
Adaptive Server
®
 Anywhere

Getting Started

Last modified: October 2002
Part Number: 38122-01-0802-01

Copyright © 1989–2002 Sybase, Inc. Portions copyright © 2001–2002 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Library, APT-Translator, ASEP, Backup Server, BayCam, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data
Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct
Connect Anywhere, DirectConnect, Distribution Director, Dynamo, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAY, ECMAP,
ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server,
Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion Server, First Impression, Formula One, Gateway Manager, GeoPoint, iAnywhere, iAnywhere Solutions,
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intellidex,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, MainframeConnect, Maintenance
Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet, ML Query, MobiCATS, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket PowerBuilder,
PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft,
Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Relational Beans, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, S.W.I.F.T. Message Format Libraries,
SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere,
SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT, SQL Server/DBM, SQL SMART,
SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase
SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare,
Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise
Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are
trademarks of Sybase, Inc. or its subsidiaries.

All other trademarks are property of their respective owners.

Last modified October 2002. Part number 38122-01-0802-01.

iii

Contents

About This Manual... vii
SQL Anywhere Studio documentation....................................viii
Documentation conventions... xi
The Adaptive Server Anywhere sample database..................xiv
Finding out more and providing feedback............................... xv

PART ONE
Database Concepts ... 1

1 Adaptive Server Anywhere Quick Start............................ 3
Step 1: Start the Adaptive Server Anywhere
database server ..4
Step 2: Start Sybase Central ..6
Step 3: Start Interactive SQL ..8

2 Databases and Applications ... 11
Relational database concepts...12
SQL and database computing ..17
The pieces of a database system ...20
How the pieces fit together ...22

3 Introduction to Adaptive Server Anywhere.................... 25
Introduction to Adaptive Server Anywhere26
Adaptive Server Anywhere intended uses..............................27
Adaptive Server Anywhere hallmarks.....................................28
The Adaptive Server Anywhere database server31
Adaptive Server Anywhere applications32

4 The Architecture of Database Applications 37
Application programming interfaces..38
Inside Adaptive Server Anywhere...43

iv

PART TWO
Working with Databases ... 47

5 Designing and Building Your Database......................... 49
Introduction ... 50
The sample database ... 52
Tutorial: Design and build a simple database......................... 58

6 Connecting Your Application to its Database 69
Introduction to connections ... 70
Creating an ODBC data source .. 71

7 Using Interactive SQL ... 75
Introduction to Interactive SQL ... 76
Starting Interactive SQL.. 78
Using Interactive SQL to display data..................................... 83
Working with SQL statements in Interactive SQL................... 88
Configuring Interactive SQL.. 94
Running command files .. 99
Using SQL escape syntax in Interactive SQL....................... 101

8 Selecting Data from Database Tables 105
Introduction ... 106
Selecting a complete table.. 108
Selecting columns from a table... 110
Ordering query results .. 113
Selecting rows from a table... 116

9 Selecting Data from Multiple Tables 123
Introduction ... 124
Joining tables using the cross product.................................. 126
Using the ON phrase to restrict a join................................... 127
Joining tables using key joins ... 129
Joining tables using natural joins.. 131
Joining tables using outer joins... 133

10 Selecting Aggregate Data ... 135
Summarizing data ... 136
A first look at aggregate functions .. 137
Applying aggregate functions to grouped data 138
Restricting groups ... 140

v

11 Selecting Data Using Subqueries................................. 143
Introducing subqueries..144
Introduction ...145
Single-row and multiple-row subqueries147
Using subqueries instead of joins ...149

12 Updating the Database .. 151
Introduction ...152
Adding rows to a table ..153
Modifying rows in a table ..154
Deleting rows ..155
Grouping changes into transactions156
Integrity checking ..159

13 System Tables.. 163
The system tables ...164
The SYSCATALOG view ..165
The SYSCOLUMNS view ...166
Other system tables ..167

14 Microsoft Visual Basic Quick Start............................... 169
Tutorial: Developing a Visual Basic application170

Glossary ... 173

Index ... 193

vi

vii

About This Manual

This book describes how to build simple databases and database applications
using Adaptive Server Anywhere.

This manual is for beginning users of Adaptive Server Anywhere.

This manual assumes some familiarity with basic programming concepts. It
also assumes a working knowledge of the operating system on which you
will be using Adaptive Server Anywhere.

Subject

Audience

Before you begin

viii

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere Studio documentation set

The SQL Anywhere Studio documentation set consists of the following
books:

♦ Introducing SQL Anywhere Studio This book provides an overview
of the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

 ♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere database-
management system and introductory material on designing, building,
and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book
describes how to build and deploy database applications using the C,
C++, and Java programming languages. Users of tools such as Visual
Basic and PowerBuilder can use the programming interfaces provided
by those tools.

ix

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ Adaptive Server Anywhere C2 Security Supplement Adaptive
Server Anywhere 7.0 was awarded a TCSEC (Trusted Computer System
Evaluation Criteria) C2 security rating from the U.S. Government. This
book may be of interest to those who wish to run the current version of
Adaptive Server Anywhere in a manner equivalent to the C2-certified
environment. The book does not include the security features added to
the product since certification.

♦ MobiLink Synchronization User’s Guide This book describes all
aspects of the MobiLink data synchronization system for mobile
computing, which enables sharing of data between a single Oracle,
Sybase, Microsoft or IBM database and many Adaptive Server
Anywhere or UltraLite databases.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ UltraLite User’s Guide This book describes how to build database
applications for small devices such as handheld organizers using the
UltraLite deployment technology for Adaptive Server Anywhere
databases.

♦ UltraLite User’s Guide for PenRight! MobileBuilder This book is for
users of the PenRight! MobileBuilder development tool. It describes
how to use UltraLite technology in the MobileBuilder programming
environment.

♦ SQL Anywhere Studio Help This book is provided online only. It
includes the context-sensitive help for Sybase Central, Interactive SQL,
and other graphical tools.

In addition to this documentation set, SQL Modeler and InfoMaker include
their own online documentation.

Documentation formats

SQL Anywhere Studio provides documentation in the following formats:

x

♦ Online books The online books include the complete SQL Anywhere
Studio documentation, including both the printed books and the context-
sensitive help for SQL Anywhere tools. The online books are updated
with each maintenance release of the product, and are the most complete
and up-to-date source of documentation.

To access the online books on Windows operating systems, choose
Start➤Programs➤Sybase SQL Anywhere 8➤Online Books. You can
navigate the online books using the HTML Help table of contents,
index, and search facility in the left pane, and using the links and menus
in the right pane.

To access the online books on UNIX operating systems, run the
following command at a command prompt:

dbbooks

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in the pdf_docs directory.
You can choose to install them when running the setup program.

♦ Printed books The following books are included in the
SQL Anywhere Studio box:

♦ Introducing SQL Anywhere Studio.

♦ Adaptive Server Anywhere Getting Started.

♦ SQL Anywhere Studio Quick Reference. This book is available only
in printed form.

The complete set of books is available as the SQL Anywhere
Documentation set from Sybase sales or from e-Shop, the Sybase online
store, at http://e-shop.sybase.com/cgi-bin/eshop.storefront/.

xi

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions

The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords are shown like the words ALTER
TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the words owner and table-name in the
following example.

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element
of the list followed by an ellipsis (three dots), like column-constraint in
the following example:

ADD column-definition [column-constraint, …]

One or more list elements are allowed. If more than one is specified,
they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-name is optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square
brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces.

[QUOTES { ON | OFF }]

xii

If the QUOTES option is chosen, one of ON or OFF must be provided.
The brackets and braces should not be typed.

♦ One or more options If you choose more than one, separate your
choices with commas.

{ CONNECT, DBA, RESOURCE }

Graphic icons

The following icons are used in this documentation:

xiii

Icon Meaning

A client application.

A database server, such as Sybase Adaptive Server
Anywhere or Adaptive Server Enterprise.

An UltraLite application and database server. In
UltraLite, the database server and the application are
part of the same process.

A database. In some high-level diagrams, the icon
may be used to represent both the database and the
database server that manages it.

Replication or synchronization middleware. These
assist in sharing data among databases. Examples are
the MobiLink Synchronization Server, SQL Remote
Message Agent, and the Replication Agent (Log
Transfer Manager) for use with Replication Server.

A Sybase Replication Server.

API
A programming interface.

xiv

The Adaptive Server Anywhere sample database
Many of the examples throughout the documentation use the Adaptive
Server Anywhere sample database.

The sample database is held in a file named asademo.db, and is located in
your SQL Anywhere directory.

The sample database represents a small company. It contains internal
information about the company (employees, departments, and finances) as
well as product information and sales information (sales orders, customers,
and contacts). All information in the database is fictional.

The following figure shows the tables in the sample database and how they
relate to each other.

id = id

id = prod_id

code = fin_code_id

emp_id = sales_rep

id = cust_id

code = code

dept_id = dept_id
emp_id = dept_head_id

contact
id <pk> integer
last_name char(15)
first_name char(15)
title char(2)
street char(30)
city char(20)
state char(2)
zip char(5)
phone char(10)
fax char(10)

customer
id <pk> integer
fname char(15)
lname char(20)
address char(35)
city char(20)
state char(2)
zip char(10)
phone char(12)
company_name char(35)

sales_order
id <pk> integer
cust_id <fk> integer
order_date date
fin_code_id <fk> char(2)
region char(7)
sales_rep <fk> integer

fin_code
code <pk> char(2)
type char(10)
description char(50)

fin_data
year <pk> char(4)
quarter <pk> char(2)
code <pk,fk> char(2)
amount numeric(9)

product
id <pk> integer
name char(15)
description char(30)
size char(18)
color char(6)
quantity integer
unit_price numeric(15,2)

sales_order_items
id <pk,fk> integer
line_id <pk> smallint
prod_id <fk> integer
quantity integer
ship_date date

employee
emp_id <pk> integer
manager_id integer
emp_fname char(20)
emp_lname char(20)
dept_id <fk> integer
street char(40)
city char(20)
state char(4)
zip_code char(9)
phone char(10)
status char(1)
ss_number char(11)
salary numeric(20,3)
start_date date
termination_date date
birth_date date
bene_health_ins char(1)
bene_life_ins char(1)
bene_day_care char(1)
sex char(1)

department
dept_id <pk> integer
dept_name char(40)
dept_head_id <fk> integer

asademo.db

xv

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on the forums.sybase.com news server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on
the newsgroup service when they have time available. They offer their
help on a volunteer basis and may not be available on a regular basis to
provide solutions and information. Their ability to help is based on their
workload.

xvi

1

P A R T O N E

Database Concepts

This part introduces Adaptive Server Anywhere and describes the basic
concepts you need to understand in order to work with relational databases

and database applications.

2

3

C H A P T E R 1

Adaptive Server Anywhere Quick Start

This chapter describes how to start the Adaptive Server Anywhere database
server and connect to the sample database from Sybase Central and
Interactive SQL.

This chapter is for those who have some familiarity with databases and want
to run the software right away.

$ For introductory descriptions of databases and Adaptive Server
Anywhere in particular, see the chapters starting with "Databases and
Applications" on page 11.

Topic Page

Step 1: Start the Adaptive Server Anywhere database server 4

Step 2: Start Sybase Central 6

Step 3: Start Interactive SQL 8

About this chapter

Contents

Step 1: Start the Adaptive Server Anywhere database server

4

Step 1: Start the Adaptive Server Anywhere
database server

In this section you start the Adaptive Server Anywhere database server
running the sample database.

Adaptive Server Anywhere includes two versions of the database server. The
personal database server is provided for single-user, same-machine use. The
network database server supports client/server communication over a
network and is provided for multi-user operation. The two database servers
are exactly equivalent in their query processing and other internal operations:
the personal database server is not less powerful than the network database
server.

Adaptive Server Anywhere databases are held in operating system files. The
sample database is held in a file named asademo.db in your SQL Anywhere
installation directory.

v To start the personal database server running the sample database
(Windows):

♦ From the Start menu, choose Programs➤Sybase
SQL Anywhere 8➤Adaptive Server Anywhere➤Personal Server
Sample.

The database server window appears.

v To start the database server running the sample database
(Command line):

1 Open a command prompt.

2 Change the directory to the SQL Anywhere installation directory.

On Windows operating systems, the default installation directory is
C:\Program Files\Sybase\SQL Anywhere 8.

3 Start the database server running the sample database.

The way you start the database server depends on your operating system,
and on whether you wish to connect to the database from other machines
on the network.

♦ If you wish to connect only from the same machine on Windows or
UNIX operating systems, enter the following command to start the
personal database server:

dbeng8 asademo.db

Chapter 1 Adaptive Server Anywhere Quick Start

5

♦ If you wish to connect to the database server from other machines
on the network on Windows or UNIX operating systems, enter the
following command to start the network database server:

dbsrv8 asademo.db

♦ On NetWare, only the network database server is provided. Enter
the following command:

load dbsrv8.nlm asademo.db

The database server window appears.

$ For a complete list of options you can use when starting the database
server, see "The database server" on page 120 of the book ASA Database
Administration Guide.

Step 2: Start Sybase Central

6

Step 2: Start Sybase Central
In this section you start Sybase Central, the graphical database administration
tool. These instructions assume that you have carried out the instructions in
"Step 1: Start the Adaptive Server Anywhere database server" on page 4.

v To start Sybase Central and connect to the sample database
(Windows):

1 Choose Start➤Programs➤Sybase SQL Anywhere 8➤Sybase Central.

2 Connect to the sample database.

♦ Choose Tools➤Connect.

