-name The IP address or name of the machine on which the
server is running. If you are establishing a same-machine connection,
you can use localhost, which means the current machine

♦ port number The port number on which the database server listens.
The port number assigned to Adaptive Server Anywhere is 2638. Use
that number unless there are specific reasons not to do so.

The connection string must be less than 253 characters in length.

Chapter 5 Data Access Using JDBC

139

Specifying a database on a server

Each Adaptive Server Anywhere server may have one or more databases
loaded at a time. The URL as described above specifies a server, but does not
specify a database. The connection attempt is made to the default database on
the server.

You can specify a particular database by providing an extended form of the
URL in one of the following ways.

jdbc:sybase:Tds:machine-name:port-number?ServiceName=DBN

The question mark followed by a series of assignments is a standard way of
providing arguments to a URL. The case of servicename is not significant,
and there must be no spaces around the = sign. The DBN parameter is the
database name.

A more general method allows you to provide additional connection
parameters such as the database name, or a database file, using the
RemotePWD field. You set RemotePWD as a Properties field using the
setRemotePassword() method.

Here is sample code that illustrates how to use the field.

sybDrvr = (SybDriver)Class.forName(
 "com.sybase.jdbc2.jdbc.SybDriver").newInstance();

props = new Properties();
props.put("User", "DBA");
props.put("Password", "SQL");
sybDrvr.setRemotePassword(

null, "dbf=asademo.db", props);
Connection con = DriverManager.getConnection(

"jdbc:sybase:Tds:localhost", props);

Using the database file parameter DBF, you can start a database on a server
using jConnect. By default, the database is started with autostop=YES. If you
specify a DBF or DBN of utility_db, then the utility database will
automatically be started.

$ For more information on the utility database, see "Using the utility
database" on page 226 of the book ASA Database Administration Guide.

Database options set for jConnect connections

When an application connects to the database using the jConnect driver, two
stored procedures are called:

1 sp_tsql_environment sets some database options for compatibility with
Adaptive Server Enterprise behavior.

Using the
ServiceName
parameter

Using the
RemotePWD
parameter

Using the jConnect JDBC driver

140

2 The spt_mda procedure is then called, and sets some other options. In
particular, the spt_mda procedure determines the
QUOTED_IDENTIFIER setting. To change the default behavior, you
should modify the spt_mda procedure.

Chapter 5 Data Access Using JDBC

141

Using the JDBC-ODBC bridge
The JDBC-ODBC bridge provides a JDBC driver that has some performance
benefits and feature benefits compared to the pure Java jConnect JDBC
driver, but which is not a pure-Java solution.

$ For information on choosing which JDBC driver to use, see "Choosing
a JDBC driver" on page 131.

The Java component of the JDBC-ODBC bridge is included in the jodbc.jar
file installed into the Java subdirectory of your SQL Anywhere installation.
For Windows, the native component is dbjodbc8.dll in the win32 subdirectory
of your SQL Anywhere installation; for UNIX and Linux, the native
component is dbjodbc8.so. This component must be in the system path.
When deploying applications using this driver, you must also deploy the
ODBC driver files.

The following code illustrates how to establish a connection using the JDBC-
ODBC bridge:

String driver, url;
Connection conn;

driver="ianywhere.ml.jdbcodbc.IDriver";
url = "jdbc:odbc:dsn=ASA 8.0 Sample";
Class.forName(driver);
conn = DriverManager.getConnection(url);

There are several things to note about this code:

♦ As the classes are loaded using Class.forName, the package containing
the JDBC-ODBC bridge does not have to be imported using import
statements.

♦ jodbc.jar must be in your classpath when you run the application.

♦ The URL contains jdbc:odbc: followed by a standard ODBC
connection string. The connection string is commonly an ODBC data
source, but you can also use explicit semicolon separated individual
connection parameters in addition to or instead of the data source. For
more information on the parameters that you can use in a connection
string, see "Connection parameters" on page 70 of the book ASA
Database Administration Guide.

If you do not use a data source, you should specify the ODBC driver to
use by including the driver parameter in your connection string:

url = "jdbc:odbc:";
url += "driver=Adaptive Server Anywhere 8.0;...";

Required files

Establishing a
connection

Using the JDBC-ODBC bridge

142

On UNIX the JDBC-ODBC bridge does not use ODBC Unicode bindings or
calls and does not carry out character translations. Sending non-ASCII data
through the bridge leads to data corruption.

On Windows the JDBC-ODBC bridge does use ODBC Unicode bindings
and calls to translate among character sets.

Character sets

Chapter 5 Data Access Using JDBC

143

Establishing JDBC connections
This section presents classes that establish a JDBC database connection from
a Java application. The examples in this section use jConnect (client side) or
Java in the database (server side). For information on establishing
connections using the JDBC-ODBC bridge, see "Using the JDBC-ODBC
bridge" on page 141.

Connecting from a JDBC client application using jConnect

If you wish to access database system tables (database metadata) from a
JDBC application, you must add a set of jConnect system objects to your
database. The internal JDBC driver classes and jConnect share stored
procedures for database metadata support. These procedures are installed to
all databases by default. The dbinit -i option prevents this installation.

$ For more information about adding the jConnect system objects to a
database, see "Using the jConnect JDBC driver" on page 136.

The following complete Java application is a command-line application that
connects to a running database, prints a set of information to your
command-line, and terminates.

Establishing a connection is the first step any JDBC application must take
when working with database data.

$ This example illustrates an external connection, which is a regular
client/server connection. For information on how to create an internal
connection from Java classes running inside the database server, see
"Establishing a connection from a server-side JDBC class" on page 146.

External connection example code

The following is the source code for the methods used to make a connection.
The source code can be found in the main method and the ASAConnect
method of the file JDBCExamples.java in the Samples\ASA\Java directory
under your SQL Anywhere directory:

import java.sql.*; // JDBC
import com.sybase.jdbc2.jdbc.*; // Sybase jConnect
import java.util.Properties; // Properties
import sybase.sql.*; // Sybase utilities
import asademo.*; // Example classes

Establishing JDBC connections

144

public class JDBCExamples{
 private static Connection conn;

 public static void main(String args[]){
 // Establish a connection
 conn = null;
 String machineName = (args.length == 1 ? args[0] :
"localhost");
 ASAConnect("DBA", "SQL", machineName);
 if(conn!=null) {
 System.out.println("Connection successful");
 }else{
 System.out.println("Connection failed");
 }

 try{
 getObjectColumn();
 getObjectColumnCastClass();
 insertObject();
 }
 catch(Exception e){
 System.out.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

private static void ASAConnect(String userID,
 String password,
 String machineName) {

 // Connect to an Adaptive Server Anywhere
 String coninfo = new String(machineName);

 Properties props = new Properties();
 props.put("user", userID);
 props.put("password", password);
 props.put("DYNAMIC_PREPARE", "true");

 // Load jConnect
 try {
 Class.forName("com.sybase.jdbc2.jdbc.SybDriver"
).newInstance();
 String dbURL = "jdbc:sybase:Tds:" + machineName +
 ":2638/?JCONNECT_VERSION=5";
 System.out.println(dbURL);
 conn = DriverManager.getConnection(dbURL , props
);
 }
 catch (Exception e) {
 System.out.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

Chapter 5 Data Access Using JDBC

145

How the external connection example works

The external connection example is a Java command-line application.

The application requires several libraries, which are imported in the first
lines of JDBCExamples.java:

♦ The java.sql package contains the Sun Microsystems JDBC classes,
which are required for all JDBC applications. You’ll find it in the
classes.zip file in your Java subdirectory.

♦ Imported from com.sybase.jdbc2.jdbc, the Sybase jConnect JDBC
driver is required for all applications that connect using jConnect.

♦ The application uses a property list. The java.util.Properties class is
required to handle property lists. You’ll find it in the classes.zip file in
your Java subdirectory.

♦ The asademo package contains classes used in some samples. You’ll
find it in the Samples\ASA\Java\asademo.jar file.

Each Java application requires a class with a method named main, which is
the method invoked when the program starts. In this simple example,
JDBCExamples.main is the only method in the application.

The JDBCExamples.main method carries out the following tasks:

1 Processes the command-line argument, using the machine name if
supplied. By default, the machine name is localhost, which is
appropriate for the personal database server.

2 Calls the ASAConnect method to establish a connection.

3 Executes several methods that scroll data to your command-line.

The JDBCExamples.ASAConnect method carries out the following tasks:

1 Connects to the default running database using Sybase jConnect.

♦ Class.forName loads jConnect. Using the newInstance method, it
works around issues in some browsers.

♦ The StringBuffer statements build up a connection string from the
literal strings and the supplied machine name provided on the
command-line.

♦ DriverManager.getConnection establishes a connection using the
connection string.

2 Returns control to the calling method.

Importing
packages

The main method

The ASAConnect
method

Establishing JDBC connections

146

Running the external connection example

This section describes how to run the external connection example.

v To create and execute the external connection example application:

1 Open the command prompt.

2 Change to your SQL Anywhere directory.

3 Change to the Samples\ASA\Java subdirectory.

4 Ensure the database is loaded onto a database server running TCP/IP.
You can start such a server on your local machine using the following
command (from the Samples\ASA\Java subdirectory):

start dbeng8 ..\..\..\asademo

5 Enter the following at the command prompt to run the example:

java JDBCExamples

If you wish to try this against a server running on another machine, you
must enter the correct name of that machine. The default is localhost,
which is an alias for the current machine name.

6 Confirm that a list of people and products appears at the command
prompt.

If the attempt to connect fails, an error message appears instead.
Confirm that you have executed all the steps as required. Check that
your CLASSPATH is correct. An incorrect CLASSPATH results in a
failure to locate a class.

$ For more information about using jConnect, see "Using the jConnect
JDBC driver" on page 136, and see the online documentation for jConnect.

Establishing a connection from a server-side JDBC class

SQL statements in JDBC are built using the createStatement method of a
Connection object. Even classes running inside the server need to establish a
connection to create a Connection object.

Establishing a connection from a server-side JDBC class is more
straightforward than establishing an external connection. Because a user
already connected executes the server-side class, the class simply uses the
current connection.

Chapter 5 Data Access Using JDBC

147

Server-side connection example code

The following is the source code for the example. You can find the source
code in the InternalConnect method of
Samples\ASA\Java\JDBCExamples.java under your SQL Anywhere
directory:

public static void InternalConnect() {
 try {
 conn =
DriverManager.getConnection("jdbc:default:connection");
 System.out.println("Hello World");
 }
 catch (Exception e) {
 System.out.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }
}

How the server-side connection example works

In this simple example, InternalConnect() is the only method used in the
application.

The application requires only one of the libraries (JDBC) imported in the
first line of the JDBCExamples.java class. The others are for external
connections. The package named java.sql contains the JDBC classes.

The InternalConnect() method carries out the following tasks:

1 Connects to the default running database using the current connection:

♦ DriverManager.getConnection establishes a connection using a
connection string of jdbc:default:connection.

2 Prints Hello World to the current standard output, which is the server
window. System.out.println carries out the printing.

3 If there is an error in the attempt to connect, an error message appears in
the server window, together with the place where the error occurred.

The try and catch instructions provide the framework for the error
handling.

4 Terminates the class.

Running the server-side connection example

This section describes how to run the server-side connection example.

Establishing JDBC connections

148

v To create and execute the internal connection example application:

1 If you have not already done so, compile the JDBCExamples.java file. If
you are using the JDK, you can do the following in the
Samples\ASA\Java directory from a command prompt:

javac JDBCExamples.java

2 Start a database server using the sample database. You can start such a
server on your local machine using the following command (from the
Samples\ASA\Java subdirectory):

start dbeng8 ..\..\..\asademo

The TCP/IP network protocol is not necessary in this case since you are
not using jConnect.

3 Install the class into the sample database. Once connected to the sample
database, you can do this from Interactive SQL using the following
command:

INSTALL JAVA NEW
FROM FILE ’path\Samples\ASA\Java\JDBCExamples.class’

where path is the path to your installation directory.

You can also install the class using Sybase Central. While connected to
the sample database, open the Java Objects folder and double-click Add
Java Class. Then follow the instructions in the wizard.

4 You can now call the InternalConnect method of this class just as you
would a stored procedure:

CALL JDBCExamples>>InternalConnect()

The first time a Java class is called in a session, the internal Java virtual
machine must be loaded. This can take a few seconds.

5 Confirm that the message Hello World prints on the server screen.

Notes on JDBC connections

♦ Autocommit behavior The JDBC specification requires that, by
default, a COMMIT is performed after each data modification statement.
Currently, the server-side JDBC behavior is to commit. You can control
this behavior using a statement such as the following:

conn.setAutoCommit(false) ;

where conn is the current connection object.

Chapter 5 Data Access Using JDBC

149

♦ Connection defaults From server-side JDBC, only the first call to
getConnection("jdbc:default:connection") creates a new connection
with the default values. Subsequent calls return a wrapper of the current
connection with all connection properties unchanged. If you set
AutoCommit to OFF in your initial connection, any subsequent
getConnection calls within the same Java code return a connection with
AutoCommit set to OFF.

You may wish to ensure that closing a connection resets the connection
properties to their default values, so that subsequent connections are
obtained with standard JDBC values. The following type of code
achieves this:

Connection conn = DriverManager.getConnection("");
boolean oldAutoCommit = conn.getAutoCommit();
try {
 // do code here
}
finally {
 conn.setAutoCommit(oldAutoCommit);
}

This discussion applies not only to AutoCommit, but also to other
connection properties such as TransactionIsolation and isReadOnly.

Using JDBC to access data

150

Using JDBC to access data
Java applications that hold some or all classes in the database have
significant advantages over traditional SQL stored procedures. At an
introductory level, however, it may be helpful to use the parallels with SQL
stored procedures to demonstrate the capabilities of JDBC. In the following
examples, we write Java classes that insert a row into the Department table.

As with other interfaces, SQL statements in JDBC can be either static or
dynamic. Static SQL statements are constructed in the Java application and
sent to the database. The database server parses the statement, selects an
execution plan, and executes the statement. Together, parsing and selecting
an execution plan are referred to as preparing the statement.

If a similar statement has to be executed many times (many inserts into one
table, for example), there can be significant overhead in static SQL because
the preparation step has to be executed each time.

In contrast, a dynamic SQL statement contains placeholders. The statement,
prepared once using these placeholders, can be executed many times without
the additional expense of preparing.

In this section, we use static SQL. Dynamic SQL is discussed in a later
section.

Preparing for the examples

This section describes how to prepare for the examples in the remainder of
the chapter.

The code fragments in this section are taken from the complete class
Samples\ASA\Java\JDBCExamples.java.

v To install the JDBCExamples class:

1 If you have not already done so, install the JDBCExamples.class file
into the sample database. Once connected to the sample database from
Interactive SQL, enter the following command in the SQL Statements
pane:

INSTALL JAVA NEW
FROM FILE ’path\Samples\ASA\Java\JDBCExamples.class’

where path is the path to your installation directory.

You can also install the class using Sybase Central. While connected to
the sample database, open the Java Objects folder and double-click Add
Java Class. Then follow the instructions in the wizard.

Sample code

Chapter 5 Data Access Using JDBC

151

Inserts, updates, and deletes using JDBC

The Statement object executes static SQL statements. You execute SQL
statements such as INSERT, UPDATE, and DELETE, which do not return
result sets, using the executeUpdate method of the Statement object.
Statements, such as CREATE TABLE and other data definition statements,
can also be executed using executeUpdate.

The following code fragment illustrates how JDBC carries out INSERT
statements. It uses an internal connection held in the Connection object
named conn. The code for inserting values from an external application
using JDBC would need to use a different connection, but otherwise would
be unchanged.

public static void InsertFixed() {
 // returns current connection
 conn =
DriverManager.getConnection("jdbc:default:connection");
 // Disable autocommit
 conn.setAutoCommit(false);

 Statement stmt = conn.createStatement();

 Integer IRows = new Integer(stmt.executeUpdate
 ("INSERT INTO Department (dept_id, dept_name)"
 + "VALUES (201, ’Eastern Sales’)"
));

 // Print the number of rows updated
 System.out.println(IRows.toString() + " row
inserted");
 }

Source code available
This code fragment is part of the InsertFixed method of the
JDBCExamples class included in the Samples\ASA\Java subdirectory of
your installation directory.

♦ The setAutoCommit method turns off the AutoCommit behavior so
changes are only committed if you execute an explicit COMMIT
instruction.

♦ The executeUpdate method returns an integer which reflects the
number of rows affected by the operation. In this case, a successful
INSERT would return a value of one (1).

Notes

Using JDBC to access data

152

♦ The integer return type converts to an Integer object. The Integer class
is a wrapper around the basic int data type, providing some useful
methods such as toString().

♦ The Integer IRows converts to a string to be printed. The output goes to
the server window.

v To run the JDBC Insert example:

1 Using Interactive SQL, connect to the sample database as user ID DBA.

2 Ensure the JDBCExamples class has been installed. It is installed
together with the other Java examples classes.

$ For more information about installing the Java examples classes,
see "Setting up the Java samples" on page 86.

3 Call the method as follows:

CALL JDBCExamples>>InsertFixed()

4 Confirm that a row has been added to the department table.

SELECT *
FROM department

The row with ID 201 is not committed. You can execute a ROLLBACK
statement to remove the row.

In this example, you have seen how to create a very simple JDBC class.
Subsequent examples expand on this.

Passing arguments to Java methods

We can expand the InsertFixed method to illustrate how arguments are
passed to Java methods.

The following method uses arguments passed in the call to the method as the
values to insert:

public static void InsertArguments(
 String id, String name) {

try {
 conn = DriverManager.getConnection(
 "jdbc:default:connection");

String sqlStr = "INSERT INTO Department "
+ " (dept_id, dept_name)"
+ " VALUES (" + id + ", ’" + name + "’)";

 // Execute the statement
 Statement stmt = conn.createStatement();

Chapter 5 Data Access Using JDBC

153

 Integer IRows = new Integer(stmt.executeUpdate(
sqlStr.toString()));

 // Print the number of rows updated
 System.out.println(IRows.toString() + " row
inserted");
 }
 catch (Exception e) {
 System.out.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

♦ The two arguments are the department ID (an integer) and the
department name (a string). Here, both arguments pass to the method as
strings because they are part of the SQL statement string.

♦ The INSERT is a static statement and takes no parameters other than the
SQL itself.

♦ If you supply the wrong number or type of arguments, you receive the
Procedure Not Found error.

v To use a Java method with arguments:

1 If you have not already installed the JDBCExamples.class file into the
sample database, do so.

2 Connect to the sample database from Interactive SQL and enter the
following command:

call JDBCExamples>>InsertArguments(’203’, ’Northern
Sales’)

3 Verify that an additional row has been added to the Department table:

SELECT *
FROM Department

4 Roll back the changes to leave the database unchanged:

ROLLBACK

Queries using JDBC

The Statement object executes static queries, as well as statements that do
not return result sets. For queries, you use the executeQuery method of the
Statement object. This returns the result set in a ResultSet object.

Notes

Using JDBC to access data

154

The following code fragment illustrates how queries can be handled within
JDBC. The code fragment places the total inventory value for a product into
a variable named inventory. The product name is held in the String variable
prodname. This example is available as the Query method of the
JDBCExamples class.

The example assumes an internal or external connection has been obtained
and is held in the Connection object named conn.

public static int Query () {
int max_price = 0;
 try{
 conn = DriverManager.getConnection(
 "jdbc:default:connection");

 // Build the query
 String sqlStr = "SELECT id, unit_price "

+ "FROM product" ;

 // Execute the statement
 Statement stmt = conn.createStatement();
 ResultSet result = stmt.executeQuery(sqlStr);

 while(result.next()) {
int price = result.getInt(2);
System.out.println("Price is " + price);
if(price > max_price) {
 max_price = price ;
}

 }
 }
 catch(Exception e) {
 System.out.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 return max_price;
 }

Once you have installed the JDBCExamples class into the sample database,
you can execute this method using the following statement in
Interactive SQL:

select JDBCExamples>>Query()

♦ The query selects the quantity and unit price for all products named
prodname. These results are returned into the ResultSet object named
result.

♦ There is a loop over each of the rows of the result set. The loop uses the
next method.

Running the
example

Notes

Chapter 5 Data Access Using JDBC

155

♦ For each row, the value of each column is retrieved into an integer
variable using the getInt method. ResultSet also has methods for other
data types, such as getString, getDate, and getBinaryString.

The argument for the getInt method is an index number for the column,
starting from 1.

Data type conversion from SQL to Java is carried out according to the
information in "SQL to Java data type conversion" on page 85 of the
book ASA SQL Reference Manual.

♦ Adaptive Server Anywhere supports bidirectional scrolling cursors.
However, JDBC provides only the next method, which corresponds to
scrolling forward through the result set.

♦ The method returns the value of max_price to the calling environment,
and Interactive SQL displays it on the Results tab in the Results pane.

Using prepared statements for more efficient access

If you use the Statement interface, you parse each statement you send to the
database, generate an access plan, and execute the statement. The steps prior
to actual execution are called preparing the statement.

You can achieve performance benefits if you use the PreparedStatement
interface. This allows you to prepare a statement using placeholders, and
then assign values to the placeholders when executing the statement.

Using prepared statements is particularly useful when carrying out many
similar actions, such as inserting many rows.

$ For more information about prepared statements, see "Preparing
statements" on page 12.

The following example illustrates how to use the PreparedStatement
interface, although inserting a single row is not a good use of prepared
statements.

The following method of the JDBCExamples class carries out a prepared
statement:

public static void JInsertPrepared(int id, String name)
try {
 conn = DriverManager.getConnection(
 "jdbc:default:connection");

 // Build the INSERT statement
 // ? is a placeholder character
 String sqlStr = "INSERT INTO Department "

+ "(dept_id, dept_name) "

Example

Using JDBC to access data

156

+ "VALUES (? , ?)" ;

 // Prepare the statement
 PreparedStatement stmt = conn.prepareStatement(
sqlStr);

 stmt.setInt(1, id);
 stmt.setString(2, name);
 Integer IRows = new Integer(
 stmt.executeUpdate());

 // Print the number of rows updated
 System.out.println(IRows.toString() + " row
inserted");
 }
 catch (Exception e) {
 System.out.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

Once you have installed the JDBCExamples class into the sample database,
you can execute this example by entering the following statement:

call JDBCExamples>>InsertPrepared(
 202, ’Eastern Sales’)

The string argument is enclosed in single quotes, which is appropriate for
SQL. If you invoke this method from a Java application, use double quotes to
delimit the string.

Inserting and retrieving objects

As an interface to relational databases, JDBC is designed to retrieve and
manipulate traditional SQL data types. Adaptive Server Anywhere also
provides abstract data types in the form of Java classes. The way you access
these Java classes using JDBC depends on whether you want to insert or
retrieve the objects.

$ For more information on getting and setting entire objects, see
"Creating distributed applications" on page 158.

Retrieving objects

You can retrieve objects, their fields, and their methods by:

Running the
example

Chapter 5 Data Access Using JDBC

157

♦ Accessing methods and fields Java methods and fields can be
included in the select-list of a query. A method or field then appears as a
column in the result set, and can be accessed using one of the standard
ResultSet methods, such as getInt or getString.

♦ Retrieving an object If you include a column with a Java class data
type in a query select list, you can use the ResultSet getObject method
to retrieve the object into a Java class. You can then access the methods
and fields of that object within the Java class.

Inserting objects

From a server-side Java class, you can use the JDBC setObject method to
insert an object into a column with Java class data type.

You can insert objects using a prepared statement. For example, the
following code fragment inserts an object of type MyJavaClass into a column
of table T:

java.sql.PreparedStatement ps =
 conn.prepareStatement("insert T values(?)");
ps.setObject(1, new MyJavaClass());
ps.executeUpdate();

An alternative is to set up a SQL variable that holds the object and then to
insert the SQL variable into the table.

Miscellaneous JDBC notes

♦ Access permissions Like all Java classes in the database, classes
containing JDBC statements can be accessed by any user. There is no
equivalent to the GRANT EXECUTE statement that grants permission
to execute procedures, and there is no need to qualify the name of a class
with the name of its owner.

♦ Execution permissions Java classes are executed with the
permissions of the connection executing them. This behavior is different
to that of stored procedures, which execute with the permissions of the
owner.

Creating distributed applications

158

Creating distributed applications
In a distributed application, parts of the application logic run on one
machine, and parts run on another machine. With Adaptive Server
Anywhere, you can create distributed Java applications, where part of the
logic runs in the database server, and part on the client machine.

Adaptive Server Anywhere is capable of exchanging Java objects with an
external Java client.

Having the client application retrieve a Java object from a database is the key
task in a distributed application This section describes how to accomplish
that task.

In other parts of this chapter, we described how to retrieve several tasks
related to retrieving objects, but which should not be confused with
retrieving the object itself. For example:

♦ "Querying Java objects" on page 106 describes how to retrieve an object
into a SQL variable. This does not solve the problem of getting the
object into your Java application.

♦ "Querying Java objects" on page 106 also describes how to retrieve the
public fields and the return value of Java methods. Again, this is distinct
from retrieving an object into a Java application.

♦ "Inserting and retrieving objects" on page 156 describes how to retrieve
objects into server-side Java classes. Again, this is not the same as
retrieving them into a client application.

There are several tasks in building a distributed application.

v To build a distributed application:

1 Any class running in the server must implement the Serializable
interface. This is very simple.

2 The client-side application must import the class so the object can be
reconstructed on the client side.

3 Use the sybase.sql.ASAUtils.toByteArray method on the server side to
serialize the object. This is only necessary for Adaptive Server
Anywhere version 6.0.1 and earlier.

4 Use the sybase.sql.ASAUtils.fromByteArray method on the client side
to reconstruct the object. This is only necessary for Adaptive Server
Anywhere version 6.0.1 and earlier.

These tasks are described in the following sections.

Related tasks

Requirements for
distributed
applications

Chapter 5 Data Access Using JDBC

159

Implementing the Serializable interface

Objects pass from the server to a client application in serialized form. This
means that each row contains the following information:

♦ A version identifier.

♦ An identifier for the class (or subclass) that is stored.

♦ The values of non-static, non-transient fields in the class.

♦ Other overhead information.

For an object to be sent to a client application, it must implement the
Serializable interface. Fortunately, this is a very simple task.

v To implement the Serializable interface:

♦ Add the words implements java.io.Serializable to your class definition.

For example, Samples\ASA\Java\asademo\Product.java implements the
Serializable interface by virtue of the following declaration:

public class Product implements java.io.Serializable

Implementing the Serializable interface amounts to simply declaring that
your class can be serialized.

The Serializable interface contains no methods and no variables. Serializing
an object converts it into a byte stream, which allows it to be saved to disk or
sent to another Java application where it can be reconstituted or deserialized.

A serialized Java object in a database server, sent to a client application and
deserialized, is identical in every way to its original state. Some variables in
an object, however, either don’t need to be or, for security reasons, should
not be serialized. Those variables are declared using the keyword transient,
as in the following variable declaration.

transient String password;

When an object with this variable is deserialized, the variable always
contains its default value, null.

Custom serialization can be accomplished by adding writeObject() and
readObject() methods to your class.

$ For more information about serialization, see Sun Microsystems’ Java
Development Kit (JDK).

Creating distributed applications

160

Importing the class on the client side

On the client side, any class that retrieves an object has to have access to the
proper class definition to use the object. To use the Product class, which is
part of the asademo package, you must include the following line in your
application:

import asademo.*

The asademo.jar file must be included in your CLASSPATH for this
package to be located.

A sample distributed application

The JDBCExamples.java class contains three methods that illustrate
distributed Java computing. These are all called from the main method. This
method is called in the connection example described in "Connecting from a
JDBC client application using jConnect" on page 143, and is an example of a
distributed application.

Here is the getObjectColumn method from the JDBCExamples class.

private static void getObjectColumn() throws Exception {
// Return a result set from a column containing
// Java objects
 asademo.ContactInfo ci;
 String name;
 String sComment ;

 if (conn != null) {
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(
 "SELECT JContactInfo FROM jdba.contact"
);
 while (rs.next()) {
 ci = (asademo.ContactInfo)rs.getObject(1);
 System.out.println("\n\tStreet: " + ci.street +
 "City: " + ci.city +
 "\n\tState: " + ci.state +
 "Phone: " + ci.phone +
 "\n");
 }
 }
 }

The getObject method is used in the same way as in the internal Java case.

Chapter 5 Data Access Using JDBC

161

Older method

getObject and setObject recommended
The getObject and setObject methods remove the need for explicit
serialization and deserialization that was needed in earlier versions of the
software. The current section describes that older method for users who
are maintaining code that uses these techniques.

In this section we describe how one of these examples works. You can study
the code for the other examples.

Here is the serializeColumn method of an old version of the
JDBCExamples class.

private static void serializeColumn() throws Exception {
 Statement stmt;
 ResultSet rs;
 byte arrayb[];
 asademo.ContactInfo ci;
 String name;

 if (conn != null) {
 stmt = conn.createStatement();
 rs = stmt.executeQuery("SELECT
 sybase.sql.ASAUtils.toByteArray(JName.getName())
AS Name,
 sybase.sql.ASAUtils.toByteArray(
jdba.contact.JContactInfo)
 FROM jdba.contact");

 while (rs.next()) {
 arrayb = rs.getBytes("Name");
 name = (String
)sybase.sql.ASAUtils.fromByteArray(arrayb);
 arrayb = rs.getBytes(2);
 ci =
(asademo.ContactInfo)sybase.sql.ASAUtils.fromByteArray(
arrayb);
 System.out.println("Name: " + name +
 "\n\tStreet: " + ci.street +
 "\n\tCity: " + ci.city +
 "\n\tState: " + ci.state +
 "\n\tPhone: " + ci.phone +
 "\n");
 }
 System.out.println("\n\n");
 }
 }

Here is how the method works:

Serializing and
deserializing query
results

Creating distributed applications

162

1 A connection already exists when the method is called. The connection
object is checked, and as long as it exists, the code executes.

2 A SQL query is constructed and executed. The query is as follows:

SELECT
sybase.sql.ASAUtils.toByteArray(JName.getName())
AS Name,
sybase.sql.ASAUtils.toByteArray(
jdba.contact.JContactInfo)
 FROM jdba.contact

This statement queries the jdba.contact table. It gets information from
the JName and the JContactInfo columns. Instead of just retrieving the
column itself, or a method of the column, the
sybase.sql.ASAUtils.toByteArray function converts the values to a
byte stream so it can be serialized.

3 The client loops over the rows of the result set. For each row, the value
of each column is deserialized into an object.

4 The output (System.out.println) shows that the fields and methods of
the object can be used as they could in their original state.

Other features of distributed applications

There are two other methods in JDBCExamples.java that use distributed
computing:

♦ serializeVariable This method creates a native Java object referenced
by a SQL variable on the database server and passes it back to the client
application.

♦ serializeColumnCastClass This method is like the serializeColumn
method, but demonstrates how to reconstruct subclasses. The column
that is queried (JProd from the product table) is of data type
asademo.Product. Some of the rows are asademo.Hat, which is a
subclass of the Product class. The proper class is reconstructed on the
client side.

163

C H A P T E R 6

Embedded SQL Programming

This chapter describes how to use the embedded SQL programming interface
to Adaptive Server Anywhere.

Topic Page

Introduction 164

Sample embedded SQL programs 171

Embedded SQL data types 177

Using host variables 181

The SQL Communication Area (SQLCA) 188

Fetching data 193

Static and dynamic SQL 202

The SQL descriptor area (SQLDA) 206

Sending and retrieving long values 214

Using stored procedures 220

Embedded SQL programming techniques 224

The SQL preprocessor 226

Library function reference 230

Embedded SQL command summary 247

About this chapter

Contents

Introduction

164

Introduction
Embedded SQL is a database-programming interface for the C and C++
programming languages. It consists of SQL statements intermixed with
(embedded in) C or C++ source code. These SQL statements are translated
by a SQL preprocessor into C or C++ source code, which you then compile.

At runtime, embedded SQL applications use an Adaptive Server Anywhere
interface library to communicate with database server. The interface library
is a dynamic link library (DLL) or shared library on most platforms.

♦ On Windows operating systems, the interface library is dblib8.dll.

♦ On UNIX operating systems, the interface library is libdblib8.so,
libdblib8.sl, or libdblib8.a, depending on the operating system.

Adaptive Server Anywhere provides two flavors of embedded SQL. Static
embedded SQL is simpler to use but less flexible than dynamic embedded
SQL. Both flavors are discussed in this chapter.

Chapter 6 Embedded SQL Programming

165

Development process overview

C Source Code

SQL
Preprocessor

C Compiler

Linker

Custom
Application

DLL

DLL Import
Library

Database

Once the program has been successfully preprocessed and compiled, it is
linked with the import library for the Adaptive Server Anywhere interface
library to form an executable file. When the database is running, this
executable file uses the Adaptive Server Anywhere DLL to interact with the
database. The database does not have to be running when the program is
preprocessed.

For Windows, there are separate import libraries for Watcom C/C++, for
Microsoft Visual C++, and for Borland C++.

$ Using import libraries is the standard development method for
applications that call functions in DLLs. Adaptive Server Anywhere also
provides an alternative, and recommended method which avoids the use of
import libraries. For more information, see "Loading the interface library
dynamically" on page 169.

Introduction

166

Running the SQL preprocessor

The SQL preprocessor is an executable named sqlpp.exe.

The SQLPP command line is as follows:

sqlpp [options] SQL-filename [output-filename]

The SQL preprocessor processes a C program with embedded SQL before
the C or C++ compiler is run. The preprocessor translates the SQL
statements into C/C++ language source that is put into the output file. The
normal extension for source programs with embedded SQL is .sqc. The
default output filename is the SQL-filename with an extension of .c. If the
SQL-filename already has a .c extension, then the output filename extension
is .cc by default.

$ For a full listing of the command-line options, see "The SQL
preprocessor" on page 226.

Supported compilers

The C language SQL preprocessor has been used in conjunction with the
following compilers:

Operating system Compiler Version

Windows Watcom C/C++ 9.5 and above

Windows Microsoft Visual C/C++ 1.0 and above

Windows Borland C++ 4.5

Windows CE Microsoft Visual C/C++ 5.0

UNIX GNU or native compiler

NetWare Watcom C/C++ 10.6, 11

$ For instructions on building NetWare NLMs, see "Building NetWare
Loadable Modules" on page 170.

Embedded SQL header files

All header files are installed in the h subdirectory of your Adaptive Server
Anywhere installation directory.

Command line

Chapter 6 Embedded SQL Programming

167

Filename Description

sqlca.h Main header file included in all embedded SQL programs. This
file includes the structure definition for the SQL Communication
Area (SQLCA) and prototypes for all embedded SQL database
interface functions.

sqlda.h SQL Descriptor Area structure definition included in embedded
SQL programs that use dynamic SQL.

sqldef.h Definition of embedded SQL interface data types. This file also
contains structure definitions and return codes needed for starting
the database server from a C program.

sqlerr.h Definitions for error codes returned in the sqlcode field of the
SQLCA.

sqlstate.h Definitions for ANSI/ISO SQL standard error states returned in
the sqlstate field of the SQLCA.

pshpk1.h,
pshpk2.h,
poppk.h

These headers ensure that structure packing is handled correctly.
They support Watcom C/C++, Microsoft Visual C++, IBM
Visual Age, and Borland C/C++ compilers.

Import libraries

All import libraries are installed in the lib subdirectory, under the operating
system subdirectory of the Adaptive Server Anywhere installation directory.
For example, Windows import libraries are stored in the win32\lib
subdirectory.

Operating system Compiler Import library

Windows Watcom C/C++ dblibtw.lib

Windows Microsoft Visual C++ dblibtm.lib

Windows CE Microsoft Visual C++ dblib8.lib

NetWare Watcom C/C++ dblib8.lib

Solaris (unthreaded
applications)

All compilers libdblib8.so,
libdbtasks8.so

Solaris (threaded
applications)

All compilers libdblib8_r.so,
libdbtasks8_r.so

The libdbtasks8 libraries are called by the libdblib8 library. Some compilers
locate libdbtasks8 automatically, while for others you need to specify it
explicitly.

Introduction

168

A simple example

The following is a very simple example of an embedded SQL program.

#include <stdio.h>
EXEC SQL INCLUDE SQLCA;
main()
{

db_init(&sqlca);
EXEC SQL WHENEVER SQLERROR GOTO error;
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
EXEC SQL UPDATE employee

SET emp_lname = ’Plankton’
WHERE emp_id = 195;

EXEC SQL COMMIT WORK;
EXEC SQL DISCONNECT;
db_fini(&sqlca);
return(0);

error:
printf("update unsuccessful -- sqlcode = %ld.n",

sqlca.sqlcode);
db_fini(&sqlca);
return(-1);

}

This example connects to the database, updates the last name of employee
number 195, commits the change, and exits. There is virtually no interaction
between the SQL and C code. The only thing the C code is used for in this
example is control flow. The WHENEVER statement is used for error
checking. The error action (GOTO in this example) is executed after any
SQL statement that causes an error.

$ For a description of fetching data, see "Fetching data" on page 193.

Structure of embedded SQL programs

SQL statements are placed (embedded) within regular C or C++ code. All
embedded SQL statements start with the words EXEC SQL and end with a
semicolon (;). Normal C language comments are allowed in the middle of
embedded SQL statements.

Every C program using embedded SQL must contain the following statement
before any other embedded SQL statements in the source file.

EXEC SQL INCLUDE SQLCA;

Chapter 6 Embedded SQL Programming

169

The first embedded SQL statement executed by the C program must be a
CONNECT statement. The CONNECT statement is used to establish a
connection with the database server and to specify the user ID that is used for
authorizing all statements executed during the connection.

The CONNECT statement must be the first embedded SQL statement
executed. Some embedded SQL commands do not generate any C code, or
do not involve communication with the database. These commands are thus
allowed before the CONNECT statement. Most notable are the INCLUDE
statement and the WHENEVER statement for specifying error processing.

Loading the interface library dynamically

The usual practice for developing applications that use functions from DLLs
is to link the application against an import library, which contains the
required function definitions.

This section describes an alternative to using an import library for
developing Adaptive Server Anywhere applications. The Adaptive Server
Anywhere interface library can be loaded dynamically, without having to
link against the import library, using the esqldll.c module in the src
subdirectory of your installation directory. Using esqldll.c is recommended
because it is easier to use and more robust in its ability to locate the interface
DLL.

v To load the interface DLL dynamically:

1 Your program must call db_init_dll to load the DLL, and must call
db_fini_dll to free the DLL. The db_init_dll call must be before any
function in the database interface, and no function in the interface can be
called after db_fini_dll.

You must still call the db_init and db_fini library functions.

2 You must #include the esqldll.h header file before the EXEC SQL
INCLUDE SQLCA statement or #include <sqlca.h> line in your
embedded SQL program.

3 A SQL OS macro must be defined. The header file sqlca.h, which is
included by esqdll.c, attempts to determine the appropriate macro and
define it. However, certain combinations of platforms and compilers
may cause this to fail. In this case, you must add a #define to the top of
this file, or make the definition using a compiler option.

Introduction

170

Macro Platforms

_SQL_OS_WINNT All Windows operating systems

_SQL_OS_UNIX UNIX

_SQL_OS_NETWARE NetWare

4 Compile esqldll.c.

5 Instead of linking against the imports library, link the object module
esqldll.obj with your embedded SQL application objects.

You can find a sample program illustrating how to load the interface library
dynamically in the Samples\ASA\ESQLDynamicLoad subdirectory of your
SQL Anywhere directory. The source code is in
Samples\ASA\ESQLDynamicLoad\sample.sqc.

Building NetWare Loadable Modules

You must use the Watcom C/C++ compiler, version 10.6 or 11.0, to compile
embedded SQL programs as NetWare Loadable Modules (NLM).

v To create an embedded SQL NLM:

1 On Windows, preprocess the embedded SQL file using the following
command:

sqlpp -o NETWARE srcfile.sqc

This instruction creates a file with .c extension.

2 Compile file.c using the Watcom compiler (10.6 or 11.0), using the
/bt=netware option.

3 Link the resulting object file using the Watcom linker with the following
options:

FORMAT NOVELL
MODULE dblib8
OPTION CASEEXACT
IMPORT @dblib8.imp
LIBRARY dblib8.lib

The files dblib8.imp and dblib8.lib are shipped with Adaptive Server
Anywhere, in the nlm\lib directory. The IMPORT and LIBRARY lines
may require a full path.

Sample

Chapter 6 Embedded SQL Programming

171

Sample embedded SQL programs
Sample embedded SQL programs are included with the Adaptive Server
Anywhere installation. They are placed in the Samples\ASA\C subdirectory
of your SQL Anywhere directory.

♦ The static cursor embedded SQL example, Samples\ASA\C\cur.sqc,
demonstrates the use of static SQL statements.

♦ The dynamic cursor embedded SQL example, Samples\ASA\C\dcur.sqc,
demonstrates the use of dynamic SQL statements.

To reduce the amount of code that is duplicated by the sample programs, the
mainlines and the data printing functions have been placed into a separate
file. This is mainch.c for character mode systems and mainwin.c for
windowing environments.

The sample programs each supply the following three routines, which are
called from the mainlines.

♦ WSQLEX_Init Connects to the database and opens the cursor.

♦ WSQLEX_Process_Command Processes commands from the user,
manipulating the cursor as necessary.

♦ WSQLEX_Finish Closes the cursor and disconnect from the database.

The function of the mainline is to:

1 Call the WSQLEX_Init routine

2 Loop, getting commands from the user and calling
WSQL_Process_Command until the user quits

3 Call the WSQLEX_Finish routine

Connecting to the database is accomplished with the embedded SQL
CONNECT command supplying the appropriate user ID and password.

In addition to these samples, you may find other programs and source files as
part of SQL Anywhere Studio which demonstrate features available for
particular platforms.

Building the sample programs

Files to build the sample programs are supplied with the sample code.

♦ For Windows and NetWare operating systems, hosted on Windows
operating systems, use makeall.bat to compile the sample programs.

Sample embedded SQL programs

172

♦ For UNIX, use the shell script makeall.

♦ For Windows CE, use the dcur.dsp project file for Microsoft Visual
C++.

The format of the command is as follows:

makeall {Example} {Platform} {Compiler}

The first parameter is the name of the example program that you want to
compile. It is one of the following:

♦ CUR static cursor example

♦ DCUR dynamic cursor example

♦ ODBC ODBC example

The second parameter is the target platform. It is one of the following:

♦ WINNT compile for Windows.

♦ NETWARE compile for NetWare NLM

The third parameter is the compiler to use to compile the program. The
compiler can be one of:

♦ WC use Watcom C/C++

♦ MC use Microsoft C

♦ BC use Borland C

Running the sample programs

The executable files are held in the Samples\ASA\C directory, together with
the source code.

v To run the static cursor sample program:

1 Start the program:

♦ Start the Adaptive Server Anywhere Personal Server Sample
database.

♦ Run the file Samples\ASA\C\curwnt.exe.

2 Follow the on-screen instructions.

The various commands manipulate a database cursor and print the query
results on the screen. Type the letter of the command you wish to
perform. Some systems may require you to press ENTER after the letter.

Chapter 6 Embedded SQL Programming

173

v To run the dynamic cursor sample program:

1 Start the program:

♦ Run the file Samples\ASA\C\dcurwnt.exe.

2 Connect to a database:

♦ Each sample program presents a console-type user interface and
prompts you for a command. Enter the following connection string
to connect to the sample database:

DSN=ASA 8.0 Sample

3 Choose a table:

♦ Each sample program prompts you for a table. Choose one of the
tables in the sample database. For example, you may enter
Customer or Employee.

4 Follow the on-screen instructions.

The various commands manipulate a database cursor and print the query
results on the screen. Type the letter of the command you wish to
perform. Some systems may require you to press ENTER after the letter.

The Windows versions of the example programs are real Windows programs.
However, to keep the user interface code relatively simple, some
simplifications have been made. In particular, these applications do not
repaint their Windows on WM_PAINT messages except to reprint the
prompt.

Static cursor sample

This example demonstrates the use of cursors. The particular cursor used
here retrieves certain information from the employee table in the sample
database. The cursor is declared statically, meaning that the actual SQL
statement to retrieve the information is "hard coded" into the source program.
This is a good starting point for learning how cursors work. The next
example ("Dynamic cursor sample" on page 174) takes this first example and
converts it to use dynamic SQL statements.

$ For information on where the source code can be found and how to
build this example program, see "Sample embedded SQL programs" on
page 171.

The open_cursor routine both declares a cursor for the specific SQL
command and also opens the cursor.

Windows samples

Sample embedded SQL programs

174

Printing a page of information is accomplished by the print routine. It loops
pagesize times, fetching a single row from the cursor and printing it out.
Note that the fetch routine checks for warning conditions (such as Row not
found) and prints appropriate messages when they arise. In addition, the
cursor is repositioned by this program to the row before the one that appears
at the top of the current page of data.

The move, top, and bottom routines use the appropriate form of the FETCH
statement to position the cursor. Note that this form of the FETCH statement
doesn't actually get the data—it only positions the cursor. Also, a general
relative positioning routine, move, has been implemented to move in either
direction depending on the sign of the parameter.

When the user quits, the cursor is closed and the database connection is also
released. The cursor is closed by a ROLLBACK WORK statement, and the
connection is release by a DISCONNECT.

Dynamic cursor sample

This sample demonstrates the use of cursors for a dynamic SQL SELECT
statement. It is a slight modification of the static cursor example. If you have
not yet looked at "Static cursor sample" on page 173, it would be helpful to
do so before looking at this sample.

$ For information on where the source code can be found and how to
build this sample program, see "Sample embedded SQL programs" on
page 171.

The dcur program allows the user to select a table to look at with the n
command. The program then presents as much information from that table as
fits on the screen.

When this program is run, it prompts for a connection string of the form:

uid=DBA;pwd=SQL;dbf=c:\asa\asademo.db

The C program with the embedded SQL is held in the Samples\ASA\C
subdirectory of your SQL Anywhere directory. The program looks much like
the static cursor sample with the exception of the connect, open_cursor, and
print functions.

The connect function uses the embedded SQL interface function
db_string_connect to connect to the database. This function provides the
extra functionality to support the connection string that is used to connect to
the database.

The open_cursor routine first builds the SELECT statement

SELECT * FROM tablename

Chapter 6 Embedded SQL Programming

175

where tablename is a parameter passed to the routine. It then prepares a
dynamic SQL statement using this string.

The embedded SQL DESCRIBE command is used to fill in the SQLDA
structure the results of the SELECT statement.

Size of the SQLDA
An initial guess is taken for the size of the SQLDA (3). If this is not big
enough, the actual size of the select list returned by the database server is
used to allocate a SQLDA of the correct size.

The SQLDA structure is then filled with buffers to hold strings that
represent the results of the query. The fill_s_sqlda routine converts all
data types in the SQLDA to DT_STRING and allocates buffers of the
appropriate size.

A cursor is then declared and opened for this statement. The rest of the
routines for moving and closing the cursor remain the same.

The fetch routine is slightly different: it puts the results into the SQLDA
structure instead of into a list of host variables. The print routine has
changed significantly to print results from the SQLDA structure up to the
width of the screen. The print routine also uses the name fields of the
SQLDA to print headings for each column.

Service examples

The example programs cur.sqc and dcur.sqc, when compiled for a version of
Windows that supports services, run optionally as services.

The two files containing the example code for Windows services are the
source file ntsvc.c and the header file ntsvc.h. The code allows a linked
executable to be run either as a regular executable or as a Windows service.

v To run one of the compiled examples as a Windows service:

1 Start Sybase Central and open the Services folder.

2 Select a service type of Sample Application, and click OK.

3 Enter a service name in the appropriate field.

4 Select the sample program (curwnt.exe or dcurwnt.exe) from the
Samples\ASA|C subdirectory of your SQL Anywhere directory.

5 Click OK to install the service.

6 Click Start on the main window to start the service.

Sample embedded SQL programs

176

When run as a service, the programs display the normal user interface if
possible. They also write the output to the Application Event Log. If it is not
possible to start the user interface, the programs print one page of data to the
Application Event Log and stop.

These examples have been tested with the Watcom C/C++ 10.5 compiler and
the Microsoft Visual C++ compiler.

Chapter 6 Embedded SQL Programming

177

Embedded SQL data types
To transfer information between a program and the database server, every
piece of data must have a data type. The embedded SQL data type constants
are prefixed with DT_, and can be found in the sqldef.h header file. You can
create a host variable of any one of the supported types. You can also use
these types in a SQLDA structure for passing data to and from the database.

You can define variables of these data types using the DECL_ macros listed
in sqlca.h. For example, a variable holding a BIGINT value could be
declared with DECL_BIGINT.

The following data types are supported by the embedded SQL programming
interface:

♦ DT_BIT 8-bit signed integer

♦ DT_SMALLINT 16-bit signed integer.

♦ DT_UNSSMALLINT 16-bit unsigned integer

♦ DT_TINYINT 8-bit signed integer

♦ DT_BIGINT 64-bit signed integer

♦ DT_INT 32-bit signed integer.

♦ DT_UNSINT 16-bit unsigned integer

♦ DT_FLOAT 4-byte floating point number.

♦ DT_DOUBLE 8-byte floating point number.

♦ DT_DECIMAL Packed decimal number.

typedef struct DECIMAL {
 char array[1];
} DECIMAL;

♦ DT_STRING NULL-terminated character string. The string is
blank-padded if the database is initialized with blank-padded strings.

♦ DT_DATE NULL-terminated character string that is a valid date.

♦ DT_TIME NULL-terminated character string that is a valid time.

♦ DT_TIMESTAMP NULL-terminated character string that is a valid
timestamp.

♦ DT_FIXCHAR Fixed-length blank padded character string.

Embedded SQL data types

178

♦ DT_VARCHAR Varying length character string with a two-byte length
field. When supplying information to the database server, you must set
the length field. When fetching information from the database server, the
server sets the length field (not padded).

typedef struct VARCHAR {
 unsigned short int len;
 char array[1];
} VARCHAR;

♦ DT_LONGVARCHAR Long varying length character data. The macro
defines a structure, as follows:

#define DECL_LONGVARCHAR(size) \
 struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size+1];\
 }

The DECL_LONGVARCHAR struct may be used with more than 32K
of data. Large data may be fetched all at once, or in pieces using the
GET DATA statement. Large data may be supplied to the server all at
once, or in pieces by appending to a database variable using the SET
statement. The data is not null terminated.