♦ From the list of plug-ins, choose Adaptive Server Anywhere 8 and
click OK.

♦ On the Database tab, enter the Server name asademo. This
identifies the database server you started in the previous section.

♦ On the Identification tab, enter the user ID DBA and the password
SQL.

♦ Click OK to connect.

v To start Sybase Central and connect to the sample database
(Command line):

1 At a command prompt, enter the following command:

scjview

The main Sybase Central window appears.

2 Connect to the sample database.

♦ Choose Tools➤Connect.

♦ From the list of plug-ins, choose Adaptive Server Anywhere 8 and
click OK.

♦ On the Database tab, enter the Server name asademo. This
identifies the database server you started in the previous section.

♦ On the Identification tab, enter the user ID DBA and the password
SQL.

♦ Click OK to connect.

You can now explore the tables and other objects in the sample database.

Chapter 1 Adaptive Server Anywhere Quick Start

7

With Sybase Central you can carry out many database administration tasks,
including creating databases, backing up databases, creating tables and other
database objects, and modifying data in database tables.

$ For a tour of Sybase Central, see "Tutorial: Managing Databases with
Sybase Central" on page 49 of the book Introducing SQL Anywhere Studio.

Step 3: Start Interactive SQL

8

Step 3: Start Interactive SQL
In this section you start the Interactive SQL utility, connect to the sample
database, and enter a command.

v To start Interactive SQL and connect to the sample database
(Windows):

1 Start Interactive SQL:

♦ Choose Start➤Programs➤Sybase SQL Anywhere 8➤Adaptive
Server Anywhere➤Interactive SQL.

The Connect dialog appears.

2 Connect to the sample database.

♦ On the Database tab, enter the Server name asademo. This
identifies the database server you started in "Step 1: Start the
Adaptive Server Anywhere database server" on page 4.

♦ On the Identification tab, enter the user ID DBA and the password
SQL.

♦ Click OK to connect.

The Interactive SQL window appears.

3 Enter a command.

In the SQL Statements pane, enter a SQL statement such as the
following:

SELECT * FROM CUSTOMER

The result set for the query appears in the Results pane.

v To start Interactive SQL and connect to the sample database
(Command line):

1 From a command prompt, enter the following command:

dbisql

The Connect dialog appears.

2 Connect to the sample database.

♦ On the Database tab, enter the Server name asademo. This
identifies the database server you started in "Step 1: Start the
Adaptive Server Anywhere database server" on page 4.

Chapter 1 Adaptive Server Anywhere Quick Start

9

♦ On the Identification tab, enter the user ID DBA and the password
SQL.

♦ Click OK to connect.

The Interactive SQL window appears.

3 Enter a command.

In the SQL Statements pane, enter a SQL statement such as the
following and press F5 to execute the query:

SELECT * FROM CUSTOMER

The result set for the query is displayed in the Results pane.

$ You can enter any SQL statement against the database from Interactive
SQL. For a complete list of SQL statements, see "SQL Statements" on
page 199 of the book ASA SQL Reference Manual.

$ For more information about Interactive SQL, see "Using
Interactive SQL" on page 75.

Step 3: Start Interactive SQL

10

11

C H A P T E R 2

Databases and Applications

This chapter introduces basic database concepts. It describes what a
relational database is, and what it is used for. It also describes how databases
and database applications work together.

Other parts of the documentation set assume that you are familiar with the
concepts introduced in this chapter.

Topic Page

Relational database concepts 12

SQL and database computing 17

The pieces of a database system 20

How the pieces fit together 22

About this chapter

Contents

Relational database concepts

12

Relational database concepts
A relational database-management system (RDBMS) is a system for
storing and retrieving data, in which the data is organized in tables. A
relational database consists of a collection of tables that store interrelated
data.

This section introduces some of the terms and concepts that are important in
talking about relational databases.

$ For a tutorial illustrating the concepts described here, see "Designing
and Building Your Database" on page 49.

Database tables

In a relational database, all data is held in tables, which are made up of rows
and columns.

Each table has one or more columns, and each column is assigned a specific
data type, such as an integer, a sequence of characters (for text), or a date.
Each row in the table has a single value for each column.

For example, a table containing employee information may look as follows:

emp_ID emp_lname emp_fname emp_phone

10057 Huong Zhang 1096

10693 Donaldson Anne 7821

The tables of a relational database have some important characteristics:

♦ There is no significance to the order of the columns or rows.

Characteristics of
relational tables

Chapter 2 Databases and Applications

13

♦ Each row contains one and only one value for each column, or contains
NULL, which indicates that there is no value for that column.

♦ All values for a given column have the same data type.

The following table lists some of the formal and informal relational database
terms describing tables and their contents, together with their equivalent in
nonrelational databases. This manual uses the informal terms.

Informal relational
term

Formal relational
term

Non-relational term

Table Relation File

Column Attribute Field

Row Tuple Record

Each table in the database should hold information about a specific thing,
such as employees, products, or customers.

By designing a database this way, you can set up a structure that eliminates
redundancy and the possible inconsistencies caused by redundancy. For
example, both the sales and accounts payable departments might enter and
look up information about customers. In a relational database, the
information about customers is stored only once, in a table that both
departments can access.

$ For more information about database design, see "Designing Your
Database" on page 3 of the book ASA SQL User’s Guide.

$ For instructions on how to create a table, see "Lesson 3: Design and
create a table" on page 60.

Relations between tables

A relational database is a set of related tables. You use primary keys and
foreign keys to describe relationships between the information in different
tables. Primary keys identify each row in a table uniquely, and foreign keys
define the relationships between rows in different tables.

Primary keys and foreign keys let you use relational databases to hold
information in an efficient manner, without redundancy.

What do you keep
in each table?

Relational database concepts

14

Tables have a primary key

Each table in a relational database should have a primary key. The primary
key is a column, or set of columns, that uniquely identifies each row. No two
rows in a table may have the same primary key value.

In the sample database, the employee table stores information about
employees. It has a primary key column named emp_id, which holds a
unique ID number assigned to each employee. A single column holding an
ID number is a common way to assign primary keys, and has advantages
over names and other identifiers which may not always be unique.

A more complex primary key can be seen in the sales_order_items table of
the sample database. The table holds information about individual items on
orders from the company, and has the following columns:

♦ id An order number, identifying the order the item is part of.

♦ line_id A line number, identifying each item on any order.

♦ prod_id A product ID, identifying the product being ordered.

♦ quantity A quantity, displaying how many items were ordered.

♦ ship_date A ship date, displaying when the order was shipped.

A particular sales order item is identified by the order it is part of, and by a
line number on the order. These two numbers are stored in the id and line_id
columns. Items may share a single id value (corresponding to an order for
more than one item) or they may share a line_id number (all first items on
different orders have a line_id of 1). No two items share both values, and so
the primary key is made up of these two columns.

$ For a tutorial example, see "Lesson 4: Identify and create primary keys"
on page 62.

Tables are related by foreign keys

The information in one table is related to that in other tables by foreign keys.

The sample database has one table holding employee information and one
table holding department information. The department table has the
following columns:

♦ dept_id An ID number for the department. This is the primary key for
the table.

♦ dept_name The name of the department.

♦ dept_head_id The employee ID for the department manager.

Examples

Example

Chapter 2 Databases and Applications

15

To find the name of a particular employee’s department, there is no need to
put the name of the employee’s department into the employee table. Instead,
the employee table contains a column holding a number that matches one of
the dept_id values in the department column.

The dept_id column in the employee table is called a foreign key to the
department table. A foreign key references a particular row in the table
containing the corresponding primary key.

In this example, the employee table (which contains the foreign key in the
relationship) is called the foreign table or referencing table. The
department table (which contains the referenced primary key) is called the
primary table or the referenced table.

$ For a tutorial example, see "Lesson 5: Design column properties" on
page 63.

Other database objects

A relational database holds more than a set of related tables. Among the
other objects that make up a relational database are the following:

♦ Indexes Indexes allow quick lookup of information. Conceptually, an
index in a database is like an index in a book. In a book, the index
relates each indexed term to the page or pages on which that word
appears. In a database, the index relates each indexed column value to
the physical location at which the row of data containing the indexed
value is stored.

Indexes are an important design element for high performance. You
must usually create indexes explicitly, but indexes for primary and
foreign keys and for unique columns are created automatically. Once
created, the use of indexes is transparent to the user.

♦ Views Views are computed tables, or virtual tables. They look like
tables to client applications, but they do not hold data. Instead, whenever
they are accessed, the information in them is computed from the
underlying tables.

The tables that actually hold the information are sometimes called base
tables to distinguish them from views. A view is defined with a SQL
query on base tables or other views.

♦ Stored procedures and triggers These are routines held in the
database itself that act on the information in the database.

Relational database concepts

16

You can create and name your own stored procedures to execute specific
database queries and to perform other database tasks. Stored procedures
can take parameters. For example, you might create a stored procedure
that returns the names of all customers who have spent more than the
amount that you specify as a parameter in the call to the procedure.

A trigger is a special stored procedure that automatically fires whenever
a user updates, deletes, or inserts data, depending on how you define the
trigger. You associate a trigger with a table or columns within a table.
Triggers are useful for automatically maintaining business rules in a
database.

♦ Users and groups Each user of a database has a user ID and
password. You can set permissions for each user so that confidential
information is kept private and users are prevented from making
unauthorized changes. Users can be assigned to groups in order to make
the administration of permissions easier.

♦ Java objects You can install Java classes into the database. Java
classes provide a powerful way of building logic into your database, and
a special class of user-defined data types for holding information.

Chapter 2 Databases and Applications

17

SQL and database computing
When a client application wants to carry out a database task, such as
retrieving information using a query or inserting a new row into a table, it
does so using Structured Query Language (SQL) statements. SQL is a
relational database language that has been standardized by the ANSI and ISO
standards bodies.

Depending on how you develop a client application, SQL statements could
be supplied in function calls from the programming language. Some
application development tools provide user interfaces for building and
generating SQL statements.

The programming interface delivers the SQL statement to the database
server. The database server receives the statement and executes it, returning
the required information (such as query results) back to the application.

Client/server communication protocols carry information between the client
application and the database server, and programming interfaces define how
an application sends the information. No matter what interface you use, and
what network protocol you use, it is SQL statements that are sent to a server,
and the results of SQL statements that are returned to the client application.

This SQL statement extracts the last names of all employees from the
employee table in the sample database:

SELECT emp_lname
FROM employee

You can send queries like this to the database server using Interactive SQL
or you can build the query into your own application.

This SQL statement creates a table called food that lists types of food and the
amount in stock in the employee cafeteria:

CREATE TABLE food (
food_id integer primary key,
food_type char(20),
quantity integer

)

$ For an introduction to SQL, see the chapters beginning with "Selecting
Data from Database Tables" on page 105.

Example

Example

SQL and database computing

18

Queries

The "Q" in "SQL" stands for query. You query (or retrieve) data from a
database with the SELECT statement. The basic query operations in a
relational system are projection, restriction, and join. The SELECT statement
implements all of them.

A projection is a subset of the columns in a table. A restriction (also called
selection) is a subset of the rows in a table, based on some conditions.

For example, the following SELECT statement retrieves the names and
prices of all products that cost more than $15:

SELECT name, unit_price
FROM product
WHERE unit_price > 15

This query uses both a projection (SELECT name, unit_price) and a
restriction (WHERE unit_price > 15).

$ For more information, see "Selecting rows from a table" on page 116.

A join links the rows in two or more tables by comparing the values in
columns of each table. For example, you might want to select the order item
identification numbers and product names for all order items that shipped
more than a dozen pieces of merchandise:

SELECT sales_order_items.id, product.name
FROM product JOIN sales_order_items
WHERE sales_order_items.quantity > 12

The product table and the sales_order_items table are joined together based
on the foreign key relationship between them.

$ For more information, see the chapter "Selecting Data from Multiple
Tables" on page 123.

Other SQL statements

You can do more with SQL than just query. SQL includes statements that
create tables, views, and other database objects. It also includes statements
that modify tables (the INSERT, UPDATE, and DELETE statements), and
statements that perform many other database tasks discussed in this manual.

Projections and
restrictions

Joins

Chapter 2 Databases and Applications

19

The system tables

Every Adaptive Server Anywhere database contains a set of system tables.
These are special tables that the system uses to manage data and the system.
These tables are also sometimes called the data dictionary or the system
catalog.

System tables contain information about the database. You never alter the
system tables directly in the way that you can alter other tables. The system
tables hold information about the tables in a database, the users of a database,
the columns in each table, and so on. This information is data about data, or
metadata.

The pieces of a database system

20

The pieces of a database system
This section describes how database applications and the database server
work together to manage databases.

Any information system contains the following pieces:

♦ A database Data is stored in a database. In diagrams in the
documentation, a database is indicated by a cylinder:

An Adaptive Server Anywhere database is a file, usually with an
extension of .db. Adaptive Server Anywhere includes a sample database
for you to work with: this is the file asademo.db in your Adaptive
Server Anywhere installation directory.

$ For instructions on how to create a database, see "Designing and
Building Your Database" on page 49.

♦ A database server The database server manages the database. No
other application addresses the database file directly; they all
communicate with the database server.

$ For instructions on starting database servers, see "Connecting Your
Application to its Database" on page 69.

In diagrams in the documentation, a database server is indicated as
follows:

Adaptive Server Anywhere provides two versions of its database server:
the personal database server and the network database server. In
addition to the features of the personal server, the network database
server supports client/server communications across a network, while
the personal database server can accept connections only from
applications running on the same machine. The request-processing
engine is identical in both servers.

Chapter 2 Databases and Applications

21

$ For more information, see "The Adaptive Server Anywhere
database server" on page 31.

♦ A programming interface Applications communicate with the
database server using a programming interface. You can use ODBC,
JDBC, OLE DB, Sybase Open Client, or Embedded SQL.

Many application development tools provide their own programming
environment that hides the details of the underlying interface. For
example, if you develop an application using Sybase PowerBuilder, you
never have to make an ODBC function call. Nevertheless, behind the
scenes each of these tools is using one of the programming interfaces.

The programming interface provides a library of function calls for
communicating with the database. For ODBC and JDBC, the library is
commonly called a driver. The library is typically provided as a shared
library on UNIX operating systems or a dynamic link library (DLL) on
PC operating systems. The JDBC interface uses the Sybase jConnect
driver, which is a zip file of compiled Java classes.

In diagrams in the documentation, a programming interface is indicated
as follows:

API

♦ A client application Client applications use one of the programming
interfaces to communicate with the database server.

If you develop an application using a rapid application development
(RAD) tool such as Sybase PowerBuilder, you may find that the tool
provides its own methods for communicating with database servers, and
hides the details of the language interface. Nevertheless, all applications
do use one of the supported interfaces.

In diagrams in the documentation, a client application is indicated by the
following icon:

How the pieces fit together

22

How the pieces fit together
Database applications can connect to a database server located on the same
machine as the application itself, or in the case of the network database
server on a different machine. In addition, with Adaptive Server Anywhere
you can build distributed databases, with physically distinct databases on
different machines sharing data.

Personal applications and embedded databases

You can use Adaptive Server Anywhere to build a complete application and
database on a single computer. In the simplest arrangement, this is a
standalone application or personal application: it is self-contained with no
connection to other databases. In this case, the database server and the
database can be started by the client application, and it is common to refer to
the database as an embedded database: as far as the end user is concerned,
the database is a part of the application.

Standalone applications have the following architecture, with a client
application connecting through a programming interface to a database server
running on the same machine:

Interface

The Adaptive Server Anywhere personal database server is generally used
for standalone applications, although you can also use applications on the
same machine as the network server.

Chapter 2 Databases and Applications

23

Client/server applications and multi-user databases

You can use Adaptive Server Anywhere to build an installation with many
applications running on different machines, connected over a network to a
single database server running on a separate machine. This is a client/server
environment, and has the following architecture. The interface library is
located on each client machine.

In this case, the database server is the Adaptive Server Anywhere network
database server, which supports network communications. The database is
also called a multi-user database.

No changes are needed to a client application for it to work in a client/server
environment, except to identify the server to which it should connect.

How the pieces fit together

24

25

C H A P T E R 3

Introduction to Adaptive Server Anywhere

This chapter introduces the Adaptive Server Anywhere relational database
system. It describes the uses and features of Adaptive Server Anywhere.

Topic Page

Introduction to Adaptive Server Anywhere 26

Adaptive Server Anywhere intended uses 27

Adaptive Server Anywhere hallmarks 28

The Adaptive Server Anywhere database server 31

Adaptive Server Anywhere applications 32

About this chapter

Contents

Introduction to Adaptive Server Anywhere

26

Introduction to Adaptive Server Anywhere
The previous chapter, "Databases and Applications" on page 11, introduced
databases in a general manner. This chapter describes the particular
hallmarks of Adaptive Server Anywhere and describes the uses to which it
can be put.

Adaptive Server Anywhere provides a series of tools for storing and
managing data. You can use these tools to enter data into your database, to
change your database structure, and to view or alter your data.

The Adaptive Server Anywhere relational database-management system is
the heart of SQL Anywhere Studio. Adaptive Server Anywhere is designed
for tasks that require a full-featured SQL database. It is designed to operate
in varied environments. It takes advantage of available memory and CPU
resources, providing good performance in environments with ample
resources. It also operates well in environments with limited physical and
database administration resources, including mobile computing
environments, embedded database use, and workgroup servers.

Chapter 3 Introduction to Adaptive Server Anywhere

27

Adaptive Server Anywhere intended uses
Roles for which Adaptive Server Anywhere is ideally suited include the
following:

♦ A workgroup database server Workgroups ranging in size from a
few people to several hundred people can use Adaptive Server
Anywhere as a multi-user database server. It provides a
high-performance database for workgroups, well-suited for (but not
limited to) environments where administration and hardware resources
are limited.

Adaptive Server Anywhere can employ multiple CPUs and use up to
64 Gb of memory. Our customers have multi-gigabyte Adaptive Server
Anywhere databases in production use.

♦ An embedded database Many applications require a database
"behind the scenes". Personal Information Managers, document
management systems—just about any application that stores
information. Adaptive Server Anywhere is intended to be the database
for these applications. The UltraLite deployment option is intended for
embedded environments that have very restricted resources.

A key feature of embedded databases is that they be able to run entirely
without administration. Adaptive Server Anywhere has demonstrated
this facility in many demanding commercial applications.

♦ Mobile computing Laptop and notebook computers are now common
in many workplaces. Adaptive Server Anywhere is intended to be the
SQL database for these computers. With MobiLink synchronization and
SQL Remote replication, Adaptive Server Anywhere extends
transaction-based computing throughout the enterprise. The UltraLite
deployment option and MobiLink synchronization technology provide
full database functionality on devices with limited resources, such as
hand-held computers.

Adaptive Server Anywhere hallmarks

28

Adaptive Server Anywhere hallmarks
Adaptive Server Anywhere is built around the following technological
hallmarks:

♦ Full SQL relational database-management system Adaptive Server
Anywhere is a transaction-processing relational database-management
system (RDBMS), with full recovery capabilities, online backup,
referential integrity actions, stored procedures, triggers, row-level
concurrency control, schedules and events, a rich SQL language, and all
the features you expect in a full SQL RDBMS.

♦ Economical hardware requirements Adaptive Server Anywhere
requires fewer memory and disk resources than other
database-management systems.

♦ Easy to use Adaptive Server Anywhere is self-tuning and easy to
manage. You can use Adaptive Server Anywhere without the extensive
database administration efforts usually associated with relational
database-management systems.

♦ Standalone and network use Adaptive Server Anywhere can be used
in a standalone manner, for example as an embedded database in a
data-centric application, or as a network server in a multi-user
client/server or three-tier environment. As an embedded database
system, it can be started automatically by an application when required.

♦ High performance While Adaptive Server Anywhere is designed with
simple administration and modest resource requirements in mind, it is a
scalable, high-performance DBMS. Adaptive Server Anywhere can run
on multiple CPUs, has an advanced query optimizer, and provides
performance monitoring and tuning tools.

♦ Industry standard interfaces Adaptive Server Anywhere provides a
native ODBC 3.5 driver for high performance from ODBC applications,
and an OLE DB driver for use from ActiveX Data Object (ADO)
programming environments. It comes with Sybase jConnect for JDBC as
well as a JDBC-ODBC bridge, and supports embedded SQL and Sybase
Open Client interfaces.

♦ A cross-platform solution Adaptive Server Anywhere can be run on
many operating systems, including Windows, Novell NetWare, Sun
Solaris, and Linux.

$ The components available on each platform may differ. For
information, see "Availability of components" on page 34.

Chapter 3 Introduction to Adaptive Server Anywhere

29

Adaptive Server Anywhere system requirements

Adaptive Server Anywhere requires the following:

♦ Operating system and CPU You must have one of the following in
order to run the Adaptive Server Anywhere database server:

♦ Windows Windows 95, Windows 98, Windows Me, Windows
NT, Windows 2000, or Windows XP. For Windows NT, you need
version 4.0 or later. The documentation describes the use of
Windows NT. SQL Anywhere Studio components that run on
Windows NT also run on other Windows platforms.

♦ Windows CE For a list of supported chips and operating systems, see
"Operating system versions" on page 136 of the book Introducing SQL
Anywhere Studio.

♦ Novell NetWare Version 4.11, 4.2, or 5.x.

♦ UNIX, including Linux For a detailed list of supported UNIX
operating systems, see the SQL Anywhere Studio Read Me First for
UNIX.

♦ PC hardware For PC operating systems, an Intel 486 or higher CPU,
or compatible CPU, is required.

♦ Memory Adaptive Server Anywhere can run with as little as 4 Mb of
memory. If you use Java in the database, Adaptive Server Anywhere
requires 8 Mb of memory. If you are using the administration tools,
Adaptive Server Anywhere requires at least 32 Mb of RAM. Your
computer must have this much memory in addition to the requirements
for the operating system.

$ For more information about memory requirements of the administration
tools, see "Administration tool system requirements" on page 139 of the
book Introducing SQL Anywhere Studio.

$ For more information on supported operating systems for components
in SQL Anywhere Studio, see "Supported Platforms and System
Requirements" on page 135 of the book Introducing SQL Anywhere Studio.

Network software requirements

If you are running an Adaptive Server Anywhere network server, you must
have appropriate networking software installed and running.

The Adaptive Server Anywhere network server is available for Windows,
Novell NetWare, Linux, and UNIX operating systems.

Adaptive Server Anywhere hallmarks

30

Adaptive Server Anywhere supports the TCP/IP network protocol and the
SPX protocol for Novell NetWare.

Chapter 3 Introduction to Adaptive Server Anywhere

31

The Adaptive Server Anywhere database server
There are two versions of the Adaptive Server Anywhere database server
included in the product:

♦ The personal database server This server is provided for single-user,
same-machine use: for example, as an embedded database server. It is
also useful for development work.

The name of the personal server executable is as follows:

♦ On UNIX operating systems, it is dbeng8.

♦ On Windows, except Windows CE, it is dbeng8.exe.

♦ The network database server In addition to the features of the
personal server, the network server supports client/server
communications across a network. It is provided for multi-user use.

The name of the network server executable is as follows:

♦ On UNIX operating systems, it is dbsrv8.

♦ On Windows, including Windows CE, it is dbsrv8.exe.

♦ On Novell NetWare, the server is a NetWare Loadable Module
(NLM) called dbsrv8.nlm.

The request-processing engine is identical in the two versions of the server.
They support exactly the same SQL language, and exactly the same database
features. The personal server does not support communications across a
network, more than ten concurrent connections, or the use of more than two
CPUs. Applications developed against a personal server work unchanged
against a network server.

Same SQL
features in each
version

Adaptive Server Anywhere applications

32

Adaptive Server Anywhere applications
This section introduces some of the database applications that are supplied
with Adaptive Server Anywhere in the SQL Anywhere Studio product.
These applications help you design, build, and administer your databases.

Sybase Central

Sybase Central provides a graphical user interface for creating and
modifying databases and database objects, for inspecting the structure of
databases, and for database server administration.

Sybase Central lets you perform such tasks as creating a new database,
adding a table, or adding a column to a table.

$ For information on using Sybase Central, see "Lesson 2: Connect to
your database" on page 59.

The Sybase Central window is similar to Windows Explorer. The main
window is split into two vertically-aligned panes. The left pane displays a
hierarchical view of database objects or containers in a tree-like structure.
A container is a database object that can hold other database objects,
including other containers.

The right pane displays the contents of the container that has been selected in
the left pane. For example, to create a database, click the Utilities folder in the
left pane, and then double-click Create Database in the right pane.

Chapter 3 Introduction to Adaptive Server Anywhere

33

$ For an introduction to Sybase Central, see "Tutorial: Managing
Databases with Sybase Central" on page 49 of the book Introducing SQL
Anywhere Studio.

Interactive SQL

Interactive SQL is an application for typing and sending SQL statements to a
database. Interactive SQL allows you to query and alter data in your
database, as well as modify the structure of your database.

Everything that can be done in Sybase Central can be done in
Interactive SQL, but administration tasks are easier in Sybase Central. For
this reason, this book uses Sybase Central whenever possible, but when a
task is important, or is simple to accomplish in Interactive SQL, the
Interactive SQL instructions are also included.

$ For an introduction to Interactive SQL, see "Using Interactive SQL" on
page 75.

♦ The SQL Statements pane This is where you type SQL statements to
access and modify your data. The title bar above the SQL Statements
pane displays the current connection information.

♦ The Results pane This is a tabbed pane that displays query result sets,
messages from the database server, and information about query
execution. For example, if you enter a query asking how many
customers ordered five or more different types of products, that number
appears on the Results tab in the Results pane, and the query optimizer’s
plan for executing the statement appears on the Plan tab in the Results
pane. You can edit the result set on the Results tab.

$ For more information about editing the result set, see "Editing
table values in Interactive SQL" on page 84.

Database debugger

In addition to storing data, databases can store logic written in SQL stored
procedures, triggers, and events. They can also contain Java classes.

To help you develop and test logic in the database, Adaptive Server
Anywhere includes a debugger that lets you step through both SQL and Java
logic in your database.

$ For more information, see "Debugging Logic in the Database" on
page 571 of the book ASA SQL User’s Guide.