$ For more information, see "Sending and retrieving long values" on
page 214.

♦ DT_BINARY Varying length binary data with a two-byte length field.
When supplying information to the database server, you must set the
length field. When fetching information from the database server, the
server sets the length field.

typedef struct BINARY {
 unsigned short int len;
 char array[1];
} BINARY;

♦ DT_LONGBINARY Long binary data. The macro defines a structure,
as follows:

#define DECL_LONGBINARY(size) \
 struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size]; \
 }

Chapter 6 Embedded SQL Programming

179

The DECL_LONGBINARY struct may be used with more than 32K of
data. Large data may be fetched all at once, or in pieces using the GET
DATA statement. Large data may be supplied to the server all at once,
or in pieces by appending to a database variable using the SET
statement.

$ For more information, see "Sending and retrieving long values" on
page 214.

♦ DT_TIMESTAMP_STRUCT SQLDATETIME structure with fields for
each part of a timestamp.

typedef struct sqldatetime {
unsigned short year; /* e.g. 1999 */
unsigned char month; /* 0-11 */
unsigned char day_of_week; /* 0-6 0=Sunday */
unsigned short day_of_year; /* 0-365 */
unsigned char day; /* 1-31 */
unsigned char hour; /* 0-23 */
unsigned char minute; /* 0-59 */
unsigned char second; /* 0-59 */
unsigned long microsecond; /* 0-999999 */

} SQLDATETIME;

The SQLDATETIME structure can be used to retrieve fields of DATE,
TIME, and TIMESTAMP type (or anything that can be converted to one
of these). Often, applications have their own formats and date
manipulation code. Fetching data in this structure makes it easier for a
programmer to manipulate this data. Note that DATE, TIME, and
TIMESTAMP fields can also be fetched and updated with any character
type.

If you use a SQLDATETIME structure to enter a date, time, or
timestamp into the database, the day_of_year and day_of_week
members are ignored.

$ For more information, see the DATE_FORMAT,
TIME_FORMAT, TIMESTAMP_FORMAT, and DATE_ORDER
database options in "Database Options" on page 535 of the book ASA
Database Administration Guide.

♦ DT_VARIABLE NULL-terminated character string. The character
string must be the name of a SQL variable whose value is used by the
database server. This data type is used only for supplying data to the
database server. It cannot be used when fetching data from the database
server.

The structures are defined in the sqlca.h file. The VARCHAR, BINARY,
and DECIMAL types contain a one-character array and are thus not useful
for declaring host variables but they are useful for allocating variables
dynamically or typecasting other variables.

Embedded SQL data types

180

There are no corresponding embedded SQL interface data types for the
various DATE and TIME database types. These database types are all
fetched and updated using either the SQLDATETIME structure or character
strings.

$ For more information see "GET DATA statement [ESQL]" on
page 437 of the book ASA SQL Reference Manual and "SET statement" on
page 531 of the book ASA SQL Reference Manual.

DATE and TIME
database types

Chapter 6 Embedded SQL Programming

181

Using host variables
Host variables are C variables that are identified to the SQL preprocessor.
Host variables can be used to send values to the database server or receive
values from the database server.

Host variables are quite easy to use, but they have some restrictions.
Dynamic SQL is a more general way of passing information to and from the
database server using a structure known as the SQL Descriptor Area
(SQLDA). The SQL preprocessor automatically generates a SQLDA for
each statement in which host variables are used.

$ For information on dynamic SQL, see "Static and dynamic SQL" on
page 202.

Declaring host variables

Host variables are defined by putting them into a declaration section.
According to the IBM SAA and ANSI embedded SQL standards, host
variables are defined by surrounding the normal C variable declarations with
the following:

EXEC SQL BEGIN DECLARE SECTION;
/* C variable declarations */
EXEC SQL END DECLARE SECTION;

These host variables can then be used in place of value constants in any SQL
statement. When the database server executes the command, the value of the
host variable is used. Note that host variables cannot be used in place of table
or column names: dynamic SQL is required for this. The variable name is
prefixed with a colon (:) in a SQL statement to distinguish it from other
identifiers allowed in the statement.

A standard SQL preprocessor does not scan C language code except inside a
DECLARE SECTION. Thus, TYPEDEF types and structures are not
allowed. Initializers on the variables are allowed inside a
DECLARE SECTION.

♦ The following sample code illustrates the use of host variables on an
INSERT command. The variables are filled in by the program and then
inserted into the database:

EXEC SQL BEGIN DECLARE SECTION;
long employee_number;
char employee_name[50];
char employee_initials[8];
char employee_phone[15];

Example

Using host variables

182

EXEC SQL END DECLARE SECTION;
/* program fills in variables with appropriate
values
*/
EXEC SQL INSERT INTO Employee
VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone);

$ For a more extensive example, see "Static cursor sample" on
page 173.

C host variable types

Only a limited number of C data types are supported as host variables. Also,
certain host variable types do not have a corresponding C type.

Macros defined in the sqlca.h header file can be used to declare host
variables of the following types: VARCHAR, FIXCHAR, BINARY,
PACKED DECIMAL, LONG VARCHAR, LONG BINARY, or
SQLDATETIME structure. They are used as follows:

EXEC SQL BEGIN DECLARE SECTION;
DECL_VARCHAR(10) v_varchar;
DECL_FIXCHAR(10) v_fixchar;
DECL_LONGVARCHAR(32678) v_longvarchar;
DECL_BINARY(4000) v_binary;
DECL_LONGBINARY(128000) v_longbinary;
DECL_DECIMAL(10, 2) v_packed_decimal;
DECL_DATETIME v_datetime;
EXEC SQL END DECLARE SECTION;

The preprocessor recognizes these macros within a declaration section and
treats the variable as the appropriate type.

The following table lists the C variable types that are allowed for host
variables and their corresponding embedded SQL interface data types.

C Data Type Embedded SQL Interface
Type

Description

short i;
short int i;
unsigned short int i;

DT_SMALLINT 16-bit signed integer

long l;
long int l;
unsigned long int l;

DT_INT 32-bit signed integer

float f; DT_FLOAT 4-byte floating point

double d; DT_DOUBLE 8-byte floating point

Chapter 6 Embedded SQL Programming

183

C Data Type Embedded SQL Interface
Type

Description

DECL_DECIMAL(p,s) DT_DECIMAL(p,s) Packed decimal

char a; /*n=1*/
DECL_FIXCHAR(n) a;
DECL_FIXCHAR a[n];

DT_FIXCHAR(n) Fixed length character
string blank padded.

char a[n]; /*n>=1*/ DT_STRING(n) NULL-terminated string.
The string is blank-padded
if the database is
initialized with
blank-padded strings.

char *a; DT_STRING(32767) NULL-terminated string

DECL_VARCHAR(n) a; DT_VARCHAR(n) Varying length character
string with 2-byte length
field. Not blank padded

DECL_BINARY(n) a; DT_BINARY(n) Varying length binary data
with 2-byte length field

DECL_DATETIME a; DT_TIMESTAMP_STRUCT SQLDATETIME structure

DECL_LONGVARCHAR(n) a; DT_LONGVARCHAR Varying length long
character string with three
4-byte length fields. Not
blank padded or NULL
terminated.

DECL_LONGBINARY(n) a; DT_LONGBINARY Varying length long binary
data with three 4-byte
length fields. Not blank
padded.

A host variable declared as a pointer to char (char *a) is considered by the
database interface to be 32 767 bytes long. Any host variable of type pointer
to char used to retrieve information from the database must point to a buffer
large enough to hold any value that could possibly come back from the
database.

This is potentially quite dangerous because somebody could change the
definition of the column in the database to be larger than it was when the
program was written. This could cause random memory corruption problems.
If you are using a 16-bit compiler, requiring 32 767 bytes could make the
program stack overflow. It is better to use a declared array, even as a
parameter to a function, where it is passed as a pointer to char. This lets the
PREPARE statements know the size of the array.

Pointers to char

Using host variables

184

A standard host-variable declaration section can appear anywhere that C
variables can normally be declared. This includes the parameter declaration
section of a C function. The C variables have their normal scope (available
within the block in which they are defined). However, since the SQL
preprocessor does not scan C code, it does not respect C blocks.

As far as the SQL preprocessor is concerned, host variables are global; two
host variables cannot have the same name.

Host variable usage

Host variables can be used in the following circumstances:

♦ SELECT, INSERT, UPDATE and DELETE statements in any place
where a number or string constant is allowed.

♦ The INTO clause of SELECT and FETCH statements.

♦ Host variables can also be used in place of a statement name, a cursor
name, or an option name in commands specific to embedded SQL.

♦ For CONNECT, DISCONNECT, and SET CONNECT, a host variable
can be used in place of a user ID, password, connection name,
connection string, or database environment name.

♦ For SET OPTION and GET OPTION, a host variable can be used in
place of a user ID, option name, or option value.

♦ Host variables cannot be used in place of a table name or a column name
in any statement.

♦ The following is valid embedded SQL:

INCLUDE SQLCA;
long SQLCODE;
sub1() {

char SQLSTATE[6];
exec SQL CREATE TABLE ...

}

♦ The following is not valid embedded SQL:

INCLUDE SQLCA;
sub1() {

char SQLSTATE[6];
exec SQL CREATE TABLE...

}
sub2() {

exec SQL DROP TABLE...
// No SQLSTATE in scope of this statement

}

Scope of host
variables

Examples

Chapter 6 Embedded SQL Programming

185

♦ The case of SQLSTATE and SQLCODE is important and the ISO/ANSI
standard requires that their definitions be exactly as follows:

long SQLCODE;
char SQLSTATE[6];

Indicator variables

Indicator variables are C variables that hold supplementary information when
you are fetching or putting data. There are several distinct uses for indicator
variables:

♦ NULL values To enable applications to handle NULL values.

♦ String truncation To enable applications to handle cases when fetched
values must be truncated to fit into host variables.

♦ Conversion errors To hold error information.

An indicator variable is a host variable of type short int that is placed
immediately following a regular host variable in a SQL statement. For
example, in the following INSERT statement, :ind_phone is an indicator
variable:

EXEC SQL INSERT INTO Employee
VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone:ind_phone);

Using indicator variables to handle NULL

In SQL data, NULL represents either an unknown attribute or inapplicable
information. The SQL concept of NULL is not to be confused with the C
language constant by the same name (NULL). The C constant is used to
represent a non-initialized or invalid pointer.

When NULL is used in the Adaptive Server Anywhere documentation, it
refers to the SQL database meaning given above. The C language constant is
referred to as the null pointer (lower case).

NULL is not the same as any value of the column’s defined type. Thus, in
order to pass NULL values to the database or receive NULL results back,
something extra is required beyond regular host variables. Indicator
variables are used for this purpose.

An INSERT statement could include an indicator variable as follows:Using indicator
variables when
inserting NULL

Using host variables

186

EXEC SQL BEGIN DECLARE SECTION;
short int employee_number;
char employee_name[50];
char employee_initials[6];
char employee_phone[15];
short int ind_phone;
EXEC SQL END DECLARE SECTION;

/*
program fills in empnum, empname,
initials and homephone
*/
if(/* phone number is unknown */) {

ind_phone = -1;
} else {

ind_phone = 0;
}
EXEC SQL INSERT INTO Employee

VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone:ind_phone);

If the indicator variable has a value of –1, a NULL is written. If it has a value
of 0, the actual value of employee_phone is written.

Indicator variables are also used when receiving data from the database.
They are used to indicate that a NULL value was fetched (indicator is
negative). If a NULL value is fetched from the database and an indicator
variable is not supplied, an error is generated (SQLE_NO_INDICATOR).
Errors are explained in the next section.

Using indicator variables for truncated values

Indicator variables indicate whether any fetched values were truncated to fit
into a host variable. This enables applications to handle truncation
appropriately.

If a value is truncated on fetching, the indicator variable is set to a positive
value, containing the actual length of the database value before truncation. If
the length of the value is greater than 32 767, then the indicator variable
contains 32 767.

Using indicator values for conversion errors

By default, the CONVERSION_ERROR database option is set to ON, and
any data type conversion failure leads to an error, with no row returned.

Using indicator
variables when
fetching NULL

Chapter 6 Embedded SQL Programming

187

You can use indicator variables to tell which column produced a data type
conversion failure. If you set the database option CONVERSION_ERROR
to OFF, any data type conversion failure gives a CANNOT_CONVERT
warning, rather than an error. If the column that suffered the conversion error
has an indicator variable, that variable is set to a value of –2.

If you set the CONVERSION_ERROR option to OFF when inserting data
into the database, a value of NULL is inserted when a conversion failure
occurs.

Summary of indicator variable values

The following table provides a summary of indicator variable usage.

Indicator
Value

Supplying Value to
database

Receiving value from database

> 0 Host variable value Retrieved value was truncated — actual
length in indicator variable

0 Host variable value Fetch successful, or
CONVERSION_ERROR set to ON

–1 NULL value NULL result

–2 NULL value Conversion error (when
CONVERSION_ERROR is set to OFF
only). SQLCODE indicates a
CANNOT_CONVERT warning

< –2 NULL value NULL result

$ For more information on retrieving long values, see "GET DATA
statement [ESQL]" on page 437 of the book ASA SQL Reference Manual.

The SQL Communication Area (SQLCA)

188

The SQL Communication Area (SQLCA)
The SQL Communication Area (SQLCA) is an area of memory that is
used on every database request for communicating statistics and errors from
the application to the database server and back to the application. The
SQLCA is used as a handle for the application-to-database communication
link. It is passed in to all database library functions that need to communicate
with the database server. It is implicitly passed on all embedded SQL
statements.

A global SQLCA variable is defined in the interface library. The
preprocessor generates an external reference for the global SQLCA variable
and an external reference for a pointer to it. The external reference is named
sqlca and is of type SQLCA. The pointer is named sqlcaptr. The actual
global variable is declared in the imports library.

The SQLCA is defined by the sqlca.h header file, included in the h
subdirectory of your installation directory.

You reference the SQLCA to test for a particular error code. The sqlcode
and sqlstate fields contain error codes when a database request has an error
(see below). Some C macros are defined for referencing the sqlcode field,
the sqlstate field, and some other fields.

SQLCA fields

The fields in the SQLCA have the following meanings:

♦ sqlcaid An 8-byte character field that contains the string SQLCA as
an identification of the SQLCA structure. This field helps in debugging
when you are looking at memory contents.

♦ sqlcabc A long integer that contains the length of the SQLCA
structure (136 bytes).

♦ sqlcode A long integer that specifies the error code when the database
detects an error on a request. Definitions for the error codes can be
found in the header file sqlerr.h. The error code is 0 (zero) for a
successful operation, positive for a warning and negative for an error.

$ For a full listing of error codes, see "Database Error Messages" on
page 1 of the book ASA Errors Manual.

♦ sqlerrml The length of the information in the sqlerrmc field.

♦ sqlerrmc Zero or more character strings to be inserted into an error
message. Some error messages contain one or more placeholder strings
(%1, %2, …) which are replaced with the strings in this field.

SQLCA provides
error codes

Chapter 6 Embedded SQL Programming

189

For example, if a Table Not Found error is generated, sqlerrmc contains
the table name, which is inserted into the error message at the
appropriate place.

$ For a full listing of error messages, see "Database Error Messages"
on page 1 of the book ASA Errors Manual.

♦ sqlerrp Reserved.

♦ sqlerrd A utility array of long integers.

♦ sqlwarn Reserved.

♦ sqlstate The SQLSTATE status value. The ANSI SQL standard
(SQL-92) defines a new type of return value from a SQL statement in
addition to the SQLCODE value in previous standards. The SQLSTATE
value is always a five-character null-terminated string, divided into a
two-character class (the first two characters) and a three-character
subclass. Each character can be a digit from 0 through 9 or an upper case
alphabetic character A through Z.

Any class or subclass that begins with 0 through 4 or A through H is
defined by the SQL standard; other classes and subclasses are
implementation defined. The SQLSTATE value ’00000’ means that there
has been no error or warning.

$ For more SQLSTATE values, see "Database Error Messages" on
page 1 of the book ASA Errors Manual.

The sqlerror field array has the following elements.

♦ sqlerrd[1] (SQLIOCOUNT) The actual number of input/output
operations that were required to complete a command.

The database does not start this number at zero for each command. Your
program can set this variable to zero before executing a sequence of
commands. After the last command, this number is the total number of
input/output operations for the entire command sequence.

♦ sqlerrd[2] (SQLCOUNT) The value of this field depends on which
statement is being executed.

♦ INSERT, UPDATE, PUT, and DELETE statements The number
of rows that were affected by the statement.

On a cursor OPEN, this field is filled in with either the actual
number of rows in the cursor (a value greater than or equal to 0) or
an estimate thereof (a negative number whose absolute value is the
estimate). It is the actual number of rows if the database server can
compute it without counting the rows. The database can also be
configured to always return the actual number of rows using the
ROW_COUNT option.

sqlerror array

The SQL Communication Area (SQLCA)

190

♦ FETCH cursor statement The SQLCOUNT field is filled if a
SQLE_NOTFOUND warning is returned. It contains the number of
rows by which a FETCH RELATIVE or FETCH ABSOLUTE
statement goes outside the range of possible cursor positions (a
cursor can be on a row, before the first row, or after the last row). In
the case of a wide fetch, SQLCOUNT is the number of rows
actually fetched, and is less than or equal to the number of rows
requested. During a wide fetch, SQLE_NOTFOUND is not set.

$ For more information on wide fetches, see "Fetching more
than one row at a time" on page 197.

The value is 0 if the row was not found but the position is valid, for
example, executing FETCH RELATIVE 1 when positioned on the
last row of a cursor. The value is positive if the attempted fetch was
beyond the end of the cursor, and negative if the attempted fetch
was before the beginning of the cursor.

♦ GET DATA statement The SQLCOUNT field holds the actual
length of the value.

♦ DESCRIBE statement In the WITH VARIABLE RESULT clause
used to describe procedures that may have more than one result set,
SQLCOUNT is set to one of the following values:

♦ 0 The result set may change: the procedure call should be
described again following each OPEN statement.

♦ 1 The result set is fixed. No re-describing is required.

In the case of a syntax error, SQLE_SYNTAX_ERROR, this field
contains the approximate character position within the command
string where the error was detected.

♦ sqlerrd[3] (SQLIOESTIMATE) The estimated number of input/output
operations that are to complete the command. This field is given a value
on an OPEN or EXPLAIN command.

SQLCA management for multi-threaded or reentrant code

You can use embedded SQL statements in multi-threaded or reentrant code.
However, if you use a single connection, you are restricted to one active
request per connection. In a multi-threaded application, you should not use
the same connection to the database on each thread unless you use a
semaphore to control access.

Chapter 6 Embedded SQL Programming

191

There are no restrictions on using separate connections on each thread that
wishes to use the database. The SQLCA is used by the runtime library to
distinguish between the different thread contexts. Thus, each thread wishing
to use the database must have its own SQLCA.

Any given database connection is accessible only from one SQLCA, with the
exception of the cancel instruction, which must be issued from a separate
thread.

$ For information on canceling requests, see "Implementing request
management" on page 224.

Using multiple SQLCAs

v To manage multiple SQLCAs in your application:

1 You must use the option on the SQL preprocessor that generates
reentrant code (-r). The reentrant code is a little larger and a little slower
because statically initialized global variables cannot be used. However,
these effects are minimal.

2 Each SQLCA used in your program must be initialized with a call to
db_init and cleaned up at the end with a call to db_fini.

Caution
Failure to call db_fini for each db_init on NetWare can cause the
database server to fail and the NetWare file server to fail.

3 The embedded SQL statement SET SQLCA ("SET SQLCA statement
[ESQL]" on page 545 of the book ASA SQL Reference Manual) is used
to tell the SQL preprocessor to use a different SQLCA for database
requests. Usually, a statement such as: EXEC SQL SET SQLCA
’task_data->sqlca’; is used at the top of your program or in a header file
to set the SQLCA reference to point at task specific data. This statement
does not generate any code and thus has no performance impact. It
changes the state within the preprocessor so that any reference to the
SQLCA uses the given string.

$ For information about creating SQLCAs, see "SET SQLCA statement
[ESQL]" on page 545 of the book ASA SQL Reference Manual.

When to use multiple SQLCAs

You can use the multiple SQLCA support in any of the supported embedded
SQL environments, but it is only required in reentrant code.

The SQL Communication Area (SQLCA)

192

The following list details the environments where multiple SQLCAs must be
used:

♦ Multi-threaded applications If more than one thread uses the same
SQLCA, a context option can cause more than one thread to be using the
SQLCA at the same time. Each thread must have its own SQLCA. This
can also happen when you have a DLL that uses embedded SQL and is
called by more than one thread in your application.

♦ Dynamic link libraries and shared libraries A DLL has only one
data segment. While the database server is processing a request from one
application, it may yield to another application that makes a request to
the database server. If your DLL uses the global SQLCA, both
applications are using it at the same time. Each Windows application
must have its own SQLCA.

♦ A DLL with one data segment A DLL can be created with only one
data segment or one data segment for each application. If your DLL has
only one data segment, you cannot use the global SQLCA for the same
reason that a DLL cannot use the global SQLCA. Each application must
have its own SQLCA.

Connection management with multiple SQLCAs

You do not need to use multiple SQLCAs to connect to more than one
database or have more than one connection to a single database.

Each SQLCA can have one unnamed connection. Each SQLCA has an active
or current connection (see "SET CONNECTION statement [Interactive SQL]
[ESQL]" on page 536 of the book ASA SQL Reference Manual). All
operations on a given database connection must use the same SQLCA that
was used when the connection was established.

Record locking
Operations on different connections are subject to the normal record
locking mechanisms and may cause each other to block and possibly to
deadlock. For information on locking, see the chapter "Using Transactions
and Isolation Levels" on page 89 of the book ASA SQL User’s Guide.

Chapter 6 Embedded SQL Programming

193

Fetching data
Fetching data in embedded SQL is done using the SELECT statement. There
are two cases:

♦ The SELECT statement returns at most one row Use an INTO
clause to assign the returned values directly to host variables.

$ For information, see "SELECT statements that return at most one
row" on page 193.

♦ The SELECT statement may return multiple rows Use cursors to
manage the rows of the result set.

$ For more information, see "Using cursors in embedded SQL" on
page 194.

$ LONG VARCHAR and LONG BINARY data types are handled
differently to other data types. For more information, see "Retrieving LONG
data" on page 215.

SELECT statements that return at most one row

A single row query retrieves at most one row from the database. A
single-row query SELECT statement has an INTO clause following the
select list and before the FROM clause. The INTO clause contains a list of
host variables to receive the value for each select list item. There must be the
same number of host variables as there are select list items. The host
variables may be accompanied by indicator variables to indicate NULL
results.

When the SELECT statement is executed, the database server retrieves the
results and places them in the host variables. If the query results contain
more than one row, the database server returns an error.

If the query results in no rows being selected, a Row Not Found warning is
returned. Errors and warnings are returned in the SQLCA structure, as
described in "The SQL Communication Area (SQLCA)" on page 188.

For example, the following code fragment returns 1 if a row from the
employee table is fetched successfully, 0 if the row doesn’t exist, and –1 if an
error occurs.

EXEC SQL BEGIN DECLARE SECTION;
long emp_id;
char name[41];
char sex;
char birthdate[15];

Example

Fetching data

194

short int ind_birthdate;
EXEC SQL END DECLARE SECTION;
. . .
int find_employee(long employee)
{

emp_id = employee;
EXEC SQL SELECT emp_fname ||

’ ’ || emp_lname, sex, birth_date
INTO :name, :sex,

:birthdate:ind_birthdate
FROM "DBA".employee
WHERE emp_id = :emp_id;

if(SQLCODE == SQLE_NOTFOUND) {
return(0); /* employee not found */

} else if(SQLCODE < 0) {
return(-1); /* error */

} else {
return(1); /* found */

}
}

Using cursors in embedded SQL

A cursor is used to retrieve rows from a query that has multiple rows in its
result set. A cursor is a handle or an identifier for the SQL query and a
position within the result set.

$ For an introduction to cursors, see "Working with cursors" on page 19.

v To manage a cursor in embedded SQL:

1 Declare a cursor for a particular SELECT statement, using the
DECLARE statement.

2 Open the cursor using the OPEN statement.

3 Retrieve results one row at a time from the cursor using the FETCH
statement.

4 Fetch rows until the Row Not Found warning is returned.

Errors and warnings are returned in the SQLCA structure, described in
"The SQL Communication Area (SQLCA)" on page 188.

5 Close the cursor, using the CLOSE statement.

By default, cursors are automatically closed at the end of a transaction (on
COMMIT or ROLLBACK). Cursors that are opened with a WITH HOLD
clause are kept open for subsequent transactions until they are explicitly
closed.

Chapter 6 Embedded SQL Programming

195

The following is a simple example of cursor usage:

void print_employees(void)
{

EXEC SQL BEGIN DECLARE SECTION;
char name[50];
char sex;
char birthdate[15];
short int ind_birthdate;
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE C1 CURSOR FOR

SELECTemp_fname || ’ ’ || emp_lname,
sex, birth_date

FROM "DBA".employee;
EXEC SQL OPEN C1;
for(;;) {

EXEC SQL FETCH C1 INTO :name, :sex,
:birthdate:ind_birthdate;

if(SQLCODE == SQLE_NOTFOUND) {
break;

} else if(SQLCODE < 0) {
break;

}
if(ind_birthdate < 0) {

strcpy(birthdate, "UNKNOWN");
}
printf("Name: %s Sex: %c Birthdate:

%s.n",name, sex, birthdate);
}

EXEC SQL CLOSE C1;
}

$ For complete examples using cursors, see "Static cursor sample" on
page 173 and "Dynamic cursor sample" on page 174.

A cursor is positioned in one of three places:

♦ On a row

♦ Before the first row

♦ After the last row

Cursor positioning

Fetching data

196

0

1

2

3

n – 2

n – 1

n

n + 1

–n – 1

–n

–n + 1

–n + 2

–3

–2

–1

0After last row

Before first row

Absolute row
from start

Absolute row
from end

When a cursor is opened, it is positioned before the first row. The cursor
position can be moved using the FETCH command (see "FETCH statement
[ESQL] [SP]" on page 424 of the book ASA SQL Reference Manual). It can
be positioned to an absolute position either from the start or from the end of
the query results. It can also be moved relative to the current cursor position.

There are special positioned versions of the UPDATE and DELETE
statements that can be used to update or delete the row at the current position
of the cursor. If the cursor is positioned before the first row or after the last
row, a No Current Row of Cursor error is returned.

The PUT statement can be used to insert a row into a cursor.

Inserts and some updates to DYNAMIC SCROLL cursors can cause
problems with cursor positioning. The database server does not put inserted
rows at a predictable position within a cursor unless there is an ORDER BY
clause on the SELECT statement. In some cases, the inserted row does not
appear at all until the cursor is closed and opened again.

With Adaptive Server Anywhere, this occurs if a temporary table had to be
created to open the cursor.

Cursor positioning
problems

Chapter 6 Embedded SQL Programming

197

$ For a description, see "Use of work tables in query processing" on
page 160 of the book ASA SQL User’s Guide.

The UPDATE statement may cause a row to move in the cursor. This
happens if the cursor has an ORDER BY clause that uses an existing index (a
temporary table is not created).

Fetching more than one row at a time

The FETCH statement can be modified to fetch more than one row at a time,
which may improve performance. This is called a wide fetch or an array
fetch.

$ Adaptive Server Anywhere also supports wide puts and inserts. For
information on these, see "PUT statement [ESQL]" on page 499 of the book
ASA SQL Reference Manual and "EXECUTE statement [ESQL]" on
page 414 of the book ASA SQL Reference Manual.

To use wide fetches in embedded SQL, include the fetch statement in your
code as follows:

EXEC SQL FETCH . . . ARRAY nnn

where ARRAY nnn is the last item of the FETCH statement. The fetch count
nnn can be a host variable. The number of variables in the SQLDA must be
the product of nnn and the number of columns per row. The first row is
placed in SQLDA variables 0 to (columns per row) – 1, and so on.

Each column must be of the same type in each row of the SQLDA, or a
SQLDA_INCONSISTENT error is returned.

The server returns in SQLCOUNT the number of records that were fetched,
which is always greater than zero unless there is an error or warning. On a
wide fetch, a SQLCOUNT of one with no error condition indicates that one
valid row has been fetched.

The following example code illustrates the use of wide fetches. You can also
find this code as samples\ASA\esqlwidefetch\widefetch.sqc in your
SQL Anywhere directory.

Example

Fetching data

198

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sqldef.h"
EXEC SQL INCLUDE SQLCA;

EXEC SQL WHENEVER SQLERROR { PrintSQLError();
 goto err; };

static void PrintSQLError()
/*************************/
{
 char buffer[200];

 printf("SQL error %d -- %s\n",
 SQLCODE,
 sqlerror_message(&sqlca,

 buffer,
 sizeof(buffer)));

}

static SQLDA * PrepareSQLDA(
a_sql_statement_numberstat0,
unsigned width,
unsigned *cols_per_row)

/***/
/* Allocate a SQLDA to be used for fetching from
 the statement identified by "stat0". "width"
 rows will be retrieved on each FETCH request.
 The number of columns per row is assigned to
 "cols_per_row". */
{
 int num_cols;
 unsigned row, col, offset;
 SQLDA * sqlda;
 EXEC SQL BEGIN DECLARE SECTION;
 a_sql_statement_number stat;
 EXEC SQL END DECLARE SECTION;

 stat = stat0;
 sqlda = alloc_sqlda(100);
 if(sqlda == NULL) return(NULL);
 EXEC SQL DESCRIBE :stat INTO sqlda;
 *cols_per_row = num_cols = sqlda->sqld;
 if(num_cols * width > sqlda->sqln) {
 free_sqlda(sqlda);
 sqlda = alloc_sqlda(num_cols * width);
 if(sqlda == NULL) return(NULL);
 EXEC SQL DESCRIBE :stat INTO sqlda;
 }
 // copy first row in SQLDA setup by describe
 // to following (wide) rows

Chapter 6 Embedded SQL Programming

199

 sqlda->sqld = num_cols * width;
 offset = num_cols;
 for(row = 1; row < width; row++) {
 for(col = 0;

 col < num_cols;
 col++, offset++) {
 sqlda->sqlvar[offset].sqltype =

sqlda->sqlvar[col].sqltype;
 sqlda->sqlvar[offset].sqllen =

sqlda->sqlvar[col].sqllen;
 // optional: copy described column name

 memcpy(&sqlda->sqlvar[offset].sqlname,
 &sqlda->sqlvar[col].sqlname,
 sizeof(sqlda->sqlvar[0].sqlname)
);
 }
 }
 fill_s_sqlda(sqlda, 40);
 return(sqlda);

err:
 return(NULL);
}

static void PrintFetchedRows(SQLDA * sqlda,
 unsigned cols_per_row)

/**/
/* Print rows already wide fetched in the SQLDA */
{
 long rows_fetched;
 int row, col, offset;

 if(SQLCOUNT == 0) {
rows_fetched = 1;

 } else {
rows_fetched = SQLCOUNT;

 }
 printf("Fetched %d Rows:\n", rows_fetched);
 for(row = 0; row < rows_fetched; row++) {

for(col = 0; col < cols_per_row; col++) {
 offset = row * cols_per_row + col;
 printf(" \"%s\"",

 (char *)sqlda->sqlvar[offset]
 .sqldata);

}
printf("\n");

 }
}

static int DoQuery(char * query_str0,
 unsigned fetch_width0)

/***/

Fetching data

200

/* Wide Fetch "query_str0" select statement
 * using a width of "fetch_width0" rows" */
{
 SQLDA * sqlda;
 unsigned cols_per_row;
 EXEC SQL BEGIN DECLARE SECTION;
 a_sql_statement_number stat;
 char * query_str;
 unsigned fetch_width;
 EXEC SQL END DECLARE SECTION;

 query_str = query_str0;
 fetch_width = fetch_width0;

 EXEC SQL PREPARE :stat FROM :query_str;
 EXEC SQL DECLARE QCURSOR CURSOR FOR :stat

FOR READ ONLY;
 EXEC SQL OPEN QCURSOR;
 sqlda = PrepareSQLDA(stat,

 fetch_width,
 &cols_per_row);

 if(sqlda == NULL) {
 printf("Error allocating SQLDA\n");
 return(SQLE_NO_MEMORY);
 }
 for(;;) {
 EXEC SQL FETCH QCURSOR INTO DESCRIPTOR sqlda

 ARRAY :fetch_width;
 if(SQLCODE != SQLE_NOERROR) break;

PrintFetchedRows(sqlda, cols_per_row);
 }
 EXEC SQL CLOSE QCURSOR;
 EXEC SQL DROP STATEMENT :stat;
 free_filled_sqlda(sqlda);
err:
 return(SQLCODE);
}

void main(int argc, char *argv[])
/*********************************/
/* Optional first argument is a select statement,
 * optional second argument is the fetch width */
{
 char *query_str =

"select emp_fname, emp_lname from employee";
 unsigned fetch_width = 10;

 if(argc > 1) {
query_str = argv[1];
if(argc > 2) {
 fetch_width = atoi(argv[2]);
 if(fetch_width < 2) {

Chapter 6 Embedded SQL Programming

201

fetch_width = 2;
 }
}

 }
 db_init(&sqlca);
 EXEC SQL CONNECT "dba" IDENTIFIED BY "sql";

 DoQuery(query_str, fetch_width);

 EXEC SQL DISCONNECT;
err:
 db_fini(&sqlca);
}

♦ In the function PrepareSQLDA, the SQLDA memory is allocated using
the alloc_sqlda function. This allows space for indicator variables,
rather than using the alloc_sqlda_noind function.

♦ If the number of rows fetched is fewer than the number requested, but is
not zero (at the end of the cursor for example), the SQLDA items
corresponding to the rows that were not fetched are returned as NULL
by setting the indicator value. If no indicator variables are present, an
error is generated (SQLE_NO_INDICATOR: no indicator variable for
NULL result).

♦ If a row being fetched has been updated, generating a
SQLE_ROW_UPDATED_WARNING warning, the fetch stops on the
row that caused the warning. The values for all rows processed to that
point (including the row that caused the warning) are returned.
SQLCOUNT contains the number of rows that were fetched, including
the row that caused the warning. All remaining SQLDA items are
marked as NULL.

♦ If a row being fetched has been deleted or is locked, generating an
SQLE_NO_CURRENT_ROW or SQLE_LOCKED error, SQLCOUNT
contains the number of rows that were read prior to the error. This does
not include the row that caused the error. The SQLDA does not contain
values for any of the rows since SQLDA values are not returned on
errors. The SQLCOUNT value can be used to reposition the cursor, if
necessary, to read the rows.

Notes on using
wide fetches

Static and dynamic SQL

202

Static and dynamic SQL
There are two ways to embed SQL statements into a C program:

♦ Static statements

♦ Dynamic statements

Until now, we have been discussing static SQL. This section compares static
and dynamic SQL.

Static SQL statements

All standard SQL data manipulation and data definition statements can be
embedded in a C program by prefixing them with EXEC SQL and suffixing
the command with a semicolon (;). These statements are referred to as static
statements.

Static statements can contain references to host variables, as described in
"Using host variables" on page 181. All examples to this point have used
static embedded SQL statements.

Host variables can only be used in place of string or numeric constants. They
cannot be used to substitute column names or table names; dynamic
statements are required to perform those operations.

Dynamic SQL statements

In the C language, strings are stored in arrays of characters. Dynamic
statements are constructed in C language strings. These statements can then
be executed using the PREPARE and EXECUTE statements. These SQL
statements cannot reference host variables in the same manner as static
statements since the C language variables are not accessible by name when
the C program is executing.

To pass information between the statements and the C language variables, a
data structure called the SQL Descriptor Area (SQLDA) is used. This
structure is set up for you by the SQL preprocessor if you specify a list of
host variables on the EXECUTE command in the USING clause. These
variables correspond by position to place holders in the appropriate positions
of the prepared command string.

$ For information on the SQLDA, see "The SQL descriptor area
(SQLDA)" on page 206.

Chapter 6 Embedded SQL Programming

203

A place holder is put in the statement to indicate where host variables are to
be accessed. A place holder is either a question mark (?) or a host variable
reference as in static statements (a host variable name preceded by a colon).
In the latter case, the host variable name used in the actual text of the
statement serves only as a place holder indicating a reference to the SQL
descriptor area.

A host variable used to pass information to the database is called a bind
variable.

For example:

EXEC SQL BEGIN DECLARE SECTION;
char comm[200];
char address[30];
char city[20];
short int cityind;
long empnum;

EXEC SQL END DECLARE SECTION;
. . .

sprintf(comm, "update %s set address = :?,
city = :?"

" where employee_number = :?",
tablename);

EXEC SQL PREPARE S1 FROM :comm;
EXEC SQL EXECUTE S1 USING :address, :city:cityind,
:empnum;

This method requires the programmer to know how many host variables
there are in the statement. Usually, this is not the case. So, you can set up
your own SQLDA structure and specify this SQLDA in the USING clause
on the EXECUTE command.

The DESCRIBE BIND VARIABLES statement returns the host variable
names of the bind variables that are found in a prepared statement. This
makes it easier for a C program to manage the host variables. The general
method is as follows:

EXEC SQL BEGIN DECLARE SECTION;
char comm[200];

EXEC SQL END DECLARE SECTION;
. . .
sprintf(comm, "update %s set address = :address,

 city = :city"
" where employee_number = :empnum",
tablename);

EXEC SQL PREPARE S1 FROM :comm;
/* Assume that there are no more than 10 host variables.
See next example if you can’t put
a limit on it */
sqlda = alloc_sqlda(10);

Example

Static and dynamic SQL

204

EXEC SQL DESCRIBE BIND VARIABLES FOR S1 USING DESCRIPTOR
sqlda;
/* sqlda->sqld will tell you how many host variables
there were. */
/* Fill in SQLDA_VARIABLE fields with values based on
name fields in sqlda */
. . .
EXEC SQL EXECUTE S1 USING DESCRIPTOR sqlda;
free_sqlda(sqlda);

The SQLDA consists of an array of variable descriptors. Each descriptor
describes the attributes of the corresponding C program variable or the
location that the database stores data into or retrieves data from:

♦ data type

♦ length if type is a string type

♦ precision and scale if type is a numeric type

♦ memory address

♦ indicator variable

$ For a complete description of the SQLDA structure, see "The SQL
descriptor area (SQLDA)" on page 206

The indicator variable is used to pass a NULL value to the database or
retrieve a NULL value from the database. The indicator variable is also used
by the database server to indicate truncation conditions encountered during a
database operation. The indicator variable is set to a positive value when not
enough space was provided to receive a database value.

$ For more information, see "Indicator variables" on page 185.

Dynamic SELECT statement

A SELECT statement that returns only a single row can be prepared
dynamically, followed by an EXECUTE with an INTO clause to retrieve the
one-row result. SELECT statements that return multiple rows, however, are
managed using dynamic cursors.

With dynamic cursors, results are put into a host variable list or a SQLDA
that is specified on the FETCH statement (FETCH INTO and
FETCH USING DESCRIPTOR). Since the number of select list items is
usually unknown to the C programmer, the SQLDA route is the most
common. The DESCRIBE SELECT LIST statement sets up a SQLDA with
the types of the select list items. Space is then allocated for the values using
the fill_sqlda() function, and the information is retrieved by the
FETCH USING DESCRIPTOR statement.

SQLDA contents

Indicator variables
and NULL

Chapter 6 Embedded SQL Programming

205

The typical scenario is as follows:

EXEC SQL BEGIN DECLARE SECTION;
char comm[200];

EXEC SQL END DECLARE SECTION;
int actual_size;
SQLDA * sqlda;

. . .
sprintf(comm, "select * from %s", table_name);
EXEC SQL PREPARE S1 FROM :comm;
/* Initial guess of 10 columns in result. If it is

wrong, it is corrected right after the first
DESCRIBE by reallocating sqlda and doing DESCRIBE
again. */

sqlda = alloc_sqlda(10);
EXEC SQL DESCRIBE SELECT LIST FOR S1 USING DESCRIPTOR
sqlda;
if(sqlda->sqld > sqlda->sqln){

actual_size = sqlda->sqld;
free_sqlda(sqlda);
sqlda = alloc_sqlda(actual_size);
EXEC SQL DESCRIBE SELECT LIST FOR S1

USING DESCRIPTOR sqlda;
}
fill_sqlda(sqlda);
EXEC SQL DECLARE C1 CURSOR FOR S1;
EXEC SQL OPEN C1;
EXEC SQL WHENEVER NOTFOUND {break};
for(;;){

EXEC SQL FETCH C1 USING DESCRIPTOR sqlda;
/* do something with data */

}
EXEC SQL CLOSE C1;
EXEC SQL DROP STATEMENT S1;

Drop statements after use
To avoid consuming unnecessary resources, ensure that statements are
dropped after use.

$ For a complete example using cursors for a dynamic select statement,
see "Dynamic cursor sample" on page 174.

$ For details of the functions mentioned above, see "Library function
reference" on page 230.

The SQL descriptor area (SQLDA)

206

The SQL descriptor area (SQLDA)
The SQLDA (SQL Descriptor Area) is an interface structure that is used for
dynamic SQL statements. The structure passes information regarding host
variables and SELECT statement results to and from the database. The
SQLDA is defined in the header file sqlda.h.

$ There are functions in the database interface library or DLL that you
can use to manage SQLDAs. For descriptions, see "Library function
reference" on page 230.

When host variables are used with static SQL statements, the preprocessor
constructs a SQLDA for those host variables. It is this SQLDA that is
actually passed to and from the database server.

The SQLDA header file

The contents of sqlda.h are as follows:

#ifndef _SQLDA_H_INCLUDED
#define _SQLDA_H_INCLUDED
#define II_SQLDA

#include "sqlca.h"

#if defined(_SQL_PACK_STRUCTURES)
#include "pshpk1.h"
#endif

#define SQL_MAX_NAME_LEN 30

#define _sqldafar _sqlfar

typedef short int a_SQL_type;
struct sqlname {
 short int length; /* length of char data */
 char data[SQL_MAX_NAME_LEN]; /* data */
};

struct sqlvar { /* array of variable descriptors */
 short int sqltype; /* type of host variable */
 short int sqllen; /* length of host variable */
 void _sqldafar *sqldata; /* address of variable */
 short int _sqldafar *sqlind; /* indicator variable pointer */
 struct sqlname sqlname;
};

Chapter 6 Embedded SQL Programming

207

struct sqlda{
 unsigned char sqldaid[8]; /* eye catcher "SQLDA"*/
 a_SQL_int32 sqldabc; /* length of sqlda structure*/
 short int sqln; /* descriptor size in number of entries */
 short int sqld; /* number of variables found by DESCRIBE*/
 struct sqlvar sqlvar[1]; /* array of variable descriptors */
};

#define SCALE(sqllen) ((sqllen)/256)
#define PRECISION(sqllen) ((sqllen)&0xff)
#define SET_PRECISION_SCALE(sqllen,precision,scale) \
 sqllen = (scale)*256 + (precision)
#define DECIMALSTORAGE(sqllen) (PRECISION(sqllen)/2 + 1)

typedef struct sqlda SQLDA;
typedef struct sqlvar SQLVAR, SQLDA_VARIABLE;
typedef struct sqlname SQLNAME, SQLDA_NAME;

#ifndef SQLDASIZE
#define SQLDASIZE(n) (sizeof(struct sqlda) + \
 (n-1) * sizeof(struct sqlvar))
#endif

#if defined(_SQL_PACK_STRUCTURES)
#include "poppk.h"
#endif

#endif

SQLDA fields

The SQLDA fields have the following meanings:

Field Description

sqldaid An 8-byte character field that contains the string SQLDA as an
identification of the SQLDA structure. This field helps in
debugging when you are looking at memory contents.

sqldabc A long integer containing the length of the SQLDA structure.

sqln The number of variable descriptors in the sqlvar array.

sqld The number of variable descriptors which are valid (contain
information describing a host variable). This field is set by the
DESCRIBE statement and sometimes by the programmer when
supplying data to the database server.

sqlvar An array of descriptors of type struct sqlvar, each describing a
host variable.

The SQL descriptor area (SQLDA)

208

SQLDA host variable descriptions

Each sqlvar structure in the SQLDA describes a host variable. The fields of
the sqlvar structure have the following meanings:

♦ sqltype The type of the variable that is described by this descriptor
(see "Embedded SQL data types" on page 177).

The low order bit indicates whether NULL values are allowed. Valid
types and constant definitions can be found in the sqldef.h header file.

This field is filled by the DESCRIBE statement. You can set this field to
any type when supplying data to the database server or retrieving data
from the database server. Any necessary type conversion is done
automatically.

♦ sqllen The length of the variable. What the length actually means
depends upon the type information and how the SQLDA is being used.

For DECIMAL types, this field is divided into two 1-byte fields. The
high byte is the precision and the low byte is the scale. The precision is
the total number of digits. The scale is the number of digits that appear
after the decimal point.

For LONG VARCHAR and LONG BINARY data types, the array_len
field of the DT_LONGBINARY and DT_LONGVARCHAR data type
structure is used instead of the sqllen field.

$ For more information on the length field, see "SQLDA sqllen field
values" on page 209.

♦ sqldata A four-byte pointer to the memory occupied by this variable.
This memory must correspond to the sqltype and sqllen fields.

$ For storage formats, see "Embedded SQL data types" on page 177.

For UPDATE and INSERT commands, this variable is not involved in
the operation if the sqldata pointer is a null pointer. For a FETCH, no
data is returned if the sqldata pointer is a null pointer. In other words,
the column returned by the sqldata pointer is an unbound column.

If the DESCRIBE statement uses LONG NAMES, this field holds the
long name of the result set column. If, in addition, the DESCRIBE
statement is a DESCRIBE USER TYPES statement, then this field holds
the long name of the user-defined data type, instead of the column. If the
type is a base type, the field is empty.

Chapter 6 Embedded SQL Programming

209

♦ sqlind A pointer to the indicator value. An indicator value is a short
int. A negative indicator value indicates a NULL value. A positive
indicator value indicates that this variable has been truncated by a
FETCH statement, and the indicator value contains the length of the data
before truncation. A value of –2 indicates a conversion error if the
CONVERSION_ERROR database option is set to OFF.

$ For more information, see "Indicator variables" on page 185.

If the sqlind pointer is the null pointer, no indicator variable pertains to
this host variable.

The sqlind field is also used by the DESCRIBE statement to indicate
parameter types. If the type is a user-defined data type, this field is set to
DT_HAS_USERTYPE_INFO. In such a case, you may wish to carry
out a DESCRIBE USER TYPES to obtain information on the
user-defined data types.

♦ sqlname A VARCHAR structure that contains a length and character
buffer. It is filled by a DESCRIBE statement and is not otherwise used.
This field has a different meaning for the two formats of the DESCRIBE
statement:

♦ SELECT LIST The name buffer is filled with the column heading
of the corresponding item in the select list.

♦ BIND VARIABLES The name buffer is filled with the name of the
host variable that was used as a bind variable, or "?" if an unnamed
parameter marker is used.

On a DESCRIBE SELECT LIST command, any indicator variables
present are filled with a flag indicating whether the select list item is
updatable or not. More information on this flag can be found in the
sqldef.h header file.

If the DESCRIBE statement is a DESCRIBE USER TYPES statement,
then this field holds the long name of the user-defined data type instead
of the column. If the type is a base type, the field is empty.

SQLDA sqllen field values

The sqllen field length of the sqlvar structure in a SQLDA is used in the
following kinds of interactions with the database server:

♦ describing values The DESCRIBE statement gets information about
the host variables required to store data retrieved from the database, or
host variables required to pass data to the database.

$ See "Describing values" on page 210.

The SQL descriptor area (SQLDA)

210

♦ retrieving values Retrieving values from the database.

$ See "Retrieving values" on page 212.

♦ sending values Sending information to the database.

$ See "Sending values" on page 211.

These interactions are described in this section.

The following tables detail each of these interactions. These tables list the
interface constant types (the DT_ types) found in the sqldef.h header file.
These constants would be placed in the SQLDA sqltype field.

$ For information about sqltype field values, see "Embedded SQL data
types" on page 177.

In static SQL, a SQLDA is still used but it is generated and completely filled
in by the SQL preprocessor. In this static case, the tables give the
correspondence between the static C language host variable types and the
interface constants.

Describing values

The following table indicates the values of the sqllen and sqltype structure
members returned by the DESCRIBE command for the various database
types (both SELECT LIST and BIND VARIABLE DESCRIBE statements).
In the case of a user-defined database data type, the base type is described.

Your program can use the types and lengths returned from a DESCRIBE, or
you may use another type. The database server performs type conversions
between any two types. The memory pointed to by the sqldata field must
correspond to the sqltype and sqllen fields.

$ For information on embedded SQL data types, see "Embedded SQL
data types" on page 177.

Database field type Embedded SQL type
returned

Length returned on
describe

BIGINT DT_BIGINT 8

BINARY(n) DT_BINARY n

BIT DT_BIT 1

CHAR(n) DT_FIXCHAR n

DATE DT_DATE length of longest
formatted string

DECIMAL(p,s) DT_DECIMAL high byte of length field
in SQLDA set to p, and
low byte set to s

Chapter 6 Embedded SQL Programming

211

Database field type Embedded SQL type
returned

Length returned on
describe

DOUBLE DT_DOUBLE 8

FLOAT DT_FLOAT 4

INT DT_INT 4

LONG BINARY DT_LONGBINARY 32767

LONG VARCHAR DT_LONGVARCHAR 32767

REAL DT_FLOAT 4

SMALLINT DT_SMALLINT 2

TIME DT_TIME length of longest
formatted string

TIMESTAMP DT_TIMESTAMP length of longest
formatted string

TINYINT DT_TINYINT 1

UNSIGNED BIGINT DT_UNSBIGINT 8

UNSIGNED INT DT_UNSINT 4

UNSIGNED SMALLINT DT_UNSSMALLINT 2

VARCHAR(n) DT_VARCHAR n

Sending values

The following table indicates how you specify lengths of values when you
supply data to the database server in the SQLDA.

Only the data types displayed in the table are allowed in this case. The
DT_DATE, DT_TIME, and DT_TIMESTAMP types are treated the same as
DT_STRING when supplying information to the database; the value must be
a NULL-terminated character string in an appropriate date format.