The
Interactive SQL
panes

Adaptive Server Anywhere applications

34

Utilities

A set of utilities is available for carrying out administration tasks such as
backing up a database. Utilities are useful for including in batch files for
repeated use.

$ For more information about administration utilities, see "Database
Administration Utilities" on page 435 of the book ASA Database
Administration Guide.

Availability of components

What components you have installed depends on which operating system
you are using, what choices you made when installing the software, and
whether you received the Adaptive Server Anywhere product or installed
Adaptive Server Anywhere as part of another product.

For example, if you have received Adaptive Server Anywhere as part of
another product, you may not have both versions of the database server.

Not all components are available on all operating systems. For example,
there is no personal server for NetWare, only a network server.

The SQL Anywhere program group

For Windows operating systems, after the software is installed, you will have
a SQL Anywhere program group. You can reach the program group by
clicking the Start button and choosing Programs➤Sybase SQL Anywhere 8.

Installing SQL Anywhere Studio under UNIX does not provide a program
group.

The program group contains some or all of the following items. The items
you see depend on the choices you made when installing the software.

♦ Adaptive Server Anywhere Contains the items:

♦ Database Object Debugger Starts the Adaptive Server
Anywhere Procedure Debugger.

♦ Interactive SQL Starts the Interactive SQL utility for sending
SQL statements to a database.

♦ Network Server Sample Starts the network database server and
loads the sample database.

♦ ODBC Administrator Starts the ODBC Administrator program
for setting up and editing ODBC data sources.

Program group
items

Chapter 3 Introduction to Adaptive Server Anywhere

35

♦ Personal Server Sample Starts the personal server and loads the
sample database.

♦ MobiLink program group To access MobiLink synchronization
programs and samples.

♦ UltraLite program group To access UltraLite programs and samples.

♦ iAnywhere Online Resources Opens a Web page with information
about iAnywhere Solutions.

♦ Online Books Opens the online documentation for Adaptive Server
Anywhere.

♦ Sybase Central Starts Sybase Central, the database management tool.

In addition, you may have items for InfoMaker and PowerDesigner.

Adaptive Server Anywhere applications

36

37

C H A P T E R 4

The Architecture of Database Applications

This chapter describes how database applications communicate with the
Adaptive Server Anywhere database server, and provides a glimpse into the
architecture of Adaptive Server Anywhere.

Topic Page

Application programming interfaces 38

Inside Adaptive Server Anywhere 43

About this chapter

Contents

Application programming interfaces

38

Application programming interfaces
The current section describes application architecture in more detail. An
overview of database application architecture was given in "How the pieces
fit together" on page 22.

Adaptive Server Anywhere supports a wide set of programming interfaces to
provide flexibility in the kinds of applications and application development
environments you can use.

Supported interfaces and protocols

The following diagram displays the supported interfaces, and the interface
libraries used. In most cases, the interface library is the same name as the
interface itself.

ASA

ODBCjConnect
Embedded

SQL

JDBC Embedded SQL ODBC

OLE DB

OLE DB

Open
Client

Open Client

Client
Application

Driver or
interface library

Communication
Protocol

Tabular Data
Stream

Command
Sequence

Application
Programming
Interface

Database
Server

Database

The applications supplied with SQL Anywhere Studio use several of these
interfaces:

Chapter 4 The Architecture of Database Applications

39

ASA

ISQL

SQL Modeler

JDBC

ODBC

Sybase Central

InfoMaker PowerDynamo

DB Tools

Embedded SQL

Communications protocols

Each interface library communicates with the database server using a
communication protocol. Adaptive Server Anywhere supports two
communication protocols, Tabular Data Stream (TDS) and Command
Sequence. These protocols are internal, and for most purposes it does not
matter which one you are using. Your choice of development environment
will be governed by your available tools.

The major differences you will see are upon connecting to the database. The
Command Sequence applications and TDS applications use different
methods to identify a database and database server, and so connection
dialogs are different.

TDS This protocol is used by Sybase Adaptive Server Enterprise, Open
Client applications, and Java applications that use the jConnect JDBC driver
connect using TDS.

Command Sequence This protocol is used by Adaptive Server
Anywhere, Adaptive Server IQ, and is used by embedded SQL, ODBC, and
OLE DB applications.

Application programming interfaces

40

ODBC applications

You can develop ODBC applications using a variety of development tools
and programming languages, as shown in the figure below.

VB PowerBuilder

ODBC

C/C++

Java

JDBC/ODBC
Bridge

Delphi

For example, of the applications supplied with SQL Anywhere Studio,
InfoMaker and SQL Modeler use ODBC to connect to the database.

Embedded SQL applications

You can develop C or C++ applications using the embedded SQL
programming interface. The command-line database tools are examples of
applications developed in this manner.

Embedded SQL is also a programming interface for UltraLite applications.

Chapter 4 The Architecture of Database Applications

41

C/C++ DB Tools

ESQL

Open Client applications

Open Client is an interface that is also supported by Sybase Adaptive Server
Enterprise. You can develop Open Client applications in C or C++. Other
Sybase applications, such as OmniConnect or Replication Server, use Open
Client.

C/C++ OmniConnect

Open
Client

Application programming interfaces

42

JDBC applications

You can develop applications that use JDBC to connect to Adaptive Server
Anywhere using Java. Several of the applications supplied with
SQL Anywhere Studio use JDBC: the stored procedure debugger, Sybase
Central, and Interactive SQL.

Debugger

Sybase Central Java

jConnect
JDBC

ISQL

Java and JDBC are also important programming languages for developing
UltraLite applications.

OLE DB applications

Adaptive Server Anywhere includes an OLE DB driver. You can develop
applications using Microsoft’s OLE DB interface directly, or using the
ActiveX Data Objects (ADO) interface. The ADO interface is included in
Visual Basic and other Microsoft programming tools.

Chapter 4 The Architecture of Database Applications

43

Inside Adaptive Server Anywhere
While you never need to deal with the internals of the database server, a
glimpse behind the scenes may help you understand the process better.

Inside the database server

The Adaptive Server Anywhere database server has an internal structure that
allows many requests to be handled efficiently.

♦ A communications layer handles the actual exchange of data with client
applications. This layer receives requests from client applications, and
returns results. The timing of these actions is governed by a negotiation
between client and server to make sure that the network traffic is kept to
a minimum, but that the data is made available as soon as possible on
the client side.

♦ The parser checks each SQL statement sent to the database server, and
transforms it into an internal form for processing.

♦ If the request is a query, an update, or delete statement, there may be
many different ways of accessing the data, which may take massively
different times. The job of the optimizer is to select from among all
these possibilities the best route to getting the required data quickly.

♦ A Java Virtual Machine is built into the database server, and any Java
operations sent by client applications, or invoked internally by the
database server, are handled by the Java VM.

♦ The lowest level of the database server is concerned with reading and
writing data from the disk, caching data in memory to avoid unnecessary
disk access, and balancing the demands of different users.

Inside Adaptive Server Anywhere

44

ASA

Data Access

 Communications

Java VM
Optimizer

Parser

Inside the database

All the information in an Adaptive Server Anywhere database is usually
stored in a single database file, which can be copied from one machine to
another. It is possible to make databases of several files, but this is generally
only required for very large databases.

In addition to the database file, Adaptive Server Anywhere uses two other
files when it is running a database. These are the transaction log and the
temporary file.

♦ The database file Internally, the database file is composed of pages:
fixed size areas of disk. The data access layer reads and writes data one
page at a time. Many pages hold the data that is in the database tables,
but other pages hold index information, information about the
distribution of data within the database, and so on.

♦ The transaction log The transaction log is a separate file that contains
a record of all the operations performed on the database. Normally, it
has the same name as the database file, except that it ends with the suffix
.log instead of .db. It has three important functions.

♦ Record operations on your data to enable recovery You can
recreate your database from a backup together with the transaction
log if the database file is damaged.

♦ Improve performance By writing information to the transaction
log, the database server can safely process your statements without
writing to the database file as frequently.

Chapter 4 The Architecture of Database Applications

45

♦ Enable database replication SQL Remote and the MobiLink
client utility use this file to replicate the changes to your database
on portable computers which are occasionally connected to the
network.

♦ The temporary file The temporary file is opened when the database
server starts, and is closed down when the server stops. As its name
suggests, the temporary file is used while the server is running to hold
temporary information. The temporary file does not hold information
that needs to be kept between sessions.

The temporary file is stored in your temporary directory. The location of
this directory is generally identified by your TEMP environment
variable.

Inside Adaptive Server Anywhere

46

47

P A R T T W O

Working with Databases

The first chapter of this part takes you on a tour of the Adaptive Server
Anywhere sample database to illustrate how databases are put together. It

then describes how to design and create your own database.

The remaining chapters introduce SQL, the language for accessing and
manipulating data. It also describes how to incorporate SQL into database

applications.

48

49

C H A P T E R 5

Designing and Building Your Database

This chapter introduces some principles of database design, and describes
how to create a database using Sybase Central. It uses the Adaptive Server
Anywhere sample database to illustrate the principles involved.

Topic Page

Introduction 50

The sample database 52

Tutorial: Design and build a simple database 58

About this chapter

Contents

Introduction

50

Introduction
It is worth spending some time designing even the simplest database: what
tables you will have, the keys that relate these tables, and so on.

Designing a database is not a difficult task for small and medium sized
databases, but it is an important one. Bad database design can lead to an
inefficient and possibly unreliable database system. Database applications
are built to work on specific parts of a database, and rely on the database
design, so a bad design can be difficult to revise at a later date.

Designing a large database is a complex task. There are formal approaches,
such as conceptual data modeling, that help you to create efficient designs.
Powerful tools, such as Sybase PowerDesigner and DataArchitect, enable
you to apply these techniques to design and maintain large database designs.

This chapter does not attempt to tackle design issues for large databases.
Instead, it helps you decide the kind of information you group together in a
single table, and the way in which to think about and classify relationships
between tables.

$ For an elementary look at the principles of database design, see
"Designing Your Database" on page 3 of the book ASA SQL User’s Guide.
For more advanced treatments, see the Sybase PowerDesigner
documentation or a book devoted to database design.

This chapter assumes that you are familiar with the concepts of database
tables, primary keys, and foreign keys.

$ For information on primary keys and foreign keys, see "Relations
between tables" on page 13.

About this chapter

If you want to know… Then see…

Where to find information about the
sample database

"The sample database" on page 52

How to connect to the sample database "Connect to the sample database" on
page 53

How to view tables "View a list of tables in the sample
database" on page 54

How to view columns "View the columns of a table" on
page 56

Chapter 5 Designing and Building Your Database

51

If you want to know… Then see…

How to create a database file "Lesson 1: Create a database file" on
page 58

How to connect to a database "Lesson 2: Connect to your database"
on page 59

How to create a table "Lesson 3: Design and create a table"
on page 60

How to create a primary key "Lesson 4: Identify and create
primary keys" on page 62

How to set column properties "Lesson 5: Design column
properties" on page 63

How to create relationships between
tables

"Lesson 6: Design and create
relationships between tables" on
page 66

The sample database

52

The sample database
There is a sample database included with Adaptive Server Anywhere. Many
of the examples throughout the documentation use this sample database.

The sample database represents a small company that makes a limited range
of sports clothing. It contains internal information about the company
(employees, departments, and financial data) as well as product information
(products) and sales information (sales orders, customers, and contacts). All
information in the sample database is fictional.

The following figure displays the tables in the sample database and how they
are related to each other. The boxes represent tables, and the arrows
represent foreign key relationships. Primary key columns are underlined.

We will use this database to illustrate the concepts described in this chapter.

Chapter 5 Designing and Building Your Database

53

id = id

id = prod_id

code = fin_code_id

emp_id = sales_rep

id = cust_id

code = code

dept_id = dept_id
emp_id = dept_head_id

contact
id <pk> integer
last_name char(15)
first_name char(15)
title char(2)
street char(30)
city char(20)
state char(2)
zip char(5)
phone char(10)
fax char(10)

customer
id <pk> integer
fname char(15)
lname char(20)
address char(35)
city char(20)
state char(2)
zip char(10)
phone char(12)
company_name char(35)

sales_order
id <pk> integer
cust_id <fk> integer
order_date date
fin_code_id <fk> char(2)
region char(7)
sales_rep <fk> integer

fin_code
code <pk> char(2)
type char(10)
description char(50)

fin_data
year <pk> char(4)
quarter <pk> char(2)
code <pk,fk> char(2)
amount numeric(9)

product
id <pk> integer
name char(15)
description char(30)
size char(18)
color char(6)
quantity integer
unit_price numeric(15,2)

sales_order_items
id <pk,fk> integer
line_id <pk> smallint
prod_id <fk> integer
quantity integer
ship_date date

employee
emp_id <pk> integer
manager_id integer
emp_fname char(20)
emp_lname char(20)
dept_id <fk> integer
street char(40)
city char(20)
state char(4)
zip_code char(9)
phone char(10)
status char(1)
ss_number char(11)
salary numeric(20,3)
start_date date
termination_date date
birth_date date
bene_health_ins char(1)
bene_life_ins char(1)
bene_day_care char(1)
sex char(1)

department
dept_id <pk> integer
dept_name char(40)
dept_head_id <fk> integer

asademo.db

Viewing the structure of the sample database using Sybase Central

This section describes how to use Sybase Central to view the contents of the
sample database.