Embedded SQL Data Type Program action to set the length

DT_BIGINT No action required

DT_BINARY(n) Length taken from field in BINARY
structure

DT_BIT No action required

DT_DATE Length determined by terminating \0

DT_DECIMAL(p,s) high byte of length field in SQLDA set to p,
and low byte set to s

The SQL descriptor area (SQLDA)

212

Embedded SQL Data Type Program action to set the length

DT_DOUBLE No action required

DT_FIXCHAR(n) Length field in SQLDA determines length of
string

DT_FLOAT No action required

DT_INT No action required

DT_LONGBINARY Length field ignored. See "Sending LONG
data" on page 217

DT_LONGVARCHAR Length field ignored. See "Sending LONG
data" on page 217

DT_SMALLINT No action required

DT_STRING Length determined by terminating \0

DT_TIME Length determined by terminating \0

DT_TIMESTAMP Length determined by terminating \0

DT_TIMESTAMP_STRUCT No action required

DT_UNSBIGINT No action required

DT_UNSINT No action required

DT_UNSSMALLINT No action required

DT_VARCHAR(n) Length taken from field in VARCHAR
structure

DT_VARIABLE Length determined by terminating \0

Retrieving values

The following table indicates the values of the length field when you retrieve
data from the database using a SQLDA. The sqllen field is never modified
when you retrieve data.

Only the interface data types displayed in the table are allowed in this case.
The DT_DATE, DT_TIME, and DT_TIMESTAMP data types are treated
the same as DT_STRING when you retrieve information from the database.
The value is formatted as a character string in the current date format.

Chapter 6 Embedded SQL Programming

213

Embedded SQL
Data Type

What the program
must set length field to
when receiving

How the database
returns length
information after
fetching a value

DT_BIGINT No action required No action required

DT_BINARY(n) Maximum length of
BINARY structure (n+2)

len field of BINARY
structure set to actual
length

DT_BIT No action required No action required

DT_DATE Length of buffer \0 at end of string

DT_DECIMAL(p,s) High byte set to p and low
byte set to s

No action required

DT_DOUBLE No action required No action required

DT_FIXCHAR(n) Length of buffer Padded with blanks to
length of buffer

DT_FLOAT No action required No action required

DT_INT No action required No action required

DT_LONGBINARY Length field ignored. See
"Retrieving LONG data"
on page 215

Length field ignored. See
"Retrieving LONG data"
on page 215

DT_LONGVARCHAR Length field ignored. See
"Retrieving LONG data"
on page 215

Length field ignored. See
"Retrieving LONG data"
on page 215

DT_SMALLINT No action required No action required

DT_STRING Length of buffer \0 at end of string

DT_TIME Length of buffer \0 at end of string

DT_TIMESTAMP Length of buffer \0 at end of string

DT_TIMESTAMP_
STRUCT

No action required No action required

DT_UNSBIGINT No action required No action required

DT_UNSINT No action required No action required

DT_UNSSMALLINT No action required No action required

DT_VARCHAR(n) Maximum length of
VARCHAR structure
(n+2)

len field of VARCHAR
structure set to actual
length

Sending and retrieving long values

214

Sending and retrieving long values
The method for sending and retrieving LONG VARCHAR and LONG
BINARY values in embedded SQL applications is different from that for
other data types. Although the standard SQLDA fields can be used, they are
limited to 32 kb data as the fields holding the information (sqldata, sqllen,
sqlind) are 16-bit values. Changing these values to 32-bit values would break
existing applications.

The method of describing LONG VARCHAR and LONG BINARY values is
the same as for other data types.

$ For information about how to retrieve and send values, see "Retrieving
LONG data" on page 215, and "Sending LONG data" on page 217.

Separate structures are used to hold the allocated, stored, and untruncated
lengths of LONG BINARY and LONG VARCHAR data types. The static
SQL data types are defined in sqlca.h as follows:

#define DECL_LONGVARCHAR(size) \
 struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size+1];\
 }

#define DECL_LONGBINARY(size) \
 struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size]; \
 }

For dynamic SQL, set the sqltype field to DT_LONGVARCHAR or
DT_LONGBINARY as appropriate. The associated LONGBINARY and
LONGVARCHAR structures are as follows:

typedef struct LONGVARCHAR {
 a_sql_uint32 array_len;
 /* number of allocated bytes in array */
 a_sql_uint32 stored_len;
 /* number of bytes stored in array
 * (never larger than array_len)
 */
 a_sql_uint32 untrunc_len;
 /* number of bytes in untruncated expression
 * (may be larger than array_len)
 */
 char array[1]; /* the data */
} LONGVARCHAR, LONGBINARY;

Static SQL usage

Dynamic SQL
usage

Chapter 6 Embedded SQL Programming

215

$ For information about how to implement this feature in your
applications, see "Retrieving LONG data" on page 215, and "Sending LONG
data" on page 217.

Retrieving LONG data

This section describes how to retrieve LONG values from the database. For
background information, see "Sending and retrieving long values" on
page 214.

The procedures are different depending on whether you are using static or
dynamic SQL.

v To receive a LONG VARCHAR or LONG BINARY value (static SQL):

1 Declare a host variable of type DECL_LONGVARCHAR or
DECL_LONGBINARY, as appropriate.

2 Retrieve the data using FETCH, GET DATA, or EXECUTE INTO.
Adaptive Server Anywhere sets the following information:

♦ indicator variable The indicator variable is negative if the value
is NULL, 0 if there is no truncation, and is the positive untruncated
length in bytes up to a maximum of 32767.

$ For more information, see "Indicator variables" on page 185.

♦ stored_len This DECL_LONGVARCHAR or
DECL_LONGBINARY field holds the number of bytes retrieved
into the array. It is never greater than array_len.

♦ untrunc_len This DECL_LONGVARCHAR or
DECL_LONGBINARY field holds the number of bytes held by the
database server. It is at least equal to the stored_len value. It is set
even if the value is not truncated.

v To receive a value into a LONGVARCHAR or LONGBINARY structure
(dynamic SQL):

1 Set the sqltype field to DT_LONGVARCHAR or DT_LONGBINARY
as appropriate.

2 Set the sqldata field to point to the LONGVARCHAR or
LONGBINARY structure.

You can use the LONGVARCHARSIZE(n) or LONGBINARYSIZE(n)
macros to determine the total number of bytes to allocate to hold n bytes
of data in the array field.

Sending and retrieving long values

216

3 Set the array_len field of the LONGVARCHAR or LONGBINARY
structure to the number of bytes allocated for the array field.

4 Retrieve the data using FETCH, GET DATA, or EXECUTE INTO.
Adaptive Server Anywhere sets the following information:

♦ * sqlind This sqlda field is negative if the value is NULL, 0 if
there is no truncation, and is the positive untruncated length in bytes
up to a maximum of 32767.

♦ stored_len This LONGVARCHAR or LONGBINARY field
holds the number of bytes retrieved into the array. It is never greater
than array_len.

♦ untrunc_len This LONGVARCHAR or LONGBINARY field
holds the number of bytes held by the database server. It is at least
equal to the stored_len value. It is set even if the value is not
truncated.

The following code snippet illustrates the mechanics of retrieving LONG
VARCHAR data using dynamic embedded SQL. It is not intended to be a
practical application:

Chapter 6 Embedded SQL Programming

217

#define DATA_LEN 128000
void get_test_var()
/*****************/
{
 LONGVARCHAR *longptr;
 SQLDA *sqlda;
 SQLVAR *sqlvar;

 sqlda = alloc_sqlda(1);
 longptr = (LONGVARCHAR *)malloc(
 LONGVARCHARSIZE(DATA_LEN));
 if(sqlda == NULL || longptr == NULL) {
 fatal_error("Allocation failed");
 }

 // init longptr for receiving data
 longptr->array_len = DATA_LEN;

 // init sqlda for receiving data
 // (sqllen is unused with DT_LONG types)
 sqlda->sqld = 1; // using 1 sqlvar
 sqlvar = &sqlda->sqlvar[0];
 sqlvar->sqltype = DT_LONGVARCHAR;
 sqlvar->sqldata = longptr;

 printf("fetching test_var\n");
 EXEC SQL PREPARE select_stmt FROM ’SELECT test_var’;
 EXEC SQL EXECUTE select_stmt INTO DESCRIPTOR sqlda;
 EXEC SQL DROP STATEMENT select_stmt;
 printf("stored_len: %d, untrunc_len: %d,
 1st char: %c, last char: %c\n",
 longptr->stored_len,
 longptr->untrunc_len,
 longptr->array[0],
 longptr->array[DATA_LEN-1]);
 free_sqlda(sqlda);
 free(longptr);
}

Sending LONG data

This section describes how to send LONG values to the database from
embedded SQL applications. For background information, see "Sending and
retrieving long values" on page 214.

The procedures are different depending on whether you are using static or
dynamic SQL.

Sending and retrieving long values

218

v To send a LONG VARCHAR or LONG BINARY value (static SQL):

1 Declare a host variable of type DECL_LONGVARCHAR or
DECL_LONGBINARY, as appropriate.

2 If you are sending NULL and using an indicator variable, set the
indicator variable to a negative value.

$ For more information, see "Indicator variables" on page 185.

3 Set the stored_len field of the DECL_LONGVARCHAR or
DECL_LONGBINARY structure to the number of bytes of data in the
array field.

4 Send the data by opening the cursor or executing the statement.

The following code snippet illustrates the mechanics of sending a LONG
VARCHAR using static embedded SQL. It is not intended to be a practical
application.

#define DATA_LEN 12800
EXEC SQL BEGIN DECLARE SECTION;
// SQLPP initializes longdata.array_len
DECL_LONGVARCHAR(128000) longdata;
EXEC SQL END DECLARE SECTION;

void set_test_var()
/*****************/
{
 // init longdata for sending data
 memset(longdata.array, ’a’, DATA_LEN);
 longdata.stored_len = DATA_LEN;

 printf("Setting test_var to %d a’s\n", DATA_LEN);
 EXEC SQL SET test_var = :longdata;
}

v To send a value using a LONGVARCHAR or LONGBINARY structure
(dynamic SQL):

1 Set the sqltype field to DT_LONGVARCHAR or DT_LONGBINARY
as appropriate.

2 If you are sending NULL, set * sqlind to a negative value.

3 Set the sqldata field to point to the LONGVARCHAR or
LONGBINARY structure.

You can use the LONGVARCHARSIZE(n) or LONGBINARYSIZE(n)
macros to determine the total number of bytes to allocate to hold n bytes
of data in the array field.

Chapter 6 Embedded SQL Programming

219

4 Set the array_len field of the LONGVARCHAR or LONGBINARY
structure to the number of bytes allocated for the array field.

5 Set the stored_len field of the LONGVARCHAR or LONGBINARY
structure to the number of bytes of data in the array field. This must not
be more than array_len.

6 Send the data by opening the cursor or executing the statement.

Using stored procedures

220

Using stored procedures
This section describes the use of SQL procedures in embedded SQL.

Using simple stored procedures

You can create and call stored procedures in embedded SQL.

You can embed a CREATE PROCEDURE just like any other data definition
statement, such as CREATE TABLE. You can also embed a CALL
statement to execute a stored procedure. The following code fragment
illustrates both creating and executing a stored procedure in embedded SQL:

EXEC SQL CREATE PROCEDURE pettycash(IN amount
DECIMAL(10,2))

BEGIN
UPDATE account
SET balance = balance - amount
WHERE name = ’bank’;

UPDATE account
SET balance = balance + amount
WHERE name = ’pettycash expense’;

END;
EXEC SQL CALL pettycash(10.72);

If you wish to pass host variable values to a stored procedure or to retrieve
the output variables, you prepare and execute a CALL statement. The
following code fragment illustrates the use of host variables. Both the
USING and INTO clauses are used on the EXECUTE statement.

EXEC SQL BEGIN DECLARE SECTION;
double hv_expense;
double hv_balance;

EXEC SQL END DECLARE SECTION;

Chapter 6 Embedded SQL Programming

221

// code here
EXEC SQL CREATE PROCEDURE pettycash(

IN expense DECIMAL(10,2),
OUT endbalance DECIMAL(10,2))

BEGIN
UPDATE account
SET balance = balance - expense
WHERE name = ’bank’;

UPDATE account
SET balance = balance + expense
WHERE name = ’pettycash expense’;

SET endbalance = (SELECT balance FROM account
 WHERE name = ’bank’);

END;

EXEC SQL PREPARE S1 FROM ’CALL pettycash(?, ?)’;
EXEC SQL EXECUTE S1 USING :hv_expense INTO :hv_balance;

$ For more information, see "EXECUTE statement [ESQL]" on page 414
of the book ASA SQL Reference Manual, and "PREPARE statement
[ESQL]" on page 495 of the book ASA SQL Reference Manual.

Stored procedures with result sets

Database procedures can also contain SELECT statements. The procedure is
declared using a RESULT clause to specify the number, name, and types of
the columns in the result set. Result set columns are different from output
parameters. For procedures with result sets, the CALL statement can be used
in place of a SELECT statement in the cursor declaration:

EXEC SQL BEGIN DECLARE SECTION;
char hv_name[100];

EXEC SQL END DECLARE SECTION;

EXEC SQL CREATE PROCEDURE female_employees()
RESULT(name char(50))
BEGIN

SELECT emp_fname || emp_lname FROM employee
WHERE sex = ’f’;

END;

EXEC SQL PREPARE S1 FROM ’CALL female_employees()’;

EXEC SQL DECLARE C1 CURSOR FOR S1;
EXEC SQL OPEN C1;
for(;;) {

EXEC SQL FETCH C1 INTO :hv_name;
if(SQLCODE != SQLE_NOERROR) break;

Using stored procedures

222

printf("%s\\n", hv_name);
}
EXEC SQL CLOSE C1;

In this example, the procedure has been invoked with an OPEN statement
rather than an EXECUTE statement. The OPEN statement causes the
procedure to execute until it reaches a SELECT statement. At this point, C1
is a cursor for the SELECT statement within the database procedure. You
can use all forms of the FETCH command (backward and forward scrolling)
until you are finished with it. The CLOSE statement terminates execution of
the procedure.

If there had been another statement following the SELECT in the procedure,
it would not have been executed. In order to execute statements following a
SELECT, use the RESUME cursor-name command. The RESUME
command either returns the warning SQLE_PROCEDURE_COMPLETE or
it returns SQLE_NOERROR indicating that there is another cursor. The
example illustrates a two-select procedure:

EXEC SQL CREATE PROCEDURE people()
RESULT(name char(50))
BEGIN

SELECT emp_fname || emp_lname
FROM employee;

SELECT fname || lname
FROM customer;

END;

EXEC SQL PREPARE S1 FROM ’CALL people()’;

EXEC SQL DECLARE C1 CURSOR FOR S1;
EXEC SQL OPEN C1;
while(SQLCODE == SQLE_NOERROR) {

for(;;) {
EXEC SQL FETCH C1 INTO :hv_name;
if(SQLCODE != SQLE_NOERROR) break;
printf("%s\\n", hv_name);

}
EXEC SQL RESUME C1;

}
EXEC SQL CLOSE C1;

These examples have used static cursors. Full dynamic cursors can also be
used for the CALL statement.

$ For a description of dynamic cursors, see "Dynamic SELECT
statement" on page 204.

Dynamic cursors
for CALL
statements

Chapter 6 Embedded SQL Programming

223

The DESCRIBE statement works fully for procedure calls. A DESCRIBE
OUTPUT produces a SQLDA that has a description for each of the result set
columns.

If the procedure does not have a result set, the SQLDA has a description for
each INOUT or OUT parameter for the procedure. A DESCRIBE INPUT
statement produces a SQLDA having a description for each IN or INOUT
parameter for the procedure.

DESCRIBE ALL describes IN, INOUT, OUT, and RESULT set parameters.
DESCRIBE ALL uses the indicator variables in the SQLDA to provide
additional information.

The DT_PROCEDURE_IN and DT_PROCEDURE_OUT bits are set in the
indicator variable when a CALL statement is described.
DT_PROCEDURE_IN indicates an IN or INOUT parameter and
DT_PROCEDURE_OUT indicates an INOUT or OUT parameter. Procedure
RESULT columns have both bits clear.

After a describe OUTPUT, these bits can be used to distinguish between
statements that have result sets (need to use OPEN, FETCH, RESUME,
CLOSE) and statements that do not (need to use EXECUTE).

$ For a complete description, see "DESCRIBE statement [ESQL]" on
page 392 of the book ASA SQL Reference Manual.

If you have a procedure that returns multiple result sets, you must re-describe
after each RESUME statement if the result sets change shapes.

You need to describe the cursor, not the statement, to re-describe the current
position of the cursor.

DESCRIBE ALL

Multiple result sets

Embedded SQL programming techniques

224

Embedded SQL programming techniques
This section contains a set of tips for developers of embedded SQL
programs.

Implementing request management

The default behavior of the interface DLL is for applications to wait for
completion of each database request before carrying out other functions. This
behavior can be changed using request management functions. For example,
when using Interactive SQL, the operating system is still active while
Interactive SQL is waiting for a response from the database and
Interactive SQL carries out some tasks in that time.

You can achieve application activity while a database request is in progress
by providing a callback function. In this callback function you must not do
another database request except db_cancel_request. You can use the
db_is_working function in your message handlers to determine if you have a
database request in progress.

The db_register_a_callback function is used to register your application
callback functions.

$ For more information, see the following:

♦ "db_register_a_callback function" on page 237

♦ "db_cancel_request function" on page 233

♦ "db_is_working function" on page 236

Backup functions

The db_backup function provides support for online backup in embedded
SQL applications. The backup utility makes use of this function. You should
only need to write a program to use this function if your backup requirements
are not satisfied by the Adaptive Server Anywhere backup utility.

BACKUP statement is recommended
Although this function provides one way to add backup features to an
application, the recommended way to accomplish this task is to use the
BACKUP statement. For more information, see "BACKUP statement" on
page 245 of the book ASA SQL Reference Manual.

Chapter 6 Embedded SQL Programming

225

$ You can also access the backup utility directly using the Database
Tools DBBackup function. For more information on this function, see
"DBBackup function" on page 293.

$ For more information, see "db_backup function" on page 230.

The SQL preprocessor

226

The SQL preprocessor
The SQL preprocessor processes a C or C++ program containing embedded
SQL, before the compiler is run.

sqlpp [options] SQL-filename [output-filename]

Option Description

–c "keyword=value;..." Supply reference database connection parameters
[UltraLite]

–d Favor data size

–e level Flag non-conforming SQL syntax as an error

–f Put the far keyword on generated static data

–g Do not display UltraLite warnings

–h line–width Limit the maximum line length of output

–k Include user declaration of SQLCODE

–m version Specify the version name for generated synchronization
scripts

–n Line numbers

–o operating–sys Target operating system.

–p project UltraLite project name

–q Quiet mode—do not print banner

–r Generate reentrant code

–s string–len Maximum string length for the compiler

–w level Flag non-conforming SQL syntax as a warning

–x Change multibyte SQL strings to escape sequences

–z sequence Specify collation sequence

"Introduction" on page 164

The SQL preprocessor processes a C or C++ program containing embedded
SQL before the compiler is run. SQLPP translates the SQL statements in the
input-file into C language source that is put into the output-file. The normal
extension for source programs with embedded SQL is .sqc. The default
output filename is the SQL-filename with an extension of .c. If the
SQL-filename has a .c extension, the default output filename extension is
.cc.

Syntax

See also

Description

Chapter 6 Embedded SQL Programming

227

–c Required when preprocessing files that are part of an UltraLite
application. The connection string must give the SQL preprocessor access to
read and modify your reference database.

–d Generate code that reduces data space size. Data structures are reused
and initialized at execution time before use. This increases code size.

–e This option flags any embedded SQL that is not part of a specified set
of SQL/92 as an error.

The allowed values of level and their meanings are as follows:

♦ e flag syntax that is not entry-level SQL/92 syntax

♦ i flag syntax that is not intermediate-level SQL/92 syntax

♦ f flag syntax that is not full-SQL/92 syntax

♦ t flag non-standard host variable types

♦ u flag syntax that is not supported by UltraLite

♦ w allow all supported syntax

–g Do not display warning specific to UltraLite code generation.

–h Limits the maximum length of lines output by sqlpp to num. The
continuation character is a backslash (\) and the minimum value of num is
ten.

–k Notifies the preprocessor that the program to be compiled includes a
user declaration of SQLCODE.

–m Specify the version name for generated synchronization scripts. The
generated synchronization scripts can be used in a MobiLink consolidated
database for simple synchronization.

–n Generate line number information in the C file. This consists of #line
directives in the appropriate places in the generated C code. If the compiler
that you are using supports the #line directive, this option makes the
compiler report errors on line numbers in the SQC file (the one with the
embedded SQL) as opposed to reporting errors on line numbers in the C file
generated by the SQL preprocessor. Also, the #line directives are used
indirectly by the source level debugger so that you can debug while viewing
the SQC source file.

Options

The SQL preprocessor

228

–o Specify the target operating system. Note that this option must match
the operating system where you run the program. A reference to a special
symbol is generated in your program. This symbol is defined in the interface
library. If you use the wrong operating system specification or the wrong
library, an error is detected by the linker. The supported operating systems
are:

♦ WINDOWS Windows 95/98/Me, Windows CE

♦ WINNT Microsoft Windows NT/2000/XP

♦ NETWARE Novell NetWare

♦ UNIX UNIX

–p Identifies the UltraLite project to which the embedded SQL files
belong. Applies only when processing files that are part of an UltraLite
application.

–q Do not print the banner.

–r For more information on re-entrant code, see "SQLCA management for
multi-threaded or reentrant code" on page 190.

–s Set the maximum size string that the preprocessor puts into the C file.
Strings longer than this value are initialized using a list of characters
(’a’,’b’,’c’, etc). Most C compilers have a limit on the size of string literal they
can handle. This option is used to set that upper limit. The default value is
500.

–w This option flags any embedded SQL that is not part of a specified set
of SQL/92 as a warning.

The allowed values of level and their meanings are as follows:

♦ e flag syntax that is not entry-level SQL/92 syntax

♦ i flag syntax that is not intermediate-level SQL/92 syntax

♦ f flag syntax that is not full-SQL/92 syntax

♦ t flag non-standard host variable types

♦ u flag syntax that is not supported by UltraLite

♦ w allow all supported syntax

–x Change multibyte strings to escape sequences so that they can pass
through compilers.

–z This option specifies the collation sequence. For a listing of
recommended collation sequences, type dbinit –l at the command prompt.

Chapter 6 Embedded SQL Programming

229

The collation sequence is used to help the preprocessor understand the
characters used in the source code of the program, for example, in
identifying alphabetic characters suitable for use in identifiers. If -z is not
specified, the preprocessor attempts to determine a reasonable collation to
use based on the operating system and SQLLOCALE environment variable.

Library function reference

230

Library function reference
The SQL preprocessor generates calls to functions in the interface library or
DLL. In addition to the calls generated by the SQL preprocessor, a set of
library functions is provided to make database operations easier to perform.
Prototypes for these functions are included by the
EXEC SQL INCLUDE SQLCA command.

This section contains a reference description of these various functions.

The DLL entry points are the same except that the prototypes have a
modifier appropriate for DLLs.

You can declare the entry points in a portable manner using _esqlentry_,
which is defined in sqlca.h. It resolves to the value __stdcall:

alloc_sqlda function

SQLDA *alloc_sqlda(unsigned numvar);

Allocates a SQLDA with descriptors for numvar variables. The sqln field of
the SQLDA is initialized to numvar. Space is allocated for the indicator
variables, the indicator pointers are set to point to this space, and the
indicator value is initialized to zero. A null pointer is returned if memory
cannot be allocated. It is recommended that you use this function instead of
alloc_sqlda_noind function.

alloc_sqlda_noind function

SQLDA *alloc_sqlda_noind(unsigned numvar);

Allocates a SQLDA with descriptors for numvar variables. The sqln field of
the SQLDA is initialized to numvar. Space is not allocated for indicator
variables; the indicator pointers are set to the null pointer. A null pointer is
returned if memory cannot be allocated.

db_backup function

void db_backup(
SQLCA * sqlca,
int op,
int file_num,
unsigned long page_num,
SQLDA * sqlda);

DLL entry points

Prototype

Description

Prototype

Description

Prototype

Chapter 6 Embedded SQL Programming

231

Must be connected to a user ID with DBA authority or REMOTE DBA
authority (SQL Remote).

BACKUP statement is recommended
Although this function provides one way to add backup features to an
application, the recommended way to accomplish this task is to use the
BACKUP statement. For more information, see "BACKUP statement" on
page 245 of the book ASA SQL Reference Manual.

The action performed depends on the value of the op parameter:

♦ DB_BACKUP_START Must be called before a backup can start. Only
one backup can be running at one time against any given database
server. Database checkpoints are disabled until the backup is complete
(db_backup is called with an op value of DB_BACKUP_END). If the
backup cannot start, the SQLCODE is
SQLE_BACKUP_NOT_STARTED. Otherwise, the SQLCOUNT field
of the sqlca is set to the size of each database page. (Backups are
processed one page at a time.)

The file_num, page_num and sqlda parameters are ignored.

♦ DB_BACKUP_OPEN_FILE Open the database file specified by
file_num, which allows pages of the specified file to be backed up using
DB_BACKUP_READ_PAGE. Valid file numbers are 0 through
DB_BACKUP_MAX_FILE for the root database files,
DB_BACKUP_TRANS_LOG_FILE for the transaction log file, and
DB_BACKUP_WRITE_FILE for the database write file if it exists. If
the specified file does not exist, the SQLCODE is SQLE_NOTFOUND.
Otherwise, SQLCOUNT contains the number of pages in the file,
SQLIOESTIMATE contains a 32-bit value (POSIX time_t) which
identifies the time that the database file was created, and the operating
system file name is in the sqlerrmc field of the SQLCA.

The page_num and sqlda parameters are ignored.

♦ DB_BACKUP_READ_PAGE Read one page of the database file
specified by file_num. The page_num should be a value from 0 to one
less than the number of pages returned in SQLCOUNT by a successful
call to db_backup with the DB_BACKUP_OPEN_FILE operation.
Otherwise, SQLCODE is set to SQLE_NOTFOUND. The sqlda
descriptor should be set up with one variable of type DT_BINARY
pointing to a buffer. The buffer should be large enough to hold binary
data of the size returned in the SQLCOUNT field on the call to
db_backup with the DB_BACKUP_START operation.

Authorization

Description

Library function reference

232

DT_BINARY data contains a two-byte length followed by the actual
binary data, so the buffer must be two bytes longer than the page size.

Application must save buffer
This call makes a copy of the specified database page into the buffer,
but it is up to the application to save the buffer on some backup
media.

♦ DB_BACKUP_READ_RENAME_LOG This action is the same as
DB_BACKUP_READ_PAGE, except that after the last page of the
transaction log has been returned, the database server renames the
transaction log and starts a new one.

If the database server is unable to rename the log at the current time (for
example in version 7.x or earlier databases there may be incomplete
transactions), the SQLE_BACKUP_CANNOT_RENAME_LOG_YET
error is set. In this case, do not use the page returned, but instead reissue
the request until you receive SQLE_NOERROR and then write the page.
Continue reading the pages until you receive the SQLE_NOTFOUND
condition.

The SQLE_BACKUP_CANNOT_RENAME_LOG_YET error may be
returned multiple times and on multiple pages. In your retry loop, you
should add a delay so as not to slow the server down with too many
requests.

When you receive the SQLE_NOTFOUND condition, the transaction
log has been backed up successfully and the file has been renamed. The
name for the old transaction file is returned in the sqlerrmc field of the
SQLCA.

You should check the sqlda->sqlvar[0].sqlind value after a db_backup
call. If this value is greater than zero, the last log page has been written
and the log file has been renamed. The new name is still in
sqlca.sqlerrmc, but the SQLCODE value is SQLE_NOERROR.

You should not call db_backup again after this, except to close files and
finish the backup. If you do, you get a second copy of your backed up
log file and you receive SQLE_NOTFOUND.

♦ DB_BACKUP_CLOSE_FILE Must be called when processing of one
file is complete to close the database file specified by file_num.

The page_num and sqlda parameters are ignored.

♦ DB_BACKUP_END Must be called at the end of the backup. No other
backup can start until this backup has ended. Checkpoints are enabled
again.

Chapter 6 Embedded SQL Programming

233

The file_num, page_num and sqlda parameters are ignored.

The dbbackup program uses the following algorithm. Note that this is not C
code, and does not include error checking.

db_backup(... DB_BACKUP_START ...)
allocate page buffer based on page size in SQLCODE
sqlda = alloc_sqlda(1)
sqlda->sqld = 1;
sqlda->sqlvar[0].sqltype = DT_BINARY
sqlda->sqlvar[0].sqldata = allocated buffer
for file_num = 0 to DB_BACKUP_MAX_FILE
 db_backup(... DB_BACKUP_OPEN_FILE, file_num ...)
 if SQLCODE == SQLE_NO_ERROR
 /* The file exists */
 num_pages = SQLCOUNT
 file_time = SQLE_IO_ESTIMATE
 open backup file with name from sqlca.sqlerrmc
 for page_num = 0 to num_pages - 1
 db_backup(... DB_BACKUP_READ_PAGE,
 file_num, page_num, sqlda)
 write page buffer out to backup file
 next page_num
 close backup file
 db_backup(... DB_BACKUP_CLOSE_FILE, file_num ...)
 end if
next file_num
backup up file DB_BACKUP_WRITE_FILE as above
backup up file DB_BACKUP_TRANS_LOG_FILE as above
free page buffer
db_backup(... DB_BACKUP_END ...)

db_cancel_request function

int db_cancel_request(SQLCA *sqlca);

Cancels the currently active database server request. This function checks to
make sure a database server request is active before sending the cancel
request. If the function returns 1, then the cancel request was sent; if it
returns 0, then no request was sent.

A non-zero return value does not mean that the request was canceled. There
are a few critical timing cases where the cancel request and the response
from the database or server "cross". In these cases, the cancel simply has no
effect, even though the function still returns TRUE.

The db_cancel_request function can be called asynchronously. This
function and db_is_working are the only functions in the database interface
library that can be called asynchronously using an SQLCA that might be in
use by another request.

Prototype

Description

Library function reference

234

If you cancel a request that is carrying out a cursor operation, the position of
the cursor is indeterminate. You must locate the cursor by its absolute
position or close it, following the cancel.

db_delete_file function

void db_delete_file(
SQLCA * sqlca,
char * filename);

Must be connected to a user ID with DBA authority or REMOTE DBA
authority (SQL Remote).

The db_delete_file function requests the database server to delete filename.
This can be used after backing up and renaming the transaction log (see
DB_BACKUP_READ_RENAME_LOG in "db_backup function" on
page 230) to delete the old transaction log. You must be connected to a user
ID with DBA authority.

db_find_engine function

unsigned short db_find_engine(
SQLCA *sqlca,
char *name);

Returns an unsigned short value, which indicates status information about the
database server whose name is name. If no server can be found with the
specified name, the return value is 0. A non-zero value indicates that the
server is currently running.

Each bit in the return value conveys some information. Constants that
represent the bits for the various pieces of information are defined in the
sqldef.h header file. If a null pointer is specified for name, information is
returned about the default database environment.

db_fini function

unsigned short db_fini(SQLCA *sqlca);

This function frees resources used by the database interface or DLL. You
must not make any other library calls or execute any embedded SQL
commands after db_fini is called. If an error occurs during processing, the
error code is set in SQLCA and the function returns 0. If there are no errors,
a non-zero value is returned.

Prototype

Authorization

Description

Prototype

Description

Prototype

Description

Chapter 6 Embedded SQL Programming

235

You need to call db_fini once for each SQLCA being used.

Caution
Failure to call db_fini for each db_init on NetWare can cause the
database server to fail and the NetWare file server to fail.

For information on using db_init in UltraLite applications, see "db_fini
function" on page 231 of the book UltraLite User’s Guide.

db_get_property function

unsigned int db_get_property(
SQLCA * sqlca,
a_db_property property,
char * value_buffer,
int value_buffer_size);

This function is used to obtain the address of the server to which you are
currently connected. It is used by the dbping utility to print out the server
address.

The function can also be used to obtain the value of database properties.
Database properties can also be obtained in an interface-independent manner
by executing a SELECT statement, as described in "Database properties" on
page 618 of the book ASA Database Administration Guide.

The arguments are as follows:

♦ a_db_property An enum with the value
DB_PROP_SERVER_ADDRESS. DB_PROP_SERVER_ADDRESS
gets the current connection’s server network address as a printable string.
Shared memory and NamedPipes protocols always return the empty
string for the address. TCP/IP and SPX protocols return non-empty
string addresses.

♦ value_buffer This argument is filled with the property value as a null
terminated string.

♦ value_buffer_size The maximum length of the string value_buffer,
including the terminating null character.

"Database properties" on page 618 of the book ASA Database Administration
Guide

See also

Prototype

Description

See also

Library function reference

236

db_init function

unsigned short db_init(SQLCA *sqlca);

This function initializes the database interface library. This function must be
called before any other library call is made and before any embedded SQL
command is executed. The resources the interface library requires for your
program are allocated and initialized on this call.

Use db_fini to free the resources at the end of your program. If there are any
errors during processing, they are returned in the SQLCA and 0 is returned.
If there are no errors, a non-zero value is returned and you can begin using
embedded SQL commands and functions.

In most cases, this function should be called only once (passing the address
of the global sqlca variable defined in the sqlca.h header file). If you are
writing a DLL or an application that has multiple threads using embedded
SQL, call db_init once for each SQLCA that is being used.

$ For more information, see "SQLCA management for multi-threaded or
reentrant code" on page 190.

Caution
Failure to call db_fini for each db_init on NetWare can cause the
database server to fail, and the NetWare file server to fail.

For information on using db_init in UltraLite applications, see "db_init
function" on page 231 of the book UltraLite User’s Guide.

db_is_working function

unsigned db_is_working(SQLCA *sqlca);

Returns 1 if your application has a database request in progress that uses the
given sqlca and 0 if there is no request in progress that uses the given sqlca.

This function can be called asynchronously. This function and
db_cancel_request are the only functions in the database interface library
that can be called asynchronously using an SQLCA that might be in use by
another request.

Prototype

Description

See also

Prototype

Description

Chapter 6 Embedded SQL Programming

237

db_locate_servers function

unsigned int db_locate_servers(
SQLCA *sqlca,
SQL_CALLBACK_PARM callback_address,
void *callback_user_data);

Provides programmatic access to the information displayed by the dblocate
utility, listing all the Adaptive Server Anywhere database servers on the local
network that are listening on TCP/IP.

The callback function must have the following prototype:

int (*)(SQLCA *sqlca,
a_server_address *server_addr,
void *callback_user_data);

The callback function is called for each server found. If the callback function
returns 0, db_locate_servers stops iterating through servers.

The sqlca and callback_user_data passed to the callback function are those
passed into db_locate_servers. The second parameter is a pointer to an
a_server_address structure. a_server_address is defined in sqlca.h, with
the following definition:

typedef struct a_server_address {
 a_SQL_uint32 port_type;
 a_SQL_uint32 port_num;
 char *name;
 char *address;
} a_server_address;

♦ port_type Is always PORT_TYPE_TCP at this time (defined to be 6
in sqlca.h).

♦ port_num Is the TCP port number on which this server is listening.

♦ name Points to a buffer containing the server name.

♦ address Points to a buffer containing the IP address of the server.

$ For more information, see "The Server Location utility" on page 498 of
the book ASA Database Administration Guide.

db_register_a_callback function

void db_register_a_callback(
SQLCA *sqlca,
a_db_callback_index index,
(SQL_CALLBACK_PARM) callback);

Prototype

Description

Prototype

Library function reference

238

This function registers callback functions.

If you do not register a DB_CALLBACK_WAIT callback, the default action
is to do nothing. Your application blocks, waiting for the database response,
and Windows changes the cursor to an hourglass.

To remove a callback, pass a null pointer as the callback function.

The following values are allowed for the index parameter:

♦ DB_CALLBACK_DEBUG_MESSAGE The supplied function is called
once for each debug message and is passed a null-terminated string
containing the text of the debug message. The string normally has a
newline character (\n) immediately before the terminating null
character. The prototype of the callback function is as follows:

void SQL_CALLBACK debug_message_callback(
SQLCA *sqlca,
char * message_string);

♦ DB_CALLBACK_START The prototype is as follows:

void SQL_CALLBACK start_callback(SQLCA *sqlca);

This function is called just before a database request is sent to the server.
DB_CALLBACK_START is used only on Windows.

♦ DB_CALLBACK_FINISH The prototype is as follows:

void SQL_CALLBACK finish_callback(SQLCA * sqlca);

This function is called after the response to a database request has been
received by the interface DLL. DB_CALLBACK_FINISH is used only
on Windows operating systems.

♦ DB_CALLBACK_CONN_DROPPED The prototype is as follows:

void SQL_CALLBACK conn_dropped_callback (
SQLCA *sqlca,
char *conn_name);

This function is called when the database server is about to drop a
connection because of a liveness timeout, through a DROP
CONNECTION statement, or because the database server is being shut
down. The connection name conn_name is passed in to allow you to
distinguish between connections. If the connection was not named, it has
a value of NULL.

♦ DB_CALLBACK_WAIT The prototype is as follows:

void SQL_CALLBACK wait_callback(SQLCA *sqlca);

Description

Chapter 6 Embedded SQL Programming

239

This function is called repeatedly by the interface library while the
database server or client library is busy processing your database
request.

You would register this callback as follows:

db_register_a_callback(&sqlca,
 DBCALLBACK_WAIT,
 (SQL_CALLBACK_PARM)&db_wait_request);

♦ DB_CALLBACK_MESSAGE This is used to enable the application to
handle messages received from the server during the processing of a
request.

The callback prototype is as follows:

void SQL_CALLBACK message_callback(
SQLCA* sqlca,
unsigned short msg_type,
an_SQL_code code,
unsigned length,
char* msg
);

The msg_type parameter states how important the message is and you
may wish to handle different message types in different ways. The
available message types are MESSAGE_TYPE_INFO,
MESSAGE_TYPE_WARNING, MESSAGE_TYPE_ACTION, and
MESSAGE_TYPE_STATUS. These constants are defined in sqldef.h.
The code field is an identifier. The length field tells you how long the
message is. The message is not null-terminated.

For example, the Interactive SQL callback displays STATUS and INFO
message in the Messages pane, while messages of type ACTION and
WARNING go to a dialog. If an application does not register this
callback, there is a default callback, which causes all messages to be
written to the server logfile (if debugging is on and a logfile is
specified). In addition, messages of type
MESSAGE_TYPE_WARNING and MESSAGE_TYPE_ACTION are
more prominently displayed, in an operating system-dependent manner.

db_start_database function

unsigned int db_start_database(SQLCA * sqlca, char * parms);

sqlca A pointer to a SQLCA structure. For information, see "The SQL
Communication Area (SQLCA)" on page 188.

Prototype

Arguments

Library function reference

240

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEYWORD=value. For example,

"UID=DBA;PWD=SQL;DBF=c:\\db\\mydatabase.db"

$ For an available list of connection parameters, see "Connection
parameters" on page 164 of the book ASA Database Administration Guide.

Start a database on an existing server if the database is not already running.
The steps carried out to start a database are described in "Starting a personal
server" on page 79 of the book ASA Database Administration Guide

The return value is true if the database was already running or successfully
started. Error information is returned in the SQLCA.

If a user ID and password are supplied in the parameters, they are ignored.

$ The permission required to start and stop a database is set on the server
command line. For information, see "The database server" on page 120 of the
book ASA Database Administration Guide.

db_start_engine function

unsigned int db_start_engine(SQLCA * sqlca, char * parms);

sqlca A pointer to a SQLCA structure. For information, see "The SQL
Communication Area (SQLCA)" on page 188.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEYWORD=value. For example,

"UID=DBA;PWD=SQL;DBF=c:\\db\\mydatabase.db"

$ For an available list of connection parameters, see "Connection
parameters" on page 164 of the book ASA Database Administration Guide.

Starts the database server if it is not running. The steps carried out by this
function are those listed in "Starting a personal server" on page 79 of the
book ASA Database Administration Guide.

The return value is true if a database server was either found or successfully
started. Error information is returned in the SQLCA.

The following call to db_start_engine starts the database server and names
it asademo, but does not load the database, despite the DBF connection
parameter:

db_start_engine(&sqlca, "DBF=c:\\asa8\\asademo.db;
Start=dbeng8");

Description

Prototype

Arguments

Description

Chapter 6 Embedded SQL Programming

241

If you wish to start a database as well as the server, include the database file
in the START connection parameter:

db_start_engine(&sqlca,"ENG=eng_name;START=dbeng8
c:\\asa\\asademo.db");

This call starts the server, names it eng_name, and starts the asademo
database on that server.

The db_start_engine function attempts to connect to a server before starting
one, to avoid attempting to start a server that is already running.

The FORCESTART connection parameter is used only by the
db_start_engine function. When set to YES, there is no attempt to connect
to a server before trying to start one. This enables the following pair of
commands to work as expected:

1 Start a database server named server_1:

start dbeng8 -n server_1 asademo.db

2 Force a new server to start and connect to it:

db_start_engine(&sqlda, "START=dbeng8 -n server_2 asademo.db;ForceStart=YES")

If FORCESTART was not used, and without an ENG parameter, the second
command would have attempted to connect to server_1. The
db_start_engine function does not pick up the server name from the -n
option of the START parameter.

db_stop_database function

unsigned int db_stop_database(SQLCA * sqlca, char * parms);

sqlca A pointer to a SQLCA structure. For information, see "The SQL
Communication Area (SQLCA)" on page 188.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEYWORD=value. For example,

"UID=DBA;PWD=SQL;DBF=c:\\db\\mydatabase.db"

$ For an available list of connection parameters, see "Connection
parameters" on page 164 of the book ASA Database Administration Guide.

Stop the database identified by DatabaseName on the server identified by
EngineName. If EngineName is not specified, the default server is used.

By default, this function does not stop a database that has existing
connections. If Unconditional is yes, the database is stopped regardless of
existing connections.

Prototype

Arguments

Description

Library function reference

242

A return value of TRUE indicates that there were no errors.

$ The permission required to start and stop a database is set on the server
command line. For information, see "The database server" on page 120 of the
book ASA Database Administration Guide.

db_stop_engine function

unsigned int db_stop_engine(SQLCA * sqlca, char * parms);

sqlca A pointer to a SQLCA structure. For information, see "The SQL
Communication Area (SQLCA)" on page 188.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEYWORD=value. For example,

"UID=DBA;PWD=SQL;DBF=c:\\db\\mydatabase.db"

$ For an available list of connection parameters, see "Connection
parameters" on page 164 of the book ASA Database Administration Guide.

Terminates execution of the database server. The steps carried out by this
function are:

♦ Look for a local database server that has a name that matches the
EngineName parameter. If no EngineName is specified, look for the
default local database server.

♦ If no matching server is found, this function fails.

♦ Send a request to the server to tell it to checkpoint and shut down all
databases.

♦ Unload the database server.

By default, this function does not stop a database server that has existing
connections. If Unconditional is yes, the database server is stopped
regardless of existing connections.

A C program can use this function instead of spawning DBSTOP. A return
value of TRUE indicates that there were no errors.

The use of db_stop_engine is subject to the permissions set with the -gk
server option.

$ For more information, see "–gk server option" on page 140 of the book
ASA Database Administration Guide.

Prototype

Arguments

Description

Chapter 6 Embedded SQL Programming

243

db_string_connect function

unsigned int db_string_connect(SQLCA * sqlca, char * parms);

sqlca A pointer to a SQLCA structure. For information, see "The SQL
Communication Area (SQLCA)" on page 188.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEYWORD=value. For example,

"UID=DBA;PWD=SQL;DBF=c:\\db\\mydatabase.db"

$ For an available list of connection parameters, see "Connection
parameters" on page 164 of the book ASA Database Administration Guide.

Provides extra functionality beyond the embedded SQL CONNECT
command. This function carries out a connection using the algorithm
described in "Troubleshooting connections" on page 73 of the book ASA
Database Administration Guide.

The return value is true (non-zero) if a connection was successfully
established and false (zero) otherwise. Error information for starting the
server, starting the database, or connecting is returned in the SQLCA.

db_string_disconnect function

unsigned int db_string_disconnect(SQLCA * sqlca, char * parms);

sqlca A pointer to a SQLCA structure. For information, see "The SQL
Communication Area (SQLCA)" on page 188.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEYWORD=value. For example,

"UID=DBA;PWD=SQL;DBF=c:\\db\\mydatabase.db"

$ For an available list of connection parameters, see "Connection
parameters" on page 164 of the book ASA Database Administration Guide.

This function disconnects the connection identified by the ConnectionName
parameter. All other parameters are ignored.

If no ConnectionName parameter is specified in the string, the unnamed
connection is disconnected. This is equivalent to the embedded SQL
DISCONNECT command. The Boolean return value is true if a connection
was successfully ended. Error information is returned in the SQLCA.

Prototype

Arguments

Description

Prototype

Arguments

Description

Library function reference

244

This function shuts down the database if it was started with the
AutoStop=yes parameter and there are no other connections to the database.
It also stops the server if it was started with the AutoStop=yes parameter and
there are no other databases running.

db_string_ping_server function

unsigned int db_string_ping_server(
SQLCA * sqlca,
char * connect_string,
unsigned int connect_to_db);

The connect_string is a normal connect string that may or may not contain
server and database information.

If connect_to_db is non-zero (true), then the function attempts to connect to a
database on a server. It returns a non-zero (true) value only if the connect
string is sufficient to connect to the named database on the named server.

If connect_to_db is zero, then the function only attempts to locate a server. It
returns a non-zero value only if the connect string is sufficient to locate a
server. It makes no attempt to connect to the database.

fill_s_sqlda function

struct sqlda * fill_s_sqlda(
struct sqlda * sqlda,
unsigned int maxlen);

The same as fill_sqlda, except that it changes all the data types in sqlda to
type DT_STRING. Enough space is allocated to hold the string
representation of the type originally specified by the SQLDA, up to a
maximum of maxlen bytes. The length fields in the SQLDA (sqllen) are
modified appropriately. Returns sqlda if successful and returns the null
pointer if there is not enough memory available.

fill_sqlda function

struct sqlda * fill_sqlda(struct sqlda * sqlda);

Allocates space for each variable described in each descriptor of sqlda, and
assigns the address of this memory to the sqldata field of the corresponding
descriptor. Enough space is allocated for the database type and length
indicated in the descriptor. Returns sqlda if successful and returns the null
pointer if there is not enough memory available.

Prototype

Description

Prototype

Description

Prototype

Description

Chapter 6 Embedded SQL Programming

245

free_filled_sqlda function

void free_filled_sqlda(struct sqlda * sqlda);

Free the memory allocated to each sqldata pointer and the space allocated
for the SQLDA itself. Any null pointer is not freed.

Calling this function causes free_sqlda to be called automatically, and so
any descriptors allocated by alloc_sqlda are freed.

free_sqlda function

void free_sqlda(struct sqlda * sqlda);

Free space allocated to this sqlda and free the indicator variable space, as
allocated in fill_sqlda. Do not free the memory referenced by each sqldata
pointer.

free_sqlda_noind function

void free_sqlda_noind(struct sqlda * sqlda);

Free space allocated to this sqlda. Do not free the memory referenced by
each sqldata pointer. The indicator variable pointers are ignored.

"Database properties" on page 618 of the book ASA Database Administration
Guide

"The Ping utility" on page 494 of the book ASA Database Administration
Guide

sql_needs_quotes function

unsigned int sql_needs_quotes(SQLCA *sqlca, char *str);

Returns a Boolean value that indicates whether the string requires double
quotes around it when it is used as a SQL identifier. This function formulates
a request to the database server to determine if quotes are needed. Relevant
information is stored in the sqlcode field.

There are three cases of return value/code combinations:

♦ return = FALSE, sqlcode = 0 In this case, the string definitely does
not need quotes.

♦ return = TRUE In this case, sqlcode is always SQLE_WARNING, and
the string definitely does need quotes.

Prototype

Description

Prototype

Description

Prototype

Description

Prototype

Description

Library function reference

246

♦ return = FALSE If sqlcode is something other than
SQLE_WARNING, the test is inconclusive.

sqlda_storage function

unsigned long sqlda_storage(struct sqlda *sqlda, int varno);

Returns the amount of storage required to store any value for the variable
described in sqlda->sqlvar[varno].

sqlda_string_length function

unsigned long sqlda_string_length(SQLDA *sqlda, int varno);

Returns the length of the C string (type DT_STRING) that would be required
to hold the variable sqlda->sqlvar[varno] (no matter what its type is).

sqlerror_message function

char *sqlerror_message(SQLCA *sqlca, char * buffer, int max);

Return a pointer to a string that contains an error message. The error message
contains text for the error code in the SQLCA. If no error was indicated, a
null pointer is returned. The error message is placed in the buffer supplied,
truncated to length max if necessary.

Prototype

Description

Prototype

Description

Prototype

Description

Chapter 6 Embedded SQL Programming

247

Embedded SQL command summary

EXEC SQL
ALL embedded SQL statements must be preceded with EXEC SQL and
end with a semicolon (;).

There are two groups of embedded SQL commands. Standard SQL
commands are used by simply placing them in a C program enclosed with
EXEC SQL and a semi-colon (;). CONNECT, DELETE, SELECT, SET, and
UPDATE have additional formats only available in embedded SQL. The
additional formats fall into the second category of embedded SQL specific
commands.

$ For descriptions of the standard SQL commands, see "SQL Statements"
on page 199 of the book ASA SQL Reference Manual.

Several SQL commands are specific to embedded SQL and can only be used
in a C program.

$ For more information about these embedded SQL commands, see
"SQL Language Elements" on page 3 of the book ASA SQL Reference
Manual.

Standard data manipulation and data definition statements can be used from
embedded SQL applications. In addition the following statements are
specifically for embedded SQL programming:

♦ ALLOCATE DESCRIPTOR allocate memory for a descriptor

$ See "ALLOCATE DESCRIPTOR statement [ESQL]" on page 203
of the book ASA SQL Reference Manual

♦ CLOSE close a cursor

$ See "CLOSE statement [ESQL] [SP]" on page 261 of the book
ASA SQL Reference Manual

♦ CONNECT connect to the database

$ See "CONNECT statement [ESQL] [Interactive SQL]" on
page 268 of the book ASA SQL Reference Manual

♦ DEALLOCATE DESCRIPTOR reclaim memory for a descriptor

$ See "DEALLOCATE DESCRIPTOR statement [ESQL]" on
page 376 of the book ASA SQL Reference Manual

♦ Declaration Section declare host variables for database
communication

Embedded SQL command summary

248

$ See "Declaration section [ESQL]" on page 377 of the book ASA
SQL Reference Manual

♦ DECLARE CURSOR declare a cursor

$ See "DECLARE CURSOR statement [ESQL] [SP]" on page 379
of the book ASA SQL Reference Manual

♦ DELETE (positioned) delete the row at the current position in a cursor

$ See "DELETE (positioned) statement [ESQL] [SP]" on page 390
of the book ASA SQL Reference Manual

♦ DESCRIBE describe the host variables for a particular SQL statement

$ See "DESCRIBE statement [ESQL]" on page 392 of the book ASA
SQL Reference Manual

♦ DISCONNECT disconnect from database server

$ See "DISCONNECT statement [ESQL] [Interactive SQL]" on
page 396 of the book ASA SQL Reference Manual

♦ DROP STATEMENT free resources used by a prepared statement

$ See "DROP STATEMENT statement [ESQL]" on page 405 of the
book ASA SQL Reference Manual

♦ EXECUTE execute a particular SQL statement

$ See "EXECUTE statement [ESQL]" on page 414 of the book ASA
SQL Reference Manual

♦ EXPLAIN explain the optimization strategy for a particular cursor

$ See "EXPLAIN statement [ESQL]" on page 422 of the book ASA
SQL Reference Manual

♦ FETCH fetch a row from a cursor

$ See "FETCH statement [ESQL] [SP]" on page 424 of the book
ASA SQL Reference Manual

♦ GET DATA fetch long values from a cursor

$ See "GET DATA statement [ESQL]" on page 437 of the book ASA
SQL Reference Manual

♦ GET DESCRIPTOR retrieve information about a variable in a SQLDA.

$ See "GET DESCRIPTOR statement [ESQL]" on page 439 of the
book ASA SQL Reference Manual

♦ GET OPTION get the setting for a particular database option

Chapter 6 Embedded SQL Programming

249

$ See "GET OPTION statement [ESQL]" on page 441 of the book
ASA SQL Reference Manual

♦ INCLUDE include a file for SQL preprocessing

$ See "INCLUDE statement [ESQL]" on page 458 of the book ASA
SQL Reference Manual

♦ OPEN open a cursor

$ See "OPEN statement [ESQL] [SP]" on page 485 of the book ASA
SQL Reference Manual

♦ PREPARE prepare a particular SQL statement

$ See "PREPARE statement [ESQL]" on page 495 of the book ASA
SQL Reference Manual

♦ PUT insert a row into a cursor

$ See "PUT statement [ESQL]" on page 499 of the book ASA SQL
Reference Manual

♦ SET CONNECTION change active connection

$ See "SET CONNECTION statement [Interactive SQL] [ESQL]"
on page 536 of the book ASA SQL Reference Manual

♦ SET DESCRIPTOR describe the variables in a SQLDA and place data
into the SQLDA

$ See "SET DESCRIPTOR statement [ESQL]" on page 537 of the
book ASA SQL Reference Manual

♦ SET SQLCA use an SQLCA other than the default global one

$ See "SET SQLCA statement [ESQL]" on page 545 of the book
ASA SQL Reference Manual

♦ UPDATE (positioned) update the row at the current location of a
cursor

$ See "UPDATE (positioned) statement [ESQL] [SP]" on page 580
of the book ASA SQL Reference Manual

♦ WHENEVER specify actions to occur on errors in SQL statements

$ See "WHENEVER statement [ESQL]" on page 589 of the book
ASA SQL Reference Manual

Embedded SQL command summary

250

251

C H A P T E R 7

ODBC Programming

This chapter presents information for developing applications that call the
ODBC programming interface directly.

The primary documentation for ODBC application development is the
Microsoft ODBC SDK documentation, available as part of the Microsoft
Data Access Components (MDAC) SDK. This chapter provides introductory
material and describes features specific to Adaptive Server Anywhere, but is
not an exhaustive guide to ODBC application programming.

Some application development tools that already have ODBC support
provide their own programming interface that hides the ODBC interface.
This chapter is not intended for users of those tools.

Topic Page

Introduction to ODBC 252

Building ODBC applications 254

ODBC samples 258

ODBC handles 260

Connecting to a data source 263

Executing SQL statements 267

Working with result sets 272

Calling stored procedures 276

Handling errors 278

About this chapter

Contents

Introduction to ODBC

252

Introduction to ODBC
The Open Database Connectivity (ODBC) interface is an application
programming interface defined by Microsoft Corporation as a standard
interface to database-management systems on Windows operating systems.
ODBC is a call-based interface.

To write ODBC applications for Adaptive Server Anywhere, you need:

♦ Adaptive Server Anywhere.

♦ A C compiler capable of creating programs for your environment.

♦ Microsoft ODBC Software Development Kit. This is available on the
Microsoft Developer Network, and provides documentation and
additional tools for testing ODBC applications.

Adaptive Server Anywhere supports the ODBC API on UNIX and
Windows CE, in addition to Windows. Having multi-platform ODBC
support makes portable database application development much easier.

$ For information on enlisting the ODBC driver in distributed
transactions, see "Three-tier Computing and Distributed Transactions" on
page 361.

ODBC conformance

Adaptive Server Anywhere provides support for ODBC 3.52.

ODBC features are arranged according to level of conformance. Features are
either Core, Level 1, or Level 2, with Level 2 being the most complete level
of ODBC support. These features are listed in the ODBC Programmer’s
Reference, which is available from Microsoft Corporation as part of the
ODBC software development kit or from the Microsoft Web site, at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/odbc/htm/odbcabout_this_manual.asp.

Adaptive Server Anywhere supports the ODBC 3.52 specification.

♦ Core conformance Adaptive Server Anywhere supports all Core level
features.

♦ Level 1 conformance Adaptive Server Anywhere supports all Level 1
features, except for asynchronous execution of ODBC functions.

Adaptive Server Anywhere supports multiple threads sharing a single
connection. The requests from the different threads are serialized by
Adaptive Server Anywhere.

Supported
platforms

Levels of ODBC
support

Features
supported by
Adaptive Server
Anywhere

Chapter 7 ODBC Programming

253

♦ Level 2 conformance Adaptive Server Anywhere supports all Level 2
features, except for the following:

♦ Three part names of tables and views. This is not applicable for
Adaptive Server Anywhere.

♦ Asynchronous execution of ODBC functions for specified
individual statements.

♦ Ability to time out login request and SQL queries.

Applications developed using older versions of ODBC continue to work with
Adaptive Server Anywhere and the newer ODBC Driver Manager. The new
ODBC features are not provided for older applications.

The ODBC Driver Manager is part of the ODBC software supplied with
Adaptive Server Anywhere. The ODBC Version 3 Driver Manager has a
new interface for configuring ODBC data sources.

ODBC backwards
compatibility

The ODBC Driver
Manager

Building ODBC applications

254

Building ODBC applications
This section describes how to compile and link simple ODBC applications.

Including the ODBC header file

Every C source file that calls ODBC functions must include a
platform-specific ODBC header file. Each platform-specific header file
includes the main ODBC header file odbc.h, which defines all the functions,
data types and constant definitions required to write an ODBC program.

v To include the ODBC header file in a C source file:

1 Add an include line referencing the appropriate platform-specific header
file to your source file. The lines to use are as follows:

Operating system Include line

Windows #include "ntodbc.h"

UNIX #include "unixodbc.h"

Windows CE #include "ntodbc.h"

2 Add the directory containing the header file to the include path for your
compiler.

Both the platform-specific header files and odbc.h are installed in the h
subdirectory of your SQL Anywhere directory.

Linking ODBC applications on Windows

This section does not apply to Windows CE. For more information see
"Linking ODBC applications on Windows CE" on page 255.

When linking your application, you must link against the appropriate import
library file to have access to the ODBC functions. The import library defines
entry points for the ODBC Driver Manager odbc32.dll. The Driver Manager
in turn loads the Adaptive Server Anywhere ODBC driver dbodbc8.dll.

Separate import libraries are supplied for Microsoft, Watcom, and Borland
compilers.

Chapter 7 ODBC Programming

255

v To link an ODBC application (Windows):

♦ Add the directory containing the platform-specific import library to the
list of library directories.

The import libraries are stored in the lib subdirectory of the directory
containing your Adaptive Server Anywhere executables and are named
as follows:

Operating
system

Compiler Import library

Windows Microsoft odbc32.lib

Windows Watcom C/C++ wodbc32.lib

Windows Borland bodbc32.lib

Windows CE Microsoft dbodbc8.lib

Linking ODBC applications on Windows CE

On Windows CE operating systems there is no ODBC Driver Manager. The
import library (dbodbc8.lib) defines entry points directly into the Adaptive
Server Anywhere ODBC driver dbodbc8.dll.

Separate versions of this DLL are provided for the different chips on which
Windows CE is available. The files are in operating-system specific
subdirectories of the ce directory in your SQL Anywhere directory. For
example, the ODBC driver for Windows CE on the SH3 chip is in the
following location:

C:\Program Files\Sybase\SQL Anywhere 8\ce\SH3

$ For a list of supported versions of Windows CE, see "Adaptive Server
Anywhere supported operating systems" on page 138 of the book
Introducing SQL Anywhere Studio.

v To link an ODBC application (Windows CE):

1 Add the directory containing the platform-specific import library to the
list of library directories.

The import library is named dbodbc8.lib and is stored in an
operating-system specific location under the ce directory in your
SQL Anywhere directory. For example, the import library for
Windows CE on the SH3 chip is in the following location:

C:\Program Files\Sybase\SQL Anywhere 8\ce\SH3\lib

Building ODBC applications

256

2 Specify the DRIVER= parameter in the connection string supplied to
the SQLDriverConnect function.

szConnStrIn =
"driver=ospath\dbodbc8.dll;dbf=c:\asademo.db"

where ospath is the full path to the chip-specific subdirectory of your
SQL Anywhere directory on the Windows CE device. For example:

\Program Files\Sybase\SQL Anywhere 8\ce\SH3\lib

The sample program (odbc.c) uses a File data source (FileDSN connection
parameter) called ASA 8.0 Sample.dsn. You can create File data sources on
your desktop system from the ODBC Driver Manager and copy them to your
Windows CE device.

Adaptive Server Anywhere uses an encoding known as UTF-8, a multi-byte
character encoding which can be used to encode Unicode.

The Adaptive Server Anywhere ODBC driver supports either ASCII (8-bit)
strings or Unicode code (wide character) strings. The UNICODE macro
controls whether ODBC functions expect ASCII or Unicode strings. If your
application must be built with the UNICODE macro defined, but you want to
use the ASCII ODBC functions, then the SQL_NOUNICODEMAP macro
must also be defined.

The Samples\ASA\C\odbc.c sample file illustrates how to use the Unicode
ODBC features.

Linking ODBC applications on UNIX

An ODBC Driver Manager is not included with Adaptive Server Anywhere,
but there are third party Driver Managers available. This section describes
how to build ODBC applications that do not use an ODBC Driver Manager.

The ODBC driver is a shared object or shared library. Separate versions of
the Adaptive Server Anywhere ODBC driver are supplied for single-threaded
and multi-threaded applications.

The ODBC drivers are the following files:

Operating system Threading model ODBC driver

Solaris/Sparc Single threaded dbodbc8.so (dbodbc8.so.1)

Solaris/Sparc Multi-threaded dbodbc_r.so (dbodbc_r.so.1)

The libraries are installed as symbolic links to the shared library with a
version number (in parentheses).

Windows CE and
Unicode

ODBC driver

Chapter 7 ODBC Programming

257

v To link an ODBC application (UNIX):

1 Link your application directly against the appropriate ODBC driver.

2 When deploying your application, ensure that the appropriate ODBC
driver is available in the user’s library path.

If Adaptive Server Anywhere does not detect the presence of an ODBC
Driver Manager, it uses ~/.odbc.ini for data source information.

Using an ODBC Driver Manager on UNIX

Third-party ODBC Driver Managers for UNIX are available. An ODBC
Driver Manager includes the following files:

Operating system Files

Solaris/Sparc libodbc.so (libodbc.so.1)

libodbcinst.so (libodbcinst.so.1)

Solaris/Sparc libodbc.so (libodbc.so.1)

libodbcinst.so (libodbcinst.so.1)

If your are deploying an application that requires an ODBC Driver Manager
and you are not using a third-party Driver Manager, create symbolic links for
both the libodbc and libodbcinst shared libraries to the Adaptive Server
Anywhere ODBC driver.

If an ODBC Driver Manager is present, Adaptive Server Anywhere queries
the Driver Manager rather than ~/.odbc.ini for data source information.

Standard ODBC applications do not link directly against the ODBC driver.
Instead, ODBC function calls go through the ODBC Driver Manager. On
UNIX and Windows CE operating systems, Adaptive Server Anywhere does
not include an ODBC Driver Manager. You can still create ODBC
applications by linking directly against the Adaptive Server Anywhere
ODBC driver, but you can then access only Adaptive Server Anywhere data
sources.

Data source
information

ODBC samples

258

ODBC samples
Several ODBC samples are included with Adaptive Server Anywhere. You
can find the samples in the Samples\ASA subdirectory of your
SQL Anywhere directory. By default, this is

C:\Program Files\Sybase\SQL Anywhere 8\Samples\ASA

The samples in directories starting with ODBC illustrate separate and simple
ODBC tasks, such as connecting to a database and executing statements. A
complete sample ODBC program is supplied as Samples\ASA\C\odbc.c. The
program performs the same actions as the embedded SQL dynamic cursor
example program that is in the same directory.

$ For a description of the associated embedded SQL program, see
"Sample embedded SQL programs" on page 171.

Building the sample ODBC program

The ODBC sample program in Samples\ASA\C includes a batch file (shell
script for UNIX) that can be used to compile and link the sample application.

v To build the sample ODBC program:

1 Open a command prompt and change directory to the Samples\ASA\C
subdirectory of your SQL Anywhere directory.

2 Run the makeall batch file or shell script

The format of the command is as follows:

makeall api platform compiler

The parameters are as follows:

♦ API Specify odbc to compile the ODBC example rather than an
embedded SQL version of the application.

♦ Platform Specify WINNT to compile for Windows operating
systems.

♦ Compiler Specify the compiler to use to compile the program. The
compiler can be one of the following:

♦ WC use Watcom C/C++

♦ MC use Microsoft Visual C++

♦ BC use Borland C++ Builder

Chapter 7 ODBC Programming

259

Running the sample ODBC program

The sample program odbc.c, when compiled for versions of Windows that
support services, runs optionally as a service.

The two files containing the example code for Windows services are the
source file ntsvc.c and the header file ntsvc.h. The code allows the linked
executable to be run either as a regular executable or as a Windows service.

v To run the ODBC sample:

1 Start the program:

♦ Run the file Samples\ASA\C\odbcwnt.exe.

2 Choose a table:

♦ Choose one of the tables in the sample database. For example, you
may enter Customer or Employee.

v To run the ODBC sample as a Windows service:

1 Start Sybase Central and open the Services folder.

2 Click Add Service. Follow the instructions for adding the sample
program as a service.

3 Right-click the service icon and click Start to start the service.

When run as a service, the program displays the normal user interface if
possible. It also writes the output to the Application Event Log. If it is not
possible to start the user interface, the program prints one page of data to the
Application Event Log and stops.

ODBC handles

260

ODBC handles
ODBC applications use a small set of handles to define basic features such
as database connections and SQL statements. A handle is a 32-bit value.

The following handles are used in essentially all ODBC applications.

♦ Environment The environment handle provides a global context in
which to access data. Every ODBC application must allocate exactly one
environment handle upon starting, and must free it at the end.

The following code illustrates how to allocate an environment handle:

SQLHENV env;
SQLRETURN rc;
rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL
 _NULL_HANDLE, &env);

♦ Connection A connection is specified by an ODBC driver and a data
source. An application can have several connections associated with its
environment. Allocating a connection handle does not establish a
connection; a connection handle must be allocated first and then used
when the connection is established.

The following code illustrates how to allocate a connection handle:

SQLHDBC dbc;
SQLRETURN rc;
rc = SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);

♦ Statement A statement handle provides access to a SQL statement and
any information associated with it, such as result sets and parameters.
Each connection can have several statements. Statements are used both
for cursor operations (fetching data) and for single statement execution
(e.g. INSERT, UPDATE, and DELETE).

The following code illustrates how to allocate a statement handle:

SQLHSTMT stmt;
SQLRETURN rc;
rc = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

Allocating ODBC handles

The handle types required for ODBC programs are as follows:

Chapter 7 ODBC Programming

261

Item Handle type

Environment SQLHENV

Connection SQLHDBC

Statement SQLHSTMT

Descriptor SQLHDESC

v To use an ODBC handle:

1 Call the SQLAllocHandle function.

SQLAllocHandle takes the following parameters:

♦ an identifier for the type of item being allocated

♦ the handle of the parent item

♦ a pointer to the location of the handle to be allocated

$ For a full description, see SQLAllocHandle in the Microsoft
ODBC Programmer’s Reference.

2 Use the handle in subsequent function calls.

3 Free the object using SQLFreeHandle.

SQLFreeHandle takes the following parameters:

♦ an identifier for the type of item being freed

♦ the handle of the item being freed

$ For a full description, see SQLFreeHandle in the Microsoft ODBC
Programmer’s Reference.

The following code fragment allocates and frees an environment handle:

SQLHENV env;
SQLRETURN retcode;
retcode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env);
if(retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 // success: application code here
}
SQLFreeHandle(SQL_HANDLE_ENV, env);

$ For more information on return codes and error handling, see
"Handling errors" on page 278.

Example

ODBC handles

262

A first ODBC example

The following is a simple ODBC program that connects to the Adaptive
Server Anywhere sample database and immediately disconnects.

$ You can find this sample as
Samples\ASA\ODBCConnect\odbcconnect.cpp in your SQL Anywhere
directory.

#include <stdio.h>
#include "ntodbc.h"

int main(int argc, char* argv[])
{
 SQLHENV env;
 SQLHDBC dbc;
 SQLRETURN retcode;

 retcode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env);
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 printf("env allocated\n");
 /* Set the ODBC version environment attribute */
 retcode = SQLSetEnvAttr(env, SQL_ATTR_ODBC_VERSION, (void*)SQL_OV_ODBC3, 0);
 retcode = SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 printf("dbc allocated\n");
 retcode = SQLConnect(dbc,
 (SQLCHAR*) "ASA 8.0 Sample", SQL_NTS,
 (SQLCHAR*) "DBA", SQL_NTS,
 (SQLCHAR*) "SQL", SQL_NTS);
 if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 printf("Successfully connected\n");
 }
 SQLDisconnect(dbc);
 }
 SQLFreeHandle(SQL_HANDLE_DBC, dbc);
 }
 SQLFreeHandle(SQL_HANDLE_ENV, env);
 return 0;
}

Chapter 7 ODBC Programming

263

Connecting to a data source
This section describes how to use ODBC functions to establish a connection
to an Adaptive Server Anywhere database.

Choosing an ODBC connection function

ODBC supplies a set of connection functions. Which one you use depends on
how you expect your application to be deployed and used:

♦ SQLConnect The simplest connection function.

SQLConnect takes a data source name and optional user ID and
password. You may wish to use SQLConnect if you hard-code a data
source name into your application.

$ For more information, see SQLConnect in the Microsoft ODBC
Programmer’s Reference.

♦ SQLDriverConnect Connects to a data source using a connection
string.

SQLDriverConnect allows the application to use Adaptive Server
Anywhere-specific connection information that is external to the data
source. Also, you can use SQLDriverConnect to request that the
Adaptive Server Anywhere driver prompt for connection information.

SQLDriverConnect can also be used to connect without specifying a
data source.

$ For more information, see SQLDriverConnect in the Microsoft
ODBC Programmer’s Reference.

♦ SQLBrowseConnect Connects to a data source using a connection
string, like SQLDriverConnect.

SQLBrowseConnect allows your application to build its own dialog
boxes to prompt for connection information and to browse for data
sources used by a particular driver (in this case the Adaptive Server
Anywhere driver).

$ For more information, see SQLBrowseConnect in the Microsoft
ODBC Programmer’s Reference.

The examples in this chapter mainly use SQLDriverConnect.

$ For a complete list of connection parameters that can be used in
connection strings, see "Connection parameters" on page 164 of the book
ASA Database Administration Guide.

Connecting to a data source

264

Establishing a connection

Your application must establish a connection before it can carry out any
database operations.

v To establish an ODBC connection:

1 Allocate an ODBC environment.

For example:

SQLHENV env;
SQLRETURN retcode;
retcode = SQLAllocHandle(SQL_HANDLE_ENV,
 SQL_NULL_HANDLE, &env);

2 Declare the ODBC version.

By declaring that the application follows ODBC version 3, SQLSTATE
values and some other version-dependent features are set to the proper
behavior. For example:

retcode = SQLSetEnvAttr(env,
 SQL_ATTR_ODBC_VERSION, (void*)SQL_OV_ODBC3, 0);

3 If necessary, assemble the data source or connection string.

Depending on your application, you may have a hard-coded data source
or connection string, or you may store it externally for greater flexibility.

4 Allocate an ODBC connection item.

For example:

retcode = SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);

5 Set any connection attributes that must be set before connecting.

Some connection attributes must be set before establishing a connection,
while others can be set either before or after. For example:

retcode = SQLSetConnectAttr(dbc,
 SQL_AUTOCOMMIT, (SQLPOINTER)SQL_AUTOCOMMIT_OFF, 0);

$ For more information, see "Setting connection attributes" on
page 265.

6 Call the ODBC connection function.

For example:

Chapter 7 ODBC Programming

265

if (retcode == SQL_SUCCESS || retcode ==
SQL_SUCCESS_WITH_INFO) {

printf("dbc allocated\n");
retcode = SQLConnect(dbc,

(SQLCHAR*) "ASA 8.0 Sample", SQL_NTS,
(SQLCHAR*) "DBA", SQL_NTS,
(SQLCHAR*) "SQL", SQL_NTS);

if (retcode == SQL_SUCCESS
|| retcode == SQL_SUCCESS_WITH_INFO){

// successfully connected.

$ You can find a complete sample as
Samples\ASA\ODBCConnect\odbcconnect.cpp in your SQL Anywhere
directory.

♦ SQL_NTS Every string passed to ODBC has a corresponding length. If
the length is unknown, you can pass SQL_NTS indicating that it is a
Null Terminated String whose end is marked by the null character (\0).

♦ SQLSetConnectAttr By default, ODBC operates in auto-commit
mode. This mode is turned off by setting SQL_AUTOCOMMIT to false.

$ For more information, see "Setting connection attributes" on
page 265.

Setting connection attributes

You use the SQLSetConnectAttr function to control details of the
connection. For example, the following statement turns off ODBC
autocommit behavior.

retcode = SQLSetConnectAttr(dbc, SQL_AUTOCOMMIT,
 (SQLPOINTER)SQL_AUTOCOMMIT_OFF, 0);

$ For more information including a list of connection attributes, see
SQLSetConnectAttr in the Microsoft ODBC Programmer’s Reference .

Many aspects of the connection can be controlled through the connection
parameters. For information, see "Connection parameters" on page 70 of the
book ASA Database Administration Guide.

Threads and connections in ODBC applications

You can develop multi-threaded ODBC applications for Adaptive Server
Anywhere. It is recommended that you use a separate connection for each
thread.

Notes

Connecting to a data source

266

You can use a single connection for multiple threads. However, the database
server does not allow more than one active request for any one connection at
a time. If one thread executes a statement that takes a long time, all other
threads must wait until the request is complete.

Chapter 7 ODBC Programming

267

Executing SQL statements
ODBC includes several functions for executing SQL statements:

♦ Direct execution Adaptive Server Anywhere parses the SQL
statement, prepares an access plan, and executes the statement. Parsing
and access plan preparation are called preparing the statement.

♦ Prepared execution The statement preparation is carried out
separately from the execution. For statements that are to be executed
repeatedly, this avoids repeated preparation and so improves
performance.

$ See "Executing prepared statements" on page 269.

Executing statements directly

The SQLExecDirect function prepares and executes a SQL statement. The
statement may be optionally include parameters.

The following code fragment illustrates how to execute a statement without
parameters. The SQLExecDirect function takes a statement handle, a SQL
string, and a length or termination indicator, which in this case is a
null-terminated string indicator.

The procedure described in this section is straightforward but inflexible. The
application cannot take any input from the user to modify the statement. For
a more flexible method of constructing statements, see "Executing statements
with bound parameters" on page 268.

v To execute a SQL statement in an ODBC application:

1 Allocate a handle for the statement using SQLAllocHandle.

For example, the following statement allocates a handle of type
SQL_HANDLE_STMT with name stmt, on a connection with handle dbc:

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

2 Call the SQLExecDirect function to execute the statement:

For example, the following lines declare a statement and execute it. The
declaration of deletestmt would usually occur at the beginning of the
function:

SQLCHAR deletestmt[STMT_LEN] =
 "DELETE FROM department WHERE dept_id = 201";
SQLExecDirect(stmt, deletestmt, SQL_NTS) ;

Executing SQL statements

268

$ For a complete sample with error checking, see
Samples\ASA\ODBCExecute\odbcexecute.cpp.

$ For more information on SQLExecDirect, see SQLExecDirect in the
Microsoft ODBC Programmer’s Reference.

Executing statements with bound parameters

This section describes how to construct and execute a SQL statement, using
bound parameters to set values for statement parameters at runtime.

v To execute a SQL statement with bound parameters in an ODBC
application:

1 Allocate a handle for the statement using SQLAllocHandle.

For example, the following statement allocates a handle of type
SQL_HANDLE_STMT with name stmt, on a connection with handle dbc:

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

2 Bind parameters for the statement using SQLBindParameter.

For example, the following lines declare variables to hold the values for
the department ID, department name, and manager ID, as well as for the
statement string itself. They then bind parameters to the first, second,
and third parameters of a statement executed using the stmt statement
handle.

#defined DEPT_NAME_LEN 20
SQLINTEGER cbDeptID = 0,
 cbDeptName = SQL_NTS, cbManagerID = 0;
SQLCHAR deptname[DEPT_NAME_LEN];
SQLSMALLINT deptID, managerID;
SQLCHAR insertstmt[STMT_LEN] =
 "INSERT INTO department "
 "(dept_id, dept_name, dept_head_id)"
 "VALUES (?, ?, ?,)";
SQLBindParameter(stmt, 1, SQL_PARAM_INPUT,
 SQL_C_SSHORT, SQL_INTEGER, 0, 0,
 &deptID, 0, &cbDeptID);
SQLBindParameter(stmt, 2, SQL_PARAM_INPUT,
 SQL_C_CHAR, SQL_CHAR, DEPT_NAME_LEN, 0,
 deptname, 0,&cbDeptName);
SQLBindParameter(stmt, 3, SQL_PARAM_INPUT,
 SQL_C_SSHORT, SQL_INTEGER, 0, 0,
 &managerID, 0, &cbManagerID);

3 Assign values to the parameters.

Chapter 7 ODBC Programming

269

For example, the following lines assign values to the parameters for the
fragment of step 2.

deptID = 201;
strcpy((char *) deptname, "Sales East");
managerID = 902;

Commonly, these variables would be set in response to user action.

4 Execute the statement using SQLExecDirect.

For example, the following line executes the statement string held in
insertstmt on the statement handle stmt.

SQLExecDirect(stmt, insertstmt, SQL_NTS) ;

Bind parameters are also used with prepared statements to provide
performance benefits for statements that are executed more than once. For
more information, see "Executing prepared statements" on page 269

$ The above code fragments to not include error checking. For a
complete sample, including error checking, see
Samples\ASA\ODBCExecute\odbcexecute.cpp.

$ For more information on SQLExecDirect, see SQLExecDirect in the
Microsoft ODBC Programmer’s Reference.

Executing prepared statements

Prepared statements provide performance advantages for statements that are
used repeatedly. ODBC provides a full set of functions for using prepared
statements.

$ For an introduction to prepared statements, see "Preparing statements"
on page 12.

v To execute a prepared SQL statement:

1 Prepare the statement using SQLPrepare.

For example, the following code fragment illustrates how to prepare an
INSERT statement:

SQLRETURN retcode;
SQLHSTMT stmt;
retcode = SQLPrepare(stmt,
 "INSERT INTO department
 (dept_id, dept_name, dept_head_id)
 VALUES (?, ?, ?,)",
 SQL_NTS);

In this example:

Executing SQL statements

270

♦ retcode Holds a return code that should be tested for success or
failure of the operation.

♦ stmt Provides a handle to the statement so that it can be
referenced later.

♦ ? The question marks are placeholders for statement parameters.

2 Set statement parameter values using SQLBindParameter.

For example, the following function call sets the value of the dept_id
variable:

SQLBindParameter(stmt,
 1,
 SQL_PARAM_INPUT,
 SQL_C_SSHORT,
 SQL_INTEGER,
 0,
 0,
 &sDeptID,
 0,
 &cbDeptID);

In this example:

♦ stmt is the statement handle

♦ 1 indicates that this call sets the value of the first placeholder.

♦ SQL_PARAM_INPUT indicates that the parameter is an input
statement.

♦ SQL_C_SHORT indicates the C data type being used in the
application.

♦ SQL_INTEGER indicates SQL data type being used in the
database.

♦ The next two parameters indicate the column precision and the
number of decimal digits: both zero for integers.

♦ &sDeptID is a pointer to a buffer for the parameter value.

♦ 0 indicates the length of the buffer, in bytes.

♦ &cbDeptID is a pointer to a buffer for the length of the parameter
value.

3 Bind the other two parameters and assign values to sDeptId.

4 Execute the statement:

retcode = SQLExecute(stmt);

Steps 2 to 4 can be carried out multiple times.

Chapter 7 ODBC Programming

271

5 Drop the statement.

Dropping the statement frees resources associated with the statement
itself. You drop statements using SQLFreeHandle.

$ For a complete sample, including error checking, see
Samples\ASA\ODBCPrepare\odbcprepare.cpp.

$ For more information on SQLPrepare, see SQLPrepare in the
Microsoft ODBC Programmer’s Reference.

Working with result sets

272

Working with result sets
ODBC applications use cursors to manipulate and update result sets.
Adaptive Server Anywhere provides extensive support for different kinds of
cursors and cursor operations.

$ For an introduction to cursors, see "Working with cursors" on page 19.

Choosing a cursor characteristics

ODBC functions that execute statements and manipulate result sets use
cursors to carry out their tasks. Applications open a cursor implicitly
whenever they execute a SQLExecute or SQLExecDirect function.

For applications that move through a result set only in a forward direction
and do not update the result set, cursor behavior is relatively straightforward.
By default, ODBC applications request this behavior. ODBC defines a
read-only, forward-only cursor, and Adaptive Server Anywhere provides a
cursor optimized for performance in this case.

$ For a simple example of a forward-only cursor, see "Retrieving data"
on page 273.

For applications that need to scroll both forward and backward through a
result set, such as many graphical user interface applications, cursor behavior
is more complex. What does the application when it returns to a row that has
been updated by some other application? ODBC defines a variety of
scrollable cursors to allow you to build in the behavior that suits your
application. Adaptive Server Anywhere provides a full set of cursors to
match the ODBC scrollable cursor types.

You set the required ODBC cursor characteristics by calling the
SQLSetStmtAttr function that defines statement attributes. You must call
SQLSetStmtAttr before executing a statement that creates a result set.

You can use SQLSetStmtAttr to set many cursor characteristics. The
characteristics that determine the cursor type that Adaptive Server Anywhere
supplies include the following:

♦ SQL_ATTR_CURSOR_SCROLLABLE Set to SQL_SCROLLABLE
for a scrollable cursor and SQL_NONSCROLLABLE for a
forward-only cursor. SQL_NONSCROLLABLE is the default.

♦ SQL_ATTR_CONCURRENCY Set to one of the following values:

♦ SQL_CONCUR_READ_ONLY Disallow updates.
SQL_CONCUR_READ_ONLY is the default.

Chapter 7 ODBC Programming

273

♦ SQL_CONCUR_LOCK Use the lowest level of locking sufficient
to ensure that the row can be updated.

♦ SQL_CONCUR_ROWVER Use optimistic concurrency control,
comparing row versions such as SQLBase ROWID or Sybase
TIMESTAMP.

♦ SQL_CONCUR_VALUES Use optimistic concurrency control,
comparing values.

$ For more information, see SQLSetStmtAttr in the Microsoft ODBC
Programmer’s Reference.

The following fragment requests a read-only, scrollable cursor:

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
SQLSetStmtAttr(stmt, SQL_ATTR_CURSOR_SCROLLABLE,

SQL_SCROLLABLE, 0);

Retrieving data

To retrieve rows from a database, you execute a SELECT statement using
SQLExecute or SQLExecDirect. This opens a cursor on the statement. You
then use SQLFetch or SQLExtendedFetch to fetch rows through the cursor.
When an application free the statement using SQLFreeHandle it closes the
cursor.

To fetch values from a cursor, your application can use either SQLBindCol
or SQLGetData. If you use SQLBindCol, values are automatically retrieved
on each fetch. If you use SQLGetData, you must call it for each column
after each fetch.

SQLGetData is used to fetch values in pieces for columns such as LONG
VARCHAR or LONG BINARY. As an alternative, you can set the
SQL_MAX_LENGTH statement attribute to a value large enough to hold the
entire value for the column. The default value for
SQL_ATTR_MAX_LENGTH is 256 kb.

The following code fragment opens a cursor on a query and retrieves data
through the cursor. Error checking has been omitted to make the example
easier to read. The fragment is taken from a complete sample, which can be
found at Samples\ASA\ODBCSelect\odbcselect.cpp.

Example

Working with result sets

274

SQLINTEGER cbDeptID = 0, cbDeptName = SQL_NTS, cbManagerID = 0;
SQLCHAR deptname[DEPT_NAME_LEN];
SQLSMALLINT deptID, managerID;
SQLHENV env;
SQLHDBC dbc;
SQLHSTMT stmt;
SQLRETURN retcode;

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env);
SQLSetEnvAttr(env, SQL_ATTR_ODBC_VERSION, (void*)SQL_OV_ODBC3, 0);
SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);
SQLConnect(dbc,

(SQLCHAR*) "ASA 8.0 Sample", SQL_NTS,
(SQLCHAR*) "DBA", SQL_NTS,
(SQLCHAR*) "SQL", SQL_NTS);

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
SQLBindCol(stmt, 1, SQL_C_SSHORT, &deptID, 0, &cbDeptID);
SQLBindCol(stmt, 2, SQL_C_CHAR, deptname, sizeof(deptname),
&cbDeptName);
SQLBindCol(stmt, 3, SQL_C_SSHORT, &managerID, 0, &cbManagerID);

SQLExecDirect(stmt, (SQLCHAR *)
"SELECT dept_id, dept_name, dept_head_id FROM DEPARTMENT "

"ORDER BY dept_id", SQL_NTS);
while((retcode = SQLFetch(stmt)) != SQL_NO_DATA){

printf("%d %20s %d\n", deptID, deptname, managerID);
}
SQLFreeHandle(SQL_HANDLE_STMT, stmt);
SQLDisconnect(dbc);
SQLFreeHandle(SQL_HANDLE_DBC, dbc);
SQLFreeHandle(SQL_HANDLE_ENV, env);

The number of row positions you can fetch in a cursor is governed by the
size of an integer. You can fetch rows numbered up to number 2147483646,
which is one less than the value that can be held in an integer. When using
negative numbers (rows from the end) you can fetch down to one more than
the largest negative value that can be held in an integer.

Updating and deleting rows through a cursor

The Microsoft ODBC Programmer’s Reference suggests that you use
SELECT... FOR UPDATE to indicate that a query is updateable using
positioned operations. You do not need to use the FOR UPDATE clause in
Adaptive Server Anywhere: SELECT statements are automatically
updateable as long as the following conditions are met:

♦ The underlying query supports updates.

That is to say, as long as a data modification statement on the columns
in the result is meaningful, then positioned data modification statements
can be carried out on the cursor.

Chapter 7 ODBC Programming

275

The ANSI_UPDATE_CONSTRAINTS database option limits the type
of queries that are updateable.

$ For more information, see "ANSI_UPDATE_CONSTRAINTS
option" on page 552 of the book ASA Database Administration Guide.

♦ The cursor type supports updates.

If you are using a read-only cursor, you cannot update the result set.

ODBC provides two alternatives for carrying out positioned updates and
deletes:

♦ Use the SQLSetPos function.

Depending on the parameters supplied (SQL_POSITION,
SQL_REFRESH, SQL_UPDATE, SQL_DELETE) SQLSetPos sets the
cursor position and allows an application to refresh data, or update, or
delete data in the result set.

This is the method to use with Adaptive Server Anywhere.

♦ Send positioned UPDATE and DELETE statements using SQLExecute.
This method should not be used with Adaptive Server Anywhere.

Using bookmarks

ODBC provides bookmarks, which are values used to identify rows in a
cursor. Adaptive Server Anywhere supports bookmarks for all kinds of
cursors except dynamic cursors.

Before ODBC 3.0, a database could specify only whether it supported
bookmarks or not: there was no interface to provide this information for each
cursor type. There was no way for a database server to indicate for what kind
of cursor bookmarks were supported. For ODBC 2 applications, Adaptive
Server Anywhere returns that it does support bookmarks. There is therefore
nothing to prevent you from trying to use bookmarks with dynamic cursors;
however, you should not use this combination.

Calling stored procedures

276

Calling stored procedures
This section describes how to create and call stored procedures and process
the results from an ODBC application.

$ For a full description of stored procedures and triggers, see "Using
Procedures, Triggers, and Batches" on page 507 of the book ASA SQL User’s
Guide.

There are two types of procedures: those that return result sets and those that
do not. You can use SQLNumResultCols to tell the difference: the number
of result columns is zero if the procedure does not return a result set. If there
is a result set, you can fetch the values using SQLFetch or
SQLExtendedFetch just like any other cursor.

Parameters to procedures should be passed using parameter markers
(question marks). Use SQLBindParameter to assign a storage area for each
parameter marker, whether it is an INPUT, OUTPUT, or INOUT parameter.

To handle multiple result sets, ODBC must describe the currently executing
cursor, not the procedure-defined result set. Therefore, ODBC does not
always describe column names as defined in the RESULT clause of the
stored procedure definition. To avoid this problem, you can use column
aliases in your procedure result set cursor.

This example creates and calls a procedure that does not return a result set.
The procedure takes one INOUT parameter, and increments its value. In the
example, the variable num_col will have the value zero, since the procedure
does not return a result set. Error checking has been omitted to make the
example easier to read.

HDBC dbc;
HSTMT stmt;
long i;
SWORD num_col;

/* Create a procedure */
SQLAllocStmt(dbc, &stmt);
SQLExecDirect(stmt,

"CREATE PROCEDURE Increment(INOUT a INT)" \
" BEGIN" \

" SET a = a + 1" \
" END", SQL_NTS);

/* Call the procedure to increment ’i’ */
i = 1;
SQLBindParameter(stmt, 1, SQL_C_LONG, SQL_INTEGER, 0,

0, &i, NULL);
SQLExecDirect(stmt, "CALL Increment(?)",

Procedures and
result sets

Example

Chapter 7 ODBC Programming

277

SQL_NTS);
SQLNumResultCols(stmt, &num_col);
do_something(i);

This example calls a procedure that returns a result set. In the example, the
variable num_col will have the value 2 since the procedure returns a result
set with two columns. Again, error checking has been omitted to make the
example easier to read.

HDBC dbc;
HSTMT stmt;
SWORD num_col;
RETCODE retcode;
char emp_id[10];
char emp_lame[20];

/* Create the procedure */
SQLExecDirect(stmt,

"CREATE PROCEDURE employees()" \
" RESULT(emp_id CHAR(10), emp_lname CHAR(20))"\
" BEGIN" \
" SELECT emp_id, emp_lame FROM employee" \
" END", SQL_NTS);

/* Call the procedure - print the results */
SQLExecDirect(stmt, "CALL employees()", SQL_NTS);
SQLNumResultCols(stmt, &num_col);
SQLBindCol(stmt, 1, SQL_C_CHAR, &emp_id,

sizeof(emp_id), NULL);
SQLBindCol(stmt, 2, SQL_C_CHAR, &emp_lname,

sizeof(emp_lname), NULL);

for(;;) {
retcode = SQLFetch(stmt);
if(retcode == SQL_NO_DATA_FOUND) {

retcode = SQLMoreResults(stmt);
if(retcode == SQL_NO_DATA_FOUND) break;

} else {
do_something(emp_id, emp_lname);

}
}

Example

Handling errors

278

Handling errors
Errors in ODBC are reported using the return value from each of the ODBC
function calls and either the SQLError function or the SQLGetDiagRec
function. The SQLError function was used in ODBC versions up to, but not
including, version 3. As of version 3 the SQLError function has been
deprecated and replaced by the SQLGetDiagRec function.

Every ODBC function returns a SQLRETURN, which is one of the
following status codes:

Status code Description

SQL_SUCCESS No error.

SQL_SUCCESS_WITH_INFO The function completed, but a call to SQLError
will indicate a warning.

The most common case for this status is that a
value being returned is too long for the buffer
provided by the application.

SQL_ERROR The function did not complete because of an error.
Call SQLError to get more information on the
problem.

SQL_INVALID_HANDLE An invalid environment, connection, or statement
handle was passed as a parameter.

This often happens if a handle is used after it has
been freed, or if the handle is the null pointer.

SQL_NO_DATA_FOUND There is no information available.

The most common use for this status is when
fetching from a cursor; it indicates that there are
no more rows in the cursor.

SQL_NEED_DATA Data is needed for a parameter.

This is an advanced feature described in the
ODBC SDK documentation under
SQLParamData and SQLPutData.

Every environment, connection, and statement handle can have one or more
errors or warnings associated with it. Each call to SQLError or
SQLGetDiagRec returns the information for one error and removes the
information for that error. If you do not call SQLError or SQLGetDiagRec
to remove all errors, the errors are removed on the next function call that
passes the same handle as a parameter.

Chapter 7 ODBC Programming

279

Each call to SQLError passes three handles for an environment, connection,
and statement. The first call uses SQL_NULL_HSTMT to get the error
associated with a connection. Similarly, a call with both SQL_NULL_DBC
and SQL_NULL_HSTMT get any error associated with the environment
handle.

Each call to SQLGetDiagRec can pass either an environment, connection or
statement handle. The first call passes in a handle of type
SQL_HANDLE_DBC to get the error associated with a connection. The
second call passes in a handle of type SQL_HANDLE_STMT to get the
error associated with the statement that was just executed.

SQLError and SQLGetDiagRec return SQL_SUCCESS if there is an error
to report (not SQL_ERROR), and SQL_NO_DATA_FOUND if there are no
more errors to report.

The following code fragment uses SQLError and return codes:

/* Declare required variables */

SQLHDBC dbc;

SQLHSTMT stmt;

SQLRETURN retcode;

UCHAR errmsg[100];

/* code omitted here */

retcode = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

if(retcode == SQL_ERROR){

 SQLError(env, dbc, SQL_NULL_HSTMT, NULL, NULL,

 errmsg, sizeof(errmsg), NULL);

 /* Assume that print_error is defined */

 print_error("Allocation failed", errmsg);

 return;

}

/* Delete items for order 2015 */

retcode = SQLExecDirect(stmt,

 "delete from sales_order_items where id=2015",

 SQL_NTS);

if(retcode == SQL_ERROR) {

 SQLError(env, dbc, stmt, NULL, NULL,

Example 1

Handling errors

280

 errmsg, sizeof(errmsg), NULL);

 /* Assume that print_error is defined */

 print_error("Failed to delete items", errmsg);

 return;

}

The following code fragment uses SQLGetDiagRec and return codes:

/* Declare required variables */

SQLHDBC dbc;

SQLHSTMT stmt;

SQLRETURN retcode;

SQLSMALLINT errmsglen;

SQLINTEGER errnative;

UCHAR errmsg[255];

UCHAR errstate[5];

/* code omitted here */

retcode = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

if(retcode == SQL_ERROR){

 SQLGetDiagRec(SQL_HANDLE_DBC, dbc, 1, errstate,

 &errnative, errmsg, sizeof(errmsg), &errmsglen);

 /* Assume that print_error is defined */

 print_error("Allocation failed", errstate,

errnative, errmsg);

 return;

}

/* Delete items for order 2015 */

retcode = SQLExecDirect(stmt,

 "delete from sales_order_items where id=2015",

 SQL_NTS);

if(retcode == SQL_ERROR) {

 SQLGetDiagRec(SQL_HANDLE_STMT, stmt, recnum,

errstate,

 &errnative, errmsg, sizeof(errmsg), &errmsglen);

Example 2

Chapter 7 ODBC Programming

281

 /* Assume that print_error is defined */

 print_error("Failed to delete items", errstate,

errnative, errmsg);

 return;

}

Handling errors

282

283

C H A P T E R 8

The Database Tools Interface

This chapter describes how to use the database tools library that is provided
with Adaptive Server Anywhere to add database management features to C
or C++ applications.

Topic Page

Introduction to the database tools interface 284

Using the database tools interface 285

DBTools functions 293

DBTools structures 304

DBTools enumeration types 334

About this chapter

Contents

Introduction to the database tools interface

284

Introduction to the database tools interface
Sybase Adaptive Server Anywhere includes Sybase Central and a set of
utilities for managing databases. These database management utilities carry
out tasks such as backing up databases, creating databases, translating
transaction logs to SQL, and so on.

All the database management utilities use a shared library called the database
tools library. It is supplied for each of the Windows operating systems. The
name of this library is dbtool8.dll.

You can develop your own database management utilities or incorporate
database management features into your applications by calling the database
tools library. This chapter describes the interface to the database tools
library. In this chapter, we assume you are familiar with how to call DLLs
from the development environment you are using.

The database tools library has functions, or entry points, for each of the
database management utilities. In addition, functions must be called before
use of other database tools functions and when you have finished using other
database tools functions.

The dbtool8.dll library is supplied for Windows CE, but includes only entry
points for DBToolsInit, DBToolsFini, DBRemoteSQL, and
DBSynchronizeLog. Other tools are not provided for Windows CE.

The dbtools header file included with Adaptive Server Anywhere lists the
entry points to the DBTools library and also the structures used to pass
information to and from the library. The dbtools.h file is installed into the h
subdirectory under your installation directory. You should consult the
dbtools.h file for the latest information about the entry points and structure
members.

The dbtools.h header file includes two other files:

♦ sqlca.h This is included for resolution of various macros, not for the
SQLCA itself.

♦ dllapi.h Defines preprocessor macros for operating-system dependent
and language-dependent macros.

Also, the sqldef.h header file includes error return values.

Supported
platforms

Windows CE

The dbtools.h
header file

Chapter 8 The Database Tools Interface

285

Using the database tools interface
This section provides an overview of how to develop applications that use
the DBTools interface for managing databases.

Using the import libraries

In order to use the DBTools functions, you must link your application against
a DBTools import library which contains the required function definitions.

Import libraries are compiler-specific and are supplied for Windows
operating systems with the exception of Windows CE. Import libraries for
the DBTools interface are provided with Adaptive Server Anywhere, and can
be found in the lib subdirectory of each operating system’s directory, under
your installation directory. The provided DBTools import libraries are as
follows:

Compiler Library

Watcom win32\dbtlstw.lib

Microsoft win32\dbtlstM.lib

Borland win32\dbtlstB.lib

Starting and finishing the DBTools library

Before using any other DBTools functions, you must call DBToolsInit.
When you are finished using the DBTools DLL, you must call DBToolsFini.

The primary purpose of the DBToolsInit and DBToolsFini functions is to
allow the DBTools DLL to load the Adaptive Server Anywhere language
DLL. The language DLL contains localized versions of all error messages
and prompts that DBTools uses internally. If DBToolsFini is not called, the
reference count of the language DLL is not decremented and it will not be
unloaded, so be careful to ensure there is a matched pair of
DBToolsInit/DBToolsFini calls.

The following code fragment illustrates how to initialize and clean up
DBTools:

// Declarations
a_dbtools_info info;
short ret;

Supported
platforms

Using the database tools interface

286

//Initialize the a_dbtools_info structure
memset(&info, 0, sizeof(a_dbtools_info));
info.errorrtn = (MSG_CALLBACK)MyErrorRtn;

// initialize DBTools
ret = DBToolsInit(&info);
if(ret != EXIT_OKAY) {

// DLL initialization failed
…

}
// call some DBTools routines . . .
…
// cleanup the DBTools dll
DBToolsFini(&info);

Calling the DBTools functions

All the tools are run by first filling out a structure, and then calling a function
(or entry point) in the DBTools DLL. Each entry point takes a pointer to a
single structure as argument.

The following example shows how to use the DBBackup function on a
Windows operating system.

// Initialize the structure
a_backup_db backup_info;
memset(&backup_info, 0, sizeof(backup_info));

// Fill out the structure
backup_info.version = DB_TOOLS_VERSION_NUMBER;
backup_info.output_dir = "C:\BACKUP";
backup_info.connectparms
="uid=DBA;pwd=SQL;dbf=asademo.db";
backup_info.startline = "dbeng8.EXE";
backup_info.confirmrtn = (MSG_CALLBACK) ConfirmRtn ;
backup_info.errorrtn = (MSG_CALLBACK) ErrorRtn ;
backup_info.msgrtn = (MSG_CALLBACK) MessageRtn ;
backup_info.statusrtn = (MSG_CALLBACK) StatusRtn ;
backup_info.backup_database = TRUE;

// start the backup
DBBackup(&backup_info);

$ For information about the members of the DBTools structures, see
"DBTools structures" on page 304.

Chapter 8 The Database Tools Interface

287

Software component return codes

All database tools are provided as entry points in a DLL. These entry points
use the following return codes:

Code Explanation

0 Success

1 General failure

2 Invalid file format

3 File not found, unable to open

4 Out of memory

5 Terminated by the user

6 Failed communications

7 Missing a required database name

8 Client/server protocol mismatch

9 Unable to connect to the database server

10 Database server not running

11 Database server not found

254 Reached stop time

255 Invalid parameters on the command-line

Using callback functions

Several elements in DBTools structures are of type MSG_CALLBACK.
These are pointers to callback functions.