Connect to the sample database

You need to connect to the sample database from Sybase Central in order to
view the tables and other objects in the database.

v To connect to the sample database from Sybase Central:

1 Start Sybase Central.

The sample database

54

♦ From the Start menu, choose Programs➤Sybase
SQL Anywhere 8➤Sybase Central.

or

♦ At a command prompt, enter the following command:

scjview

2 Open the Connect dialog.

♦ Click Tools➤Connect.

♦ If you are presented with a list of plug-ins, choose Adaptive Server
Anywhere from the list.

The Connect dialog appears:

3 Select ODBC Data Source Name and click Browse. In the resulting list,
choose ASA 8.0 Sample.

4 Click OK to connect.

View a list of tables in the sample database

Once you are connected to the sample database, you can open the folders in
the left pane to view the tables and other objects that make up the database.

Chapter 5 Designing and Building Your Database

55

$ For information on connecting to a database from Sybase Central, see
"Connect to the sample database" on page 53.

v To view a list of tables in the database:

1 In Sybase Central, open Adaptive Server Anywhere.

Each top-level folder on the left pane is a plug-in. A separate plug-in is
used to manage each software component. The Adaptive Server
Anywhere plug-in is used to manage all aspects of Adaptive Server
Anywhere.

2 Open the sample database.

Under the Adaptive Server Anywhere plug-in is a list of database
servers to which you have connections. When the sample database is
started, the database server is named asademo.

Each database server may be running one or more databases. In this
case, the sample database is also named asademo. The database also has
the user name for the current connection next to it. In this case, you are
connected as a user named DBA.

3 Open the tables folder.

Each database contains a set of folders describing the different types of
database objects. Here, we are interested only in the tables in the
database. Open the Tables folder to list the available tables.

The sample database

56

Each table has an owner, which is listed in parentheses beside the table name
in the left pane. If you see more tables than appear in the figure, right-click
the asademo database, and choose Filter Objects By Owner from the popup
menu. Select DBA, and clear the other user IDs in the list. Click OK to
restrict the objects displayed to those owned by DBA.

View the columns of a table

Sybase Central displays tables as containers. Each table has folders for
columns, foreign keys to and from the table, indexes, and triggers. Here, we
look only at the columns of the product table in the sample database.

$ For information on viewing tables, see "View a list of tables in the
sample database" on page 54.

v To view information about the columns of the product table:

1 In Sybase Central, open the product table.

Notes

Chapter 5 Designing and Building Your Database

57

2 Open the Columns folder.

The name, data type, and other information about each column appears
in the right pane.

3 View the properties of the color column.

Right-click the color column, and choose Properties from the popup
menu. The color property sheet appears. This property sheet contains a
detailed description of the column. Some of the properties are useful for
advanced users only, and are not described in this book.

You can use Sybase Central to browse other aspects of the sample database,
including foreign keys, primary keys, and the data in each table. You are
encouraged to do so in order to be familiar with the sample database for
examples in the remainder of the documentation.

Tutorial: Design and build a simple database

58

Tutorial: Design and build a simple database
When designing a database, you plan what items you want to store
information about, and what information you will keep about each item. You
also determine how these items are related. You classify the things in your
database as entities; the links between these entities are called relationships.

In this tutorial, you design and build a very simple database, modeled on the
product, sales_order_items, sales_order, and customer tables of the sample
database, but simplified. The database you create is not used in other parts of
the documentation, but it is still highly recommended that you work through
the tutorial to gain familiarity with the software and concepts.

Lesson 1: Create a database file

In this lesson, you create a database file to hold your database.

$ For more information, see "The pieces of a database system" on
page 20.

A database file is a container, ready to hold your database. The database file
contains system tables and other system objects that are common to all
databases, but you must add tables and the data they hold.

The collection of tables, indexes, and so on within the database, and all the
relationships between them, make up the database schema. The schema is
the database without the data. This tutorial describes how to design and
create a very simple database schema.

$ For a conceptual introduction to some of these pieces, see "Relational
database concepts" on page 12.

The name of each object within the database, including tables, columns, and
indexes, is an identifier. There are rules governing what you can use as
identifiers. You can use any set of letters, numbers, or symbols. However,
you must enclose a column name in double quotes if it contains characters
other than letters, numbers, or underscores, if it does not begin with a letter,
or if it is the same as a keyword.

If the QUOTED_IDENTIFIER database option is set to OFF, double quotes
are used to delimit SQL strings and cannot be used for identifiers. However,
you can always use square brackets to delimit identifiers, regardless of the
setting of QUOTED_IDENTIFIER.

$ For more information about identifiers, see "Identifiers" on page 7 of
the book ASA SQL Reference Manual.

Concepts

Chapter 5 Designing and Building Your Database

59

v To create a new database file:

1 Start Sybase Central.

2 In the left pane, open the Adaptive Server Anywhere container, then
open the Utilities folder. In the right pane, double-click Create Database.
The Create Database wizard opens.

3 Read the information on the introductory page and click Next.

4 Select Create A Database On This Machine and click Next.

5 Choose a location and name for your database file:

♦ Enter the filename c:\temp\mysample. If your temporary directory is
somewhere other than c:\temp, specify a path of your own choice.

6 Click Finish to create the database.

Other options are available when creating a database, which you could
have viewed by clicking Next instead of Finish, but the default choices
are good for many purposes.

The Creating Database window displays the progress of the task. When
the file is created, click OK to close the window.

Lesson 2: Connect to your database

In this lesson, you connect to the database file you created.

$ For more information, see "How the pieces fit together" on page 22.

Once your database is created, you can connect to it in order to create tables
and other database objects.

v To connect to your database:

1 Start Sybase Central.

2 Choose Tools➤Connect to open the Connect dialog. If you have
multiple plug-ins loaded, you may need to choose the Adaptive Server
Anywhere plug-in before the Connect dialog opens.

3 Specify the user ID and password.

On the first tab of the Connect dialog (the Identification tab), enter a
user ID of DBA and a password of SQL. These are the values created for
new databases, and so grant access to your new database.

Choose None in the profile options at the bottom of the tab.

Exercise

Exercise

Tutorial: Design and build a simple database

60

4 Specify your database file.

Click the Database tab. Enter the full path of your database file in the
Database File field. For example, if you followed the suggestion in the
previous lesson, you should enter the following:

c:\temp\mysample.db

5 Connect to the database.

Click OK. Sybase Central connects to the database.

Open the database server container in the left pane to see the mysample
database.

Lesson 3: Design and create a table

In this lesson, you add a table to your database.

Each table in your database should contain information about a single
subject. In the language of database design, you are identifying entities. For
example, the sample database holds information about employees in one
table, and information about products in another table: employees and
products are entities within the database design.

Concepts

Chapter 5 Designing and Building Your Database

61

$ For an introduction to tables, see "Database tables" on page 12.

Each column in a table describes a particular characteristic of the thing that
you would like to store information about. For example, in the sample
database, the employee table has columns that hold an employee ID number,
first and last names, an address, and other particular information that pertains
to a particular employee.

In database diagrams, each table is depicted by a rectangular box. The name
of the table is at the top of the box, and the column names are listed inside
the box.

In the product table from the sample database, above, each product is an item
of sports clothing.

Create a simplified version of the product table, containing only the identifier
(id) and name columns.

v To create the product table:

1 In Sybase Central, connect to your database if you are not already
connected.

2 Open the Tables folder in your database.

First open the server and database containers, then open the Tables
folder.

3 Double-click Add Table in the right pane. The New Table dialog
appears.

4 Name your table.

Type product in the Name box in the upper left corner of the dialog.

5 Create the columns.

A blank column space is in the form. You can create a column in this
space. Add a column with the following properties:

♦ Column Name Give the column a name of id.

♦ Primary key Click the Key heading until an icon with a key and
the letter P appears, indicating that the column is a primary key.

Exercise

Tutorial: Design and build a simple database

62

♦ Data type Give the column the integer data type.

You can ignore the other properties. Add a second column with the
following properties:

♦ Column Name Give the column a name of name. This column
holds the product name.

♦ Data type Give the column the char data type which holds
character strings, and enter a maximum length of 15 in the Size
column.

6 To finish, click the Save and Close icon on the far right of the toolbar.

You have now created a table in your database. The table data is held in the
database file. At present, the table is empty.

The next two lessons have more to say about columns and data types.

Lesson 4: Identify and create primary keys

In this lesson, you learn more about defining primary keys for your tables.
There is no exercise associated with this lesson.

$ For more information, see "Tables have a primary key" on page 14.

The primary key is a special column or columns used to uniquely identify a
row in a table. In the product table, the id column uniquely identifies each
product.

Each row has a unique value for the id column, and the values in each row
pertain only to a single product identifier by its id value. Two products might
have the same name or the same size, but not the same id number. In the
diagram, the id column is underlined to show that it is a primary key.

Creating a column specifically to hold an identifier which has no other
meaning is common practice in database design. You will know from your
bank, utility, or credit card statements that each account has a unique
identifier.

Concepts

Chapter 5 Designing and Building Your Database

63

You can make entering primary keys simple by assigning a primary key
column a default value of AUTOINCREMENT. The value for this column is
entered automatically each time a new row is added, and its value is one
more than the field’s value for the last row added.

v To create an AUTOINCREMENT primary key:

1 Right click the product table and choose Edit from the popup menu.

2 Select the primary key column. Click the Column Properties icon on the
toolbar to open the property sheet for the column.

3 Choose the Value tab.

4 Select the Default Value option.

5 Click System-Defined, and choose Autoincrement from the dropdown
list.

6 Click OK to close the column property sheet.

7 To finish, click the Save and Close icon.

Lesson 5: Design column properties

In this lesson, you learn more about choosing data types and other attributes
for the columns of your tables.

Each column has a data type associated with it. The data type defines the
type of information the column holds. Choose a data type for the column that
is appropriate for the data in the column. For example, identifier columns
commonly have an integer data type, while columns holding names or
addresses must have character data types.

Data types are organized into the following categories:

♦ Numeric data types There are several numeric data types. Some are
exact (not affected by round-off errors during operations) and some are
approximate.

The data type of the column affects the maximum size of the column.
For example, if you specify SMALLINT, a column can contain a
maximum value of 32,767. If you specify INTEGER, the maximum
value is 2,147,483,647.

$ For a complete list, see "Numeric data types" on page 56 of the
book ASA SQL Reference Manual.

Using an
autoincrement
primary key

Concepts

Tutorial: Design and build a simple database

64

♦ Character data types These are used to hold strings of text, such as
names, addresses, and so on. These data types have a length indicating
the maximum length of string that can be stored in them.

$ For a list, see "Character data types" on page 52 of the book ASA
SQL Reference Manual.

♦ Binary data types These can be useful to hold information that may
be meaningful to an application, but is encoded in a binary format.

$ For a list, see "Binary data types" on page 72 of the book ASA SQL
Reference Manual.

♦ Date/time data types These hold times of the day, as well as dates.

$ For a list, see "Date and time data types" on page 65 of the book
ASA SQL Reference Manual.

♦ Long data types These are sometimes called blobs (binary large
objects). They can be used to hold long strings of text (called memo
fields in some databases), images, or other binary information.

$ For more information, see "LONG BINARY data type" on page 72
of the book ASA SQL Reference Manual, and "LONG VARCHAR data
type" on page 54 of the book ASA SQL Reference Manual.

In addition, Adaptive Server Anywhere supports user-defined data types and
special Java data types. These are not discussed in this introductory book.

If every row must contain a value for this column, you should define the
column as being NOT NULL. Otherwise, the column is allowed to contain
NULL, which represents a missing value. The default is to allow NULL, but
you should explicitly declare columns NOT NULL unless there is a good
reason to allow NULL.

$ For a complete description of the NULL value, see "NULL value" on
page 48 of the book ASA SQL Reference Manual. For information on its use
in comparisons, see "Search conditions" on page 24 of the book ASA SQL
Reference Manual.

v To specify a data type for a column:

1 In the Tables folder, open the table for the column.

2 Open the Columns folder.

3 Double-click the column. The column’s property sheet opens.

4 Click the Data Type tab.

5 Select a basic data type from the first dropdown box.

NULL and
NOT NULL

Chapter 5 Designing and Building Your Database

65

This lesson and the last lesson have introduced the basic concepts you need
to know in order to create database tables. You can put these to work by
adding some more tables to your database. These tables will be used in the
subsequent lessons in this chapter.

Using the Sybase Central Table Editor, add the following tables to your
database:

♦ customer Add a table named customer, with the following columns:

♦ id An identification number for each customer. This column has
integer data type, and is the primary key. Make this an
autoincrement key.

♦ company_name The company name. This column is a character
data type, with a maximum length of 35 characters.

♦ sales_order Add a table named sales_order, with the following
columns:

♦ id An identification number for each sales order. This column has
integer data type, and is the primary key. Make this an
autoincrement key.

♦ order_date The date on which the order was placed. This column
has date data type.

♦ cust_id The identification number of the customer who placed the
sales order. This column has integer data type.

♦ sales_order_items Add a table named sales_order_items to hold line
item information, with the following columns:

♦ id The identification number of the sales order of which the line
item is a part. This column has integer data type, and should be
identified as a primary key column.

♦ line_id An identification number for each sales order. This
column has integer data type, and should be identified as a primary
key column.

♦ prod_id The identification number for the product being ordered.
This column has integer data type.

You have now created four tables in your database. The tables are not yet
related in any way. In the next lesson, you define foreign keys to relate the
tables to one another.