Callback functions allow DBTools functions to return control of operation to
the user’s calling application. The DBTools library uses callback functions to
handle messages sent to the user by the DBTools functions for four purposes:

♦ Confirmation Called when an action needs to be confirmed by the
user. For example, if the backup directory does not exist, the tools DLL
asks if it needs to be created.

♦ Error message Called to handle a message when an error occurs, such
as when an operation is out of disk space.

♦ Information message Called for the tools to display some message to
the user (such as the name of the current table being backed up).

Uses of callback
functions

Using the database tools interface

288

♦ Status information Called for the tools to display the status of an
operation (such as the percentage done when unloading a table).

You can directly assign a callback routine to the structure. The following
statement is an example using a backup structure:

backup_info.errorrtn = (MSG_CALLBACK) MyFunction

MSG_CALLBACK is defined in the dllapi.h header file supplied with
Adaptive Server Anywhere. Tools routines can call back to the Calling
application with messages that should appear in the appropriate user
interface, whether that be a windowing environment, standard output on a
character-based system, or other user interface.

The following example confirmation routine asks the user to answer YES or
NO to a prompt and returns the user’s selection:

extern short _callback ConfirmRtn(
char far * question)

{
int ret;
if(question != NULL) {

ret = MessageBox(HwndParent, question,
"Confirm", MB_ICONEXCLAMTION|MB_YESNO);

}
return(0);

}

The following is an example of an error message handling routine, which
displays the error message in a message box.

extern short _callback ErrorRtn(
char far * errorstr)

{
if(errorstr != NULL) {

ret = MessageBox(HwndParent, errorstr,
"Backup Error", MB_ICONSTOP|MB_OK);

}
return(0);

}

A common implementation of a message callback function outputs the
message to the screen:

extern short _callback MessageRtn(
char far * errorstr)

{
if(messagestr != NULL) {
OutputMessageToWindow(messagestr);
}
return(0);

}

Assigning a
callback function to
a structure

Confirmation
callback function
example

Error callback
function example

Message callback
function example

Chapter 8 The Database Tools Interface

289

A status callback routine is called when the tools needs to display the status
of an operation (like the percentage done unloading a table). Again, a
common implementation would just output the message to the screen:

extern short _callback StatusRtn(
char far * statusstr)

{
if(statusstr == NULL) {

return FALSE;
}
OutputMessageToWindow(statustr);
return TRUE;

}

Version numbers and compatibility

Each structure has a member that indicates the version number. You should
use this version member to hold the version of the DBTools library that your
application was developed against. The current version of the DBTools
library is included as the constant in the dbtools.h header file.

v To assign the current version number to a structure:

♦ Assign the version constant to the version member of the structure
before calling the DBTools function. The following line assigns the
current version to a backup structure:

backup_info.version = DB_TOOLS_VERSION_NUMBER;

The version number allows your application to continue working against
newer versions of the DBTools library. The DBTools functions use the
version number supplied by your application to allow the application to
work, even if new members have been added to the DBTools structure.

Applications will not work against older versions of the DBTools library.

Using bit fields

Many of the DBTools structures use bit fields to hold Boolean information in
a compact manner. For example, the backup structure has the following bit
fields:

a_bit_field backup_database : 1;
a_bit_field backup_logfile : 1;
a_bit_field backup_writefile: 1;
a_bit_field no_confirm : 1;
a_bit_field quiet : 1;

Status callback
function example

Compatibility

Using the database tools interface

290

a_bit_field rename_log : 1;
a_bit_field truncate_log : 1;
a_bit_field rename_local_log: 1;

Each bit field is one bit long, indicated by the 1 to the right of the colon in
the structure declaration. The specific data type used depends on the value
assigned to a_bit_field, which is set at the top of dbtools.h, and is operating
system-dependent.

You assign an integer value of 0 or 1 to a bit field to pass Boolean
information to the structure.

A DBTools example

You can find this sample and instructions for compiling it in the
Samples\ASA\DBTools subdirectory of your SQL Anywhere directory. The
sample program itself is Samples\ASA\DBTools\main.c. The sample
illustrates how to use the DBTools library to carry out a backup of a
database.

define WINNT

#include <stdio.h>
#include "windows.h"
#include "string.h"
#include "dbtools.h"

extern short _callback ConfirmCallBack(char far * str){
if(MessageBox(NULL, str, "Backup",

 MB_YESNO|MB_ICONQUESTION) == IDYES) {
return 1;

}
return 0;

}

extern short _callback MessageCallBack(char far * str){
if(str != NULL) {

fprintf(stdout, "%s", str);
fprintf(stdout, "\n");
fflush(stdout);

}
return 0;

}

Chapter 8 The Database Tools Interface

291

extern short _callback StatusCallBack(char far * str){
if(str != NULL) {

fprintf(stdout, "%s", str);
fprintf(stdout, "\n");
fflush(stdout);

}
return 0;

}

extern short _callback ErrorCallBack(char far * str){
if(str != NULL) {

fprintf(stdout, "%s", str);
fprintf(stdout, "\n");
fflush(stdout);

}
return 0;

}

// Main entry point into the program.
int main(int argc, char * argv[]){

a_backup_db backup_info;
a_dbtools_info dbtinfo;
char dir_name[_MAX_PATH + 1];
char connect[256];
HINSTANCE hinst;
FARPROC dbbackup;
FARPROC dbtoolsinit;
FARPROC dbtoolsfini;

// Always initialize to 0 so new versions
//of the structure will be compatible.
memset(&backup_info, 0, sizeof(a_backup_db));
backup_info.version = DB_TOOLS_VERSION_8_0_00;
backup_info.quiet = 0;
backup_info.no_confirm = 0;
backup_info.confirmrtn =

 (MSG_CALLBACK)ConfirmCallBack;
backup_info.errorrtn = (MSG_CALLBACK)ErrorCallBack;
backup_info.msgrtn = (MSG_CALLBACK)MessageCallBack;
backup_info.statusrtn = (MSG_CALLBACK)StatusCallBack;

if(argc > 1) {
strncpy(dir_name, argv[1], _MAX_PATH);

} else {
// DBTools does not expect (or like) the
// trailing slash
strcpy(dir_name, "c:\\temp");

}
backup_info.output_dir = dir_name;

Using the database tools interface

292

if(argc > 2) {
strncpy(connect, argv[2], 255);

} else {
// Assume that the engine is already running.
strcpy(connect, "DSN=ASA 8.0 Sample");

}
backup_info.connectparms = connect;
backup_info.startline = "";
backup_info.quiet = 0;
backup_info.no_confirm = 0;
backup_info.backup_database = 1;
backup_info.backup_logfile = 1;
backup_info.backup_writefile = 1;
backup_info.rename_log = 0;
backup_info.truncate_log = 0;

hinst = LoadLibrary("dbtool8.dll");
if(hinst == NULL) {

// Failed
return 0;

}
dbtinfo.errorrtn = (MSG_CALLBACK)ErrorCallBack;
dbbackup = GetProcAddress((HMODULE)hinst,

"_DBBackup@4");
dbtoolsinit = GetProcAddress((HMODULE)hinst,

"_DBToolsInit@4");
dbtoolsfini = GetProcAddress((HMODULE)hinst,

"_DBToolsFini@4");
(*dbtoolsinit)(&dbtinfo);
(*dbbackup)(&backup_info);
(*dbtoolsfini)(&dbtinfo);
FreeLibrary(hinst);
return 0;

}

Chapter 8 The Database Tools Interface

293

DBTools functions
This section describes the functions available in the DBTools library. The
functions are listed alphabetically.

DBBackup function

Database backup function. This function is used by the dbbackup
command-line utility.

short DBBackup (const a_backup_db * backup-db);

Parameter Description

backup-db Pointer to "a_backup_db structure" on page 304

A return code, as listed in "Software component return codes" on page 287.

The DBBackup function manages all database backup tasks.

$ For descriptions of these tasks, see "The Backup utility" on page 438 of
the book ASA Database Administration Guide.

"a_backup_db structure" on page 304

DBChangeLogName function

Changes the name of the transaction log file. This function is used by the
dblog command-line utility.

short DBChangeLogName (const a_change_log * change-log);

Parameter Description

change-log Pointer to "a_change_log structure" on page 306

A return code, as listed in "Software component return codes" on page 287.

The -t option of the dblog command-line utility changes the name of the
transaction log. DBChangeLogName provides a programmatic interface to
this function.

$ For descriptions of the dblog utility, see "The Transaction Log utility"
on page 507 of the book ASA Database Administration Guide.

"a_change_log structure" on page 306

Function

Prototype

Parameters

Return value

Usage

See also

Function

Prototype

Parameters

Return value

Usage

See also

DBTools functions

294

DBChangeWriteFile function

Changes a write file to refer to another database file. This function is used by
the dbwrite command-line utility when the -d option is applied.

short DBChangeWriteFile (const a_writefile * writefile);

Parameter Description

writefile Pointer to "a_writefile structure" on page 332

A return code, as listed in "Software component return codes" on page 287.

$ For information about the Write File utility and its features, see "The
Write File utility" on page 530 of the book ASA Database Administration
Guide.

"DBCreateWriteFile function" on page 295
"DBStatusWriteFile function" on page 299
"a_writefile structure" on page 332

DBCollate function

Extracts a collation sequence from a database.

short DBCollate (const a_db_collation * db-collation);

Parameter Description

db-collation Pointer to "a_db_collation structure" on page 312

A return code, as listed in "Software component return codes" on page 287.

$ For information about the collation utility and its features, see "The
Collation utility" on page 442 of the book ASA Database Administration
Guide

"a_db_collation structure" on page 312

DBCompress function

Compresses a database file. This function is used by the dbshrink
command-line utility.

short DBCompress (const a_compress_db * compress-db);

Function

Prototype

Parameters

Return value

Usage

See also

Function

Prototype

Parameters

Return value

Usage

See also

Function

Prototype

Chapter 8 The Database Tools Interface

295

Parameter Description

compress-db Pointer to "a_compress_db structure" on page 307

A return code, as listed in "Software component return codes" on page 287.

$ For information about the Compression utility and its features, see "The
Compression utility" on page 448 of the book ASA Database Administration
Guide.

"a_compress_db structure" on page 307

DBCreate function

Creates a database. This function is used by the dbinit command-line utility.

short DBCreate (const a_create_db * create-db);

Parameter Description

create-db Pointer to "a_create_db structure" on page 309

A return code, as listed in "Software component return codes" on page 287.

$ For information about the initialization utility, see "The Initialization
utility" on page 465 of the book ASA Database Administration Guide.

"a_create_db structure" on page 309

DBCreateWriteFile function

Creates a write file. This function is used by the dbwrite command-line utility
when the -c option is applied.

short DBCreateWriteFile (const a_writefile * writefile);

Parameter Description

writefile Pointer to "a_writefile structure" on page 332

A return code, as listed in "Software component return codes" on page 287.

$ For information about the Write File utility and its features, see "The
Write File utility" on page 530 of the book ASA Database Administration
Guide.

"DBChangeWriteFile function" on page 294

Parameters

Return value

Usage

See also

Function

Prototype

Parameters

Return value

Usage

See also

Function

Prototype

Parameters

Return value

Usage

See also

DBTools functions

296

"DBStatusWriteFile function" on page 299
"a_writefile structure" on page 332

DBCrypt function

Encrypts a database file. This function is used by the dbinit command-line
utility when -e options are applied.

short DBCrypt (const a_crypt_db * crypt-db);

Parameter Description

crypt-db Pointer to "a_crypt_db structure" on page 311

A return code, as listed in "Software component return codes" on page 287.

$ For information about encrypting databases, see "Creating a database
using the dbinit command-line utility" on page 466 of the book ASA
Database Administration Guide.

"a_crypt_db structure" on page 311

DBErase function

Erases a database file and/or transaction log file. This function is used by the
dberase command-line utility.

short DBErase (const an_erase_db * erase-db);

Parameter Description

erase-db Pointer to "an_erase_db structure" on page 317

A return code, as listed in "Software component return codes" on page 287.

$ For information about the Erase utility and its features, see "The Erase
utility" on page 458 of the book ASA Database Administration Guide.

"an_erase_db structure" on page 317

DBExpand function

Uncompresses a database file. This function is used by the dbexpand
command-line utility.

short DBExpand (const an_expand_db * expand-db);

Function

Prototype

Parameters

Return value

Usage

See also

Function

Prototype

Parameters

Return value

Usage

See also

Function

Prototype

Chapter 8 The Database Tools Interface

297

Parameter Description

expand_db Pointer to "an_expand_db structure" on page 318

A return code, as listed in "Software component return codes" on page 287.

$ For information about the Uncompression utility and its features, see
"The Uncompression utility" on page 511 of the book ASA Database
Administration Guide.

"an_expand_db structure" on page 318

DBInfo function

Returns information about a database file. This function is used by the dbinfo
command-line utility.

short DBInfo (const a_db_info * db-info);

Parameter Description

db-info Pointer to "a_db_info structure" on page 314

A return code, as listed in "Software component return codes" on page 287.

$ For information about the Information utility and its features, see "The
Information utility" on page 463 of the book ASA Database Administration
Guide.

"DBInfoDump function" on page 297
"DBInfoFree function" on page 298
"a_db_info structure" on page 314

DBInfoDump function

Returns information about a database file. This function is used by the dbinfo
command-line utility when the -u option is used.

short DBInfoDump (const a_db_info * db-info);

Parameter Description

db-info Pointer to "a_db_info structure" on page 314

A return code, as listed in "Software component return codes" on page 287.

Parameters

Return value

Usage

See also

Function

Prototype

Parameters

Return value

Usage

See also

Function

Prototype

Parameters

Return value

DBTools functions

298

$ For information about the Information utility and its features, see "The
Information utility" on page 463 of the book ASA Database Administration
Guide.

"DBInfo function" on page 297
"DBInfoFree function" on page 298
"a_db_info structure" on page 314

DBInfoFree function

Called to free resources after the DBInfoDump function is called.

short DBInfoFree (const a_db_info * db-info);

Parameter Description

db-info Pointer to "a_db_info structure" on page 314

A return code, as listed in "Software component return codes" on page 287.

$ For information about the Information utility and its features, see "The
Information utility" on page 463 of the book ASA Database Administration
Guide.

"DBInfo function" on page 297
"DBInfoDump function" on page 297
"a_db_info structure" on page 314

DBLicense function

Called to modify or report the licensing information of the database server.

short DBLicense (const a_db_lic_info * db-lic-info);

Parameter Description

db-lic-info Pointer to "a_dblic_info structure" on page 316

A return code, as listed in "Software component return codes" on page 287.

$ For information about the Information utility and its features, see "The
Information utility" on page 463 of the book ASA Database Administration
Guide.

"a_dblic_info structure" on page 316

Usage

See also

Function

Prototype

Parameters

Return value

Usage

See also

Function

Prototype

Parameters

Return value

Usage

See also

Chapter 8 The Database Tools Interface

299

DBStatusWriteFile function

Gets the status of a write file. This function is used by the dbwrite
command-line utility when the -s option is applied.

short DBStatusWriteFile (const a_writefile * writefile);

Parameter Description

writefile Pointer to "a_writefile structure" on page 332

A return code, as listed in "Software component return codes" on page 287.

$ For information about the Write File utility and its features, see "The
Write File utility" on page 530 of the book ASA Database Administration
Guide.

"DBChangeWriteFile function" on page 294
"DBCreateWriteFile function" on page 295
"a_writefile structure" on page 332

DBSynchronizeLog function

Synchronize a database with a MobiLink synchronization server.

short DBSynchronizeLog(const a _sync_db * sync-db);

Parameter Description

sync-db Pointer to "a_sync_db structure" on page 320

A return code, as listed in "Software component return codes" on page 287.

$ For information about the features you can access, see "Initiating
synchronization" on page 138 of the book MobiLink Synchronization User’s
Guide.

DBToolsFini function

Decrements the counter and frees resources when an application is finished
with the DBTools library.

short DBToolsFini (const a_dbtools_info * dbtools-info);

Parameter Description

dbtools-info Pointer to "a_dbtools_info structure" on page 317

Function

Prototype

Parameters

Return value

Usage

See also

Function

Prototype

Parameters

Return value

Usage

Function

Prototype

Parameters

DBTools functions

300

A return code, as listed in "Software component return codes" on page 287.

The DBToolsFini function must be called at the end of any application that
uses the DBTools interface. Failure to do so can lead to lost memory
resources.

"DBToolsInit function" on page 300
"a_dbtools_info structure" on page 317

DBToolsInit function

Prepares the DBTools library for use.

short DBToolsInit t(const a_dbtools_info * dbtools-info);

Parameter Description

dbtools-info Pointer to "a_dbtools_info structure" on page 317

A return code, as listed in "Software component return codes" on page 287.

The primary purpose of the DBToolsInit function is to load the Adaptive
Server Anywhere language DLL. The language DLL contains localized
versions of error messages and prompts that DBTools uses internally.

The DBToolsInit function must be called at the start of any application that
uses the DBTools interface, before any other DBTools functions.

♦ The following code sample illustrates how to initialize and clean up
DBTools:

a_dbtools_info info;
short ret;

memset(&info, 0, sizeof(a_dbtools_info));
info.errorrtn = (MSG_CALLBACK)MakeProcInstance(

(FARPROC)MyErrorRtn, hInst);

// initialize DBTools
ret = DBToolsInit(&info);
if(ret != EXIT_OKAY) {

// DLL initialization failed
…

}
// call some DBTools routines . . .
…
// cleanup the DBTools dll
DBToolsFini(&info);

"DBToolsFini function" on page 299
"a_dbtools_info structure" on page 317

Return value
Usage

See also

Function

Prototype

Parameters

Return value

Usage

Example

See also

Chapter 8 The Database Tools Interface

301

DBToolsVersion function

Returns the version number of the DBTools library.

short DBToolsVersion (void);

A short integer indicating the version number of the DBTools library.

Use the DBToolsVersion function to check that the DBTools library is not
older than one against which your application is developed. While
applications can run against newer versions of DBTools, they cannot run
against older versions.

"Version numbers and compatibility" on page 289

DBTranslateLog function

Translates a transaction log file to SQL. This function is used by the dbtran
command-line utility.

short DBTranslateLog (const a_translate_log * translate-log);

Parameter Description

translate-log Pointer to "a_translate_log structure" on page 324

A return code, as listed in "Software component return codes" on page 287.

$ For information about the log translation utility, see "The Log
Translation utility" on page 488 of the book ASA Database Administration
Guide.

"a_translate_log structure" on page 324

DBTruncateLog function

Truncates a transaction log file. This function is used by the dbbackup
command-line utility.

short DBTruncateLog (const a_truncate_log * truncate-log);

Parameter Description

truncate-log Pointer to "a_truncate_log structure" on page 326

A return code, as listed in "Software component return codes" on page 287.

$ For information about the backup utility, see "The Backup utility" on
page 438 of the book ASA Database Administration Guide

Function

Prototype

Return value

Usage

See also

Function

Prototype

Parameters

Return value

Usage

See also

Function

Prototype

Parameters

Return value

Usage

DBTools functions

302

"a_truncate_log structure" on page 326

DBUnload function

Unloads a database. This function is used by the dbunload command-line
utility and also by the dbxtract utility for SQL Remote.

short DBUnload (const an_unload_db * unload-db);

Parameter Description

unload-db Pointer to "an_unload_db structure" on page 327

A return code, as listed in "Software component return codes" on page 287.

$ For information about the Unload utility, see "The Unload utility" on
page 513 of the book ASA Database Administration Guide.

"an_unload_db structure" on page 327

DBUpgrade function

Upgrades a database file. This function is used by the dbupgrade
command-line utility.

short DBUpgrade (const an_upgrade_db * upgrade-db);

Parameter Description

upgrade-db Pointer to "an_upgrade_db structure" on page 329

A return code, as listed in "Software component return codes" on page 287.

$ For information about the upgrade utility, see "The Upgrade utility" on
page 521 of the book ASA Database Administration Guide.

"an_upgrade_db structure" on page 329

DBValidate function

Validates all or part of a database. This function is used by the dbvalid
command-line utility.

short DBValidate (const a_validate_db * validate-db);

See also

Function

Prototype

Parameters

Return value

Usage

See also

Function

Prototype

Parameters

Return value

Usage

See also

Function

Prototype

Chapter 8 The Database Tools Interface

303

Parameter Description

validate-db Pointer to "a_validate_db structure" on page 330

A return code, as listed in "Software component return codes" on page 287.

$ For information about the upgrade utility, see "The Validation utility"
on page 526 of the book ASA Database Administration Guide.

"a_validate_db structure" on page 330

Parameters

Return value

Usage

See also

DBTools structures

304

DBTools structures
This section lists the structures that are used to exchange information with
the DBTools library. The structures are listed alphabetically.

Many of the structure elements correspond to command-line options on the
corresponding utility. For example, several structures have a member named
quiet, which can take on values of 0 or 1. This member corresponds to the
quiet operation (-q) command-line option used by many of the utilities.

a_backup_db structure

Holds the information needed to carry out backup tasks using the DBTools
library.

typedef struct a_backup_db {
unsigned short version;
const char * output_dir;
const char * connectparms;
const char * startline;
MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bit_field backup_database: 1;
a_bit_field backup_logfile : 1;
a_bit_field backup_writefile : 1;
a_bit_field no_confirm : 1;
a_bit_field quiet : 1;
a_bit_field rename_log : 1;
a_bit_field truncate_log : 1;
a_bit_field rename_local_log: 1;
const char * hotlog_filename;
char backup_interrupted;
} a_backup_db;

Function

Syntax

Chapter 8 The Database Tools Interface

305

Member Description

Version DBTools version number

output_dir Path to the output directory. For example:

"c:\backup"

connectparms Parameters needed to connect to the database. They take
the form of connection strings, such as the following:

"UID=DBA;PWD=SQL;DBF=c:\asa\asademo.db"

$ For the full range of connection string options, see
"Connection parameters" on page 70 of the book ASA
Database Administration Guide

startline Command-line used to start the database engine. The
following is an example start line:

"c:\asa\win32\dbeng8.exe"

The default start line is used if this member is NULL

confirmrtn Callback routine for confirming an action

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

statusrtn Callback routine for handling a status message

backup_database Backup the database file (1) or not (0)

backup_logfile Backup the transaction log file (1) or not (0)

backup_writefile Backup the database write file (1) or not (0), if a write file
is being used

no_confirm Operate with (0) or without (1) confirmation

quiet Operate without printing messages (1), or print messages
(0)

rename_log Rename the transaction log

truncate_log Delete the transaction log

rename_local_log Rename the local backup of the transaction log

hotlog_filename File name for the live backup file

backup_interrupted Indicates that the operation was interrupted

"DBBackup function" on page 293
$ For more information on callback functions, see "Using callback

functions" on page 287.

Parameters

See also

DBTools structures

306

a_change_log structure

Holds the information needed to carry out dblog tasks using the DBTools
library.

typedef struct a_change_log {
unsigned short version;
const char * dbname;
const char * logname;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
a_bit_field query_only : 1;
a_bit_field quiet : 1;
a_bit_field mirrorname_present : 1;
a_bit_field change_mirrorname : 1;
a_bit_field change_logname : 1;
a_bit_field ignore_ltm_trunc : 1;
a_bit_field ignore_remote_trunc : 1;
a_bit_field set_generation_number : 1;
a_bit_field ignore_dbsync_trunc : 1;
const char * mirrorname;
unsigned short generation_number;
const char * key_file;
char * zap_current_offset;
char * sap_starting_offset;
char * encryption_key;
} a_change_log;

Member Description

version DBTools version number

dbname Database file name

logname The name of the transaction log. If set to NULL, there
is no log

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

query_only If 1, just display the name of the transaction log. If 0,
permit changing of the log name

quiet Operate without printing messages (1), or print
messages (0)

mirrorname_present Set to 1. Indicates that the version of DBTools is recent
enough to support the mirrorname field

change_mirrorname If 1, permit changing of the log mirror name

change_logname If 1, permit changing of the transaction log name

Function

Syntax

Parameters

Chapter 8 The Database Tools Interface

307

Member Description

ignore_ltm_trunc When using the Log Transfer Manager, performs the
same function as the dbcc settrunc(’ltm’, ’gen_id’, n)
Replication Server function:

$ For information on dbcc, see your Replication
Server documentation

ignore_remote_trunc For SQL Remote. Resets the offset kept for the
purposes of the DELETE_OLD_LOGS option,
allowing transaction logs to be deleted when they are
no longer needed

set_generation_number When using the Log Transfer Manager, used after a
backup is restored to set the generation number

ignore_dbsync_trunc When using dbmlsync, resets the offset kept for the
purposes of the DELETE_OLD_LOGS option,
allowing transaction logs to be deleted when they are
no longer needed

mirrorname The new name of the transaction log mirror file

generation_number The new generation number. Used together with
set_generation_number

key_file A file holding the encryption key

zap_current_offset Change the current offset to the specified value. This is
for use only in resetting a transaction log after an
unload and reload to match dbremote or dbmlsync
settings.

zap_starting_offset Change the starting offset to the specified value. This is
for use only in resetting a transaction log after an
unload and reload to match dbremote or dbmlsync
settings.

encryption_key The encryption key for the database file.

"DBChangeLogName function" on page 293
$ For more information on callback functions, see "Using callback

functions" on page 287.

a_compress_db structure

Holds the information needed to carry out database compression tasks using
the DBTools library.

See also

Function

DBTools structures

308

typedef struct a_compress_db {
unsigned short version;
const char * dbname;
const char * compress_name;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bit_field display_free_pages : 1;
a_bit_field quiet : 1;
a_bit_field record_unchanged : 1;
a_compress_stats * stats;
MSG_CALLBACK confirmrtn;
a_bit_field noconfirm : 1;
const char * encryption_key
} a_compress_db;

Member Description

version DBTools version number

dbname The file name of the database to compress

compress_name The file name of the compressed database

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

statusrtn Callback routine for handling a status message

display_free_pages Display the free page information.

quiet Operate without printing messages (1), or print messages
(0)

record_unchanged Set to 1. Indicates that the a_compress_stats structure is
recent enough to have an unchanged member

a_compress_stats Pointer to a structure of type a_compress_stats. This is
filled in if the member is not NULL and
display_free_pages is not zero

confirmrtn Callback routine for confirming an action

noconfirm Operate with (0) or without (1) confirmation

encryption_key The encryption key for the database file.

"DBCompress function" on page 294
"a_compress_stats structure" on page 309
$ For more information on callback functions, see "Using callback

functions" on page 287.

Syntax

Parameters

See also

Chapter 8 The Database Tools Interface

309

a_compress_stats structure

Holds information describing compressed database file statistics.

typedef struct a_compress_stats {
a_stats_line tables;
a_stats_line indices;
a_stats_line other;
a_stats_line free;
a_stats_line total;
a_sql_int32 free_pages;
a_sql_int32 unchanged;
} a_compress_stats;

Member Description

tables Holds compression information regarding tables

indices Holds compression information regarding indexes

other Holds other compression information

free Holds information regarding free space

total Holds overall compression information

free_pages Holds information regarding free pages

unchanged The number of pages that the compression algorithm was unable
to shrink

"DBCompress function" on page 294
"a_compress_db structure" on page 307

a_create_db structure

Holds the information needed to create a database using the DBTools library.

Function

Syntax

Parameters

See also

Function

DBTools structures

310

typedef struct a_create_db {
unsigned short version;
const char * dbname;
const char * logname;
const char * startline;
short page_size;
const char * default_collation;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
short database_version;
char verbose;
a_bit_field blank_pad : 2;
a_bit_field respect_case : 1;
a_bit_field encrypt : 1;
a_bit_field debug : 1;
a_bit_field dbo_avail : 1;
a_bit_field mirrorname_present : 1;
a_bit_field avoid_view_collisions : 1;
short collation_id;
const char * dbo_username;
const char * mirrorname;
const char * encryption_dllname;
a_bit_field java_classes : 1;
a_bit_field jconnect : 1;
const char * data_store_type
const char * encryption_key;
const char * encryption_algorithm;
const char * jdK_version;
} a_create_db;

Member Description

version DBTools version number

dbname Database file name

logname New transaction log name

startline The command-line used to start the database engine. The
following is an example start line:

"c:\asa\win32\dbeng8.exe"

The default start line is used if this member is NULL

page_size The page size of the database

default_collation The collation for the database

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

database_version The version number of the database

verbose Run in verbose mode

Syntax

Parameters

Chapter 8 The Database Tools Interface

311

Member Description

blank_pad Treat blanks as significant in string comparisons and
hold index information to reflect this

respect_case Make string comparisons case sensitive and hold index
information to reflect this

encrypt Encrypt the database

debug Reserved

dbo_avail Set to 1. The dbo user is available in this database

mirrorname_present Set to 1. Indicates that the version of DBTools is recent
enough to support the mirrorname field

avoid_view_collisions Omit the generation of Watcom SQL compatibility
views SYS.SYSCOLUMNS and SYS.SYSINDEXES

collation_id Collation identifier

dbo_username No longer used: set to NULL

mirrorname Transaction log mirror name

encryption_dllname The DLL used to encrypt the database.

java_classes Create a Java-enabled database.

jconnect Include system procedures needed for jConnect

data_store_type Reserved. Use NULL.

encryption_key The encryption key for the database file.

encryption_algorithm Either AES or MDSR.

jdk_version One of the values for the dbinit -jdk option.

"DBCreate function" on page 295
$ For more information on callback functions, see "Using callback

functions" on page 287.

a_crypt_db structure

Holds the information needed to encrypt a database file as used by the dbinit
command-line utility.

See also

Function

DBTools structures

312

typedef struct a_crypt_db {
const char _fd_ * dbname;
const char _fd_ * dllname;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
char verbose;
a_bit_field quiet : 1;
a_bit_field debug : 1;
} a_crypt_db;

Member Description

dbname Database file name

dllname The name of the DLL used to carry out the encryption

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

statusrtn Callback routine for handling a status message

verbose Operate in verbose mode

quiet Operate without messages

debug Reserved

"DBCrypt function" on page 296
"Creating a database using the dbinit command-line utility" on page 466 of

the book ASA Database Administration Guide

a_db_collation structure

Holds the information needed to extract a collation sequence from a database
using the DBTools library.

Syntax

Parameters

See also

Function

Chapter 8 The Database Tools Interface

313

typedef struct a_db_collation {
unsigned short version;
const char * connectparms;
const char * startline;
const char * collation_label;
const char * filename;
MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
a_bit_field include_empty : 1;
a_bit_field hex_for_extended : 1;
a_bit_field replace : 1;
a_bit_field quiet : 1;
const char * input_filename;
const char _fd_ * mapping_filename;
} a_db_collation;

Member Description

version DBTools version number

connectparms The parameters needed to connect to the database. They
take the form of connection strings, such as the following:

"UID=DBA;PWD=SQL;DBF=c:\asa\asademo.db"

$ For the full range of connection string options, see
"Connection parameters" on page 70 of the book ASA
Database Administration Guide

startline The command-line used to start the database engine. The
following is an example start line:

"c:\asa\win32\dbeng8.exe"

The default start line is used if this member is NULL

confirmrtn Callback routine for confirming an action

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

include_empty Write empty mappings for gaps in the collations sequence

hex_for_extended Use two-digit hexadecimal numbers to represent
high-value characters

replace Operate without confirming actions

quiet Operate without messages

input_filename Input collation definition

mapping_filename syscollationmapping output

"DBCollate function" on page 294

Syntax

Parameters

See also

DBTools structures

314

$ For more information on callback functions, see "Using callback
functions" on page 287.

a_db_info structure

Holds the information needed to return dbinfo information using the
DBTools library.

typedef struct a_db_info {
unsigned short version;
MSG_CALLBACK errorrtn;
const char * dbname;
unsigned short dbbufsize;
char * dbnamebuffer;
unsigned short logbufsize;
char * lognamebuffer;
unsigned short wrtbufsize;
char * wrtnamebuffer;
a_bit_field quiet : 1;
a_bit_field mirrorname_present : 1;
a_sysinfo sysinfo;
unsigned long free_pages;
a_bit_field compressed : 1;
const char * connectparms;
const char * startline;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bit_field page_usage : 1;
a_table_info * totals;
unsigned long file_size;
unsigned long unused_pages;
unsigned long other_pages;
unsigned short mirrorbufsize;
char * mirrornamebuffer;
char * unused_field;
char * collationnamebuffer;
unsigned short collationnamebufsize;
char * classesversionbuffer;
unsigned short classesversionbufsize;
 } a_db_info;

Member Description

version DBTools version number

errortrn Callback routine for handling an error message

dbname Database file name

dbbufsize The length of the dbnamebuffer member

Function

Syntax

Parameters

Chapter 8 The Database Tools Interface

315

Member Description

dbnamebuffer Database file name

logbufsize The length of the lognamebuffer member

lognamebuffer Transaction log file name

wrtbufsize The length of the wrtnamebuffer member

wrtnamebuffer The write file name

quiet Operate without confirming messages

mirrorname_present Set to 1. Indicates that the version of DBTools is recent
enough to support the mirrorname field

sysinfo Pointer to a_sysinfo structure

free_pages Number of free pages

compressed 1 if compressed, otherwise 0

connectparms The parameters needed to connect to the database. They
take the form of connection strings, such as the following:

"UID=DBA;PWD=SQL;DBF=c:\Program
Files\Sybase\SQL Anywhere 8\asademo.db"

$ For the full range of connection string options, see
"Connection parameters" on page 70 of the book ASA
Database Administration Guide

startline The command-line used to start the database engine. The
following is an example start line:

"c:\asa\win32\dbeng8.exe"

The default start line is used if this member is NULL

msgrtn Callback routine for handling an information message

statusrtn Callback routine for handling a status message

page_usage 1 to report page usage statistics, otherwise 0

totals Pointer to a_table_info structure

file_size Size of database file

unused_pages Number of unused pages

other_pages Number of pages that are neither table nor index pages

mirrorbufsize The length of the mirrornamebuffer member

DBTools structures

316

Member Description

mirrornamebuffer The transaction log mirror name

collationnamebuffer The database collation name and label (the maximum size
is 128+1)

collationnamebufsize The length of the collationnamebuffer member

classesversionbuffer The JDK version of the installed Java classes, such as
1.1.3, 1.1.8, 1.3, or an empty string if Java classes are not
installed in the database (the maximum size is 10+1)

classesversionbufsize The length of the classesversionbuffer member

"DBInfo function" on page 297
$ For more information on callback functions, see "Using callback

functions" on page 287.

a_dblic_info structure

Holds information containing licensing information. You must use this
information only in a manner consistent with your license agreement.

typedef struct a_dblic_info {
unsigned short version;
char * exename;
char * username;
char * compname;
char * platform_str;
a_sql_int32 nodecount;
a_sql_int32 conncount;
a_license_type type;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
a_bit_field quiet : 1;
a_bit_field query_only : 1;
} a_dblic_info;

Member Description

version DBTools version number

exename Executable name

username User name for licensing

compname Company name for licensing

platform_str Operating system: WinNT or NLM or UNIX

nodecount Number of nodes licensed.

See also

Function

Syntax

Parameters

Chapter 8 The Database Tools Interface

317

Member Description

conncount Must be 1000000L

type See lictype.h for values

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

quiet Operate without printing messages (1), or print messages (0)

query_only If 1, just display the license information. If 0, permit changing
the information

a_dbtools_info structure

Holds the information needed to start and finish working with the DBTools
library.

typedef struct a_dbtools_info {
MSG_CALLBACK errorrtn;
} a_dbtools_info;

Member Description

errorrtn Callback routine for handling an error message

"DBToolsFini function" on page 299
"DBToolsInit function" on page 300
$ For more information on callback functions, see "Using callback

functions" on page 287.

an_erase_db structure

Holds information needed to erase a database using the DBTools library.

typedef struct an_erase_db {
unsigned short version;
const char * dbname;
MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
a_bit_field quiet : 1;
a_bit_field erase : 1;
const char * encryption_key;
} an_erase_db;

Function

Syntax

Parameters

See also

Function

Syntax

DBTools structures

318

Member Description

version DBTools version number

dbname Database file name to erase

confirmrtn Callback routine for confirming an action

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

quiet Operate without printing messages (1), or print messages (0)

erase Erase without confirmation (1) or with confirmation (0)

encryption_key The encryption key for the database file.

"DBErase function" on page 296
$ For more information on callback functions, see "Using callback

functions" on page 287.

an_expand_db structure

Holds information needed for database expansion using the DBTools library.

typedef struct an_expand_db {
unsigned short version;
const char * compress_name;
const char * dbname;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bit_field quiet : 1;
MSG_CALLBACK confirmrtn;
a_bit_field noconfirm : 1;
const char * key_file;
const char * encryption_key;
} an_expand_db;

Member Description

version DBTools version number

compress_name Name of compressed database file

dbname Database file name

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

statusrtn Callback routine for handling a status message

Parameters

See also

Function

Syntax

Parameters

Chapter 8 The Database Tools Interface

319

Member Description

quiet Operate without printing messages (1), or print messages (0)

confirmrtn Callback routine for confirming an action

noconfirm Operate with (0) or without (1) confirmation

key_file A file holding the encryption key

encryption_key The encryption key for the database file.

"DBExpand function" on page 296
$ For more information on callback functions, see "Using callback

functions" on page 287.

a_name structure

Holds a linked list of names. This is used by other structures requiring lists of
names.

typedef struct a_name {
struct a_name * next;
char name[1];
} a_name, * p_name;

Member Description

next Pointer to the next a_name structure in the list

name The name

p_name Pointer to the previous a_name structure

"a_translate_log structure" on page 324
"a_validate_db structure" on page 330
"an_unload_db structure" on page 327

a_stats_line structure

Holds information needed for database compression and expansion using the
DBTools library.

typedef struct a_stats_line {
long pages;
long bytes;
long compressed_bytes;
} a_stats_line;

See also

Function

Syntax

Parameters

See also

Function

Syntax

DBTools structures

320

Member Description

pages Number of pages

bytes Number of bytes for uncompressed database

compressed_bytes Number of bytes for compressed database

"a_compress_stats structure" on page 309

a_sync_db structure

Holds information needed for the dbmlsync utility using the DBTools library.

Parameters

See also

Function

Chapter 8 The Database Tools Interface

321

typedef struct a_sync_db {
unsigned short version;
char _fd_ * connectparms;
char _fd_ * publication;
const char _fd_ * offline_dir;
char _fd_ * extended_options;
char _fd_ * script_full_path;
const char _fd_ * include_scan_range;
const char _fd_ * raw_file;
MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK logrtn;
a_SQL_uint32 debug_dump_size;
a_SQL_uint32 dl_insert_width;
a_bit_field verbose : 1;
a_bit_field debug : 1;
a_bit_field debug_dump_hex : 1;
a_bit_field debug_dump_char : 1;
a_bit_field debug_page_offsets : 1;
a_bit_field use_hex_offsets : 1;
a_bit_field use_relative_offsets : 1;
a_bit_field output_to_file : 1;
a_bit_field output_to_mobile_link : 1;
a_bit_field dl_use_put : 1;
a_bit_field dl_use_upsert : 1;
a_bit_field kill_other_connections : 1;
a_bit_field retry_remote_behind : 1;
a_bit_field ignore_debug_interrupt : 1;
SET_WINDOW_TITLE_CALLBACK set_window_title_rtn;
char * default_window_title;
MSG_QUEUE_CALLBACK msgqueuertn;
MSG_CALLBACK progress_msg_rtn;
SET_PROGRESS_CALLBACK progress_index_rtn;
char ** argv;
char ** ce_argv;
a_bit_field connectparms_allocated : 1;
a_bit_field entered_dialog : 1;
a_bit_field used_dialog_allocation : 1;
a_bit_field ignore_scheduling : 1;
a_bit_field ignore_hook_errors : 1;
a_bit_field changing_pwd : 1;
a_bit_field prompt_again : 1;
a_bit_field retry_remote_ahead : 1;
a_bit_field rename_log : 1;
a_bit_field hide_conn_str : 1;
a_bit_field hide_ml_pwd : 1;
a_bit_field delay_ml_disconn : 1;
a_SQL_uint32 dlg_launch_focus;
char _fd_ * mlpassword;
char _fd_ * new_mlpassword;

Syntax

DBTools structures

322

char _fd_ * verify_mlpassword;
a_SQL_uint32 pub_name_cnt;
char ** pub_name_list;
USAGE_CALLBACK usage_rtn;
a_sql_uint32 hovering_frequency;
a_bit_short ignore_hovering : 1;
a_bit_short verbose_upload : 1;
a_bit_short verbose_upload_data : 1;
a_bit_short verbose_download : 1;
a_bit_short verbose_download_data : 1;
a_bit_short autoclose : 1;
a_bit_short ping : 1;
a_bit_short _unused : 9;
char _fd_ * encryption_key;
a_syncpub _fd_ * upload_defs;
char _fd_ * log_file_name;
char _fd_ * user_name;
} a_sync_db;

The parameters correspond to features accessible from the dbmlsync
command-line utility.

See the dbtools.h header file for additional comments.

$ For more information, see "MobiLink synchronization client" on
page 410 of the book MobiLink Synchronization User’s Guide.

"DBSynchronizeLog function" on page 299

a_syncpub structure

Holds information needed for the dbmlsync utility.

Syntax

typedef struct a_syncpub {
 struct a_syncpub _fd_ * next;
 char _fd_ * pub_name;
 char _fd_ * ext_opt;
 a_bit_field alloced_by_dbsync: 1;
} a_syncpub;

Parameters

See also

Function

Chapter 8 The Database Tools Interface

323

Parameters

Member Description

a_syncpub pointer to the next node in the list, NULL for the last
node

pub_name publication name(s) specified for this -n option. This
is the exact string following -n on the command line.

ext_opt extended options specified using the -eu option

encryption 1 if the database is encrypted, 0 otherwise

alloced_by_dbsync FALSE, except for nodes created in dbtool8.dll

a_sysinfo structure

Holds information needed for dbinfo and dbunload utilities using the
DBTools library.

typedef struct a_sysinfo {
a_bit_field valid_data : 1;
a_bit_field blank_padding : 1;
a_bit_field case_sensitivity : 1;
a_bit_field encryption : 1;
char default_collation[11];
unsigned short page_size;
 } a_sysinfo;

Member Description

valid_date Bit-field indicating whether the following values are set

blank_padding 1 if blank padding is used in this database, 0 otherwise

case_sensitivity 1 if the database is case-sensitive, 0 otherwise

encryption 1 if the database is encrypted, 0 otherwise

default_collation The collation sequence for the database

page_size The page size for the database

"a_db_info structure" on page 314

a_table_info structure

Holds information about a table needed as part of the a_db_info structure.

Function

Parameters

See also

Function

DBTools structures

324

typedef struct a_table_info {
struct a_table_info * next;
unsigned short table_id;
unsigned long table_pages;
unsigned long index_pages;
unsigned long table_used;
unsigned long index_used;
char * table_name;
a_sql_uint32 table_used_pct;
a_sql_uint32 index_used_pct;
} a_table_info;

Member Description

next Next table in the list

table_id ID number for this table

table_pages Number of table pages

index_pages Number of index pages

table_used Number of bytes used in table pages

index_used Number of bytes used in index pages

table_name Name of the table

table_used_pct Table space utilization as a percentage

index_used_pct Index space utilization as a percentage

"a_db_info structure" on page 314

a_translate_log structure

Holds information needed for transaction log translation using the DBTools
library.

Syntax

Parameters

See also

Function

Chapter 8 The Database Tools Interface

325

typedef struct a_translate_log {
unsigned short version;
const char * logname;
const char * sqlname;
p_name userlist;
MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
char userlisttype;
a_bit_field remove_rollback : 1;
a_bit_field ansi_SQL : 1;
a_bit_field since_checkpoint: 1;
a_bit_field omit_comments : 1;
a_bit_field replace : 1;
a_bit_field debug : 1;
a_bit_field include_trigger_trans : 1;
a_bit_field comment_trigger_trans : 1;
unsigned long since_time;
const char _fd_ * reserved_1;
const char _fd_ * reserved_2;
a_sql_uint32 debug_dump_size;
a_bit_field debug_sql_remote : 1;
a_bit_field debug_dump_hex : 1;
a_bit_field debug_dump_char : 1;
a_bit_field debug_page_offsets : 1;
a_bit_field reserved_3 : 1;
a_bit_field use_hex_offsets : 1;
a_bit_field use_relative_offsets : 1;
a_bit_field include_audit : 1;
a_bit_field chronological_order : 1;
a_bit_field force_recovery : 1;
a_bit_field include_subsets : 1;
a_bit_field force_chaining : 1;
a_sql_uint32 recovery_ops;
a_sql_uint32 recovery_bytes;
const char _fd_ * include_source_sets;
const char _fd_ * include_destination_sets;
const char _fd_ * include_scan_range;
const char _fd_ * repserver_users;
const char _fd_ * include_tables;
const char _fd_ * include_publications;
const char _fd_ * queueparms;
a_bit_field generate_reciprocals :1;
a_bit_field match_mode :1;
const char _fd_ * match_pos;
MSG_CALLBACK statusrtn;
const char _fd_ * encryption_key;
a_bit_field show_undo :1;
const char _fd_ * logs_dir;
} a_translate_log;

Syntax

DBTools structures

326

The parameters correspond to features accessible from the dbtran
command-line utility.

See the dbtools.h header file for additional comments.

"DBTranslateLog function" on page 301
"a_name structure" on page 319
"dbtran_userlist_type enumeration" on page 335
$ For more information on callback functions, see "Using callback

functions" on page 287.

a_truncate_log structure

Holds information needed for transaction log truncation using the DBTools
library.

typedef struct a_truncate_log {
unsigned short version;
const char * connectparms;
const char * startline;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
a_bit_field quiet : 1;
char truncate_interrupted;
} a_truncate_log;

Member Description

version DBTools version number.

connectparms The parameters needed to connect to the database. They
take the form of connection strings, such as the following:

"UID=DBA;PWD=SQL;DBF=c:\asa\asademo.db"

$ For the full range of connection string options, see
"Connection parameters" on page 70 of the book ASA
Database Administration Guide

startline The command-line used to start the database engine. The
following is an example start line:

"c:\asa\win32\dbeng8.exe"

The default start line is used if this member is NULL

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

quiet Operate without printing messages (1), or print messages
(0)

truncate_interrupted Indicates that the operation was interrupted

Parameters

See also

Function

Syntax

Parameters

Chapter 8 The Database Tools Interface

327

"DBTruncateLog function" on page 301
$ For more information on callback functions, see "Using callback

functions" on page 287.

an_unload_db structure

Holds information needed to unload a database using the DBTools library or
extract a remote database for SQL Remote. Those fields used by the dbxtract
SQL Remote extraction utility are indicated.

See also

Function

DBTools structures

328

typedef struct an_unload_db {
unsigned short version;
const char * connectparms;
const char * startline;
const char * temp_dir;
const char * reload_filename;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
MSG_CALLBACK confirmrtn;
char unload_type;
char verbose;
a_bit_field unordered : 1;
a_bit_field no_confirm : 1;
a_bit_field use_internal_unload : 1;
a_bit_field dbo_avail : 1;
a_bit_field extract : 1;
a_bit_field table_list_provided : 1;
a_bit_field exclude_tables : 1;
a_bit_field more_flag_bits_present : 1;
a_sysinfo sysinfo;
const char * remote_dir;
const char * dbo_username;
const char * subscriber_username;
const char * publisher_address_type;
const char * publisher_address;
unsigned short isolation_level;
a_bit_field start_subscriptions : 1;
a_bit_field exclude_foreign_keys : 1;
a_bit_field exclude_procedures : 1;
a_bit_field exclude_triggers : 1;
a_bit_field exclude_views : 1;
a_bit_field isolation_set : 1;
a_bit_field include_where_subscribe : 1;
a_bit_field debug : 1;
p_name table_list;
a_bit_short escape_char_present : 1;
a_bit_short view_iterations_present : 1;
unsigned short view_iterations;
char escape_char;
char _fd_ * reload_connectparms;
char _fd_ * reload_db_filename;
a_bit_field output_connections:1;
char unload_interrupted;
a_bit_field replace_db:1;
const char _fd_ * locale;
const char _fd_ * site_name;
const char _fd_ * template_name;
a_bit_field preserve_ids:1;
a_bit_field exclude_hooks:1;
char _fd_ * reload_db_logname;

Syntax

Chapter 8 The Database Tools Interface

329

const char _fd_ * encryption_key;
const char _fd_ * encryption_algorithm;
a_bit_field syntax_version_7:1;
a_bit_field remove_java:1;
} an_unload_db;

The parameters correspond to features accessible from the dbunload and
dbxtract, and mlxtract command-line utilities.

See the dbtools.h header file for additional comments.

"DBUnload function" on page 302
"a_name structure" on page 319
"dbunload type enumeration" on page 335
$ For more information on callback functions, see "Using callback

functions" on page 287.

an_upgrade_db structure

Holds information needed to upgrade a database using the DBTools library.

typedef struct an_upgrade_db {
unsigned short version;
const char * connectparms;
const char * startline;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bit_field quiet : 1;
a_bit_field dbo_avail : 1;
const char * dbo_username;
a_bit_field java_classes : 1;
a_bit_field jconnect : 1;
a_bit_field remove_java : 1;
a_bit_field java_switch_specified : 1;
const char * jdk_version;
} an_upgrade_db;

Parameters

See also

Function

Syntax

DBTools structures

330

Member Description

version DBTools version number.

connectparms The parameters needed to connect to the database. They take the
form of connection strings, such as the following:

"UID=DBA;PWD=SQL;DBF=c:\asa\asademo.db"

$ For the full range of connection string options, see
"Connection parameters" on page 70 of the book ASA Database
Administration Guide

startline The command-line used to start the database engine. The
following is an example start line:

"c:\asa\win32\dbeng8.exe"

The default start line is used if this member is NULL

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

statusrtn Callback routine for handling a status message

quiet Operate without printing messages (1), or print messages (0)

dbo_avail Set to 1. Indicates that the version of DBTools is recent enough
to support the dbo_username field

dbo_username The name to use for the dbo

java_classes Upgrade the database to be Java-enabled

jconnect Upgrade the database to include jConnect procedures

remove_java Upgrade the database, removing the Java features

jdk_version One of the values for the dbinit -jdk option.

"DBUpgrade function" on page 302
$ For more information on callback functions, see "Using callback

functions" on page 287.

a_validate_db structure

Holds information needed for database validation using the DBTools library.

Parameters

See also

Function

Chapter 8 The Database Tools Interface

331

typedef struct a_validate_db {
unsigned short version;
const char * connectparms;
const char * startline;
p_name tables;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bit_field quiet : 1;
a_bit_field index : 1;
a_validate_type type;
} a_validate_db;

Member Description

version DBTools version number.

connectparms The parameters needed to connect to the database. They take the
form of connection strings, such as the following:

"UID=DBA;PWD=SQL;DBF=c:\asa\asademo.db"

$ For the full range of connection string options, see
"Connection parameters" on page 70 of the book ASA Database
Administration Guide

startline The command-line used to start the database engine. The
following is an example start line:

"c:\Program Files\Sybase\SA\win32\dbeng8.exe"

The default start line is used if this member is NULL

tables Pointer to a linked list of table names

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

statusrtn Callback routine for handling a status message

quiet Operate without printing messages (1), or print messages (0)

index Validate indexes

type See "a_validate_type enumeration" on page 335

"DBValidate function" on page 302
"a_name structure" on page 319

$ For more information on callback functions, see "Using callback
functions" on page 287.

Syntax

Parameters

See also

DBTools structures

332

a_writefile structure

Holds information needed for database write file management using the
DBTools library.

typedef struct a_writefile {
unsigned short version;
const char * writename;
const char * wlogname;
const char * dbname;
const char * forcename;
MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
char action;
a_bit_field quiet : 1;
a_bit_field erase : 1;
a_bit_field force : 1;
a_bit_field mirrorname_present : 1;
const char * wlogmirrorname;
a_bit_field make_log_and_mirror_names: 1;
const char * encryption_key;
} a_writefile;

Member Description

version DBTools version number

writename Write file name

wlogname Used only when creating write files

dbname Used when changing and creating write files

forcename Forced file name reference

confirmrtn Callback routine for confirming an action. Only used
when creating a write file

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

action Reserved for use by Sybase

quiet Operate without printing messages (1), or print messages
(0)

erase Used for creating write files only. Erase without
confirmation (1) or with confirmation (0)

Function

Syntax

Parameters

Chapter 8 The Database Tools Interface

333

Member Description

force If 1, force the write file to point to a named file

mirrorname_present Used when creating only. Set to 1. Indicates that the
version of DBTools is recent enough to support the
mirrorname field

wlogmirrorname Name of the transaction log mirror

make_log_and_mirro
r_names

If TRUE, use the values in wlogname and
wlogmirrorname to determine filenames.

encryption_key The encryption key for the database file.

"DBChangeWriteFile function" on page 294
"DBCreateWriteFile function" on page 295
"DBStatusWriteFile function" on page 299
$ For more information on callback functions, see "Using callback

functions" on page 287.

See also

DBTools enumeration types

334

DBTools enumeration types
This section lists the enumeration types that are used by the DBTools library.
The enumerations are listed alphabetically.

Verbosity enumeration

Specifies the volume of output.

enum {
VB_QUIET,
VB_NORMAL,
VB_VERBOSE
};

Value Description

VB_QUIET No output

VB_NORMAL Normal amount of output

VB_VERBOSE Verbose output, useful for debugging

"a_create_db structure" on page 309
"an_unload_db structure" on page 327

Blank padding enumeration

Used in the "a_create_db structure" on page 309, to specify the value of
blank_pad.

enum {
NO_BLANK_PADDING,
BLANK_PADDING
};

Value Description

NO_BLANK_PADDING Does not use blank padding

BLANK_PADDING Uses blank padding

"a_create_db structure" on page 309

Function

Syntax

Parameters

See also

Function

Syntax

Parameters

See also

Chapter 8 The Database Tools Interface

335

dbtran_userlist_type enumeration

The type of a user list, as used by an "a_translate_log structure" on page 324.

typedef enum dbtran_userlist_type {
DBTRAN_INCLUDE_ALL,
DBTRAN_INCLUDE_SOME,
DBTRAN_EXCLUDE_SOME
} dbtran_userlist_type;

Value Description

DBTRAN_INCLUDE_ALL Include operations from all users

DBTRAN_INCLUDE_SOME Include operations only from the users listed
in the supplied user list

DBTRAN_EXCLUDE_SOME Exclude operations from the users listed in the
supplied user list

"a_translate_log structure" on page 324

dbunload type enumeration

The type of unload being performed, as used by the "an_unload_db
structure" on page 327.

enum {
UNLOAD_ALL,
UNLOAD_DATA_ONLY,
UNLOAD_NO_DATA
};

Value Description

UNLOAD_ALL Unload both data and schema

UNLOAD_DATA_ONLY Unload data. Do not unload schema

UNLOAD_NO_DATA Unload schema only

"an_unload_db structure" on page 327

a_validate_type enumeration

The type of validation being performed, as used by the "a_validate_db
structure" on page 330.

Function

Syntax

Parameters

See also

Function

Syntax

Parameters

See also

Function

DBTools enumeration types

336

typedef enum {
VALIDATE_NORMAL = 0,
VALIDATE_DATA,
VALIDATE_INDEX,
VALIDATE_EXPRESS,
VALIDATE_FULL
} a_validate_type;

Value Description

VALIDATE_NORMAL Validate with the default check only.

VALIDATE_DATA Validate with data check in addition to the default
check.

VALIDATE_INDEX Validate with index check in addition to the default
check.

VALIDATE_EXPRESS Validate with express check in addition to the default
and data checks.

VALIDATE_FULL Validate with both data and index check in addition
toe the default check.

"Validating a database using the dbvalid command-line utility" on page 527
of the book ASA Database Administration Guide

"VALIDATE TABLE statement" on page 586 of the book ASA SQL
Reference Manual

Syntax

Parameters

See also

337

C H A P T E R 9

The OLE DB and ADO Programming
Interfaces

This chapter describes how to use the OLE DB interface to Adaptive Server
Anywhere.

Many applications that use the OLE DB interface do so through the
Microsoft ActiveX Data Objects (ADO) programming model, rather than
directly. This chapter also describes ADO programming with Adaptive
Server Anywhere.

Topic Page

Introduction to OLE DB 338

ADO programming with Adaptive Server Anywhere 340

Supported OLE DB interfaces 347

About this chapter

Contents

Introduction to OLE DB

338

Introduction to OLE DB
OLE DB is a data access model from Microsoft. It uses the Component
Object Model (COM) interfaces and, unlike ODBC, OLE DB does not
assume that the data source uses a SQL query processor.

Adaptive Server Anywhere includes an OLE DB provider named
ASAProv. This provider is available for current Windows and Windows CE
platforms.

You can also access Adaptive Server Anywhere using the Microsoft
OLE DB Provider for ODBC (MSDASQL), together with the Adaptive
Server Anywhere ODBC driver.

Using the Adaptive Server Anywhere OLE DB provider brings several
benefits:

♦ Some features, such as updating through a cursor, are not available using
the OLE DB/ODBC bridge.

♦ If you use the Adaptive Server Anywhere OLE DB provider, ODBC is
not required in your deployment.

♦ MSDASQL allows OLE DB clients to work with any ODBC driver but
does not guarantee that you can use the full range of functionality of
each ODBC driver. Using the Adaptive Server Anywhere provider, you
can get full access to Adaptive Server Anywhere features from OLE DB
programming environments.

Supported platforms

The Adaptive Server Anywhere OLE DB provider is designed to work with
OLE DB 2.5 and later. For Windows CE and its successors, the OLE DB
provider is designed for ADOCE 3.0 and later.

ADOCE is the Microsoft ADO for Windows CE SDK and provides database
functionality for applications developed with the Windows CE Toolkits for
Visual Basic 5.0 and Visual Basic 6.0.

$ For a list of supported platforms, see "Operating system versions" on
page 136 of the book Introducing SQL Anywhere Studio.

Distributed transactions

The OLE DB driver can be used as a resource manager in a distributed
transaction environment.

Chapter 9 The OLE DB and ADO Programming Interfaces

339

$ For more information, see "Three-tier Computing and Distributed
Transactions" on page 361.

ADO programming with Adaptive Server Anywhere

340

ADO programming with Adaptive Server
Anywhere

ADO (ActiveX Data Objects) is a data access object model exposed through
an Automation interface, which allows client applications to discover the
methods and properties of objects at runtime without any prior knowledge of
the object. Automation allows scripting languages like Visual Basic to use a
standard data access object model. ADO uses OLE DB to provide data
access.

Using the Adaptive Server Anywhere OLE DB provider, you get full access
to Adaptive Server Anywhere features from an ADO programming
environment.

This section describes how to carry out basic tasks while using ADO from
Visual Basic. It is not a complete guide to programming using ADO.

Code samples from this section can be found in the following files:

Development tool Sample

Microsoft Visual Basic
6.0

Samples\ASA\VBSampler\vbsampler.vbp

Microsoft eMbedded
Visual Basic 3.0

Samples\ASA\ADOCE\OLEDB_PocketPC.ebp

$ For information on programming in ADO, see your development tool
documentation.

$ For a detailed discussion of how to use ADO and Visual Basic to
access data in an Adaptive Server Anywhere database, see the whitepaper
Accessing Data in Adaptive Server Anywhere Using ADO and Visual Basic,
which is available at http://www.sybase.com/detail?id=1017429.

Connecting to a database with the Connection object

This section describes a simple Visual Basic routine that connects to a
database.

You can try this routine by placing a command button named Command1
on a form, and pasting the routine into its Click event. Run the program and
click the button to connect and then disconnect.

Sample code

Chapter 9 The OLE DB and ADO Programming Interfaces

341

Private Sub cmdTestConnection_Click()
 ’ Declare variables
 Dim myConn As New ADODB.Connection
 Dim myCommand As New ADODB.Command
 Dim cAffected As Long

 On Error GoTo HandleError

 ’ Establish the connection
 myConn.Provider = "ASAProv"
 myConn.ConnectionString = _
 "Data Source=ASA 8.0 Sample"
 myConn.Open
 MsgBox "Connection succeeded"
 myConn.Close
 Exit Sub

HandleError:
 MsgBox "Connection failed"
 Exit Sub
End Sub

The sample carries out the following tasks:

♦ It declares the variables used in the routine.

♦ It establishes a connection, using the Adaptive Server Anywhere
OLE DB provider, to the sample database.

♦ It uses a Command object to execute a simple statement, which displays
a message on the database server window.

♦ It closes the connection.

When the ASAProv provider is installed, it registers itself. This registration
process includes making registry entries in the COM section of the registry,
so that ADO can locate the DLL when the ASAProv provider is called. If
you change the location of your DLL, you must reregister it.

v To register the OLE DB provider:

1 Open a command prompt.

2 Change to the directory where the OLE DB provider is installed.

3 Enter the following command to register the provider:

regsvr32 dboledb8.dll

$ For more information about connecting to a database using OLE DB,
see "Connecting to a database using OLE DB" on page 68 of the book ASA
Database Administration Guide.

Notes

ADO programming with Adaptive Server Anywhere

342

Executing statements with the Command object

This section describes a simple routine that sends a simple SQL statement to
the database.

You can try this routine by placing a command button named Command2
on a form, and pasting the routine into its Click event. Run the program and
click the button to connect, display a message on the database server
window, and then disconnect.

Private Sub cmdUpdate_Click()
 ’ Declare variables
 Dim myConn As New ADODB.Connection
 Dim myCommand As New ADODB.Command
 Dim cAffected As Long
 ’ Establish the connection
 myConn.Provider = "ASAProv"
 myConn.ConnectionString = _
 "Data Source=ASA 8.0 Sample"
 myConn.Open

 ’Execute a command
 myCommand.CommandText = _
 "update customer set fname=’Liz’ where id=102"
 Set myCommand.ActiveConnection = myConn
 myCommand.Execute cAffected
 MsgBox CStr(cAffected) +

" rows affected.", vbInformation

 myConn.Close
End Sub

After establishing a connection, the example code creates a Command
object, sets its CommandText property to an update statement, and sets its
ActiveConnection property to the current connection. It then executes the
update statement and displays the number of rows affected by the update in a
message box.

In this example, the update is sent to the database and committed as soon as
it is executed.

$ For information on using transactions within ADO, see "Using
transactions" on page 346.

You can also carry out updates through a cursor.

$ For more information, see "Updating data through a cursor" on
page 344.

Sample code

Notes

Chapter 9 The OLE DB and ADO Programming Interfaces

343

Querying the database with the Recordset object

The ADO Recordset object represents the result set of a query. You can use
it to view data from a database.

You can try this routine by placing a command button named cmdQuery on
a form and pasting the routine into its Click event. Run the program and
click the button to connect, display a message on the database server
window, execute a query and display the first few rows in message boxes,
and then disconnect.

Private Sub cmdQuery_Click()
’ Declare variables
 Dim myConn As New ADODB.Connection
 Dim myCommand As New ADODB.Command
 Dim myRS As New ADODB.Recordset

 On Error GoTo ErrorHandler:

 ’ Establish the connection
 myConn.Provider = "ASAProv"
 myConn.ConnectionString = _
 "Data Source=ASA 8.0 Sample"
 myConn.CursorLocation = adUseServer
 myConn.Mode = adModeReadWrite
 myConn.IsolationLevel = adXactCursorStability
 myConn.Open

 ’Execute a query
 Set myRS = New Recordset
 myRS.CacheSize = 50
 myRS.Source = "Select * from customer"
 myRS.ActiveConnection = myConn
 myRS.CursorType = adOpenKeyset
 myRS.LockType = adLockOptimistic
 myRS.Open

 ’Scroll through the first few results
 myRS.MoveFirst
 For i = 1 To 5
 MsgBox myRS.Fields("company_name"), vbInformation
 myRS.MoveNext
 Next

 myRS.Close
 myConn.Close
 Exit Sub
ErrorHandler:
 MsgBox Error(Err)
 Exit Sub
End Sub

Sample code

ADO programming with Adaptive Server Anywhere

344

The Recordset object in this example holds the results from a query on the
Customer table. The For loop scrolls through the first several rows and
displays the company_name value for each row.

This is a simple example of using a cursor from ADO.

$ For more advanced examples of using a cursor from ADO, see
"Working with Recordset object" on page 344.

Working with Recordset object

When working with Adaptive Server Anywhere, the ADO Recordset
represents a cursor. You can choose the type of cursor by declaring a
CursorType property of the Recordset object before you open the
Recordset. The choice of cursor type controls the actions you can take on
the Recordset and has performance implications.

The set of cursor types supported by Adaptive Server Anywhere is described
in "Cursor properties" on page 24. ADO has its own naming convention for
cursor types.

The available cursor types, the corresponding cursor type constants, and the
Adaptive Server Anywhere types they are equivalent to, are as follows:

ADO cursor type ADO constant Adaptive Server
Anywhere type

Dynamic cursor adOpenDynamic Dynamic scroll cursor

Keyset cursor adOpenKeyset Scroll cursor

Static cursor adOpenStatic Insensitive cursor

Forward only adOpenForwardOnly No-scroll cursor

$ For information on choosing a cursor type that is suitable for your
application, see "Choosing cursor types" on page 24.

The following code sets the cursor type for an ADO Recordset object:

Dim myRS As New ADODB.Recordset
myRS.CursorType = adOpenDynamic

Updating data through a cursor

The Adaptive Server Anywhere OLE DB provider lets you update a result
set through a cursor. This capability is not available through the MSDASQL
provider.

Notes

Cursor types

Sample code

Chapter 9 The OLE DB and ADO Programming Interfaces

345

You can update the database through a record set.

Private Sub Command6_Click()
 Dim myConn As New ADODB.Connection
 Dim myRS As New ADODB.Recordset
 Dim SQLString As String
 ’ Connect
 myConn.Provider = "ASAProv"
 myConn.ConnectionString = _
 "Data Source=ASA 8.0 Sample"
 myConn.Open
 myConn.BeginTrans
 SQLString = "Select * from customer"
 myRS.Open SQLString, _

myConn, adOpenDynamic, adLockBatchOptimistic

 If myRS.BOF And myRS.EOF Then
 MsgBox "Recordset is empty!", _
 16, "Empty Recordset"
 Else
 MsgBox "Cursor type: " + _
 CStr(myRS.CursorType), vbInformation
 myRS.MoveFirst
 For i = 1 To 3
 MsgBox "Row: " + CStr(myRS.Fields("id")), _
 vbInformation
 If i = 2 Then
 myRS.Update "City", "Toronto"
 myRS.UpdateBatch
 End If
 myRS.MoveNext
 Next i
’ myRS.MovePrevious
 myRS.Close
 End If
 myConn.CommitTrans
 myConn.Close
End Sub

If you use the adLockBatchOptimistic setting on the recordset, the
myRS.Update method does not make any changes to the database itself.
Instead, it updates a local copy of the Recordset.

The myRS.UpdateBatch method makes the update to the database server,
but does not commit it, because it is inside a transaction. If an UpdateBatch
method was invoked outside a transaction, the change would be committed.

The myConn.CommitTrans method commits the changes. The Recordset
object has been closed by this time, so there is no issue of whether the local
copy of the data is changed or not.

Updating record
sets

Notes

ADO programming with Adaptive Server Anywhere

346

Using transactions

By default, any change you make to the database using ADO is committed as
soon as it is executed. This includes explicit updates, as well as the
UpdateBatch method on a Recordset. However, the previous section
illustrated that you can use the BeginTrans and RollbackTrans or
CommitTrans methods on the Connection object to use transactions.

Transaction isolation level is set as a property of the Connection object. The
IsolationLevel property can take on one of the following values:

ADO isolation level Constant ASA level

Unspecified adXactUnspecified Not applicable. Set to 0

Chaos adXactChaos Unsupported. Set to 0

Browse adXactBrowse 0

Read uncommitted adXactReadUncommitted 0

Cursor stability adXactCursorStability 1

Read committed adXactReadCommitted 1

Repeatable read adXactRepeatableRead 2

Isolated adXactIsolated 3

Serializable adXactSerializable 3

$ For more information on isolation levels, see "Isolation levels and
consistency" on page 94 of the book ASA SQL User’s Guide.

Chapter 9 The OLE DB and ADO Programming Interfaces

347

Supported OLE DB interfaces
The OLE DB API consists of a set of interfaces. The following table
describes the support for each interface in the Adaptive Server Anywhere
OLE DB driver.

Interface Purpose Limitations

IAccessor Define bindings between
client memory and data store
values.

DBACCESSOR_PASS
BYREF not supported.

DBACCESSOR_OPTI
MIZED not supported.

IAlterIndex

IAlterTable

Alter tables, indexes, and
columns.

Not supported.

IChapteredRowset A chaptered rowset allows
rows of a rowset to be
accessed in separate
chapters.

Not supported.
Adaptive Server
Anywhere does not
support chaptered
rowsets.

IColumnsInfo Get simple information
about the columns of a
rowset.

Not on CE.

IColumnsRowset Get information about
optional metadata columns
in a rowset, and get a rowset
of column metadata.

Not on CE.

ICommand Execute SQL commands. Does not support
calling.
IcommandProperties:
GetProperties with
DBPROPSET_PROPE
RTIESINERROR to
find properties that
could not have been set.

ICommandPersist Persist the state of a
command object (but not any
active rowsets). These
persistent command objects
can subsequently be
enumerated using the
PROCEDURES or VIEWS
rowset.

Not on CE.

ICommandPrepare Prepare commands. Not on CE.

Supported OLE DB interfaces

348

Interface Purpose Limitations

ICommandProperties Set Rowset properties for
rowsets created by a
command. Most commonly
used to specify the interfaces
the rowset should support.

Supported.

ICommandText Set the SQL command text
for ICommand.

Only the
DBGUID_DEFAULT
SQL dialect is
supported.

IcommandWithParame
ters

Set or get parameter
information for a command.

No support for
parameters stored as
vectors of scalar values.

No support for BLOB
parameters.

Not on CE.

IConvertType Supported.

Limited on CE.

IDBAsynchNotify

IDBAsyncStatus

Asynchronous processing.

Notify client of events in the
asynchronous processing of
data source initialization,
populating rowsets, and so
on.

Not supported.

IDBCreateCommand Create commands from a
session.

Supported.

IDBCreateSession Create a session from a data
source object.

Supported.

IDBDataSourceAdmin Create/destroy/modify data
source objects, which are
COM objects used by
clients. This interface is not
used to manage data stores
(databases).

Not supported.

Chapter 9 The OLE DB and ADO Programming Interfaces

349

Interface Purpose Limitations

IDBInfo Find information about
keywords unique to this
provider (that is, to find
non-standard SQL
keywords).

Also, find information about
literals, special characters
used in text matching
queries, and other literal
information.

Not on CE.

IDBInitialize Initialize data source objects
and enumerators.

Not on CE.

IDBProperties Manage properties on a data
source object or enumerator.

Not on CE.

IDBSchemaRowset Get information about
system tables, in a standard
form (a rowset).

Not on CE.

IErrorInfo

IErrorLookup

IErrorRecords

ActiveX error object support. Not on CE.

IGetDataSource Returns an interface pointer
to the session’s data source
object.

Supported.

IIndexDefinition Create or drop indexes in the
data store.

Not supported.

IMultipleResults Retrieve multiple results
(rowsets or row counts) from
a command.

Supported.

IOpenRowset Non-SQL way to access a
database table by its name.

Supported.

Opening a table by its
name is supported, not
by a GUID.

IParentRowset Access
chaptered/hierarchical
rowsets.

Not supported.

IRowset Access rowsets. Supported.

Supported OLE DB interfaces

350

Interface Purpose Limitations

IRowsetChange Allow changes to rowset
data, reflected back to the
data store.

InsertRow/SetData for blobs
not yet implemented.

Not on CE.

IRowsetChapterMemb
er

Access
chaptered/hierarchical
rowsets.

Not supported.

IRowsetCurrentIndex Dynamically change the
index for a rowset.

Not supported.

IRowsetFind Find a row within a rowset
matching a specified value.

Not supported.

IRowsetIdentity Compare row handles. Not supported.

IRowsetIndex Access database indexes. Not supported.

IRowsetInfo Find information about a
rowset properties or to find
the object that created the
rowset.

Not on CE.

IRowsetLocate Position on rows of a rowset,
using bookmarks.

Not on CE.

IRowsetNotify Provides a COM callback
interface for rowset events.

Supported.

IRowsetRefresh Get the latest value of data
that is visible to a
transaction.

Not supported.

IRowsetResynch Old OLEDB 1.x interface,
superseded by
IRowsetRefresh.

Not supported.

IRowsetScroll Scroll through rowset to
fetch row data.

Not supported.

IRowsetUpdate Delay changes to rowset data
until Update is called.

Supported.

Not on CE.

IRowsetView Use views on an existing
rowset.

Not supported.

Chapter 9 The OLE DB and ADO Programming Interfaces

351

Interface Purpose Limitations

ISequentialStream Retrieve a blob column. Supported for reading
only.

No support for SetData
with this interface.

Not on CE.

ISessionProperties Get session property
information.

Supported.

ISourcesRowset Get a rowset of data source
objects and enumerators.

Not on CE.

ISQLErrorInfo

ISupportErrorInfo

ActiveX error object support. Optional on CE.

ITableDefinition

ITableDefinitionWith
Constraints

Create, drop, and alter tables,
with constraints.

Not on CE.

ITransaction Commit or abort
transactions.

Not all the flags are
supported.

Not on CE.

ITransactionJoin Support distributed
transactions.

Not all the flags are
supported.

Not on CE.

ITransactionLocal Handle transactions on a
session.

Not all the flags are
supported.

Not on CE.

Supported OLE DB interfaces

352

Interface Purpose Limitations

ITransactionOptions Get or set options on a
transaction.

Not on CE.

IViewChapter Work with views on an
existing rowset, specifically
to apply post-processing
filters/sorting on rows.

Not supported.

IViewFilter Restrict contents of a rowset
to rows matching a set of
conditions.

Not supported.

IViewRowset Restrict contents of a rowset
to rows matching a set of
conditions, when opening a
rowset.

Not supported.

IViewSort Apply sort order to a view. Not supported.

353

C H A P T E R 1 0

The Open Client Interface

This chapter describes the Open Client programming interface for Adaptive
Server Anywhere.

The primary documentation for Open Client application development is the
Open Client documentation, available from Sybase. This chapter describes
features specific to Adaptive Server Anywhere, but it is not an exhaustive
guide to Open Client application programming.

Topic Page

What you need to build Open Client applications 354

Data type mappings 355

Using SQL in Open Client applications 357

Known Open Client limitations of Adaptive Server Anywhere 360

About this chapter

Contents

What you need to build Open Client applications

354

What you need to build Open Client applications
To run Open Client applications, you must install and configure Open Client
components on the machine where the application is running. You may have
these components present as part of your installation of other Sybase
products or you can optionally install these libraries with Adaptive Server
Anywhere, subject to the terms of your license agreement.

Open Client applications do not need any Open Client components on the
machine where the database server is running.

To build Open Client applications, you need the development version of
Open Client, available from Sybase.

By default, Adaptive Server Anywhere databases are created as
case-insensitive, while Adaptive Server Enterprise databases are case
sensitive.

$ For more information on running Open Client applications with
Adaptive Server Anywhere, see "Adaptive Server Anywhere as an Open
Server" on page 105 of the book ASA Database Administration Guide.

Chapter 10 The Open Client Interface

355

Data type mappings
Open Client has its own internal data types, which differ in some details
from those available in Adaptive Server Anywhere. For this reason, Adaptive
Server Anywhere internally maps some data types between those used by
Open Client applications and those available in Adaptive Server Anywhere.

To build Open Client applications, you need the development version of
Open Client. To use Open Client applications, the Open Client runtimes must
be installed and configured on the computer where the application runs.

The Adaptive Server Anywhere server does not require any external
communications runtime in order to support Open Client applications.

Each Open Client data type is mapped onto the equivalent Adaptive Server
Anywhere data type. All Open Client data types are supported

The following table lists the mappings of data types supported in Adaptive
Server Anywhere that have no direct counterpart in Open Client.

ASA data type Open Client data type

unsigned short int

unsigned int bigint

unsigned bigint bigint

date smalldatetime

time smalldatetime

serialization longbinary

java longbinary

string varchar

timestamp struct datetime

Range limitations in data type mapping

Some data types have different ranges in Adaptive Server Anywhere than in
Open Client. In such cases, overflow errors can occur during retrieval or
insertion of data.

The following table lists Open Client application data types that can be
mapped to Adaptive Server Anywhere data types, but with some restriction
in the range of possible values.

Adaptive Server
Anywhere data
types with no direct
counterpart in
Open Client

Data type mappings

356

In most cases, the Open Client data type is mapped to an Adaptive Server
Anywhere data type that has a greater range of possible values. As a result, it
is possible to pass a value to Adaptive Server Anywhere that will be accepted
and stored in a database, but one that is too large to be fetched by an Open
Client application.

Data type Open Client
lower range

Open Client
upper range

ASA lower
range

ASA upper
range

MONEY –922 377 203
685 477.5808

922 377 203
685 477.5807

–1e15 + 0.0001 1e15 – 0.0001

SMALLMONEY –214 748.3648 214 748.3647 –214 748.3648 214 748.3647

DATETIME Jan 1, 1753 Dec 31, 9999 Jan 1, 0001 Dec 31, 9999

SMALLDATETIME Jan 1, 1900 June 6, 2079 March 1, 1600 Dec 31, 7910

For example, the Open Client MONEY and SMALLMONEY data types do
not span the entire numeric range of their underlying Adaptive Server
Anywhere implementations. Therefore, it is possible to have a value in an
Adaptive Server Anywhere column which exceeds the boundaries of the
Open Client data type MONEY. When the client fetches any such offending
values via Adaptive Server Anywhere, an error is generated.

The Adaptive Server Anywhere implementation of the Open Client
TIMESTAMP data type, when such a value is passed in Adaptive Server
Anywhere, is different from that of Adaptive Server Enterprise. In Adaptive
Server Anywhere, the value is mapped to the Adaptive Server Anywhere
DATETIME data type. The default value is NULL in Adaptive Server
Anywhere and no guarantee is made of its uniqueness. By contrast, Adaptive
Server Enterprise ensures that the value is monotonically increasing in value,
and so, is unique.

By contrast, the Adaptive Server Anywhere TIMESTAMP data type contains
year, month, day, hour, minute, second, and fraction of second information.
In addition, the DATETIME data type has a greater range of possible values
than the Open Client data types that are mapped to it by Adaptive Server
Anywhere.

Example

Timestamps

Chapter 10 The Open Client Interface

357

Using SQL in Open Client applications
This section provides a very brief introduction to using SQL in Open Client
applications, with a particular focus on Adaptive Server Anywhere-specific
issues.

$ For an introduction to the concepts, see "Using SQL in Applications"
on page 9. For a complete description, see your Open Client documentation.

Executing SQL statements

You send SQL statements to a database by including them in Client Library
function calls. For example, the following pair of calls executes a DELETE
statement:

ret = ct_command(cmd, CS_LANG_CMD,
 "DELETE FROM employee
 WHERE emp_id=105"
 CS_NULLTERM,
 CS_UNUSED);
ret = ct_send(cmd);

The ct_command function is used for a wide range of purposes.

Using prepared statements

The ct_dynamic function is used to manage prepared statements. This
function takes a type parameter which describes the action you are taking.

v To use a prepared statement in Open Client:

1 Prepare the statement using the ct_dynamic function, with a
CS_PREPARE type parameter.

2 Set statement parameters using ct_param.

3 Execute the statement using ct_dynamic with a CS_EXECUTE type
parameter.

4 Free the resources associated with the statement using ct_dynamic
with a CS_DEALLOC type parameter.

$ For more information on using prepared statements in Open Client, see
your Open Client documentation

Using SQL in Open Client applications

358

Using cursors

The ct_cursor function is used to manage cursors. This function takes a
type parameter which describes the action you are taking.

Not all the types of cursor that Adaptive Server Anywhere supports are
available through the Open Client interface. You cannot use scroll cursors,
dynamic scroll cursors, or insensitive cursors through Open Client.

Uniqueness and updateability are two properties of cursors. Cursors can be
unique (each row carries primary key or uniqueness information, regardless
of whether it is used by the application) or not. Cursors can be read only or
updateable. If a cursor is updateable and not unique, performance may suffer,
as no prefetching of rows is done in this case, regardless of the
CS_CURSOR_ROWS setting (see below).

In contrast to some other interfaces, such as Embedded SQL, Open Client
associates a cursor with a SQL statement expressed as a string. Embedded
SQL first prepares a statement and then the cursor is declared using the
statement handle.

v To use cursors in Open Client:

1 To declare a cursor in Open Client, you use ct_cursor with
CS_CURSOR_DECLARE as the type parameter.

2 After declaring a cursor, you can control how many rows are prefetched
to the client side each time a row is fetched from the server using
ct_cursor with CS_CURSOR_ROWS as the type parameter.

Storing prefetched rows at the client side cuts down the number of calls
to the server and this improves overall throughput as well as turnaround
time. Prefetched rows are not immediately passed on to the application;
they are stored in a buffer at the client side ready for use.

The setting of the PREFETCH database option controls prefetching of
rows for other interfaces. It is ignored by Open Client connections. The
CS_CURSOR_ROWS setting is ignored for non-unique, updateable
cursors.

3 To open a cursor in Open Client, you use ct_cursor with
CS_CURSOR_OPEN as the type parameter.

4 To fetch each row in to the application, you use ct_fetch.

5 To close a cursor, you use ct_cursor with CS_CURSOR_CLOSE.

Supported cursor
types

The steps in using
cursors

Chapter 10 The Open Client Interface

359

6 In Open Client, you also need to deallocate the resources associated with
a cursor. You do this using ct_cursor with CS_CURSOR_DEALLOC.
You can also use CS_CURSOR_CLOSE with the additional parameter
CS_DEALLOC to carry out these operations in a single step.

Modifying rows through a cursor

With Open Client, you can delete or update rows in a cursor, as long as the
cursor is for a single table. The user must have permissions to update the
table and the cursor must be marked for update.

v To modify rows through a cursor:

♦ Instead of carrying out a fetch, you can delete or update the current row
of the cursor using ct_cursor with CS_CURSOR_DELETE or
CS_CURSOR_UPDATE, respectively.

You cannot insert rows through a cursor in Open Client applications.

Describing query results in Open Client

Open Client handles result sets in a different way than some other Adaptive
Server Anywhere interfaces.

In Embedded SQL and ODBC, you describe a query or stored procedure in
order to set up the proper number and types of variables to receive the
results. The description is done on the statement itself.

In Open Client, you do not need to describe a statement. Instead, each row
returned from the server can carry a description of its contents. If you use
ct_command and ct_send to execute statements, you can use the
ct_results function to handle all aspects of rows returned in queries.

If you do not wish to use this row-by-row method of handling result sets, you
can use ct_dynamic to prepare a SQL statement and use ct_describe
to describe its result set. This corresponds more closely to the describing of
SQL statements in other interfaces.

Known Open Client limitations of Adaptive Server Anywhere

360

Known Open Client limitations of Adaptive
Server Anywhere

Using the Open Client interface, you can use an Adaptive Server Anywhere
database in much the same way as you would an Adaptive Server Enterprise
database. There are some limitations, including the following:

♦ Commit Service Adaptive Server Anywhere does not support the
Adaptive Server Enterprise Commit Service.

♦ Capabilities A client/server connection’s capabilities determine the
types of client requests and server responses permitted for that
connection. The following capabilities are not supported:

♦ CS_REG_NOTIF

♦ CS_CSR_ABS

♦ CS_CSR_FIRST

♦ CS_CSR_LAST

♦ CS_CSR_PREV

♦ CS_CSR_REL

♦ CS_DATA_BOUNDARY

♦ CS_DATA_SENSITIVITY

♦ CS_PROTO_DYNPROC

♦ CS_REQ_BCP

♦ Security options, such as SSL and encrypted passwords, are not
supported.

♦ Open Client applications may connect to Adaptive Server Anywhere
using TCP/IP or using local machine NamedPipes protocol where
available.

$ For more information on capabilities, see the Open Server Server-
Library C Reference Manual.

361

C H A P T E R 1 1

Three-tier Computing and Distributed
Transactions

This chapter describes how to use Adaptive Server Anywhere in a three-tier
environment with an application server. It focuses on how to enlist Adaptive
Server Anywhere in distributed transactions.

Topic Page

Introduction 362

Three-tier computing architecture 363

Using distributed transactions 367

Using EAServer with Adaptive Server Anywhere 369

About this chapter

Contents

Introduction

362

Introduction
You can use Adaptive Server Anywhere as a database server or resource
manager, participating in distributed transactions coordinated by a
transaction server.

A three-tier environment, where an application server sits between client
applications and a set of resource managers, is a common
distributed-transaction environment. Sybase EAServer and some other
application servers are also transaction servers.

Sybase EAServer and Microsoft Transaction Server both use the Microsoft
Distributed Transaction Coordinator (DTC) to coordinate transactions.
Adaptive Server Anywhere provides support for distributed transactions
controlled by the DTC service, so you can use Adaptive Server Anywhere
with either of these application servers, or any other product based on the
DTC model.

When integrating Adaptive Server Anywhere into a three-tier environment,
most of the work needs to be done from the Application Server. This chapter
provides an introduction to the concepts and architecture of three-tier
computing, and an overview of relevant Adaptive Server Anywhere features.
It does not describe how to configure your Application Server to work with
Adaptive Server Anywhere. For more information, see your Application
Server documentation.

Chapter 11 Three-tier Computing and Distributed Transactions

363

Three-tier computing architecture
In three-tier computing, application logic is held in an application server,
such as Sybase EAServer, which sits between the resource manager and the
client applications. In many situations, a single application server may access
multiple resource managers. In the Internet case, client applications are
browser-based, and the application server is generally a Web server
extension.

Application
Server

Sybase EAServer stores application logic in the form of components, and
makes these components available to client applications. The components
may be PowerBuilder components, JavaBeans, or COM components.

$ For more information, see the Sybase EAServer documentation.

Three-tier computing architecture

364

Distributed transactions in three-tier computing

When client applications or application servers work with a single
transaction processing database, such as Adaptive Server Anywhere, there is
no need for transaction logic outside the database itself, but when working
with multiple resource managers, transaction control must span the resources
involved in the transaction. Application servers provide transaction logic to
their client applications—guaranteeing that sets of operations are executed
atomically.

Many transaction servers, including Sybase EAServer, use the Microsoft
Distributed Transaction Coordinator (DTC) to provide transaction services to
their client applications. DTC uses OLE transactions, which in turn use the
two-phase commit protocol to coordinate transactions involving multiple
resource managers. You must have DTC installed in order to use the features
described in this chapter.

Adaptive Server Anywhere can take part in transactions coordinated by
DTC, which means that you can use Adaptive Server Anywhere databases in
distributed transactions using a transaction server such as Sybase EAServer
or Microsoft Transaction Server. You can also use DTC directly in your
applications to coordinate transactions across multiple resource managers.

The vocabulary of distributed transactions

This chapter assumes some familiarity with distributed transactions. For
information, see your transaction server documentation. This section
describes some commonly used terms.

♦ Resource managers are those services that manage the data involved in
the transaction.

The Adaptive Server Anywhere database server can act as a resource
manager in a distributed transaction when accessed through OLE DB or
ODBC. The ODBC driver and OLE DB provider act as resource
manager proxies on the client machine.

♦ Instead of communicating directly with the resource manager,
application components may communicate with resource dispensers,
which in turn manage connections or pools of connections to the
resource managers.

Adaptive Server Anywhere supports two resource dispensers: the ODBC
driver manager and OLE DB.

Adaptive Server
Anywhere in
distributed
transactions

Chapter 11 Three-tier Computing and Distributed Transactions

365

♦ When a transactional component requests a database connection (using a
resource manager), the application server enlists each database
connection takes part in the transaction. DTC and the resource dispenser
carry out the enlistment process.

Distributed transactions are managed using two-phase commit. When the
work of the transaction is complete, the transaction manager (DTC) asks all
the resource managers enlisted in the transaction whether they are ready to
commit the transaction. This phase is called preparing to commit.

If all the resource managers respond that they are prepared to commit, DTC
sends a commit request to each resource manager, and responds to its client
that the transaction is completed. If one or more resource manager does not
respond, or responds that it cannot commit the transaction, all the work of the
transaction is rolled back across all resource managers.

How application servers use DTC

Sybase EAServer and Microsoft Transaction Server are both component
servers. The application logic is held in the form of components, and made
available to client applications.

Each component has a transaction attribute that indicates how the component
participates in transactions. The application developer building the
component must program the work of the transaction into the component—
the resource manager connections, the operations on the data for which each
resource manager is responsible. However, the application developer does
not need to add transaction management logic to the component. Once the
transaction attribute is set, to indicate that the component needs transaction
management, EAServer uses DTC to enlist the transaction and manage the
two-phase commit process.

Distributed transaction architecture

The following diagram illustrates the architecture of distributed transactions.
In this case, the resource manager proxy is either ODBC or OLE DB.

Two-phase commit

Three-tier computing architecture

366

DTCDTC

DTC
Resource
Manager

Proxy

Resource
Manager

Proxy

Application
Server

Client
system

Server
system 1

Server
system 2

In this case, a single resource dispenser is used. The Application Server asks
DTC to prepare a transaction. DTC and the resource dispenser enlist each
connection in the transaction. Each resource manager must be in contact with
both DTC and the database, so as to carry out the work and to notify DTC of
its transaction status when required.

A DTC service must be running on each machine in order to operate
distributed transactions. You can control DTC services from the Services
icon in the Windows control panel; the DTC service is named MSDTC.

$ For more information, see your DTC or EAServer documentation.

Chapter 11 Three-tier Computing and Distributed Transactions

367

Using distributed transactions
While Adaptive Server Anywhere is enlisted in a distributed transaction, it
hands transaction control over to the transaction server, and Adaptive Server
Anywhere ensures that it does not carry out any implicit transaction
management. The following conditions are imposed automatically by
Adaptive Server Anywhere when it participates in distributed transactions:

♦ Autocommit is automatically turned off, if it is in use.

♦ Data definition statements (which commit as a side effect) are
disallowed during distributed transactions.

♦ An explicit COMMIT or ROLLBACK issued by the application directly
to Adaptive Server Anywhere, instead of through the transaction
coordinator, generates an error. The transaction is not aborted, however.

♦ A connection can participate in only a single distributed transaction at a
time.

♦ There must be no uncommitted operations at the time the connection is
enlisted in a distributed transaction.

DTC isolation levels

DTC has a set of isolation levels, which the application server specifies.
These isolation levels map to Adaptive Server Anywhere isolation levels as
follows:

DTC isolation level Adaptive Server
Anywhere isolation level

ISOLATIONLEVEL_UNSPECIFIED 0

ISOLATIONLEVEL_CHAOS 0

ISOLATIONLEVEL_READUNCOMMITTED 0

ISOLATIONLEVEL_BROWSE 0

ISOLATIONLEVEL_CURSORSTABILITY 1

ISOLATIONLEVEL_READCOMMITTED 1

ISOLATIONLEVEL_REPEATABLEREAD 2

ISOLATIONLEVEL_SERIALIZABLE 3

ISOLATIONLEVEL_ISOLATED 3

Using distributed transactions

368

Recovery from distributed transactions

If the database server faults while uncommitted operations are pending, it
must either rollback or commit those operations on startup to preserve the
atomic nature of the transaction.

If uncommitted operations from a distributed transaction are found during
recovery, the database server attempts to connect to DTC and requests that it
be re-enlisted in the pending or in-doubt transactions. Once the re-enlistment
is complete, DTC instructs the database server to roll back or commit the
outstanding operations.

If the reenlistment process fails, Adaptive Server Anywhere has no way of
knowing whether the in-doubt operations should be committed or rolled
back, and recovery fails. If you want the database in such a state to recover,
regardless of the uncertain state of the data, you can force recovery using the
following database server options:

♦ -tmf If DTC cannot be located, the outstanding operations are rolled
back and recovery continues.

$ For more information, see "–tmf server option" on page 151 of the
book ASA Database Administration Guide.

♦ -tmt If re-enlistment is not achieved before the specified time, the
outstanding operations are rolled back and recovery continues.

$ For more information, see "–tmt server option" on page 151 of the
book ASA Database Administration Guide.

Chapter 11 Three-tier Computing and Distributed Transactions

369

Using EAServer with Adaptive Server Anywhere
This section provides an overview of the actions you need to take in
EAServer 3.0 or later to work with Adaptive Server Anywhere. For more
detailed information, see the EAServer documentation.

Configuring EAServer

All components installed in a Sybase EAServer share the same transaction
coordinator.

EAServer 3.0 and later offer a choice of transaction coordinators. You must
use DTC as the transaction coordinator if you are including Adaptive Server
Anywhere in the transactions. This section describes how to configure
EAServer 3.0 to use DTC as its transaction coordinator.

The component server in EAServer is named Jaguar.

v To configure an EAServer to use the Microsoft DTC transaction
model:

1 Ensure that your Jaguar server is running.

On Windows, the Jaguar server commonly runs as a service. To
manually start the installed Jaguar server that comes with EAServer 3.0,
select Start➤Programs➤Sybase➤EAServer➤EAServer.

2 Start Jaguar Manager.

From the Windows desktop, select
Start➤Programs➤Sybase➤EAServer➤Jaguar Manager.

3 Connect to the Jaguar server from Jaguar Manager.

From the Sybase Central menu, choose Tools➤Connect➤Jaguar
Manager. In the connection dialog, enter jagadmin as the User Name,
leave the Password field blank, and enter a Host Name of localhost.
Click OK to connect.

4 Set the transaction model for the Jaguar server.

In the left pane, open the Servers folder. In the right pane, right click on
the server you wish to configure, and select Server Properties from the
drop down menu. Click the Transactions tab, and choose Microsoft DTC
as the transaction model. Click OK to complete the operation.

Using EAServer with Adaptive Server Anywhere

370

Setting the component transaction attribute

In EAServer you may implement a component that carries out operations on
more than one database. You assign a transaction attribute to this
component that defines how it participates in transactions. The transaction
attribute can have the following values:

♦ Not Supported The component’s methods never execute as part of a
transaction. If the component is activated by another component that is
executing within a transaction, the new instance’s work is performed
outside the existing transaction. This is the default.

♦ Supports Transaction The component can execute in the context of a
transaction, but a connection is not required in order to execute the
component’s methods. If the component is instantiated directly by a base
client, EAServer does not begin a transaction. If component A is
instantiated by component B, and component B is executing within a
transaction, component A executes in the same transaction.

♦ Requires Transaction The component always executes in a
transaction. When the component is instantiated directly by a base client,
a new transaction begins. If component A is activated by component B,
and B is executing within a transaction, then A executes within the same
transaction; if B is not executing in a transaction, then A executes in a
new transaction.

♦ Requires New Transaction Whenever the component is instantiated,
a new transaction begins. If component A is activated by component B,
and B is executing within a transaction, then A begins a new transaction
that is unaffected by the outcome of B’s transaction; if B is not executing
in a transaction, then A executes in a new transaction.

For example, in the Sybase Virtual University sample application, included
with EAServer as the SVU package, the SVUEnrollment component
enroll() method carries out two separate operations (reserves a seat in a
course, bills the student for the course). These two operations need to be
treated as a single transaction.

Microsoft Transaction Server provides the same set of attribute values.

v To set the transaction attribute of a component:

1 In Jaguar Manager, locate the component.

To find the SVUEnrollment component in the Jaguar sample
application, connect to the Jaguar server, open the Packages folder, and
open the SVU package. The components in the package are listed in the
right pane.

2 Set the transaction attribute for the desired component.

Chapter 11 Three-tier Computing and Distributed Transactions

371

Right click the component, and select Component Properties from the
popup menu. Click the Transaction tab, and choose the transaction
attribute value from the list. Click OK to complete the operation.

The SVUEnrollment component is already marked as Requires
Transaction.

Once the component transaction attribute is set, you can carry out Adaptive
Server Anywhere operations from that component, and be assured of
transaction processing at the level you have specified.

Using EAServer with Adaptive Server Anywhere

372

373

C H A P T E R 1 2

Deploying Databases and Applications

This chapter describes how to deploy Adaptive Server Anywhere
components. It identifies the files required for deployment, and addresses
related issues such as connection settings.

Check your license agreement
Redistribution of files is subject to your license agreement. No statements
in this document override anything in your license agreement. Please
check your license agreement before considering deployment.

Topic Page

Deployment overview 374

Understanding installation directories and file names 376

Using InstallShield objects and templates for deployment 380

Using a silent installation for deployment 382

Deploying client applications 385

Deploying administration tools 395

Deploying database servers 396

Deploying embedded database applications 398

About this chapter

Contents

Deployment overview

374

Deployment overview
When you have completed a database application, you must deploy the
application to your end users. Depending on the way in which your
application uses Adaptive Server Anywhere (as an embedded database, in a
client/server fashion, and so on) you may have to deploy components of the
Adaptive Server Anywhere software along with your application. You may
also have to deploy configuration information, such as data source names,
that enable your application to communicate with Adaptive Server
Anywhere.

Check your license agreement
Redistribution of files is subject to your license agreement with Sybase.
No statements in this document override anything in your license
agreement. Please check your license agreement before considering
deployment.

The following deployment steps are examined in this chapter:

♦ Determining required files based on the choice of application platform
and architecture.

♦ Configuring client applications.

Much of the chapter deals with individual files and where they need to be
placed. However, the recommended way of deploying Adaptive Server
Anywhere components is to use the Installshield objects or to use a silent
installation. For information, see "Using InstallShield objects and templates
for deployment" on page 380, and "Using a silent installation for
deployment" on page 382.

Deployment models

The files you need to deploy depend on the deployment model you choose.
Here are some possible deployment models:

♦ Client deployment You may deploy only the client portions of
Adaptive Server Anywhere to your end-users, so that they can connect
to a centrally located network database server.

♦ Network server deployment You may deploy network servers to
offices, and then deploy clients to each of the users within those offices.

Chapter 12 Deploying Databases and Applications

375

♦ Embedded database deployment You may deploy an application
that runs with the personal database server. In this case, both client and
personal server need to be installed on the end-user’s machine.

♦ SQL Remote deployment Deploying a SQL Remote application is an
extension of the embedded database deployment model.

♦ Database tools deployment You may deploy Interactive SQL,
Sybase Central and other management tools.

Ways to distribute files

There are two ways to deploy Adaptive Server Anywhere:

♦ Use the Adaptive Server Anywhere installation You can make the
Setup program available to your end-users. By selecting the proper
option, each end-user is guaranteed of getting the files they need.

This is the simplest solution for many deployment cases. In this case,
you must still provide your end users with a method for connecting to
the database server (such as an ODBC data source).

$ For more information, see "Using a silent installation for
deployment" on page 382.

♦ Develop your own installation There may be reasons for you to
develop your own installation program that includes Adaptive Server
Anywhere files. This is a more complicated option, and most of this
chapter addresses the needs of those who are developing their own
installation.

If Adaptive Server Anywhere has already been installed for the server
type and operating system required by the client application architecture,
the required files can be found in the appropriately named subdirectory,
located in the Adaptive Server Anywhere installation directory.

For example, assuming the default installation directory was chosen, the
win32 subdirectory of your installation directory contains the files
required to run the server for Windows operating systems.

As well, users of InstallShield Professional 5.5 and up can use the
SQL Anywhere Studio InstallShield Template Projects to deploy their
own application. This feature allows you to quickly build your
application’s installation using the entire template project, or just the
parts that apply to your install.

Whichever option you choose, you must not violate the terms of your license
agreement.

Understanding installation directories and file names

376

Understanding installation directories and file
names

For a deployed application to work properly, the database server and client
libraries must each be able to locate the files they need. The deployed files
should be located relative to each other in the same fashion as your Adaptive
Server Anywhere installation.

In practice, this means that on PCs, most files belong in a single directory.
For example, on Windows both client and database server required files are
installed in a single directory, which is the win32 subdirectory of the
Adaptive Server Anywhere installation directory.

$ For a full description of the places where the software looks for files,
see "How Adaptive Server Anywhere locates files" on page 206 of the book
ASA Database Administration Guide.