Exercise

Tutorial: Design and build a simple database

66

Lesson 6: Design and create relationships between tables

In this lesson, you learn about designing and creating relationships between
tables, using foreign keys.

$ For more information, see "Tables are related by foreign keys" on
page 14.

Although each table contains information about a single subject, two or more
tables may contain related information. For example, an employee is a
member of a department, or a sales order is for a set of products.
Relationships in a database may appear as foreign key relationships between
tables, or may appear as separate tables themselves. You will see examples
of each in this chapter.

You create relationships in your database to encode rules or practices that
govern the data in your tables. Once a relationship is built into the structure
of the database, there is no provision for exceptions.

Relationships among tables are classified as follows.

♦ One-to-one relationships Each item in one entity corresponds to
either zero or one entity in another. For example, in the sample database,
one employee manages one department. There is nowhere to put a
second department manager. Duplicating the department entry would
involve duplicating the department ID, which is not possible because it
is the primary key.

It is often appropriate to combine the items in a one-to-one relationship
into a single table. There is a column in the department table for a
manager, rather than having a separate table named manager.

$ For cases where it is appropriate to keep the items separate, see
"Designing Your Database" on page 3 of the book ASA SQL User’s
Guide.

♦ Many-to-one relationships A many-to-one relationship becomes a
foreign key relationship between tables. In a many-to-one relationship,
the primary key in the one entity appears as a new foreign key column in
the many table.

For example, in the database you just created, one customer can place
many orders, but only one customer places each order. To represent the
one-to-many relationship, you need a foreign key column in the
sales_order table (cust_id) that maps to the primary key column in the
customer table (id). It is often convenient to give the two columns the
same name.

Concepts

Chapter 5 Designing and Building Your Database

67

dept_id = dept_id

employee

emp_id integer
manager_id integer
emp_fname char(20)
emp_lname char(20)
dept_id integer
street char(40)
city char(20)
state char(4)
zip_code char(9)
phone char(10)
status char(1)
ss_number char(11)
salary numeric(20,3)
start_date date
termination_date date
birth_date date
bene_health_ins char(1)
bene_life_ins char(1)
bene_day_care char(1)
sex char(1)

department

dept_id integer
dept_name char(40)
dept_head_id integer

Each entry in the cust_id column of the sales_order table must match
one of the entries in the id column of the customer table. The
sales_order table (which contains the foreign key in the relationship) is
called the foreign table or referencing table. The customer table (which
contains the referenced primary key) is called the primary table or the
referenced table.

♦ Many to many relationships A many-to-many relationship is
represented by an intermediate table, and there is a foreign key
relationship from the intermediate table to each of the related entities.

For example, in the sample database, there is a many-to-many
relationship between products and sales orders. One sales order can be
for many products, and one product can appear on many sales orders.

id = prod_id

id = id sales_order

id integer
order_date date
region char(7)

product

id integer
name char(15)
description char(30)
size char(18)
color char(6)
quantity integer
unit_price numeric(15,2)

sales_order_items

id integer
line_id smallint
prod_id integer
quantity integer
ship_date date

In some cases, the intermediate table (sales_order_items) contains
additional information, such as the number of items of the product that
were ordered and the date they were shipped. In this case, the
intermediate table holds no additional information.

Add foreign keys to relate the tables in your database.

Add the following foreign keys:

Exercise

Tutorial: Design and build a simple database

68

♦ A foreign key from the id column in sales_order_items, referencing the
id column in sales_order. This key builds the many-to-one relationship
between sales orders and sales order items into the database.

♦ A foreign key from the prod_id column in sales_order_items,
referencing the id column in product. This key builds the many-to-one
relationship between sales order items and products into the database.

♦ A foreign key from the cust_id column in sales_order, referencing the id
column in customer. This key builds the many-to-one relationship
between sales orders and customers into the database.

The first two foreign keys taken together build the many-to-many
relationship between sales orders and products into the database.

v To create a foreign key:

1 Click the table for which you wish to create a foreign key.

2 Open the Foreign Keys folder.

3 Double-click Add Foreign Key to open the Foreign Key Creation
wizard.

4 Follow the instructions in the wizard.

This completes this introductory section on designing and building relational
databases. Remaining chapters in the book describe how to add and retrieve
data from databases. These chapters use the Adaptive Server Anywhere
sample database, which is a bigger database than the one you have just
created.

69

C H A P T E R 6

Connecting Your Application to its
Database

This chapter shows you how to establish a connection from your application
to the database it is working with.

Topic Page

Introduction to connections 70

Creating an ODBC data source 71

About this chapter

Contents

Introduction to connections

70

Introduction to connections
Any client application that uses a database must establish a connection to
that database before any work can be done. The connection forms a channel
through which all activity from the client application takes place. For
example, your user ID determines permissions to carry out actions on the
database—and the database server has your user ID because it is part of the
request to establish a connection.

Many client applications, including application development systems, use the
Open Database Connectivity (ODBC) interface to access Adaptive Server
Anywhere. An ODBC data source is a set of connection parameters that are
stored in the registry or in a file.

You can use ODBC data sources to connect to Adaptive Server Anywhere
databases from any of the following applications:

♦ Sybase Central and Interactive SQL.

♦ All the Adaptive Server Anywhere utilities.

♦ PowerDesigner and InfoMaker.

♦ Any application development environment that supports ODBC, such as
Microsoft Visual Basic, Sybase PowerBuilder, and Borland Delphi.

Adaptive Server Anywhere client applications on UNIX can use ODBC data
sources. On UNIX, the data source is stored as a file.

$ Adaptive Server Anywhere supports several programming interfaces in
addition to ODBC. For more information, see "Introduction to connections"
on page 38 of the book ASA Database Administration Guide.

Chapter 6 Connecting Your Application to its Database

71

Creating an ODBC data source
ODBC data sources are a convenient way of saving connection parameters
for repeated use. Once you have a data source, your connection string can
simply name the data source to use:

DSN=my data source

The Connect dialog in Sybase Central and Interactive SQL has fields for
entering an ODBC Data Source Name or ODBC Data Source File.

This section describes how to create a simple ODBC data source in
Windows.

$ For more detailed information, see "Configuring ODBC data sources
using the ODBC Administrator" on page 56 of the book ASA Database
Administration Guide. For information about setting up ODBC data sources
on UNIX, see "Using ODBC data sources on UNIX" on page 63 of the book
ASA Database Administration Guide.

v To create a simple ODBC data source:

1 Start the ODBC Administrator:

♦ From the Windows Start menu, choose Programs➤Sybase
SQL Anywhere 8➤Adaptive Server Anywhere➤ODBC
Administrator.

or
From Sybase Central, choose Tools➤Adaptive Server
Anywhere 8➤Open ODBC Administrator.

The ODBC Data Source Administrator appears, displaying a list of the
data sources you currently have installed on your computer. For
example,

Creating an ODBC data source

72

2 On the User DSN tab, click Add.

The Create New Data Source wizard appears.

3 Select Adaptive Server Anywhere 8.0 from the list of drivers, and click
Finish.

Chapter 6 Connecting Your Application to its Database

73

The Adaptive Server Anywhere ODBC Configuration dialog appears.

Many of the fields in this dialog are optional. Click the question mark at
the top right of the window and click an entry field to find more
information about that field. You probably only need to use the
following parameters:

♦ Data Source Name (ODBC tab) Type a name that will appear in
the Connect dialog. It can contain spaces, but should be short.

For example, for the database created in the previous chapter you
could enter a data source name of My Sample.

Creating an ODBC data source

74

♦ User ID (Login tab) The database user ID you will use to connect.
If you omit the user ID, you will be prompted for it when you
attempt to connect.

For newly created databases, the default user ID is DBA.

♦ Password (Login tab) You should omit or encrypt the password
if there are security concerns with having passwords stored on your
machine. If you omit the password, you will be prompted for it
when you attempt to connect.

The default password for the DBA user ID is SQL.

♦ Database File (Database tab) You can select a database file by
browsing your machine.

For the database created in the previous chapter you would enter
c:\temp\mysample.db.

4 When you have specified the parameters you need, click OK to create
the data source and close the dialog.

$ For a full description of database connections, see "Connecting to a
Database" on page 37 of the book ASA Database Administration Guide.

$ For more information about ODBC data sources, see "Working with
ODBC data sources" on page 53 of the book ASA Database Administration
Guide.

75

C H A P T E R 7

Using Interactive SQL

This chapter discusses how to run and use Interactive SQL. Interactive SQL
is a utility shipped with Adaptive Server Anywhere; it lets you execute SQL
statements, build scripts, and display database data.

Topic Page

Introduction to Interactive SQL 76

Starting Interactive SQL 78

Using Interactive SQL to display data 83

Working with SQL statements in Interactive SQL 88

Configuring Interactive SQL 94

Running command files 99

Using SQL escape syntax in Interactive SQL 101

About this chapter

Contents

Introduction to Interactive SQL

76

Introduction to Interactive SQL
Interactive SQL is a utility for sending SQL statements to the database
server. You can use it for the following purposes:

♦ Browsing the information in a database.

♦ Trying out SQL statements that you plan to include in an application.

♦ Loading data into a database and carrying out administrative tasks.

In addition, Interactive SQL can run command files or script files. For
example, you can build repeatable scripts to run against a database and then
use Interactive SQL to execute these scripts in a batch fashion.

About this chapter

The following table lists the most common information how to run and use
Interactive SQL.

If you want to know… Then see…

How to start Interactive SQL "Starting Interactive SQL" on
page 78

How to connect to a database "Connecting Your Application to its
Database" on page 69

How to use the Interactive SQL toolbar "Using the Interactive SQL toolbar"
on page 79

How to open a new Interactive SQL
window

"Opening multiple windows" on
page 80

Where to find information about
keyboard shortcuts

"Keyboard shortcuts" on page 80

How to display data "Using Interactive SQL to display
data" on page 83

Chapter 7 Using Interactive SQL

77

If you want to know… Then see…

How to execute SQL commands in
Interactive SQL

"Working with SQL statements in
Interactive SQL" on page 88

How to set Interactive SQL options "Configuring Interactive SQL" on
page 94

Where to find more detailed information
on selecting data

"Selecting Data from Database
Tables" on page 105

Where to find more information on
loading and unloading data

"Introduction to import and export"
on page 422 of the book ASA SQL
User’s Guide

How to automate common tasks "Saving, loading, and running
command files" on page 100

Starting Interactive SQL

78

Starting Interactive SQL
You can start Interactive SQL in two ways: from Sybase Central or on its
own. The way that you start Interactive SQL on its own depends on your
operating system.

If you start Interactive SQL on its own, the Connect dialog appears, which
lets you connect to a database just as you would in Sybase Central.

$ For detailed information on connecting to databases, see "Connecting
to a Database" on page 37 of the book ASA Database Administration Guide.

v To start Interactive SQL from Sybase Central:

♦ To start Interactive SQL, right-click a database in Sybase Central and
choose File➤Open Interactive SQL. In this case Interactive SQL
automatically connects to the database.

or

♦ To start Interactive SQL without a connection to a database, choose
Tools➤Adaptive Server Anywhere 8➤Open Interactive SQL. The
Connect dialog appears.

v To start Interactive SQL:

♦ Choose Start➤Programs➤Sybase SQL Anywhere 8➤Adaptive Server
Anywhere➤Interactive SQL. The Connect dialog appears.

or

♦ Type the following at a command prompt:

dbisql

The Connect dialog appears.

Enter the required information to connect to a database and click OK to
connect.

Interactive SQL has the following panes:

♦ SQL Statements Provides a place for you to type SQL statements.

♦ Results Displays the results of commands that you execute. For
example, if you use SQL statements to search for specific data in the
database, the Results tab in this pane displays the columns and rows that
match the search criteria. If the information exceeds the size of the pane,
scroll bars automatically appear for the pane. You can edit the result set
on the Results tab.

Main window
description

Chapter 7 Using Interactive SQL

79

$ For more information about editing the result set, see "Editing
table values in Interactive SQL" on page 84.

The Messages tab displays messages from the database server about the
SQL statements that you execute in Interactive SQL. You can specify
options for this tab in the Messages tab of the Options dialog.

The Plan tab and the UltraLite Plan tab in the Results pane display the
query optimizer’s execution plan for a SQL statement. You can specify
options for these tabs on the Plan tab of the Options dialog.

The title bar at the top of the window displays connection information, as
follows:

database-name (userid) on Server-name

For example, if you connect to the sample database, the title bar is as
follows:

asademo (dba) on asademo

Using the Interactive SQL toolbar

The Interactive SQL toolbar appears at the top of the Interactive SQL
window. It provides you with buttons for executing common commands.

With the buttons on this toolbar, you can:

♦ Recall the executed SQL statement immediately before your current
position in the history list.

♦ View a list of up to 50 previously executed SQL statements.

♦ Recall the executed SQL statement immediately after your current
position in the history list.

Starting Interactive SQL

80

♦ Execute the SQL statement currently appearing in the SQL Statements
pane.

♦ Interrupt the execution of the current SQL statement.

As an easy reminder of what these buttons do, you can hold your cursor over
each button to see a popup description.