UNIX deployment issues

UNIX deployments are different from PC deployments in some ways:

♦ Directory structure For UNIX installations, the directory structure is
as follows:

Directory Contents

/opt/sybase/SYBSsa8/bin Executable files

/opt/sybase/SYBSsa8/lib Shared objects and libraries

/opt/sybase/SYBSsa8/res String files

On AIX, the default root directory is /usr/lpp/sybase/SYBSsa8 instead of
/opt/sybase/SYBSsa8.

♦ File extensions In the tables in this chapter, the shared objects are
listed with an extension .so. For HP-UX, the extension is .sl.

On the AIX operating system, shared objects that applications need to
link to are given the extension .a.

♦ Symbolic links Each shared object is installed as a symbolic link to a
file of the same name with the additional extension .1 (one). For
example, the libdblib8.so is a symbolic link to the file libdblib8.so.1 in
the same directory.

Chapter 12 Deploying Databases and Applications

377

If patches are required to the Adaptive Server Anywhere installation,
these will be supplied with extension .2, and the symbolic link must be
redirected.

♦ Threaded and unthreaded applications Most shared objects are
provided in two forms, one of which has the additional characters _r
before the file extension. For example, in addition to libdblib8.so, there is
a file named libdblib8_r.so. In this case, threaded applications must be
linked to the _r shared object, while non-threaded applications must be
linked to the shared object without the _r characters.

♦ Character set conversion If you want to use database server
character set conversion (the -ct server option), you need to include the
following files:

♦ libunic.so

♦ charsets/ directory subtree

♦ asa.cvf

$ For a description of the places where the software looks for files, see
"How Adaptive Server Anywhere locates files" on page 206 of the book ASA
Database Administration Guide.

File naming conventions

Adaptive Server Anywhere uses consistent file naming conventions to help
identify and group system components.

These conventions include:

♦ Version number The Adaptive Server Anywhere version number is
indicated in the filename of the main server components (.exe and .dll
files).

For example, the file dbeng8.exe is a Version 8 executable.

♦ Language The language used in a language resource library is
indicated by a two-letter code within its filename. The two characters
before the version number indicate the language used in the library. For
example, dblgen8.dll is the language resource library for English. These
two-letter codes are specified by ISO standard 639.

$ For more information about language labels, see "Understanding
the locale language" on page 263 of the book ASA Database
Administration Guide.

Understanding installation directories and file names

378

You can download an International Resources Deployment Kit containing
language resource deployment DLLs free of charge from the Sybase Web
site.

v To download the International Resources Deployment Kit from the
Sybase Web site:

1 Open the following URL in your Web browser:

http://www.sybase.com/products/anywhere/

2 Under the heading SQL Anywhere Studio on the left hand side of the
page, click Downloads.

3 Under the heading Emergency Bug Fix/Updates, click An assortment of
Emergency Bug Fixes and Updates for SQL Anywhere Studio.

4 Login to your Sybase Web account.

Click Create a New Account to create a Sybase Web account if you do
not have one already.

5 From the list of available downloads, select the International Resources
Deployment Kit that matches the platform and version of Adaptive
Server Anywhere that you are currently using.

$ For a list of the languages available in Adaptive Server Anywhere, see
"Supplied collations" on page 269 of the book ASA Database Administration
Guide.

The following table identifies the platform and function of Adaptive Server
Anywhere files according to their file extension. Adaptive Server Anywhere
follows standard file extension conventions where possible.

Identifying other
file types

Chapter 12 Deploying Databases and Applications

379

File extension Platform File type

.nlm Novell NetWare NetWare Loadable
Module

.cnt, .ftg, .fts, .gid, .hlp,

.chm, .chw
Windows Help system file

.lib Varies by development
tool

Static runtime libraries
for the creation of
embedded SQL
executables

.cfg, .cpr, .dat, .loc,

.spr, .srt, .xlt
Windows Sybase Adaptive Server

Enterprise components

.cmd .bat Windows Command files

.res NetWare, UNIX Language resource file
for non-Windows
environments

.dll Windows Dynamic Link Library

.so .sl .a UNIX Shared object (Sun
Solaris and IBM AIX) or
shared library (HP-UX)
file. The equivalent of a
DLL on PC platforms.

Adaptive Server Anywhere databases are composed of two elements:

♦ Database file This is used to store information in an organized
format. This file uses a .db file extension.

♦ Transaction log file This is used to record all changes made to data
stored in the database file. This file uses a .log file extension, and is
generated by Adaptive Server Anywhere if no such file exists and a log
file is specified to be used. A mirrored transaction log has the default
extension of .mlg.

♦ Write file If your application uses a write file, it typically has a .wrt file
extension.

♦ Compressed database file If you supply a read-only compressed
database file, it typically has extension .cdb.

These files are updated, maintained and managed by the Adaptive Server
Anywhere relational database-management system.

Database file
names

Using InstallShield objects and templates for deployment

380

Using InstallShield objects and templates for
deployment

If you are using InstallShield 6 and up, you can include SQL Anywhere
Studio InstallShield Objects in your install program. The objects for
deploying clients, personal database servers, network servers, and
administration tools are found in the deployment\Object directory under your
SQL Anywhere directory.

Users of InstallShield Professional 5.5 and up can use SQL Anywhere Studio
InstallShield Template Projects to ease the deployment workload. Templates
for deploying a network server, personal server, client interfaces, and
administration tools can be found in the SQL Anywhere
8\deployment\Templates folder.

If you have InstallShield 6 or later, the Objects are recommended rather than
the templates, as they are more easily incorporated into an install along with
other components.

v To add a template project to your InstallShield IDE:

1 Start InstallShield IDE.

2 Choose File➤Open.

3 Navigate to your SQL Anywhere 8 installation and to the deployment
folder

For example, navigate to

C:\Program Files\Sybase\SQL Anywhere 8\deployment

4 Open the Template folder corresponding to the type of object you want
to deploy.

You can choose NetworkServer, PersonalServer, Client, or JavaTools.

5 Select the file with the .ipr extension.

The project opens in the InstallShield IDE. The Projects pane displays
an icon for the template.

The templates will be modified at install time so that the paths to the
individual files listed in all of the .fgl files point to the actual install of
ASA. Simply load the template in the InstallShield IDE, build the media,
and the template will run immediately.

Chapter 12 Deploying Databases and Applications

381

When building the media, you will see warnings about empty file
groups. These warnings are caused by empty file groups which have
been added to the templates as placeholders for your application’s files.
To remove these warnings, you can either add your application’s files to
the file groups, or delete or rename the file groups.

Notes:

Using a silent installation for deployment

382

Using a silent installation for deployment
Silent installations run without user input and with no indication to the user
that an installation is occurring. On Windows operating systems you can call
the Adaptive Server Anywhere InstallShield setup program from your own
setup program in such a way that the Adaptive Server Anywhere installation
is silent. Silent installs are also used with Microsoft’s Systems Management
Server (see "SMS Installation" on page 384).

You can use a silent installation for any of the deployment models described
in "Deployment models" on page 374. You can also use a silent installation
for deploying MobiLink synchronization servers.

Creating a silent install

The installation options used by a silent installation are obtained from a
response file. The response file is created by running the Adaptive Server
Anywhere setup program using the –r option. A silent install is performed
by running setup using the –s option.

Do not use the browse buttons
When creating a silent install do not use the browse buttons. The
recording of the browse buttons is not reliable.

v To create a silent install:

1 (Optional) Remove any existing installations of Adaptive Server
Anywhere.

2 Open a system command prompt, and change to the directory containing
the install image (including setup.exe, setup.ins, and so on).

3 Install the software, using Record mode.

Type the following command:

setup –r

This command runs the Adaptive Server Anywhere setup program and
creates the response file from your selections. The response file is
named setup.iss, and is located in your Windows directory. This file
contains the responses you made to the dialog boxes during installation.

When run in record mode, the installation program does not offer to
reboot your operating system, even if a reboot is needed.

Chapter 12 Deploying Databases and Applications

383

4 Install Adaptive Server Anywhere using the options, and settings that
you want to be used when you deploy Adaptive Server Anywhere on the
end-user’s machine for use with your application. You can override the
paths during the silent install.

Running a silent install

Your own installation program must call the Adaptive Server Anywhere
silent install using the –s option. This section describes how to use a silent
install.

v To use a silent install:

1 Add the command to invoke the Adaptive Server Anywhere silent install
to your installation procedure.

If the response file is present in the install image directory, you can run
the silent install by entering the following command from the directory
containing the install image:

setup –s

If the response file is located elsewhere you must specify the response
file location using the –f1 option. There must be no space between f1
and the quotation mark in the following command line.

setup –s –f1"c:\winnt\setup.iss"

To invoke the install from another InstallShield script you could use the
following:

DoInstall(" ASA_install_image_path\SETUP.INS",
"-s", WAIT);

You can use options to override the choices of paths for both the
Adaptive Server Anywhere directory and the shared directory:

setup TARGET_DIR=dirname SHARED_DIR=shared_dir –s

The TARGET_DIR and SHARED_DIR arguments must precede all
other options.

2 Check whether the target computer needs to reboot.

Setup creates a file named silent.log in the target directory. This file
contains a single section called ResponseResult containing the
following line:

Reboot= value

Using a silent installation for deployment

384

This line indicates whether the target computer needs to be rebooted to
complete the installation, and has a value of 0 or 1, with the following
meanings.

♦ Reboot=0 No reboot is needed.

♦ Reboot=1 The BATCH_INSTALL flag was set during the
installation, and the target computer does need to be rebooted. The
installation procedure that called the silent install is responsible for
checking the Reboot entry and for rebooting the target computer, if
necessary.

3 Check that the setup completed properly.

Setup creates a file named setup.log in the directory containing the
response file. The log file contains a report on the silent install. The last
section of this file is called ResponseResult, and contains the following
line:

ResultCode=value

This line indicates whether the installation was successful. A non-zero
ResultCode indicates an error occurred during installation. For a
description of the error codes, see your InstallShield documentation.

SMS Installation

Microsoft System Management Server (SMS) requires a silent install that
does not reboot the target computer. The Adaptive Server Anywhere silent
install does not reboot the computer.

Your SMS distribution package should contain the response file, the install
image and the asa8.pdf package definition file (provided on the Adaptive
Server Anywhere CD ROM in the \extras folder). The setup command in the
PDF file contains the following options:

♦ The –s option for a silent install

♦ The –SMS option to indicate that it is being invoked by SMS.

♦ The –m option to generate a MIF file. The MIF file is used by SMS to
determine whether the installation was successful.

Chapter 12 Deploying Databases and Applications

385

Deploying client applications
In order to deploy a client application that runs against a network database
server, you must provide each end user with the following items:

♦ Client application The application software itself is independent of
the database software, and so is not described here.

♦ Database interface files The client application requires the files for
the database interface it uses (ODBC, JDBC, embedded SQL, or Open
Client).

♦ Connection information Each client application needs database
connection information.

The interface files and connection information required varies with the
interface your application is using. Each interface is described separately in
the following sections.

The simplest way to deploy clients is to use the supplied InstallShield
objects. For more information, see "Using InstallShield objects and templates
for deployment" on page 380.

Deploying OLE DB and ADO clients

The simplest way to deploy OLE DB client libraries is to use the
InstallShield objects or templates. For information, see "Using InstallShield
objects and templates for deployment" on page 380. If you wish to create
your own installation, this section describes the files to deploy to the end
users.

Each OLE DB client machine must have the following:

♦ A working OLE DB installation OLE DB files and instructions for
their redistribution are available for redistribution from Microsoft
Corporation. They are not described in detail here.

♦ The Adaptive Server Anywhere OLE DB provider The following
table shows the files needed for a working Adaptive Server Anywhere
OLE DB provider. These files should be placed in a single directory.
The Adaptive Server Anywhere installation places them all in the
operating-system subdirectory of your SQL Anywhere installation
directory (for example: win32).

Deploying client applications

386

Description Windows Windows CE

OLE DB driver file dboledb8.dll dboledb8.dll

OLE DB driver file dboledba8.dll dboledba8.dll

Language-resource library dblgen8.dll dblgen8.dll

Connect dialog dbcon8.dll N/A

OLE DB providers require many registry entries. You can make these by
self-registering the DLLs using the regsvr32 utility on Windows or the
regsvrce utility on Windows CE.

$ For more information, see "Creating databases for Windows CE"
on page 273 of the book ASA Database Administration Guide, and
"Linking ODBC applications on Windows CE" on page 255.

Deploying ODBC clients

The simplest way to deploy ODBC clients is to use the InstallShield objects
or templates. For information, see "Using InstallShield objects and templates
for deployment" on page 380.

Each ODBC client machine must have the following:

♦ A working ODBC installation ODBC files and instructions for their
redistribution are available for redistribution from Microsoft
Corporation. They are not described in detail here.

Microsoft provides their ODBC Driver Manager for Windows operating
systems. SQL Anywhere Studio includes an ODBC Driver Manager for
UNIX. There is no ODBC Driver Manager for Windows CE.

ODBC applications can run without the driver manager. On platforms
for which an ODBC driver manager is available, this is not
recommended.

Update ODBC if needed
The SQL Anywhere Setup program updates old installations of the
Microsoft Data Access Components, including ODBC. If you are
deploying your own application, you must ensure that the ODBC
installation is sufficient for your application.

♦ The Adaptive Server Anywhere ODBC driver This is the file
dbodbc8.dll together with some additional files.

Chapter 12 Deploying Databases and Applications

387

$ For more information, see "ODBC driver required files" on
page 387.

♦ Connection information The client application must have access to
the information needed to connect to the server. This information is
typically included in an ODBC data source.

ODBC driver required files

The following table shows the files needed for a working Adaptive Server
Anywhere ODBC driver. These files should be placed in a single directory.
The Adaptive Server Anywhere installation places them all in the
operating-system subdirectory of your SQL Anywhere installation directory
(for example: win32).

Description Windows Windows CE UNIX

ODBC driver dbodbc8.dll dbodbc8.dll libdbodbc8.so
libdbtasks8.so

Language-resource
library

dblgen8.dll dblgen8.dll dblgen8.res

Connect dialog dbcon8.dll N/A N/A

♦ Your end user must have a working ODBC installation, including the
driver manager. Instructions for deploying ODBC are included in the
Microsoft ODBC SDK.

♦ The Connect dialog is needed if your end users are to create their own
data sources, if they need to enter user IDs and passwords when
connecting to the database, or if they need to display the Connect dialog
for any other purpose.

♦ For multi-threaded applications on UNIX, use libdbodbc8_r.so and
libdbtasks8_r.so.

Configuring the ODBC driver

In addition to copying the ODBC driver files onto disk, your Setup program
must also make a set of registry entries to install the ODBC driver properly.

The Adaptive Server Anywhere Setup program makes changes to the
Registry to identify and configure the ODBC driver. If you are building a
setup program for your end users, you should make the same settings.

You can use the regedit utility to inspect registry entries.

Notes

Windows

Deploying client applications

388

The Adaptive Server Anywhere ODBC driver is identified to the system by a
set of registry values in the following registry key:

HKEY_LOCAL_MACHINE\
SOFTWARE\

ODBC\
ODBCINST.INI\

Adaptive Server Anywhere 8.0

The values are as follows:

Value name Value type Value data

Driver String path\dbodbc8.dll

Setup String path\dbodbc8.dll

There is also a registry value in the following key:

HKEY_LOCAL_MACHINE\
SOFTWARE\

ODBC\
ODBCINST.INI\

ODBC Drivers

The value is as follows:

Value name Value type Value data

Adaptive Server Anywhere 8.0 String Installed

If you are using a third-party ODBC driver on an operating system other than
Windows, consult the documentation for that driver on how to configure the
ODBC driver.

Deploying connection information

ODBC client connection information is generally deployed as an ODBC data
source. You can deploy an ODBC data source in one of the following ways:

♦ Programmatically Add a data source description to your end-user’s
Registry or ODBC initialization files.

♦ Manually Provide your end-users with instructions, so that they can
create an appropriate data source on their own machine.

Third party ODBC
drivers

Chapter 12 Deploying Databases and Applications

389

You create a data source manually using the ODBC Administrator, from
the User DSN tab or the System DSN tab. The Adaptive Server
Anywhere ODBC driver displays the configuration dialog for entering
settings. Data source settings include the location of the database file,
the name of the database server, as well as any start up parameters and
other options.

This section provides you with the information you need to know for either
approach.

There are three kinds of data sources: User data sources, System data
sources, and File data sources.

User data source definitions are stored in the part of the registry containing
settings for the specific user currently logged on to the system. System data
sources, however, are available to all users and to Windows services, which
run regardless of whether a user is logged onto the system or not. Given a
correctly configured System data source named MyApp, any user can use
that ODBC connection by providing DSN=MyApp in the ODBC connection
string.

File data sources are not held in the registry, but are held in a special
directory. A connection string must provide a FileDSN connection parameter
to use a File data source.

Each user data source is identified to the system by registry entries.

You must enter a set of registry values in a particular registry key. For User
data sources the key is as follows:

HKEY_CURRENT_USER\
SOFTWARE\

ODBC\
ODBC.INI\

userdatasourcename

For System data sources the key is as follows:

HKEY_LOCAL_MACHINE\
SOFTWARE\

ODBC\
ODBC.INI\

systemdatasourcename

The key contains a set of registry values, each of which corresponds to a
connection parameter. For example, the ASA 8.0 Sample key corresponding
to the ASA 8.0 Sample data source contains the following settings:

Types of data
source

Data source
registry entries

Deploying client applications

390

Value name Value type Value data

Autostop String Yes

DatabaseFile String Path\asademo.db

Description String Adaptive Server Anywhere Sample Database

Driver String Path\win32\dbodbc8.dll

PWD String sql

Start String Path\win32\dbeng8.exe -c 8m

UID String dba

In these entries, path is the Adaptive Server Anywhere installation directory.

In addition, you must add the data source to the list of data sources in the
registry. For User data sources, you use the following key:

HKEY_CURRENT_USER\
SOFTWARE\

ODBC\
ODBC.INI\

ODBC Data Sources

For System data sources, use the following key:

HKEY_LOCAL_MACHINE\
SOFTWARE\

ODBC\
ODBC.INI\

ODBC Data Sources.

The value associates each data source with an ODBC driver. The value name
is the data source name, and the value data is the ODBC driver name. For
example, the User data source installed by Adaptive Server Anywhere is
named ASA 8.0 Sample, and has the following value:

Value name Value type Value data

ASA 8.0 Sample String Adaptive Server Anywhere 8.0

Caution: ODBC settings are easily viewed
User data source configurations can contain sensitive database settings
such as a user’s ID and password. These settings are stored in the registry
in plain text, and can be view using the Windows registry editors
regedit.exe or regedt32.exe, which are provided by Microsoft with the
operating system. You can choose to encrypt passwords, or require users
to enter them on connecting.

Chapter 12 Deploying Databases and Applications

391

You can identify the data source name in an ODBC configuration string in
this manner,

DSN=userdatasourcename

When a DSN parameter is provided in the connection string, the Current
User data source definitions in the Registry are searched, followed by
System data sources. File data sources are searched only when FileDSN is
provided in the ODBC connection string.

The following table illustrates the implications to the user and developer
when a data source exists and is included in the application’s connection
string as a DSN or FileDSN parameter.

When the data
source…

The connection string
must also identify…

The user must
supply…

Contains the ODBC
driver name and location;
the name of the database
file/server; startup
parameters; and the user
ID and password.

No additional information No additional
information.

Contains only the name
and location of the
ODBC driver.

The name of the database
file/ server; and,
optionally, the user ID and
the password.

User ID and password
if not provided in the
DSN or ODBC
connection string.

Does not exist The name of the ODBC
driver to be used, in the
following format:

Driver={ODBCdriver
name}

Also, the name of the
database, the database file
or the database server;
and, optionally, other
connection parameters
such as user ID and
password.

User ID and password
if not provided in the
ODBC connection
string.

$ For more information on ODBC connections and configurations, see
the following:

♦ "Connecting to a Database" on page 37 of the book ASA Database
Administration Guide.

♦ The Open Database Connectivity (ODBC) SDK, available from
Microsoft.

Required and
optional connection
parameters

Deploying client applications

392

Deploying embedded SQL clients

The simplest way to deploy embedded SQL clients is to use the InstallShield
objects or templates. For information, see "Using InstallShield objects and
templates for deployment" on page 380.

Deploying embedded SQL clients involves the following:

♦ Installed files Each client machine must have the files required for an
Adaptive Server Anywhere embedded SQL client application.

♦ Connection information The client application must have access to
the information needed to connect to the server. This information may
be included in an ODBC data source.

Installing files for embedded SQL clients

The following table shows which files are needed for embedded SQL clients.

Description Windows UNIX

Interface library dblib8.dll libdblib8.so,
libdbtasks8.so

Language resource library dblgen8.dll dblgen8.res

IPX network
communications

dbipx8.dll N/A

Connect dialog dbcon8.dll N/A

♦ The network ports DLL is not required if the client is working only with
the personal database server.

♦ If the client application uses an ODBC data source to hold the
connection parameters, your end user must have a working ODBC
installation. Instructions for deploying ODBC are included in the
Microsoft ODBC SDK.

$ For more information on deploying ODBC information, see
"Deploying ODBC clients" on page 386.

♦ The Connect dialog is needed if your end users will be creating their
own data sources, if they will need to enter user IDs and passwords
when connecting to the database, or if they need to display the Connect
dialog for any other purpose.

♦ For multi-threaded applications on UNIX, use libdblib8_r.so and
libdbtasks8_r.so.

Notes

Chapter 12 Deploying Databases and Applications

393

Connection information

You can deploy embedded SQL connection information in one of the
following ways:

♦ Manual Provide your end-users with instructions for creating an
appropriate data source on their machine.

♦ File Distribute a file that contains connection information in a format
that your application can read.

♦ ODBC data source You can use an ODBC data source to hold
connection information. In this case, you need a subset of the ODBC
redistributable files, available from Microsoft. For details see
"Deploying ODBC clients" on page 386.

♦ Hard coded You can hard code connection information into your
application. This is an inflexible method, which may be limiting, for
example when databases are upgraded.

Deploying JDBC clients

In addition to a Java Runtime Environment, each JDBC client requires the
Sybase jConnect JDBC driver or the JDBC-ODBC bridge.

$ For instructions on deploying jConnect see
http://manuals.sybase.com/onlinebooks/group-jc/jcg0420e/jconnig on the
Sybase Web site.

To deploy the JDBC-ODBC bridge, you must deploy the following files:

♦ jodbc.jar This must be in the application’s classpath.

♦ dbjodbc8.dll This must be in the system path. On UNIX or Linux
environments, the file is a shared library (dbjodbc8.so).

♦ The ODBC driver files. For more information, see "ODBC driver
required files" on page 387.

Your Java application needs a URL in order to connect to the database. This
URL specifies the driver, the machine to use, and the port on which the
database server is listening.

$ For more information on URLs, see "Supplying a URL for the server"
on page 138.

Deploying client applications

394

Deploying Open Client applications

In order to deploy Open Client applications, each client machine needs the
Sybase Open Client product. You must purchase the Open Client software
separately from Sybase. It contains its own installation instructions.

$ Connection information for Open Client clients is held in the interfaces
file. For information on the interfaces file, see the Open Client
documentation and "Configuring Open Servers" on page 110 of the book
ASA Database Administration Guide.

Chapter 12 Deploying Databases and Applications

395

Deploying administration tools
Subject to your license agreement, you can deploy a set of administration
tools including Interactive SQL, Sybase Central, and the dbconsole
monitoring utility.

The simplest way to deploy the administration tools is to use the supplied
InstallShield objects. For more information, see "Using InstallShield objects
and templates for deployment" on page 380.

If your customer application is running on machines with limited resources,
you may want to deploy the C version of Interactive SQL, (dbisqlc.exe)
instead of the standard version (dbisql.exe and its associated Java classes).

The dbisqlc executable requires the standard embedded SQL client-side
libraries.

$ For information on system requirements for administration tools, see
"Administration tool system requirements" on page 139 of the book
Introducing SQL Anywhere Studio.

Deploying
Interactive SQL

Deploying database servers

396

Deploying database servers
You can deploy a database server by making the SQL Anywhere Studio
Setup program available to your end-users. By selecting the proper option,
each end-user is guaranteed of getting the files they need.

The simplest way to deploy a personal database server or a network database
server is to use the supplied InstallShield objects. For more information, see
"Using InstallShield objects and templates for deployment" on page 380.

In order to run a database server, you need to install a set of files. The files
are listed in the following table. All redistribution of these files is governed
by the terms of your license agreement. You must confirm whether you have
the right to redistribute the database server files before doing so.

Windows UNIX NetWare

dbeng8.exe dbeng8 N/A

dbsrv8.exe dbsrv8 dbsrv8.nlm

dbserv8.dll libdbserv8.so,
libdbtasks8_r.so

N/A

dblgen8.dll dblgen8.res dblgen8.res

dbjava8.dll (1) libdbjava8.so (1) dbjava8.nlm (1)

dbctrs8.dll N/A N/A

dbextf.dll (2) libdbextf.so (2) dbextf.nlm (2)

asajdbc.zip (1,3) asajdbc.zip (1,3) asajdbc.zip (1,3)

asajrt12.zip (1,3) asajrt12.zip (1,3) asajrt12.zip (1,3)

classes.zip (1,3) classes.zip (1,3) classes.zip (1,3)

dbmem.vxd (4) N/A N/A

libunic.dll libunic.so N/A

asa.cvf asa.cvf asa.cvf

charsets\ directory charsets/ directory N/A

1. Required only if using Java in the database. For databases initialized using JDK 1.1, distribute
asajdbc.zip. For databases initialized using JDK 1.2 or JDK 1.3, distribute asajrt13.zip.
2. Required only if using system extended stored procedures and functions (xp_).
3. Install such that the CLASSPATH environment variable can locate classes in this file.
4. Required on Windows 95/98/Me if using dynamic cache sizing.

♦ Depending on your situation, you should choose whether to deploy the
personal database server (dbeng8) or the network database server
(dbsrv8).

Notes

Chapter 12 Deploying Databases and Applications

397

♦ The Java DLL (dbjava8.dll) is required only if the database server is to
use the Java in the Database functionality.

♦ The table does not include files needed to run utilities such as dbbackup.

$ For information about deploying utilities, see "Deploying
administration tools" on page 395.

♦ The zip files are required only for applications that use Java in the
database, and must be installed into a location in the user’s
CLASSPATH environment variable.

Deploying databases

You deploy a database file by installing the database file onto your end user’s
disk.

As long as the database server shuts down cleanly, you do not need to deploy
a transaction log file with your database file. When your end-user starts
running the database, a new transaction log is created.

For SQL Remote applications, the database should be created in a properly
synchronized state, in which case no transaction log is needed. You can use
the Extraction utility for this purpose.

Deploying databases on read-only media

You can distribute databases on read-only media, such as a CD-ROM, as
long as you run them in read-only mode or use a write file.

$ For more information on running databases in read-only mode, see "–r
server option" on page 149 of the book ASA Database Administration Guide.

To enable changes to be made to Adaptive Server Anywhere databases
distributed on read-only media such as a CD-ROM, you can use a write file.
The write file records changes made to a read-only database file, and is
located on a read/write storage media such as a hard disk.

In this case, the database file is placed on the CD-ROM, while the write file
is placed on disk. The connection is made to the write file, which maintains a
transaction log file on disk.

$ For more information on write files, see "Working with write files" on
page 224 of the book ASA Database Administration Guide.

Deploying embedded database applications

398

Deploying embedded database applications
This section provides information on deploying embedded database
applications, where the application and the database both reside on the same
machine.

An embedded database application includes the following:

♦ Client application This includes the Adaptive Server Anywhere client
requirements.

$ For information on deploying client applications, see "Deploying
client applications" on page 385.

♦ Database server The Adaptive Server Anywhere personal database
server.

$ For information on deploying database servers, see "Deploying
database servers" on page 396.

♦ SQL Remote If your application uses SQL Remote replication, you
must deploy the SQL Remote Message Agent.

♦ The database You must deploy a database file holding the data the
application uses.

Deploying personal servers

When you deploy an application that uses the personal server, you need to
deploy both the client application components and the database server
components.

The language resource library (dblgen8.dll) is shared between the client and
the server. You need only one copy of this file.

It is recommended that you follow the Adaptive Server Anywhere
installation behavior, and install the client and server files in the same
directory.

Remember to provide the Java zip files and the Java DLL if your application
takes advantage of Java in the Database.

Deploying database utilities

If you need to deploy database utilities (such as dbbackup.exe) along with
your application, then you need the utility executable together with the
following additional files:

Chapter 12 Deploying Databases and Applications

399

Description Windows UNIX

Database tools library dbtool8.dll libdbtools8.so,
libdbtasks8.so

Additional library dbwtsp8.dll libdbwtsp8.so

Language resource library dblgen8.dll dblgen8.res

Connect dialog (dbisqlc only) dbcon8.dll

♦ The database tools are embedded SQL applications, and you must
supply the files required for such applications, as listed in "Deploying
embedded SQL clients" on page 392.

♦ For multi-threaded applications on UNIX, use libdbtools8_r.so and
libdbtasks8_r.so.

Deploying SQL Remote

If you are deploying the SQL Remote Message Agent, you need to include
the following files:

Description Windows UNIX

Message Agent dbremote.exe dbremote

Database tools library dbtool8.dll libdbtools8.so,
libdbtasks8.so

Additional library dbwtsp8.dll libdbwtsp8.so

Language resource library dblgen8.dll dblgen8.res

VIM message link library 1 dbvim8.dll

SMTP message link library 1 dbsmtp8.dll

FILE message link library 1 dbfile8.dll libdbfile8.so

FTP message link library 1 dbftp8.dll

MAPI message link library 1 dbmapi8.dll

Interface Library dblib8.dll
1 Only deploy the library for the message link you are using.

It is recommended that you follow the Adaptive Server Anywhere
installation behavior, and install the SQL Remote files in the same directory
as the Adaptive Server Anywhere files.

Notes

Deploying embedded database applications

400

For multi-threaded applications on UNIX, use libdbtools8_r.so and
libdbtasks8_r.so.

401

C H A P T E R 1 3

SQL Preprocessor Error Messages

This chapter presents a list of all SQL preprocessor errors and warnings.

Topic Page

SQL Preprocessor error messages indexed by error message value 402

SQLPP errors 406

About this chapter

Contents

SQL Preprocessor error messages indexed by error message value

402

SQL Preprocessor error messages indexed by
error message value

Message value Message

2601 "subscript value %1 too large" on
page 419

2602 "combined pointer and arrays not
supported for host types" on page 411

2603 "only one dimensional arrays
supported for char type" on page 418

2604 "VARCHAR type must have a
length" on page 410

2605 "arrays of VARCHAR not supported"
on page 410

2606 "VARCHAR host variables cannot be
pointers" on page 409

2607 "initializer not allowed on
VARCHAR host variable" on
page 415

2608 "FIXCHAR type must have a length"
on page 407

2609 "arrays of FIXCHAR not supported"
on page 410

2610 "arrays of this type not supported" on
page 411

2611 "precision must be specified for
decimal type" on page 419

2612 "arrays of decimal not allowed" on
page 410

2613 "Unknown hostvar type" on page 409

2614 "invalid integer" on page 416

2615 "’%1’ host variable must be a C string
type" on page 406

2617 "’%1’ symbol already defined" on
page 406

2618 "invalid type for sql statement
variable" on page 416

Chapter 13 SQL Preprocessor Error Messages

403

Message value Message

2619 "Cannot find include file ’%1’" on
page 407

2620 "host variable ’%1’ is unknown" on
page 413

2621 "indicator variable ’%1’ is unknown"
on page 414

2622 "invalid type for indicator variable
’%1’" on page 416

2623 "invalid host variable type on ’%1’"
on page 416

2625 "host variable ’%1’ has two different
definitions" on page 413

2626 "statement ’%1’ not previously
prepared" on page 419

2627 "cursor ’%1’ not previously declared"
on page 411

2628 "unknown statement ’%1’" on
page 421

2629 "host variables not allowed for this
cursor" on page 413

2630 "host variables specified twice - on
declare and open" on page 414

2631 "must specify a host list or using
clause on %1" on page 417

2633 "no INTO clause on SELECT
statement" on page 418

2634 "incorrect SQL language usage -- that
is a ’%1’ extension" on page 414

2635 "incorrect Embedded SQL language
usage -- that is a ’%1’ extension" on
page 414

2636 "incorrect Embedded SQL syntax" on
page 414

2637 "missing ending quote of string" on
page 417

2639 "token too long" on page 420

2640 "’%1’ host variable must be an integer
type" on page 406

SQL Preprocessor error messages indexed by error message value

404

Message value Message

2641 "must specify an SQLDA on a
DESCRIBE" on page 417

2642 "Two SQLDAs specified of the same
type (INTO or USING)" on page 409

2646 "cannot describe static cursors" on
page 411

2647 "Macros cannot be redefined" on
page 409

2648 "Invalid array dimension" on
page 408

2649 "invalid descriptor index" on
page 415

2650 "invalid field for SET
DESCRIPTOR" on page 415

2651 "field used more than once in SET
DESCRIPTOR statement" on
page 412

2652 "data value must be a host variable"
on page 411

2660 "Into clause not allowed on declare
cursor - ignored" on page 408

2661 "unrecognized SQL syntax" on
page 421

2662 "unknown sql function ’%1’" on
page 420

2663 "wrong number of parms to sql
function ’%1’" on page 421

2664 "static statement names will not work
properly if used by 2 threads" on
page 419

2665 "host variable ’%1’ has been
redefined" on page 413

2666 "vendor extension" on page 421

2667 "intermediate SQL feature" on
page 415

2668 "full SQL feature" on page 412

2669 "transact SQL extension" on
page 420

Chapter 13 SQL Preprocessor Error Messages

405

Message value Message

2680 "no declare section and no INCLUDE
SQLCA statement" on page 418

2681 "unable to open temporary file" on
page 420

2682 "error reading temporary file" on
page 412

2683 "error writing output file" on
page 412

2690 "Inconsistent number of host
variables for this cursor" on page 408

2691 "Inconsistent host variable types for
this cursor" on page 407

2692 "Inconsistent indicator variables for
this cursor" on page 408

2693 "Feature not available with UltraLite"
on page 407

2694 "no OPEN for cursor ’%1’" on
page 418

2695 "no FETCH or PUT for cursor ’%1’"
on page 417

2696 "Host variable ’%1’ is in use more
than once with different indicators"
on page 407

2697 "long binary/long varchar size limit is
65535 for UltraLite" on page 417

SQLPP errors

406

SQLPP errors
This section lists messages generated by the SQL preprocessor. The
messages may be errors or warnings, or either depending on which
command-line options are set.

$ For more information about the SQL Preprocessor and its command-
line options, see "The SQL preprocessor" on page 226.

’%1’ host variable must be a C string type

Message value Message Type

2615 Error

A C string was required in an embedded SQL statement (for a cursor name,
option name etc.) and the value supplied was not a C string.

’%1’ host variable must be an integer type

Message value Message Type

2640 Error

You have used a host variable that is not of integer type in a statement where
only an integer type host variable is allowed.

’%1’ symbol already defined

Message value Message Type

2617 Error

You defined a host variable twice.

Probable cause

Probable cause

Probable cause

Chapter 13 SQL Preprocessor Error Messages

407

Cannot find include file ’%1’

Message value Message Type

2619 Error

The specified include file was not found. Note that the preprocessor will use
the INCLUDE environment variable to search for include files.

FIXCHAR type must have a length

Message value Message Type

2608 Error

You have used the DECL_FIXCHAR macro to declare a host variable of
type FIXCHAR but have not specified a length.

Feature not available with UltraLite

Message value Message Type

2693 Flag (warning or error)

You have used a feature that is not supported by UltraLite.

Host variable ’%1’ is in use more than once with different indicators

Message value Message Type

2696 Error

You have used the same host variable multiple times with different indicator
variables in the same statement. This is not supported.

Inconsistent host variable types for this cursor

Message value Message Type

2691 Error

Probable cause

Probable cause

Probable cause

Probable cause

SQLPP errors

408

You have used a host variable with a different type or length than the type or
length previously used with the cursor. Host variable types must be
consistent for the cursor.

Inconsistent indicator variables for this cursor

Message value Message Type

2692 Error

You have used an indicator variable when one was not previously used with
the cursor, or you have not used an indicator variable when one was
previously used with the cursor. Indicator variable usage must be consistent
for the cursor.

Inconsistent number of host variables for this cursor

Message value Message Type

2690 Error

You have used a different number of host variables than the number
previously used with the cursor. The number of host variables must be
consistent for the cursor.

Into clause not allowed on declare cursor - ignored

Message value Message Type

2660 Warning

You have used an INTO clause on a DECLARE CURSOR statement. The
INTO clause will be ignored.

Invalid array dimension

Message value Message Type

2648 Error

Probable cause

Probable cause

Probable cause

Probable cause

Chapter 13 SQL Preprocessor Error Messages

409

The array dimension of the variable is negative.

Macros cannot be redefined

Message value Message Type

2647 Error

A preprocessor macro has been defined twice, possibly in a header file.

Two SQLDAs specified of the same type (INTO or USING)

Message value Message Type

2642 Error

You have specified two INTO DESCRIPTOR or two USING DESCRIPTOR
clauses for this statement.

Unknown hostvar type

Message value Message Type

2613 Error

You declared a host variable of a type not understood by the SQL
preprocessor.

VARCHAR host variables cannot be pointers

Message value Message Type

2606 Error

You have attempted to declare a host variable as a pointer to a VARCHAR
or BINARY. This is not a legal host variable type.

Probable cause

Probable cause

Probable cause

Probable cause

Probable cause

SQLPP errors

410

VARCHAR type must have a length

Message value Message Type

2604 Error

You have attempted to declare a VARCHAR or BINARY host variable using
the DECL_VARCHAR or DECL_BINARY macro but have not specified a
size for the array.

arrays of FIXCHAR not supported

Message value Message Type

2609 Error

You have attempted to declare a host variable as an array of FIXCHAR
arrays. This is not a legal host variable type.

arrays of VARCHAR not supported

Message value Message Type

2605 Error

You have attempted to declare a host variable as an array of VARCHAR or
BINARY. This is not a legal host variable type.

arrays of decimal not allowed

Message value Message Type

2612 Error

You have attempted to declare a host variable as an array of DECIMAL. A
decimal array is not a legal host variable type.

Probable cause

Probable cause

Probable cause

Probable cause

Chapter 13 SQL Preprocessor Error Messages

411

arrays of this type not supported

Message value Message Type

2610 Error

You have attempted to declare a host variable array of a type that is not
supported.

cannot describe static cursors

Message value Message Type

2646 Error

You have described a static cursor. When describing a cursor, the cursor
name must be specified in a host variable.

combined pointer and arrays not supported for host types

Message value Message Type

2602 Error

You have used an array of pointers as a host variable. This is not legal.

cursor ’%1’ not previously declared

Message value Message Type

2627 Error

An embedded SQL cursor name has been used (in a FETCH, OPEN, CLOSE
etc.) without first being declared.

data value must be a host variable

Message value Message Type

2652 Error

Probable cause

Probable cause

Probable cause

Probable cause

SQLPP errors

412

The variable used in the SET DESCRIPTOR statement hasn’t been declared
as a host variable.

error reading temporary file

Message value Message Type

2682 Error

An error occurred while reading from a temporary file.

error writing output file

Message value Message Type

2683 Error

An error occurred while writing to the output file.

field used more than once in SET DESCRIPTOR statement

Message value Message Type

2651 Error

The same keyword has been used more than once inside a single SET
DESCRIPTOR statement.

full SQL feature

Message value Message Type

2668 Flag (warning or error)

You have used a full-SQL/92 feature and preprocessed with the -ee, -ei, -we
or -wi flagging switch.

Probable cause

Probable cause

Probable cause

Probable cause

Probable cause

Chapter 13 SQL Preprocessor Error Messages

413

host variable ’%1’ has been redefined

Message value Message Type

2665 Warning

You have redefined the same host variable with a different host type. As far
as the preprocessor is concerned, host variables are global; two host variables
with different types cannot have the same name.

host variable ’%1’ has two different definitions

Message value Message Type

2625 Error

The same host variable name was defined with two different types within the
same module. Note that host variable names are global to a C module.

host variable ’%1’ is unknown

Message value Message Type

2620 Error

You have used a host variable in a statement and that host variable has not
been declared in a declare section.

host variables not allowed for this cursor

Message value Message Type

2629 Error

Host variables are not allowed on the declare statement for the specified
cursor. If the cursor name is provided through a host variable, then you
should use full dynamic SQL and prepare the statement. A prepared
statement may have host variables in it.

Probable cause

Probable cause

Probable cause

Probable cause

SQLPP errors

414

host variables specified twice - on declare and open

Message value Message Type

2630 Error

You have specified host variables for a cursor on both the declare and the
open statements. In the static case, you should specify the host variables on
the declare statement. In the dynamic case, specify them on the open.

incorrect Embedded SQL language usage -- that is a ’%1’ extension

Message value Message Type

2635 Error

incorrect Embedded SQL syntax

Message value Message Type

2636 Error

An embedded SQL specific statement (OPEN, DECLARE, FETCH etc.) has
a syntax error.

incorrect SQL language usage -- that is a ’%1’ extension

Message value Message Type

2634 Error

indicator variable ’%1’ is unknown

Message value Message Type

2621 Error

You have used a indicator variable in a statement and that indicator variable
has not been declared in a declare section.

Probable cause

Probable cause

Probable cause

Chapter 13 SQL Preprocessor Error Messages

415

initializer not allowed on VARCHAR host variable

Message value Message Type

2607 Error

You can not specify a C variable initializer for a host variable of type
VARCHAR or BINARY. You must initialize this variable in regular C
executable code.

intermediate SQL feature

Message value Message Type

2667 Flag (warning or error)

You have used an intermediate-SQL/92 feature and preprocessed with the -
ee or -we flagging switch.

invalid descriptor index

Message value Message Type

2649 Error

You have allocated less than one variable with the ALLOCATE
DESCRIPTOR statement.

invalid field for SET DESCRIPTOR

Message value Message Type

2650 Error

An invalid or unknown keyword is present in a SET DESCRIPTOR
statement. The keywords can only be TYPE, PRECISION, SCALE,
LENGTH, INDICATOR, or DATA.

Probable cause

Probable cause

Probable cause

Probable cause

SQLPP errors

416

invalid host variable type on ’%1’

Message value Message Type

2623 Error

You have used a host variable that is not a string type in a place where the
preprocessor was expecting a host variable of a string type.

invalid integer

Message value Message Type

2614 Error

An integer was required in an embedded SQL statement (for a fetch offset, or
a host variable array index, etc.) and the preprocessor was unable to convert
what was supplied into an integer.

invalid type for indicator variable ’%1’

Message value Message Type

2622 Error

Indicator variables must be of type short int. You have used a variable of a
different type as an indicator variable.

invalid type for sql statement variable

Message value Message Type

2618 Error

A host variable used as a statement identifier should be of type
a_sql_statement_number. You attempted to use a host variable of some other
type as a statement identifier.

Probable cause

Probable cause

Probable cause

Probable cause

Chapter 13 SQL Preprocessor Error Messages

417

long binary/long varchar size limit is 65535 for UltraLite

Message value Message Type

2697 Error

When using DECL_LONGBINARY or DECL_LONGVARCHAR with
UltraLite, the maximum size for the array is 64K.

missing ending quote of string

Message value Message Type

2637 Error

You have specified a string constant in an embedded SQL statement, but
there is no ending quote before the end of line or end of file.

must specify a host list or using clause on %1

Message value Message Type

2631 Error

The specified statement requires host variables to be specified either in a host
variable list or from an SQLDA.

must specify an SQLDA on a DESCRIBE

Message value Message Type

2641 Error

no FETCH or PUT for cursor ’%1’

Message value Message Type

2695 Error

Probable cause

Probable cause

Probable cause

SQLPP errors

418

A cursor is declared and opened, but is never used.

no INTO clause on SELECT statement

Message value Message Type

2633 Error

You specified an embedded static SELECT statement but you did not specify
an INTO clause for the results.

no OPEN for cursor ’%1’

Message value Message Type

2694 Error

A cursor is declared, and possibly used, but is never opened.

no declare section and no INCLUDE SQLCA statement

Message value Message Type

2680 Error

The EXEC SQL INCLUDE SQLCA statement is missing from the source
file.

only one dimensional arrays supported for char type

Message value Message Type

2603 Error

You have attempted to declare a host variable as an array of character arrays.
This is not a legal host variable type.

Probable cause

Probable cause

Probable cause

Probable cause

Probable cause

Chapter 13 SQL Preprocessor Error Messages

419

precision must be specified for decimal type

Message value Message Type

2611 Error

You must specify the precision when declaring a packed decimal host
variable using the DECL_DECIMAL macro. The scale is optional.

statement ’%1’ not previously prepared

Message value Message Type

2626 Error

An embedded SQL statement name has been used (EXECUTE) without first
being prepared.

static statement names will not work properly if used by 2 threads

Message value Message Type

2664 Warning

You have used a static statement name and preprocessed with the -r
reentrancy switch. Static statement names cause static variables to be
generated that are filled in by the database. If two threads use the same
statement, contention arises over this variable. Use a local host variable as
the statement identifier instead of a static name.

subscript value %1 too large

Message value Message Type

2601 Error

You have attempted to index a host variable that is an array with a value too
large for the array.

Probable cause

Probable cause

Probable cause

Probable cause

SQLPP errors

420

token too long

Message value Message Type

2639 Error

The SQL preprocessor has a maximum token length of 2K. Any token longer
than 2K will produce this error. For constant strings in embedded SQL
commands (the main place this error shows up) use string concatenation to
make a longer string.

transact SQL extension

Message value Message Type

2669 Flag (warning or error)

You have used a Sybase Transact SQL feature that is not defined by SQL/92
and preprocessed with the -ee, -ei, -ef, -we, -wi or -wf flagging switch.

unable to open temporary file

Message value Message Type

2681 Error

An error occurred while attempting to open a temporary file.

unknown sql function ’%1’

Message value Message Type

2662 Warning

You have used a SQL function that is unknown to the preprocessor and will
probably cause an error when the statement is sent to the database engine.

Probable cause

Probable cause

Probable cause

Probable cause

Chapter 13 SQL Preprocessor Error Messages

421

unknown statement ’%1’

Message value Message Type

2628 Error

You attempted to drop an embedded SQL statement that doesn’t exist.

unrecognized SQL syntax

Message value Message Type

2661 Warning

You have used a SQL statement that will probably cause a syntax error when
the statement is sent to the database engine.

vendor extension

Message value Message Type

2666 Flag (warning or error)

You have used an Adaptive Server Anywhere feature that is not defined by
SQL/92 and preprocessed with the -ee, -ei, -ef, -we, -wi or -wf flagging
switch.

wrong number of parms to sql function ’%1’

Message value Message Type

2663 Warning

You have used a SQL function with the wrong number of parameters. This
will likely cause an error when the statement is sent to the database engine.