Opening multiple windows

You can open multiple Interactive SQL windows. Each window corresponds
to a separate database connection. You can connect simultaneously to two
(or more) different databases on different servers, or you can open
concurrent connections to a single database.

v To open a new Interactive SQL window:

1 Choose Window➤New Window. The Connect dialog appears.

2 In the Connect dialog, enter connection options, and click OK to
connect.

The connection information (including the database name, your user ID,
and the database server) appears on the title bar above the SQL
Statements pane.

You can also connect to or disconnect from a database with the Connect and
Disconnect commands in the SQL menu, or by executing a CONNECT or
DISCONNECT statement.

Keyboard shortcuts

Interactive SQL provides the following keyboard shortcuts:

Function key Description

ALT+F4 Exits Interactive SQL.

ALT+LEFT

CURSOR

Displays the previous SQL statement in the history list.

ALT+RIGHT

CURSOR

Displays the next SQL statement in the history list.

CTRL+BREAK Interrupts the SQL statement that is being executed.

Chapter 7 Using Interactive SQL

81

Function key Description

CTRL+C Copies the selected row(s) and column headings to the
clipboard in the Results pane.

In the SQL Statements pane, copies the selected text to the
clipboard.

CTRL+END Moves to the bottom of the current pane.

CTRL+F6 Cycles through the Interactive SQL windows.

CTRL+H Displays the history of your executed SQL statements during
the current session.

CTRL+HOME Moves to the top of the current pane.

CTRL+N Clears the contents of the Interactive SQL window.

CTRL+Q Displays the Query Editor.

The Query Editor helps you build SQL queries. When you
have finished building your query, click OK to export it back
into the SQL Statements pane.

CTRL+S Saves the contents of the SQL Statements pane.

ESC Clears the SQL Statements pane.

F1 Opens Help.

F2 Edits the selected value in the result set. You can tab from
column to column within the row.

F5 Executes all text in the SQL Statements pane.

You can also perform this operation by clicking the Execute
SQL Statement button on the toolbar.

F7 Displays the Lookup Table Name dialog.

In this dialog, you can find and select a table and then press
ENTER to insert the table name into the SQL Statements pane
at the cursor position. Or, with a table selected in the list,
press F7 again to display the columns in that table. You can
then select a column and press ENTER to insert the column
name into the SQL Statements pane at the cursor position.

Starting Interactive SQL

82

Function key Description

F8 Displays the Lookup Procedure Name dialog.

In this dialog, you can find and select a procedure and then
press ENTER to insert the procedure name into the SQL
Statements pane at the cursor position.

F9 Executes the text that is selected in the SQL Statements pane.

If no text is selected, all of the statements are executed.

PGDN Moves down in the current pane.

PGUP Moves up in the current pane.

SHIFT+F5 Refreshes the plan without executing the statement that is
entered in the SQL Statements pane.

The following keyboard shortcuts are available when the SQL Statements
pane has the focus:

Function key Description

CTRL+] Moves the cursor to the matching brace. You can specify
one of the following types: (), { }, [], or < >.

CTRL+BACKSPACE Deletes the word to the left of the cursor.

CTRL+DEL Deletes the word to the right of the cursor.

CTRL+F3 Finds the next occurrence of the selected text.

CTRL+G Opens the Go To dialog where you can specify the line you
want to go to.

CTRL+L Deletes the current line from the SQL Statements pane and
puts the line onto the clipboard.

CTRL+SHIFT+] Extends the selection to the matching brace.

CTRL+SHIFT+F3 Finds the previous occurrence of the selected text.

CTRL+SHIFT+L Deletes the current line.

CTRL+SHIFT+U Changes the selection to uppercase characters.

CTRL+U Changes the selection to lowercase characters.

HOME Moves the cursor to the start of the current line or to the
first word on the current line.

SHIFT+F3 Finds the previous occurrence of the selected text.

SHIFT+HOME Extends the selection to the start of the text on the current
line.

Chapter 7 Using Interactive SQL

83

Using Interactive SQL to display data
One of the principal uses of Interactive SQL is to browse the information in
databases. This section shows how to query the information in the sample
database.

You can display database information using the SELECT statement in
Interactive SQL. The following example shows the command to type in the
SQL Statements pane. Once you have typed the command, you must click
the Execute SQL Statement button on the toolbar to carry out the command.

After you execute the statement, the data (called a result set) appears on the
Results tab in the Results pane. You can use the scroll bars to see areas of the
table that are outside your current view of the pane.

v To list all the columns and rows of the employee table:

1 Start Interactive SQL and connect to the sample database.

2 Type the following in the SQL Statements pane:

SELECT *
FROM employee

3 On the toolbar, click the Execute SQL Statement button.

emp_id manager_id emp_lname emp_fname ...

102 501 Fran Whitney ...

105 501 Matthew Cobb ...

129 902 Philip Chin ...

148 1293 Julie Jordan ...

...

$ For more information on Select statements, see "Selecting Data from
Database Tables" on page 105.

You can add, delete, and update rows within the result set.

$ For more information about editing the result set, see "Editing table
values in Interactive SQL" on page 84.

Using Interactive SQL to display data

84

Editing table values in Interactive SQL

Once you execute a query in Interactive SQL, you can edit the result set to
modify the database. You can also select rows from the result set and copy
them for use in other applications. Interactive SQL supports editing,
inserting, and deleting rows. These actions have the same result as executing
UPDATE, INSERT, and DELETE statements.

Before you can copy, edit, insert, or delete rows, you must execute a query in
Interactive SQL that returns a result set on the Results tab in the Results
pane. When you edit the result set directly, Interactive SQL creates and
executes a SQL statement that makes your change to the database table.

To edit a row or value in the result set, you must have the proper permissions
on the table or column you want to modify values from. For example, if you
want to delete a row, then you must have DELETE permission for the table
the row belongs to.

Editing the result set may fail if you:

♦ attempt to edit a row or column you do not have permission on.

♦ select columns from a table with a primary key, but you do not select all
of the primary key columns.

♦ attempt to edit the result set of a JOIN (for example, there is data from
more than one table in the result set).

♦ enter an invalid value (for example, a string in a numeric column or a
NULL in a column that does not allow NULLs).

When editing fails, an Interactive SQL error message appears explaining the
error, and the database table values remain unchanged.

Once you make changes to table values, you must enter a COMMIT
statement to make the changes permanent. If you want to undo your changes,
you must execute a ROLLBACK statement.

$ For more information, see "COMMIT statement" on page 265 of the
book ASA SQL Reference Manual and "ROLLBACK statement" on page 522
of the book ASA SQL Reference Manual.

Editing table values from the Interactive SQL result set

From Interactive SQL you can change any or all of the values within existing
rows in database tables. You must have UPDATE permission on the columns
being modified. When you edit the result set, you can only make changes to
the values in one row at a time.

Chapter 7 Using Interactive SQL

85

v To edit a row in the result set:

1 Click the value you want to change.

2 Right-click the result set and choose Edit from the popup menu. You can
also press F2 to edit the result set.

A blinking cursor appears in the table cell containing the value.

3 Enter the new value.

You cannot enter invalid data types into a column. For example, you
cannot enter a string into a column that accepts the INT data type.

If you are done editing values in the row, press Enter to update the
database. If you want to change other values in the row, press Tab or
Shift+Tab to move to the other values.

You can press the Esc key to cancel the change that was made to the
selected value.

4 Execute a COMMIT statement to make your changes to the table
permanent.

Once you edit values in the result set, the database is updated with the
modified values. Computed columns are recalculated based on the modified
values whether or not they are part of the result set. However, if there are
computed columns in your result set, and you modify a value in the
computed column, the database is updated with the modified value.

Inserting rows into the database from the Interactive SQL result set

Interactive SQL also allows you to add new rows to result sets. You tab
between columns in the result set to add values to the row. When you add
values to the table, characters are stored in the same case as they are entered.
You must have INSERT permission on the table to add new rows.

v To insert a new row into the result set:

1 Right-click the result set and choose Add from the popup menu.

A new blank row appears with a blinking cursor in the first value in the
row.

Press Tab to move the cursor from column to column across the row.
You can also insert a value by clicking on the value within the selected
row.

2 Enter the new value.

You cannot enter invalid data types into a column. For example, you
cannot enter a string into a column that accepts the INT data type.

Using Interactive SQL to display data

86

3 Press Tab to move to the next column.

4 Repeat step 2 until all the column values are added.

5 Press Enter to update the database.

6 Execute a COMMIT statement to make your changes to the table
permanent.

If the result set contains a computed column and you do not specify a value
for the computed column, the value is calculated when the database is
updated. However, if you specify a value for the computed column, the
database is updated with the specified value, and a value is not calculated for
the computed column.

Deleting rows from the database using Interactive SQL

You can also delete rows from a database table in Interactive SQL. You must
have DELETE permission on the table to delete rows. You can select only
consecutive rows in the result set.

v To delete a row from the result set:

1 Select the row(s) you want to delete. To select a row(s):

♦ Press and hold the Shift key while clicking the row(s)

♦ Press and hold the Shift key while using the Up or Down arrow

If you want to delete non-consecutive rows, you must delete each row
individually.

2 Right-click the result set and choose Delete from the popup menu. You
can also delete the selected row(s) by pressing the Delete key.

The selected row(s) are removed from the database table.

3 Execute a COMMIT statement to make your changes to the table
permanent.

Copying rows from the Interactive SQL result set

You can copy rows directly from the result set in Interactive SQL and then
paste them into other applications. Copying rows also copies the column
headings. Copied data is comma-delimited, which allows other applications,
such as Microsoft Excel, to format the copied data correctly. Copied data is
in ASCII format, and all of the strings are enclosed in single quotes. You can
select only consecutive rows in the result set.

Chapter 7 Using Interactive SQL

87

v To copy rows from the Interactive SQL result set:

1 Select the row(s) you want to copy. To select a row(s):

♦ Press and hold the Shift key while clicking the row(s)

♦ Press and hold the Shift key while using the Up or Down arrow

2 Right-click the result set and select Copy from the popup menu. You can
also copy the selected row(s) by pressing CTRL+C.

The selected row(s), including their column headings, are copied to the
clipboard. You can paste them into other applications.

Working with SQL statements in Interactive SQL

88

Working with SQL statements in Interactive SQL
The following sections describe some of the commands you can use in
Interactive SQL. This section describes general tasks for working with
commands in Interactive SQL.

All SQL statements can be entered as commands in the top pane of the
Interactive SQL window. When you are finished typing, you need to execute
the statement to view its results.

v To execute a SQL statement, do one of the following:

♦ Press the Execute SQL Statement button, or choose SQL➤Execute or
press F5.

v To clear the SQL Statements pane:

♦ Choose Edit➤Clear SQL or press ESCAPE.

Canceling an Interactive SQL command

The Interrupt button on the Interactive SQL toolbar cancels a command.

A Cancel operation stops current processing and prompts for the next
command. If a command file was being processed, or if there is more than
one statement in the SQL Statements pane, you are prompted for an action to
take (Stop command file, Continue, or Exit Interactive SQL). These actions
can be controlled with the Interactive SQL ON_ERROR option.

$ For information about the ON_ERROR option, see "ON_ERROR
option" on page 586 of the book ASA Database Administration Guide.

When an interruption is detected, one of three different errors is reported
depending upon when the interruption is detected.

1 If the interruption is detected when Interactive SQL is processing the
request (as opposed to the database server), then the following message
appears:

ISQL command terminated by user

Interactive SQL stops processing immediately and the current database
transaction is left alone.

2 If the interruption is detected by the database server while processing a
data manipulation command (SELECT, INSERT, DELETE, or
UPDATE), then the following message appears:

Reported errors

Chapter 7 Using Interactive SQL

89

Statement interrupted by user.

The effects of the current command are undone, but the rest of the
transaction is left intact.

3 If the interruption is detected while the database server is processing a
data definition command (CREATE, DROP, ALTER, etc.), the
following message appears:

Terminated by user -- transaction rolled back

Since data definition commands all perform a COMMIT automatically
before the command starts, the effect of the ROLLBACK is to just
cancel the current command.

This message also occurs when the database server is running in bulk
operations mode executing a command that modifies the database
(INSERT, UPDATE, and DELETE). In this case, ROLLBACK cancels
-not only the current command, but everything that has been done since
the last COMMIT. In some cases, it may take a considerable amount of
time for the database server to perform the automatic ROLLBACK.

Combining multiple statements

The Interactive SQL environment allows multiple statements to be entered at
the same time. This can be done by ending each statement with a semicolon
(;). The command delimiter is a configurable option in Interactive SQL that
you can change using the COMMAND_DELIMITER option.

$ For more information, see "COMMAND_DELIMITER option" on
page 558 of the book ASA Database Administration Guide.

v To enter multiple statements in SQL Statements pane:

1 Enter the following three commands into the SQL Statements pane.

UPDATE employee
SET dept_id = 400,
 manager_id = 1576
WHERE emp_id = 467;

UPDATE employee
SET dept_id = 400,
 manager_id = 1576
WHERE emp_id = 195;

SELECT *
FROM employee
WHERE emp_id IN (195, 467);

Working with SQL statements in Interactive SQL

90

2 On the toolbar, click the Execute SQL Statement button. All three
statements are executed. After execution, the commands remain in the
SQL Statements pane. If you want to clear this pane, press the ESC key.

3 Roll back your changes by entering ROLLBACK and executing the
statement.

An alternative to using the semicolon is to enter go on a line by itself, at the
beginning of the line.

UPDATE employee
SET dept_id = 400,
 manager_id = 1576
WHERE emp_id = 467
go

UPDATE employee
SET dept_id = 400,
 manager_id = 1576
WHERE emp_id = 195
go

SELECT *
FROM employee
WHERE emp_id IN (195, 467)
go

Tip
You can press F9 to execute only the selected text in the SQL Statements
pane.

Looking up tables, columns, and procedures

While you are entering commands in Interactive SQL, you can look up the
names of tables, columns, or procedures stored in the current database and
insert them at your cursor position.

v To look up the names of tables in the database:

1 Choose Tools➤Lookup Table Name.

2 Find and select the table.

3 Click OK to insert the table name into the SQL Statements pane at the
current cursor position.

Using go as an
alternative

Chapter 7 Using Interactive SQL

91

v To look up column names in the database:

1 Choose Tools➤Lookup Table Name.

2 Find and select the table containing the column.

3 Click Show Columns.

4 Select the column and click OK to insert the column name into the SQL
Statements pane at the current cursor position.

v To look up the names of procedures in the database:

1 Choose Tools➤Lookup Procedure Name.

2 Find and select the procedure.

3 Click OK to insert the procedure name into the SQL Statements pane at
the current cursor position.

In the tables and procedures lookup dialogs, you can enter the first few
characters of the table or procedure you are looking for. After you type
something in the field, the dialog narrows the list to include only those items
that start with the text you entered.

You can use the standard SQL wildcard metacharacter % to mean "match
anything". For example, to list only those tables ending in order, type
%order into the look up field. To list all items containing the word java,
type %java%. Clearing the search criteria from the look up field resets the
filtering to display all the items.

Recalling commands

When you execute a command, Interactive SQL automatically saves it in a
history list that lasts for the duration of the current session. Interactive SQL
maintains a record of up to 50 of the most recent commands.

You can view the entire list of commands in the Command History dialog.
To access the Command History dialog, press CTRL+H, or click the book
icon in the toolbar.

Working with SQL statements in Interactive SQL

92

The most recent commands appear at the top of the list. To recall a
command, highlight it and click OK. It will appear in the SQL Statements
pane of Interactive SQL.

You can also recall commands without the Command History dialog. Use the
arrows in the toolbar to scroll back and forward through your commands, or
press ALT+RIGHT ARROW and ALT+LEFT ARROW.

You can also save commands in text files so that you can use them in a
subsequent Interactive SQL session.

$ For more information, see "Saving, loading, and running command
files" on page 100.

Logging commands

With the Interactive SQL logging feature, you can record commands as you
execute them. Interactive SQL continues to record until you stop the logging
process, or until you end the current session. The recorded commands are
stored in a log file.

v To begin logging Interactive SQL commands:

1 Choose SQL➤Start Logging.

2 In the Save As dialog, specify a location and name for the log file.

3 Click Save when finished.

Chapter 7 Using Interactive SQL

93

v To stop logging Interactive SQL commands:

♦ Choose SQL➤Stop Logging.

Tips
You can also start and stop logging by typing in the SQL Statements pane.
To start logging, type and execute START LOGGING ’c:\filename.sql’,
where c:\filename.sql is the path, name, and extension of the log file. A
log file must have the .SQL extension. You only need to include the single
quotation marks if the path contains embedded spaces. To stop logging,
type and execute STOP LOGGING.

Once you start logging, all commands that you try to execute are logged,
including ones that do not execute properly.

Configuring Interactive SQL

94

Configuring Interactive SQL
You can configure Interactive SQL in the Options dialog. This dialog
provides settings for commands, appearance, import/export features, and
messages.

Each option can be set from the interface, or using the SET OPTION
statement.

v To access the Options dialog:

♦ Choose Tools➤Options.

The tabs of the Options dialog are described in the following sections.

General tab

The General tab of the Options dialog has the following components.

♦ Commit options Lets you choose when transactions are committed.
You can choose to commit automatically after each statement is
executed and/or when you exit your Interactive SQL session. You can
also commit manually by entering an explicit COMMIT command
whenever appropriate. The default is to commit on exit.

$ For more information, see "AUTO_COMMIT option" on page 554
of the book ASA Database Administration Guide.

♦ Command Files options Lets you configure how Interactive SQL
responds to errors and specify whether command files are copied to the
log.

♦ When an error occurs The default setting is PROMPT, which
means that Interactive SQL displays a message box asking if you
wish to continue.

$ For more information, see "ON_ERROR option" on page 586 of
the book ASA Database Administration Guide.

♦ Echo command files to log When you start logging SQL
statements, this option causes SQL statements executed from script
files (or command files) to be copied to the log along with the SQL
statements entered interactively. If this option is disabled, only SQL
statements entered interactively are copied to the log when you start
logging.

$ For more information, see "ECHO option" on page 567 of the book
ASA Database Administration Guide.

Chapter 7 Using Interactive SQL

95

Results tab

The Results tab of the Options dialog has the following components.

♦ Display null values as Lets you specify how you want nulls to appear
in the table columns when you browse data.

The default setting is (NULL).

$ For more information, see "NULLS option" on page 585 of the
book ASA Database Administration Guide.

♦ Maximum number of rows to display Lets you limit the number of
rows that appear. The default setting is 500.

♦ Truncation length Lets you limit the number of characters that appear
in each column in the Results pane in Interactive SQL. The default
setting is 30.

$ For more information, see "TRUNCATION_LENGTH option" on
page 605 of the book ASA Database Administration Guide.

♦ Show multiple result sets Enables or disables the display of multiple
result sets. For example, you can use this feature when you create a
procedure containing multiple SELECT statements. If this option is
enabled, you can see each result set on a separate tab in the Results pane
when you call the procedure.

If you are using the jConnect driver, choosing to display multiple result
sets requires Interactive SQL to wait for an entire result set to be
retrieved before any rows appear. This may result in longer waits for
large result sets.

This option is off by default.

♦ Automatically refetch results Enables or disables the ability of
Interactive SQL to automatically regenerate the most recent result set
after you execute an INSERT, UPDATE, or DELETE statement. For
example, if you are updating a table with the Results tab in the Results
pane displaying the rows about to be affected, this option causes
Interactive SQL to automatically refresh the Results tab to reflect the
executed changes.

This option is on by default.

$ For more information, see "AUTO_REFETCH option" on
page 554 of the book ASA Database Administration Guide.

Configuring Interactive SQL

96

♦ When running in console mode, which result sets do you want to
see? The following options let you specify which result set(s) are
printed when a .SQL file is run. This option has no effect when running
in windowed mode and is set on a per-machine basis. Once you set this
option, if you do not click Make Permanent, the setting is discarded
when you exit Interactive SQL.

♦ The last one Prints the result set from the last statement in the
file.

♦ All of them Prints result sets for each statement in the file that
returns a result set.

♦ None Does not print any result sets.

$ For more information, see "ISQL_PRINT_RESULT_SET option"
on page 575 of the book ASA Database Administration Guide.

Import/Export tab

The Import/Export tab of the Options dialog has the following components.

♦ Default export format Lets you choose the default file format for
exporting. This format is automatically selected in the Files of Type
field in the Save dialog, but you can still choose other formats. The
default is also used when Interactive SQL interprets an OUTPUT
statement if no format is specified.

The default setting is ASCII.

$ For more information about the export format, see
"OUTPUT_FORMAT option" on page 588 of the book ASA Database
Administration Guide.

♦ Default import format Lets you choose the default file format for
importing. This format is automatically selected in the Files of Type
field in the Open dialog, but you can still choose other formats. The
default is also used when Interactive SQL interprets an INPUT statement
if no format is specified.

The default setting is ASCII.

$ For more information about the import format, see
"INPUT_FORMAT option" on page 570 of the book ASA Database
Administration Guide.

♦ ASCII options Let you specify the default symbols that are used for
the field separator, quote string and escape character when you import or
export data in the ASCII format.

Chapter 7 Using Interactive SQL

97

The default settings are the comma (,) for the field separator, an
apostrophe (’) for the quote string, and a backslash (\) for the escape
character.

$ For more information about these options, see "Interactive SQL
options" on page 548 of the book ASA Database Administration Guide.

$ For more information about importing and exporting, see "Importing
and Exporting Data" on page 421 of the book ASA SQL User’s Guide.

Messages tab

The Messages tab of the Options dialog has the following components.

♦ Measure execution time for SQL statements Enables or disables the
ability of Interactive SQL to measure the time it takes for a statement to
execute. When this option is enabled (which is the default), the time
appears in the Messages pane.

♦ Show separate Messages pane Lets you specify where information
from the database server appears. By default, messages appear on the
Messages tab in the Results pane. If you select this option, database
server information appears in a separate Messages pane in the
Interactive SQL window.

♦ Default number of lines in Messages pane Lets you specify the
initial height (in lines) of the Messages pane. The default is 7 lines.

Plan tab

The Plan tab of the Options dialog has the following components.

♦ Plan options Lets you determine the level of detail given about the
way your query is optimized. You choose from the following execution
plan options:

♦ Graphical plan The execution plan is displayed as a tree diagram
in the Plan tab. You can click on a node in the plan diagram to see
details about that part of the query. This plan is the default.

♦ Graphical plan with statistics The execution plan is displayed as
a tree diagram in the Plan tab, and you can click on a node to see
details about that part of the query. Statistics are also displayed
which indicate the resources used by the part of the query that is
selected.

Configuring Interactive SQL

98

♦ Short plan Basic information about an execution appears in one
line on the Plan tab in the Results pane. This line lists the table(s)
accessed and whether the rows are to be read sequentially or
accessed through an index.

♦ Long plan Detailed information about an execution appears in
multiple lines on the Plan tab.

♦ Assume read-only cursor Select this option if you want the query
optimizer to treat the query as if it had been executed for a read-only
cursor. By default, this option is not selected, indicating that the
optimizer should get the plan for a read-write cursor.

$ For more information, see "PLAN function" on page 165 of the
book ASA SQL Reference Manual.

♦ Assume cursor is You can obtain a plan based on the type of cursor
you specify. The query optimizer can assume the cursor is Asensitive,
Insensitive, Sensitive, or Keyset-driven. The default is Asensitive.

$ For more information, see "PLAN function" on page 165 of the
book ASA SQL Reference Manual, "Asensitive cursors" on page 36 of
the book ASA Programming Guide, "Insensitive cursors" on page 33 of
the book ASA Programming Guide, "Sensitive cursors" on page 34 of
the book ASA Programming Guide, and "Value-sensitive cursors" on
page 37 of the book ASA Programming Guide.

♦ Show UltraLite plan Select this option if you want the UltraLite plan
to appear on a separate tab in the Results pane in Interactive SQL. The
UltraLite Plan tab displays the UltraLite plan optimization strategy using
the plan format that you specify. For some queries, the UltraLite
execution plan may differ from the plan selected for Adaptive Server
Anywhere.

You control the UltraLite plan type by selecting one of the Graphical,
Short Plan, or Long Plan types. Statistics are not available for UltraLite
plans. This option is selected by default.

$ For more information, see "GRAPHICAL_ULPLAN function" on
page 140 of the book ASA SQL Reference Manual.

$ For more information about execution plans, see "Reading access
plans" on page 364 of the book ASA SQL User’s Guide.

Chapter 7 Using Interactive SQL

99

Running command files
This section describes how to process files consisting of a set of commands.

Writing output to a file

In Interactive SQL, the data for each command remains on the Results tab in
the Results pane only until the next command is executed. To keep a record
of your data, you can save the output of each statement to a separate file. If
statement1 and statement2 are two SELECT statements, then you can output
them to file1 and file2, respectively, as follows:

Statement1; OUTPUT TO file1;
statement2; OUTPUT TO file2;

For example, the following command saves the result of a query:

SELECT * FROM EMPLOYEE;
OUTPUT TO "C:\\My Documents\\Employees.txt"

$ For more information, see "OUTPUT statement [Interactive SQL]" on
page 488 of the book ASA SQL Reference Manual.

Executing command files

You can execute command files in the following ways:

♦ You can use the Interactive SQL READ command to execute command
files.

The following statement executes the file temp.sql:

READ temp.sql

$ For more information, see "READ statement [Interactive SQL]" on
page 503 of the book ASA SQL Reference Manual.

♦ You can load a command file into the SQL Statements pane and execute
it directly from there.

You load command files back into the SQL Statements pane by
choosing File➤Open. Enter temp.sql when prompted for the file name.

♦ You can supply a command file as a command-line argument for
Interactive SQL.

Running command files

100

Saving, loading, and running command files

You can save the commands currently present in the SQL Statements pane so
that they are available for future Interactive SQL sessions. The file in which
you save them is called a command file.

Command files are text files containing SQL statements. You can use any
editor you like to create command files. You can include comment lines
along with the SQL statements to be executed. Command files are also
commonly called scripts.

When you begin a new session, you can load the contents of a command file
into the SQL Statements pane, or you can run the contents immediately.

v To save the commands from the SQL Statements pane to a file:

1 Choose File➤Save As.

2 In the Save dialog, specify a location, name and format for the file. Click
Save when finished.

v To load commands from a file into the SQL Statements pane:

1 Choose File➤Open.

2 In the Open dialog, find and select the file. Click Open when finished.

v To run a command file immediately:

1 Choose File➤Run Script.

2 In the Open dialog, find and select the file. Click Open when finished.

The Run Script menu item is the equivalent of a READ statement. For
example, in the SQL