Probable cause

Probable cause

Probable cause

Probable cause

SQLPP errors

422

423

Index

>
>>

Java in the database methods, 71

A
a_backup_db structure, 304

a_change_log structure, 306

a_compress_db structure, 307

a_compress_stats structure, 309

a_create_db structure, 309

a_crypt_db structure, 311

a_db_collation structure, 312

a_db_info structure, 314

a_dblic_info structure, 316

a_dbtools_info structure, 317

a_name structure, 319

a_stats_line structure, 319

a_sync_db structure, 320

a_syncpub structure, 322

a_sysinfo structure, 323

a_table_info structure, 323

a_translate_log structure, 324

a_truncate_log structure, 326

a_validate_db structure, 330

a_validate_type enumeration, 335

a_writefile structure, 332

access modifiers
Java, 66

ActiveX Data Objects
about, 340

adding
JAR files, 96
Java in the database classes, 95

ADO
about, 340
Command object, 342
commands, 342
Connection object, 340
connections, 340
cursor types, 24
cursors, 25, 344
introduction to programming, 3
queries, 343, 344
Recordset object, 343, 344
updates, 344
using SQL statements in applications, 10

aggregate functions
Java in the database columns, 109

alloc_sqlda function
about, 230

alloc_sqlda_noind function
about, 230

ALTER DATABASE statement
Java in the database, 90, 92

an_erase_db structure, 317

an_expand_db structure, 318

an_unload_db structure, 327

B–C

424

an_upgrade_db structure, 329

applications
deploying, 373, 385
deploying embedded SQL, 392
SQL, 10

ARRAY clause
FETCH statement, 197

array fetches
about, 197

asademo.db file
about, xiv

asajdbc.zip
deploying database servers, 396
runtime classes, 89

ASAJDBCDRV JAR file
about, 90

ASAJRT JAR file
about, 90

asajrt12.zip
runtime classes, 89

ASAProv
OLE DB provider, 338

ASASystem JAR file
about, 90

asensitive cursors
about, 36
delete example, 29
introduction, 29
update example, 31

attributes
Java in the database, 121

autocommit
controlling, 44
implementation, 45
JDBC, 148
ODBC, 262
transactions, 44

B
background processing

callback functions, 224

backups
DBBackup DBTools function, 293
DBTools example, 290
embedded SQL functions, 224

BINARY data types
embedded SQL, 182

bind parameters
prepared statements, 13

bind variables
about, 202

bit fields
using, 289

Blank padding enumeration, 334

blank-padding
strings in embedded SQL, 177

BLOBs
embedded SQL, 214
retrieving in embedded SQL, 215
sending in embedded SQL, 217

block cursors, 21
ODBC, 27

bookmarks, 27
ODBC cursors, 275

Borland C++
support, 166

byte code
Java classes, 53

C
C programming language

data types, 182

cache
Java in the database, 127

CALL statement
embedded SQL, 220

callback functions
embedded SQL, 224
registering, 237

C–C

425

callbacks
DB_CALLBACK_CONN_DROPPED, 238
DB_CALLBACK_DEBUG_MESSAGE, 238
DB_CALLBACK_FINISH, 238
DB_CALLBACK_MESSAGE, 239
DB_CALLBACK_START, 238
DB_CALLBACK_WAIT, 238

canceling requests
embedded SQL, 224

capabilities
supported, 360

case sensitivity
Java in the database and SQL, 71
Java in the database data types, 99

catch block
Java, 67

CD-ROM
deploying databases on, 397

chained mode
controlling, 44
implementation, 45
transactions, 44

CHAINED option
JDBC, 148

character strings, 228

character-set translation
JDBC-ODBC bridge, 142

class fields
about, 62

class methods
about, 62

Class.forName method
loading jConnect, 138

classes
about, 59
as data types, 99
compiling, 59
constructors, 61
creating, 94
example, 101
importing, 160
installing, 94
instances, 65

Java, 65
runtime, 69
supported, 56
updating, 97
versions, 97

classes.zip
deploying database servers, 396
runtime classes, 89

CLASSPATH environment variable
about, 75
Java in the database, 75
jConnect, 136
setting, 146

clauses
WITH HOLD, 20

client-side autocommit
about, 45

CLOSE statement
about, 194

columns
Java in the database data types, 99
updating Java in the database, 104

com.sybase package
runtime classes, 89

command line utilities
deploying, 398

Command object
ADO, 342

commands
ADO Command object, 342

COMMIT statement
autocommit mode, 44
cursors, 46
JDBC, 148

committing
transactions from ODBC, 262

compareTo method
object comparisons, 109

compile and link process, 165

compilers
supported, 166

C–C

426

components
transaction attribute, 370

COMPUTE clause
CREATE TABLE, 124

computed columns
creating, 124
INSERT statements, 125
Java in the database, 124
limitations, 126
recalculation, 126
triggers, 125
UPDATE statements, 125

connection handles
ODBC, 260

Connection object
ADO, 340

connections
ADO Connection object, 340
functions, 243
jConnect, 139
jConnect URL, 138
JDBC, 134, 143
JDBC client applications, 143
JDBC defaults, 149
JDBC example, 143, 146
JDBC in the server, 146
ODBC attributes, 265
ODBC functions, 263
ODBC programming, 264

console utility
deploying, 395

constructors
about, 61
inserting data, 102
Java, 66

conventions
documentation, xi
file names, 377

conversion
data types, 186

CREATE DATABASE statement
Java in the database, 90, 91

CREATE PROCEDURE statement
embedded SQL, 220

CS_CSR_ABS, 360

CS_CSR_FIRST, 360

CS_CSR_LAST, 360

CS_CSR_PREV, 360

CS_CSR_REL, 360

CS_DATA_BOUNDARY, 360

CS_DATA_SENSITIVITY, 360

CS_PROTO_DYNPROC, 360

CS_REG_NOTIF, 360

CS_REQ_BCP, 360

ct_command function
Open Client, 357, 359

ct_cursor function
Open Client, 358

ct_dynamic function
Open Client, 357

ct_results function
Open Client, 359

ct_send function
Open Client, 359

cursor positioning
troubleshooting, 19

cursors, 27
about, 15
ADO, 25
asensitive, 36
availability, 24
canceling, 23, 233
choosing ODBC cursor characteristics, 272
delete, 359
describing, 42
dynamic, 34
DYNAMIC SCROLL, 19, 24, 36
embedded SQL, 26, 194
example C code, 171
fat, 21
fetching multiple rows, 21
fetching rows, 19, 20
insensitive, 24, 33
internals, 28
introduction, 15
isolation level, 20

D–D

427

keyset-driven, 37
membership, 28
NO SCROLL, 24, 33
ODBC, 25, 272
ODBC bookmarks, 275
ODBC deletes, 274
ODBC result sets, 273
ODBC updates, 274
OLE DB, 25
Open Client, 358
order, 28
performance, 39, 40
platforms, 24
positioning, 19
prepared statements, 18
read-only, 24
requesting, 25
result sets, 15
savepoints, 47
SCROLL, 24, 37
scrollable, 21
sensitive, 34
sensitivity, 28, 29
sensitivity examples, 29, 31
static, 33
step-by-step, 17
stored procedures, 221
transactions, 46
unique, 24
unspecified sensitivity, 36
update, 359
updating, 344
updating and deleting, 22
uses, 15
using, 19
values, 28
value-sensitive, 37
visible changes, 29
work tables, 39

D
data type conversion

indicator variables, 186

data types
C data types, 182
dynamic SQL, 206
embedded SQL, 177
host variables, 182

Java in the database, 99
mapping, 355
Open Client, 355
ranges, 355
SQLDA, 208

database design
Java in the database, 121

database options
set for jConnect, 139

database properties
db_get_property function, 235

database servers
deploying, 396
functions, 243

database tools interface
a_backup_db structure, 304
a_change_log structure, 306
a_compress_db structure, 307
a_compress_stats structure, 309
a_create_db structure, 309
a_crypt_db structure, 311
a_db_collation structure, 312
a_db_info structure, 314
a_dblic_info structure, 316
a_dbtools_info structure, 317
a_name structure, 319
a_stats_line structure, 319
a_sync_db structure, 320
a_syncpub structure, 322
a_sysinfo structure, 323
a_table_info structure, 323
a_translate_log structure, 324
a_truncate_log structure, 326
a_validate_db structure, 330
a_validate_type enumeration, 335
a_writefile structure, 332
about, 283
an_erase_db structure, 317
an_expand_db structure, 318
an_unload_db structure, 327
an_upgrade_db structure, 329
Blank padding enumeration, 334
DBBackup function, 293
DBChangeLogName function, 293
DBChangeWriteFile function, 294
DBCollate function, 294
DBCompress function, 294
DBCreate function, 295

D–D

428

DBCreateWriteFile function, 295
DBCrypt function, 296
DBErase function, 296
DBExpand function, 296
DBInfo function, 297
DBInfoDump function, 297
DBInfoFree function, 298
DBLicense function, 298
DBStatusWriteFile function, 299
DBToolsFini function, 299
DBToolsInit function, 300
DBToolsVersion function, 301
dbtran_userlist_type enumeration, 335
DBTranslateLog function, 301
DBTruncateLog function, 301
DBUnload function, 302
dbunload type enumeration, 335
DBUpgrade function, 302
DBValidate function, 302
dbxtract, 302
verbosity enumeration, 334

databases
deploying, 397
Java in the database, 121
Java-enabling, 89, 90, 92
URL, 139

db_backup function
about, 224, 230

DB_BACKUP_CLOSE_FILE parameter, 230

DB_BACKUP_END parameter, 230

DB_BACKUP_OPEN_FILE parameter, 230

DB_BACKUP_READ_PAGE parameter, 230

DB_BACKUP_READ_RENAME_LOG parameter,
230

DB_BACKUP_START parameter, 230

DB_CALLBACK_CONN_DROPPED callback
parameter, 238

DB_CALLBACK_DEBUG_MESSAGE callback
parameter, 238

DB_CALLBACK_FINISH callback parameter, 238

DB_CALLBACK_MESSAGE callback parameter,
239

DB_CALLBACK_START callback parameter, 238

DB_CALLBACK_WAIT callback parameter, 238

db_cancel_request function
about, 233
request management, 224

db_delete_file function
about, 234

db_find_engine function
about, 234

db_fini function
about, 234

db_fini_dll
calling, 169

db_get_property function
about, 235

db_init function
about, 236

db_init_dll
calling, 169

db_is_working function
about, 236
request management, 224

db_locate_servers function
about, 237

db_register_a_callback function
about, 237
request management, 224

db_start_database function
about, 239

db_start_engine function
about, 240

db_stop_database function
about, 241

db_stop_engine function
about, 242

db_string_connect function
about, 243

db_string_disconnect function
about, 243

db_string_ping_server function
about, 244

D–D

429

DBBackup function, 293

DBChangeLogName function, 293

DBChangeWriteFile function, 294

DBCollate function, 294

DBCompress function, 294

dbcon8.dll
deploying database utilities, 398
deploying embedded SQL clients, 392
deploying ODBC clients, 387
deploying OLE DB clients, 385

dbconsole utility
deploying, 395

DBCreate function, 295

DBCreateWriteFile function, 295

DBCrypt function, 296

dbctrs8.dll
deploying database servers, 396

dbeng8
deploying database servers, 396

DBErase function, 296

DBExpand function, 296

dbextf.dll
deploying database servers, 396

dbfile.dll
deploying SQL Remote, 399

DBInfo function, 297

DBInfoDump function, 297

DBInfoFree function, 298

dbinit utility
Java in the database, 90, 91

dbipx8.dll
deploying embedded SQL clients, 392
deploying ODBC clients, 387

dbjava8.dll
deploying database servers, 396

dblgen8.dll
deploying database servers, 396
deploying database utilities, 398

deploying embedded SQL clients, 392
deploying ODBC clients, 387
deploying OLE DB clients, 385
deploying SQL Remote, 399

dblib8.dll
deploying embedded SQL clients, 392
interface library, 164

DBLicense function, 298

dbmapi.dll
deploying SQL Remote, 399

dbmlsync utility
building your own, 320
C API for, 320

dbodbc8.dll
deploying ODBC clients, 387

dbodbc8.lib
Windows CE ODBC import library, 256

dbodbc8.so
UNIX ODBC driver, 257

dboledb8.dll
deploying OLE DB clients, 385

dboledba8.dll
deploying OLE DB clients, 385

dbremote
deploying SQL Remote, 399

dbserv8.dll
deploying database servers, 396

dbsmtp.dll
deploying SQL Remote, 399

dbsrv8
deploying database servers, 396

DBStatusWriteFile function, 299

DBSynchronizeLog function, 299

dbtool8.dll
deploying database utilities, 398
deploying SQL Remote, 399
Windows CE, 284

DBTools interface
about, 283
calling DBTools functions, 286
enumerations, 334

D–D

430

example program, 290
finishing, 285
functions, 293
introduction, 284
starting, 285
using, 285

DBToolsFini function, 299

DBToolsInit function, 300

DBToolsVersion function, 301

dbtran_userlist_type enumeration, 335

DBTranslateLog function, 301

DBTruncateLog function, 301

DBUnload function, 302

dbunload type enumeration, 335

dbunload utility
building your own, 327
header file, 327

dbupgrad utility
Java in the database, 90, 92

DBUpgrade function, 302

DBValidate function, 302

dbvim.dll
deploying SQL Remote, 399

dbwtsp8.dll
deploying database utilities, 398
deploying SQL Remote, 399

dbxtract utility
building your own, 327
database tools interface, 302
header file, 327

DECIMAL data type
embedded SQL, 182

DECL_BINARY macro, 182

DECL_DECIMAL macro, 182

DECL_FIXCHAR macro, 182

DECL_LONGBINARY macro, 182

DECL_LONGVARCHAR macro, 182

DECL_VARCHAR macro, 182

declaration section
about, 181

DECLARE statement
about, 194

declaring
embedded SQL data types, 177
host variables, 181

defaults
Java in the database, 99

DELETE statement
Java in the database objects, 105
positioned, 22

deleting
JAR files, 105
Java classes, 105

deploying
about, 373
administration tools, 395
applications, 385
applications and databases, 373
database servers, 396
databases, 397
databases on CD-ROM, 397
dbconsole utility, 395
embedded databases, 398
embedded SQL, 392
file locations, 376
InstallShield, 380
Interactive SQL, 395
Java in the database, 396
jConnect, 393
JDBC clients, 393
JDBC-ODBC bridge, 393
MobiLink synchronization servers, 382
models, 374
ODBC, 386
ODBC driver, 387
ODBC settings, 387, 388
OLE DB provider, 385
Open Client, 394
overview, 374
personal database server, 398
read-only databases, 397
registry settings, 387, 388
silent installation, 382
SQL Remote, 399
Sybase Central, 395

D–D

431

System Management Server, 384
write files, 379

deprecated Java classes
about, 69

DESCRIBE statement
about, 204
multiple result sets, 223
SQLDA fields, 208
sqllen field, 210
sqltype field, 210

describing
result sets, 42

descriptors
describing result sets, 42

destructors
Java, 66

directory structure
UNIX, 376

disk space
Java in the database values, 118

DISTINCT keyword
Java in the database columns, 109

distributed applications
about, 158
example, 160
requirements, 158

Distributed Transaction Coordinator
three-tier computing, 365

distributed transactions
about, 361, 362, 367
architecture, 364, 365
EAServer, 369
enlistment, 364
recovery, 368
three-tier computing, 364

DLL entry points, 230

DLLs
multiple SQLCAs, 191

documentation
conventions, xi
SQL Anywhere Studio, viii

dot operator
Java and SQL, 70, 71

DT_BIGINT embedded SQL data type, 177

DT_BINARY embedded SQL data type, 178

DT_BIT embedded SQL data type, 177

DT_DATE embedded SQL data type, 177

DT_DECIMAL embedded SQL data type, 177

DT_DOUBLE embedded SQL data type, 177

DT_FIXCHAR embedded SQL data type, 178

DT_FLOAT embedded SQL data type, 177

DT_INT embedded SQL data type, 177

DT_LONGBINARY embedded SQL data type, 179

DT_LONGVARCHAR embedded SQL data type,
178

DT_SMALLINT embedded SQL data type, 177

DT_STRING data type, 246

DT_TIME embedded SQL data type, 177

DT_TIMESTAMP embedded SQL data type, 177

DT_TIMESTAMP_STRUCT embedded SQL data
type, 179

DT_TINYINT embedded SQL data type, 177

DT_UNSINT embedded SQL data type, 177

DT_UNSSMALLINT embedded SQL data type,
177

DT_VARCHAR embedded SQL data type, 178

DT_VARIABLE embedded SQL data type, 179

DTC
three-tier computing, 365

dynamic cursors
about, 34
ODBC, 25
sample, 174

DYNAMIC SCROLL cursors
about, 24, 36
embedded SQL, 26
troubleshooting, 19

E–F

432

dynamic SQL
about, 202
SQLDA, 206

E
EAServer

component transaction attribute, 370
distributed transactions, 369
three-tier computing, 365
transaction coordinator, 369

embedded databases
deploying, 398

embedded SQL
about, 163
authorization, 227
autocommit mode, 44
character strings, 228
command summary, 247
compile and link process, 165
cursor types, 24
cursors, 26, 171, 194
development, 164
dynamic cursors, 174
dynamic statements, 202
example program, 168
fetching data, 193
functions, 230
header files, 166
host variables, 181
import libraries, 167
introduction, 4
line numbers, 227
SQL statements, 10
static statements, 202

encryption
DBTools interface, 296

enlistment
distributed transactions, 364

entities
Java in the database, 121

entry points
calling DBTools functions, 286

enumerations
DBTools interface, 334

environment handles
ODBC, 260

equality
Java in the database objects, 108

error handling
Java, 66
ODBC, 278

error messages
embedded SQL function, 246

errors
codes, 188
SQLCODE, 188
sqlcode SQLCA field, 188

escape characters
Java in the database, 74
SQL, 74

exceptions
Java, 66

EXEC SQL
embedded SQL development, 168

EXECUTE statement, 202
stored procedures in embedded SQL, 220

executeQuery method
about, 153

executeUpdate JDBC method, 14
about, 151

F
fat cursors, 21

feedback
documentation, xv
providing, xv

fetch operation
cursors, 20
multiple rows, 21
scrollable cursors, 21

FETCH statement
about, 193, 194
dynamic queries, 204
multi-row, 197
wide, 197

G–I

433

fetching
embedded SQL, 193
limits, 19
ODBC, 273

fields
class, 62
instance, 62
Java in the database, 61
private, 66
protected, 66
public, 66, 76

file names
conventions, 377
language, 377
version number, 377

files
deployment location, 376
naming conventions, 377

fill_s_sqlda function
about, 244

fill_sqlda function
about, 244

finally block
Java, 67

FIXCHAR data type
embedded SQL, 182

ForceStart [FORCESTART] connection parameter
db_start_engine, 241

format
Java in the database objects, 118

free_filled_sqlda function
about, 245

free_sqlda function
about, 245

free_sqlda_noind function
about, 245

functions
calling DBTools functions, 286
DBTools, 293
embedded SQL, 230

G
getConnection method

instances, 149

getObject method
using, 160

-gn option
threads, 112

GNU compiler
support, 166

GRANT statement
JDBC, 157

GROUP BY clause
Java in the database columns, 109

H
handles

about ODBC, 260
allocating ODBC, 260

header files
embedded SQL, 166
ODBC, 254

heap size
Java in the database, 128

host variables
about, 181
data types, 182
declaring, 181
SQLDA, 208
uses, 184

I
icons

used in manuals, xii

identifiers
needing quotes, 245

import libraries
alternatives, 169
DBTools, 285
embedded SQL, 167

J–J

434

introduction, 165
NetWare, 170
ODBC, 254
Windows CE ODBC, 256

import statement
Java, 65
Java in the database, 74
jConnect, 136

INCLUDE statement
SQLCA, 188

indexes
Java in the database, 109, 118, 124

indicator variables
about, 185
data type conversion, 186
NULL, 185
SQLDA, 208
summary of values, 187
truncation, 186

INOUT parameters
Java in the database, 114

insensitive cursors
about, 24, 33
delete example, 29
embedded SQL, 26
introduction, 29
update example, 31

INSERT statement
Java in the database, 102
JDBC, 151, 152
multi-row, 197
objects, 156
performance, 12
wide, 197

INSTALL statement
class versions, 119
introduction, 70
using, 95, 96

installation
silent, 382

installation programs
deploying, 375

installing
JAR files into a database, 96
Java classes into a database, 94, 95

InstallShield
deploying Adaptive Server Anywhere, 380
silent installation, 382

instance fields
about, 62

instance methods
about, 62

instances
Java classes, 65

instantiated
definition, 65

Interactive SQL
deploying, 395

interface library
about, 164
dynamic loading, 169
filename, 164

interfaces
Java, 66

isolation levels
applications, 46
cursor sensitivity and, 41
cursors, 20

J
Jaguar

EAServer, 369

JAR and ZIP file creation wizard
using, 96

JAR files
adding, 96
deleting, 105
installing, 94, 96
Java, 65
updating, 97
versions, 97

Java
catch block, 67
classes, 65
constructors, 66
destructors, 66
error handling, 66

J–J

435

finally block, 67
interfaces, 66
JDBC, 130
querying objects, 158
try block, 67

Java 2
supported versions, 69

Java class creation wizard
using, 78, 95, 147

Java classes
adding, 95
installing, 95

Java data types
inserting, 156
retrieving, 156

Java in the database
API, 55, 69
class versions, 118
compareTo method, 109
comparing objects, 108
compiling classes, 59
computed columns, 124
creating columns, 99
data types, 99
database design, 121
defaults, 99
deleting classes, 105
deleting rows, 105
deploying, 396
enabling a database, 89, 90, 92
escape characters, 74
fields, 61
heap size, 128
indexes, 109, 118
inserting, 102
inserting objects, 104
installing classes, 94
introduction, 50, 59
key features, 53
main method, 73, 111
memory issues, 127
methods, 61
namespace, 128
NULL, 99
objects, 60
overview, 86
performance, 118
persistence, 73

primary keys, 109
Procedure Not Found error, 112
Q & A, 53
queries, 106
replicating objects, 119
runtime classes, 89
runtime environment, 69, 88
sample tables, 86
security management about, 115
storage, 118
supported classes, 56
supported platforms, 55
tutorial, 77
unloading and reloading objects, 119
updating columns, 105
updating values, 104
using the documentation, 51
version, 69
virtual machine, 53, 54, 128

java package
runtime classes, 89

Java security management
about, 116

Java stored procedures
about, 113
example, 113

JAVA_HEAP_SIZE option
using, 128

JAVA_NAMESPACE_SIZE option
using, 128

jcatalog.sql file
jConnect, 137

jConnect
about, 136
choosing a JDBC driver, 131
CLASSPATH environment variable, 136
connections, 143, 146
database setup, 137
deploying JDBC clients, 393
loading, 138
packages, 136
system objects, 137
URL, 138
versions supplied, 136

K–L

436

JDBC
about, 130
applications overview, 131
autocommit, 148
autocommit mode, 44
client connections, 143
client-side, 134
connecting, 143
connecting to a database, 139
connection code, 143
connection defaults, 149
connections, 134
cursor types, 24
data access, 150
deploying JDBC clients, 393
examples, 130, 143
INSERT statement, 151, 152
introduction, 5
jConnect, 136
non-standard classes, 132
permissions, 157
prepared statements, 155
requirements, 130
runtime classes, 89
SELECT statement, 153
server-side, 134
server-side connections, 146
SQL statements, 10
version, 69, 132
version 2.0 features, 132
ways to use, 130

JDBC drivers
choosing, 131
compatibility, 131
performance, 131

JDBCExamples class
about, 150

JDBCExamples.java file, 130

JDBC-ODBC bridge
choosing a JDBC driver, 131
connecting, 141
deploying JDBC clients, 393
required files, 141
using, 141

jdemo.sql
sample tables, 86

JDK
definition, 55
version, 69, 89

K
keyset-driven cursors

about, 37
ODBC, 25

keywords
SQL and Java in the database, 74

L
language DLL

obtaining, 378

languages
file names, 377

length SQLDA field
about, 208, 209

libraries
embedded SQL, 167

library functions
embedded SQL, 230

line length
SQL preprocessor output, 227

line numbers
SQL preprocessor, 227

liveness
connections, 238

LONG BINARY data type
embedded SQL, 182, 214
retrieving in embedded SQL, 215
sending in embedded SQL, 217

LONG VARCHAR data type
embedded SQL, 182, 214
retrieving in embedded SQL, 215
sending in embedded SQL, 217

M–N

437

M
macros

_SQL_OS_NETWARE, 169
_SQL_OS_UNIX, 169
_SQL_OS_WINNT, 169

main method
Java in the database, 73, 111

manual commit mode
controlling, 44
implementation, 45
transactions, 44

MAX function
Java in the database columns, 109

membership
result sets, 28

memory
Java in the database, 127

messages
callback, 239
server, 239

methods
>>, 71
class, 62
declaring, 63
dot operator, 70
instance, 62
Java in the database, 61
private, 66
protected, 66
public, 66
static, 62
void return type, 112

Microsoft Transaction Server
three-tier computing, 365

Microsoft Visual C++
support, 166

MIN function
Java in the database columns, 109

mixed cursors
ODBC, 25

mlxtract utility
building your own, 327
header file, 327

MobiLink synchronization servers
deploying, 382

MSDASQL
OLE DB provider, 338

multiple result sets
DESCRIBE statement, 223
ODBC, 276

multi-row fetches, 197

multi-row inserts, 197

multi-row puts, 197

multi-row queries
cursors, 194

multi-threaded applications
embedded SQL, 190, 191
Java in the database, 112
ODBC, 252, 265
UNIX, 256

N
name SQLDA field

about, 208

namespace
Java in the database, 128

NetWare
embedded SQL programs, 170

newsgroups
technical support, xv

NLM
embedded SQL programs, 170

NO SCROLL cursors
about, 24, 33
embedded SQL, 26

ntodbc.h
about, 254

NULL
dynamic SQL, 206
indicator variables, 185
Java in the database, 99

NULL-terminated string
embedded SQL data type, 177

O–O

438

O
object-oriented programming

Java in the database, 65
style, 76

objects
class versions, 118
inserting, 156
Java in the database, 60
querying, 158
replication, 119
retrieving, 156
storage format, 97
storage of Java in the database, 118
types, 60
unloading and reloading, 119

ODBC
autocommit mode, 44
backwards compatibility, 253
compatibility, 253
conformance, 252
cursor types, 24
cursors, 25, 272
data sources, 389
deploying, 386
driver deployment, 387
error checking, 278
handles, 260
header files, 254
import libraries, 254
introduction, 252
introduction to programming, 2
linking, 254
multiple result sets, 276
multi-threaded applications, 265
no Driver Manager, 257
prepared statements, 269
programming, 251
registry entries, 389
result sets, 276
sample application, 262
sample program, 258
SQL statements, 10
stored procedures, 276
UNIX development, 256, 257
version supported, 252
Windows CE, 255, 256

ODBC driver
UNIX, 257

ODBC settings
deploying, 387, 388

odbc.h
about, 254

OLE DB
about, 338
Adaptive Server Anywhere, 338
cursor types, 24
cursors, 25, 344
deploying, 385
introduction to programming, 3
ODBC and, 338
provider deployment, 385
supported interfaces, 347
supported platforms, 338
updates, 344

OLE transactions
three-tier computing, 364

online backups
embedded SQL, 224

Open Client
Adaptive Server Anywhere limitations, 360
autocommit mode, 44
cursor types, 24
data type ranges, 355
data types, 355
data types compatibility, 355
deploying Open Client applications, 394
interface, 353
introduction, 6
limitations, 360
requirements, 354
SQL, 357
SQL statements, 10

OPEN statement
about, 194

operating system
file names, 377

ORDER BY clause
Java in the database columns, 109

ordering
Java in the database objects, 108

OUT parameters
Java in the database, 114

P–P

439

overflow errors
data type conversion, 355

P
packages

installing, 96
Java, 65
Java in the database, 74
jConnect, 136

performance
cursors, 39, 40
Java in the database values, 118
JDBC, 155
JDBC drivers, 131
prepared statements, 12, 269

permissions
JDBC, 157

persistence
Java in the database classes, 73

personal server
deploying, 398

place holders
dynamic SQL, 202

platforms
cursors, 24
Java in the database support, 55

positioned delete operation, 22

positioned update operation, 22

positioned updates
about, 19

prefetch
cursor performance, 39
cursors, 40
fetching multiple rows, 21

PREFETCH option
cursors, 40

PREPARE statement, 202

PREPARE TRANSACTION statement
and Open Client, 360

prepared statements
bind parameters, 13
cursors, 18
dropping, 13
Java in the database objects, 104
JDBC, 155
ODBC, 269
Open Client, 357
using, 12

PreparedStatement class
setObject method, 104

PreparedStatement interface
about, 155

prepareStatement method, 14

preparing
to commit, 365

preprocessor
about, 164
running, 166

primary keys
Java in the database columns, 109

println method
Java in the database, 72

private
Java access, 66

procedure not found error
Java methods, 153

procedures
embedded SQL, 220
ODBC, 276
result sets, 221

program structure
embedded SQL, 168

properties
db_get_property function, 235

protected
Java, 65
Java access, 66

public
Java access, 66

public fields
issues, 76

Q–R

440

PUT operation, 22

PUT statement, 22
multi-row, 197
wide, 197

Q
queries

ADO Recordset object, 343, 344
Java in the database, 106
JDBC, 153
single-row, 193

quoted identifiers
SQL_needs_quotes function, 245

QUOTED_IDENTIFIER option
jConnect setting, 139

quotes
Java in the database strings, 72

R
read-only

deploying databases, 397

read-only cursors
about, 24

Recordset object
ADO, 343, 344

recovery
distributed transactions, 368

registry
deploying, 387, 388
ODBC, 389

relocatable
defined, 127

REMOTEPWD
using, 139

replication
Java in the database objects, 119

request processing
embedded SQL, 224

requests
aborting, 233

requirements
Open Client applications, 354

reserved words
SQL and Java in the database, 74

resource dispensers
three-tier computing, 364

resource managers
about, 362
three-tier computing, 364

response file
definition, 382

result sets
ADO Recordset object, 343, 344
cursors, 15
Java in the database methods, 113
Java in the database stored procedures, 113
metadata, 42
multiple ODBC, 276
ODBC, 272, 276
Open Client, 359
retrieving ODBC, 273
stored procedures, 221
using, 19

retrieving
objects, 158
ODBC, 273
SQLDA and, 212

return codes, 287
ODBC, 278

ROLLBACK statement
cursors, 46

ROLLBACK TO SAVEPOINT statement
cursors, 47

rt.jar
runtime classes, 89

runtime classes
contents, 89
installing, 89
Java in the database, 69

runtime environment
Java in the database, 88

S–S

441

S
sample

esqldll.c, 170

sample database
about asademo.db, xiv
Java in the database, 86

samples
DBTools program, 290
embedded SQL, 171, 172
embedded SQL applications, 171
ODBC, 258
static cursors in embedded SQL, 173, 174
Windows services, 259

savepoints
cursors, 47

scope
Java, 66

SCROLL cursors
about, 24, 37
embedded SQL, 26

scrollable cursors, 21
JDBC support, 131

security
Java in the database, 115, 116

SecurityManager class
about, 115, 116

SELECT statement
dynamic, 204
Java in the database, 106
JDBC, 153
objects, 156
single row, 193

sensitive cursors
about, 34
delete example, 29
embedded SQL, 26
introduction, 29
update example, 31

sensitivity
cursors, 28, 29
delete example, 29
isolation levels and, 41
update example, 31

serialization
distributed computing, 160
Java in the database objects, 118
objects, 159
objects in tables, 97

server address
embedded SQL function, 235

servers
locating, 244

server-side autocommit
about, 45

services
example code, 175
sample code, 259

setAutocommit method
about, 148

setObject method
using, 160

setting
values using the SQLDA, 211

setup program
silent installation, 382

software
return codes, 287

sp_tsql_environment system procedure
setting options for jConnect, 139

spt_mda stored procedure
setting options for jConnect, 139

SQL
ADO applications, 10
applications, 10
embedded SQL applications, 10
JDBC applications, 10
ODBC applications, 10
Open Client applications, 10

SQL Anywhere Studio
documentation, viii

SQL Communications Area
about, 188

S–S

442

SQL preprocessor
about, 226
command line, 226
running, 166

SQL Remote
deploying, 399
Java in the database objects, 119

SQL statements
executing, 357

SQL/92
SQL preprocessor, 227

SQL_ATTR_MAX_LENGTH attribute
about, 273

SQL_CALLBACK type declaration, 237

SQL_CALLBACK_PARM type declaration, 237

SQL_ERROR
ODBC return code, 278

SQL_INVALID_HANDLE
ODBC return code, 278

SQL_NEED_DATA
ODBC return code, 278

sql_needs_quotes function
about, 245

SQL_NO_DATA_FOUND
ODBC return code, 278

SQL_SUCCESS
ODBC return code, 278

SQL_SUCCESS_WITH_INFO
ODBC return code, 278

SQL92
SQL preprocessor, 227

SQLAllocHandle ODBC function
about, 260
binding parameters, 268
executing statements, 267
using, 260

SQLBindCol ODBC function
about, 272, 273

SQLBindParameter ODBC function, 13
about, 268
prepared statements, 269
stored procedures, 276

SQLBrowseConnect ODBC function
about, 263

SQLCA
about, 188
changing, 190
fields, 188
length of, 188
multiple, 191
threads, 190

sqlcabc SQLCA field
about, 188

sqlcaid SQLCA field
about, 188

sqlcode SQLCA field
about, 188

SQLConnect ODBC function
about, 263

SQLCOUNT
sqlerror SQLCA field element, 189

sqld SQLDA field
about, 207

SQLDA
about, 202, 206
allocating, 230
descriptors, 43
fields, 207
filling, 244
freeing, 244
host variables, 208
sqllen field, 209
strings, 244

sqlda_storage function
about, 246

sqlda_string_length function
about, 246

sqldabc SQLDA field
about, 207

sqldaif SQLDA field
about, 207

S–S

443

sqldata SQLDA field
about, 208

sqldef.h
data types, 177

SQLDriverConnect ODBC function
about, 263

sqlerrd SQLCA field
about, 189

sqlerrmc SQLCA field
about, 188

sqlerrml SQLCA field
about, 188

SQLError ODBC function
about, 278

sqlerror SQLCA field
elements, 189
SQLCOUNT, 189
SQLIOCOUNT, 189
SQLIOESTIMATE, 190

sqlerror_message function
about, 246

sqlerrp SQLCA field
about, 189

SQLExecDirect ODBC function
about, 267
bound parameters, 268

SQLExecute ODBC function, 13

SQLExtendedFetch ODBC function
about, 273
stored procedures, 276

SQLFetch ODBC function
about, 273
stored procedures, 276

SQLFreeHandle ODBC function
using, 260

SQLFreeStmt ODBC function, 13

SQLGetData ODBC function
about, 272, 273

sqlind SQLDA field
about, 208

SQLIOCOUNT
sqlerror SQLCA field element, 189

SQLIOESTIMATE
sqlerror SQLCA field element, 190

SQLJ standard
about, 50

sqllen SQLDA field
about, 208, 209
DESCRIBE statement, 210
describing values, 210
retrieving values, 212
sending values, 211

sqlname SQLDA field
about, 208

SQLNumResultCols ODBC function
stored procedures, 276

SQLPP
about, 164
command line, 226

SQLPrepare ODBC function, 13
about, 269

SQLRETURN
ODBC return code type, 278

SQLSetConnectAttr ODBC function
about, 265

SQLSetPos ODBC function
about, 274

SQLSetStmtAttr ODBC function
cursor characteristics, 272

sqlstate SQLCA field
about, 189

SQLTransact ODBC function
about, 262

sqltype SQLDA field
about, 208
DESCRIBE statement, 210

sqlvar SQLDA field
about, 207, 208
contents, 208

sqlwarn SQLCA field
about, 189

T–T

444

standard output
Java in the database, 72

standards
SQLJ, 50

START JAVA statement
using, 128

starting
databases using jConnect, 139

statement handles
ODBC, 260

statements
COMMIT, 46
DELETE positioned, 22
insert, 12
PUT, 22
ROLLBACK, 46
ROLLBACK TO SAVEPOINT, 47
UPDATE positioned, 22

static cursors
about, 33
ODBC, 25

static methods
about, 62

static SQL
about, 202

STOP JAVA statement
using, 128

storage
Java in the database objects, 118

stored procedures
creating in embedded SQL, 220
embedded SQL, 220
executing in embedded SQL, 220
INOUT parameters and Java, 114
Java in the database, 113
OUT parameters and Java, 114
result sets, 221

string
data type, 246

strings
blank padding of DT_STRING, 177
Java in the database, 72

structure packing
header files, 166

sun package
runtime classes, 89

support
newsgroups, xv

supported platforms
OLE DB, 338

Sybase Central
adding JAR files, 96
adding Java classes, 95
adding ZIP files, 96
deploying, 395
Java-enabling a database, 92

Sybase runtime Java classes
about, 89

sybase.sql package
runtime classes, 89

sybase.sql.ASA package
JDBC 2.0 features, 132

System Management Server
deploying, 384

T
technical support

newsgroups, xv

this
Java in the database methods, 112

threaded applications
UNIX, 377

threads
embedded SQL, 190, 191
Java in the database, 112
ODBC, 252
ODBC applications, 265
UNIX development, 256

three-tier computing
about, 361
architecture, 363
Distributed Transaction Coordinator, 365
distributed transactions, 364
EAServer, 365

U–V

445

Microsoft Transaction Server, 365
resource dispensers, 364
resource managers, 364

TIMESTAMP data type
conversion, 355

transaction attribute
component, 370

transaction coordinator
EAServer, 369

transactions
application development, 44
autocommit mode, 44
cursors, 46
distributed, 362, 367
isolation level, 46
ODBC, 262

troubleshooting
cursor positioning, 19
Java in the database methods, 112

truncation
FETCH statement, 186
indicator variables, 186
on FETCH, 186

try block
Java, 67

two-phase commit
and Open Client, 360
three-tier computing, 364, 365

type
objects, 60

U
unchained mode

controlling, 44
implementation, 45
transactions, 44

Unicode
ODBC, 255
Windows CE, 255

unique columns
Java in the database columns, 109

unique cursors
about, 24

UNIX
deployment issues, 376
directory structure, 376
multi-threaded applications, 377
ODBC, 256, 257
ODBC applications, 257

unixodbc.h
about, 254

UPDATE statement
Java in the database, 104
positioned, 22
set methods, 105

updates
cursor, 344

upgrade database wizard
Java-enabling a database, 92

URL
database, 139
jConnect, 138

user-defined classes
Java in the database, 70

using Java in the database, 85

utilities
deploying database utilities, 398
SQL preprocessor, 226

V
value-sensitive cursors

about, 37
delete example, 29
introduction, 29
update example, 31

VARCHAR data type
embedded SQL, 182

verbosity enumeration, 334

version
Java in the database, 69
JDBC, 69
JDK, 69

W–Z

446

version number
file names, 377

versions
classes, 118

visible changes
cursors, 29

Visual C++
support, 166

VM
Java virtual machine, 54
starting, 128
stopping, 128

void
Java in the database methods, 61, 112

W
Watcom C/C++

support, 166

wide fetches, 21
about, 197

wide inserts, 197

wide puts, 197

Windows
services, 259

Windows CE
dbtool8.dll, 284
Java in the database unsupported, 55
ODBC, 255, 256
OLE DB, 338
supported versions, 338

Windows services
example code, 175

WITH HOLD clause
cursors, 20

wizards
JAR and ZIP file creation, 96
Java class creation, 78, 95, 147
upgrade database wizard, 92

work tables
cursor performance, 39

write files
deployment, 379

Z
zip files

Java, 65

	Adaptive Server Anywhere Programming Guide
	About This Manual
	SQL Anywhere Studio documentation
	The SQL Anywhere Studio documentation set
	Documentation formats

	Documentation conventions
	Syntax conventions
	Graphic icons

	The Adaptive Server Anywhere sample database

	1. Programming Interface Overview
	The ODBC programming interface
	The OLE DB programming interface
	The Embedded SQL programming interface
	The JDBC programming interface
	The Open Client programming interface
	Open Client architecture

	2. Using SQL in Applications
	Executing SQL statements in applications
	Preparing statements
	How to use prepared statements

	Introduction to cursors
	What are cursors?
	Benefits of using cursors
	Steps in using cursors

	Working with cursors
	Cursor positioning
	Configuring cursors on opening
	Fetching rows through a cursor
	Fetching multiple rows
	Fetching with scrollable cursors
	Modifying rows through a cursor
	Canceling cursor operations

	Choosing cursor types
	Availability of cursors
	Cursor properties
	Requesting Adaptive Server Anywhere cursors
	Bookmarks and cursors
	Block cursors

	Adaptive Server Anywhere cursors
	Cursor sensitivity overview
	Cursor sensitivity example: a deleted row
	Cursor sensitivity example: an updated row
	Insensitive cursors
	Sensitive cursors
	Asensitive cursors
	Value-sensitive cursors
	Cursor sensitivity and performance
	Cursor sensitivity and isolation levels

	Describing result sets
	Controlling transactions in applications
	Setting autocommit or manual commit mode
	Controlling the isolation level
	Cursors and transactions

	3. Introduction to Java in the Database
	Introduction
	Learning about Java in the database
	Using the Java documentation

	Java in the database Q & A
	What are the key features of Java in the database?
	How do I store Java instructions in the database?
	How does Java get executed in a database?
	Why Java?
	On what platforms is Java in the database supported?
	How do I use Java and SQL together?
	What is the Java API?
	How do I access Java from SQL?
	Which Java classes are supported?
	How can I use my own Java classes in databases?
	Can I access data using Java?
	Can I move classes from client to server?
	Can I create distributed applications?
	What can I not do with Java in the database?

	A Java seminar
	Understanding Java classes
	Understanding Java objects
	Understanding fields
	Understanding methods
	Object oriented and procedural languages
	A Java glossary
	Java error handling

	The runtime environment for Java in the database
	Supported versions of Java and JDBC
	The runtime Java classes
	Identifying Java methods and fields
	Java is case sensitive
	Strings in Java and SQL
	Printing to the command line
	Using the main method
	Scope and persistence
	Java escape characters in SQL statements
	Keyword conflicts
	Use of import statements
	Using the CLASSPATH variable
	Public fields

	Tutorial: A Java in the database exercise
	Create and compile the sample Java class
	Install the sample Java class
	Creating a SQL variable of type Invoice
	Access fields and methods of the Java object
	Saving Java objects in tables
	Returning an object using a query

	4. Using Java in the Database
	Introduction
	Setting up the Java samples
	Managing the runtime environment for Java

	Java-enabling a database
	The Sybase runtime Java classes
	Ways of Java-enabling a database
	New databases and Java
	Upgrading databases and Java
	Java-enabling a database
	Using Sybase Central to Java-enable a database

	Installing Java classes into a database
	Creating a class
	Installing a class
	Installing a JAR
	Updating classes and Jars

	Creating columns to hold Java objects
	Creating columns with Java data types
	Using defaults and NULL on Java columns

	Inserting, updating, and deleting Java objects
	A sample class
	Inserting Java objects
	Updating Java objects
	Deleting Java objects, classes, and JAR files

	Querying Java objects
	Comparing Java fields and objects
	Comparing Java objects

	Special features of Java classes in the database
	Supported classes
	Calling the main method
	Using threads in Java applications
	Procedure Not Found error
	Return value of methods returning void
	Returning result sets from Java methods
	Returning values from Java via stored procedures
	Security management for Java
	Implementing your own security manager

	How Java objects are stored
	Java objects and class versions

	Java database design
	Entities and attributes in relational and object-oriented data
	Entities and attributes in the real world
	Relational database limitations
	Using classes to overcome relational database limitations
	Levels of abstraction for relational data

	Using computed columns with Java classes
	Defining computed columns
	Inserting and updating computed columns
	When computed columns are recalculated

	Configuring memory for Java
	How memory is used

	5. Data Access Using JDBC
	JDBC overview
	Choosing a JDBC driver
	JDBC program structure
	JDBC in the database features
	Differences between client- and server-side JDBC connections

	Using the jConnect JDBC driver
	The jConnect driver files
	Installing jConnect system objects into a database
	Loading the jConnect driver
	Supplying a URL for the server

	Using the JDBC-ODBC bridge
	Establishing JDBC connections
	Connecting from a JDBC client application using jConnect
	Establishing a connection from a server-side JDBC class
	Notes on JDBC connections

	Using JDBC to access data
	Preparing for the examples
	Inserts, updates, and deletes using JDBC
	Passing arguments to Java methods
	Queries using JDBC
	Using prepared statements for more efficient access
	Inserting and retrieving objects
	Miscellaneous JDBC notes

	Creating distributed applications
	Implementing the Serializable interface
	Importing the class on the client side
	A sample distributed application
	Other features of distributed applications

	6. Embedded SQL Programming
	Introduction
	Development process overview
	Running the SQL preprocessor
	Supported compilers
	Embedded SQL header files
	Import libraries
	A simple example
	Structure of embedded SQL programs
	Loading the interface library dynamically
	Building NetWare Loadable Modules

	Sample embedded SQL programs
	Building the sample programs
	Running the sample programs
	Static cursor sample
	Dynamic cursor sample
	Service examples

	Embedded SQL data types
	Using host variables
	Declaring host variables
	C host variable types
	Host variable usage
	Indicator variables

	The SQL Communication Area (SQLCA)
	SQLCA fields
	SQLCA management for multi-threaded or reentrant code
	Using multiple SQLCAs

	Fetching data
	SELECT statements that return at most one row
	Using cursors in embedded SQL
	Fetching more than one row at a time

	Static and dynamic SQL
	Static SQL statements
	Dynamic SQL statements
	Dynamic SELECT statement

	The SQL descriptor area (SQLDA)
	The SQLDA header file
	SQLDA fields
	SQLDA host variable descriptions
	SQLDA sqllen field values

	Sending and retrieving long values
	Retrieving LONG data
	Sending LONG data

	Using stored procedures
	Using simple stored procedures
	Stored procedures with result sets

	Embedded SQL programming techniques
	Implementing request management
	Backup functions

	The SQL preprocessor
	Library function reference
	alloc_sqlda function
	alloc_sqlda_noind function
	db_backup function
	db_cancel_request function
	db_delete_file function
	db_find_engine function
	db_fini function
	db_get_property function
	db_init function
	db_is_working function
	db_locate_servers function
	db_register_a_callback function
	db_start_database function
	db_start_engine function
	db_stop_database function
	db_stop_engine function
	db_string_connect function
	db_string_disconnect function
	db_string_ping_server function
	fill_s_sqlda function
	fill_sqlda function
	free_filled_sqlda function
	free_sqlda function
	free_sqlda_noind function
	sql_needs_quotes function
	sqlda_storage function
	sqlda_string_length function
	sqlerror_message function

	Embedded SQL command summary

	7. ODBC Programming
	Introduction to ODBC
	ODBC conformance

	Building ODBC applications
	Including the ODBC header file
	Linking ODBC applications on Windows
	Linking ODBC applications on Windows CE
	Linking ODBC applications on UNIX

	ODBC samples
	Building the sample ODBC program
	Running the sample ODBC program

	ODBC handles
	Allocating ODBC handles
	A first ODBC example

	Connecting to a data source
	Choosing an ODBC connection function
	Establishing a connection
	Setting connection attributes
	Threads and connections in ODBC applications

	Executing SQL statements
	Executing statements directly
	Executing statements with bound parameters
	Executing prepared statements

	Working with result sets
	Choosing a cursor characteristics
	Retrieving data
	Updating and deleting rows through a cursor
	Using bookmarks

	Calling stored procedures
	Handling errors

	8. The Database Tools Interface
	Introduction to the database tools interface
	Using the database tools interface
	Using the import libraries
	Starting and finishing the DBTools library
	Calling the DBTools functions
	Software component return codes
	Using callback functions
	Version numbers and compatibility
	Using bit fields
	A DBTools example

	DBTools functions
	DBBackup function
	DBChangeLogName function
	DBChangeWriteFile function
	DBCollate function
	DBCompress function
	DBCreate function
	DBCreateWriteFile function
	DBCrypt function
	DBErase function
	DBExpand function
	DBInfo function
	DBInfoDump function
	DBInfoFree function
	DBLicense function
	DBStatusWriteFile function
	DBSynchronizeLog function
	DBToolsFini function
	DBToolsInit function
	DBToolsVersion function
	DBTranslateLog function
	DBTruncateLog function
	DBUnload function
	DBUpgrade function
	DBValidate function

	DBTools structures
	a_backup_db structure
	a_change_log structure
	a_compress_db structure
	a_compress_stats structure
	a_create_db structure
	a_crypt_db structure
	a_db_collation structure
	a_db_info structure
	a_dblic_info structure
	a_dbtools_info structure
	an_erase_db structure
	an_expand_db structure
	a_name structure
	a_stats_line structure
	a_sync_db structure
	a_syncpub structure
	a_sysinfo structure
	a_table_info structure
	a_translate_log structure
	a_truncate_log structure
	an_unload_db structure
	an_upgrade_db structure
	a_validate_db structure
	a_writefile structure

	DBTools enumeration types
	Verbosity enumeration
	Blank padding enumeration
	dbtran_userlist_type enumeration
	dbunload type enumeration
	a_validate_type enumeration

	9. The OLE DB and ADO Programming Interfaces
	Introduction to OLE DB
	Supported platforms
	Distributed transactions

	ADO programming with Adaptive Server Anywhere
	Connecting to a database with the Connection object
	Executing statements with the Command object
	Querying the database with the Recordset object
	Working with Recordset object
	Updating data through a cursor
	Using transactions

	Supported OLE DB interfaces

	10. The Open Client Interface
	What you need to build Open Client applications
	Data type mappings
	Range limitations in data type mapping

	Using SQL in Open Client applications
	Executing SQL statements
	Using prepared statements
	Using cursors
	Describing query results in Open Client

	Known Open Client limitations of Adaptive Server Anywhere

	11. Three-tier Computing and Distributed Transactions
	Introduction
	Three-tier computing architecture
	Distributed transactions in three-tier computing
	The vocabulary of distributed transactions
	How application servers use DTC
	Distributed transaction architecture

	Using distributed transactions
	DTC isolation levels
	Recovery from distributed transactions

	Using EAServer with Adaptive Server Anywhere
	Configuring EAServer
	Setting the component transaction attribute

	12. Deploying Databases and Applications
	Deployment overview
	Deployment models
	Ways to distribute files

	Understanding installation directories and file names
	UNIX deployment issues
	File naming conventions

	Using InstallShield objects and templates for deployment
	Using a silent installation for deployment
	Creating a silent install
	Running a silent install
	SMS Installation

	Deploying client applications
	Deploying OLE DB and ADO clients
	Deploying ODBC clients
	Deploying embedded SQL clients
	Deploying JDBC clients
	Deploying Open Client applications

	Deploying administration tools
	Deploying database servers
	Deploying databases

	Deploying embedded database applications
	Deploying personal servers
	Deploying database utilities
	Deploying SQL Remote

	13. SQL Preprocessor Error Messages
	SQL Preprocessor error messages indexed by error message value
	SQLPP errors
	'%1' host variable must be a C string type
	'%1' host variable must be an integer type
	'%1' symbol already defined
	Cannot find include file '%1'
	FIXCHAR type must have a length
	Feature not available with UltraLite
	Host variable '%1' is in use more than once with different indicators
	Inconsistent host variable types for this cursor
	Inconsistent indicator variables for this cursor
	Inconsistent number of host variables for this cursor
	Into clause not allowed on declare cursor - ignored
	Invalid array dimension
	Macros cannot be redefined
	Two SQLDAs specified of the same type (INTO or USING)
	Unknown hostvar type
	VARCHAR host variables cannot be pointers
	VARCHAR type must have a length
	arrays of FIXCHAR not supported
	arrays of VARCHAR not supported
	arrays of decimal not allowed
	arrays of this type not supported
	cannot describe static cursors
	combined pointer and arrays not supported for host types
	cursor '%1' not previously declared
	data value must be a host variable
	error reading temporary file
	error writing output file
	field used more than once in SET DESCRIPTOR statement
	full SQL feature
	host variable '%1' has been redefined
	host variable '%1' has two different definitions
	host variable '%1' is unknown
	host variables not allowed for this cursor
	host variables specified twice - on declare and open
	incorrect Embedded SQL language usage -- that is a '%1' extension
	incorrect Embedded SQL syntax
	incorrect SQL language usage -- that is a '%1' extension
	indicator variable '%1' is unknown
	initializer not allowed on VARCHAR host variable
	intermediate SQL feature
	invalid descriptor index
	invalid field for SET DESCRIPTOR
	invalid host variable type on '%1'
	invalid integer
	invalid type for indicator variable '%1'
	invalid type for sql statement variable
	long binary/long varchar size limit is 65535 for UltraLite
	missing ending quote of string
	must specify a host list or using clause on %1
	must specify an SQLDA on a DESCRIBE
	no FETCH or PUT for cursor '%1'
	no INTO clause on SELECT statement
	no OPEN for cursor '%1'
	no declare section and no INCLUDE SQLCA statement
	only one dimensional arrays supported for char type
	precision must be specified for decimal type
	statement '%1' not previously prepared
	static statement names will not work properly if used by 2 threads
	subscript value %1 too large
	token too long
	transact SQL extension
	unable to open temporary file
	unknown sql function '%1'
	unknown statement '%1'
	unrecognized SQL syntax
	vendor extension
	wrong number of parms to sql function '%1'

	Index

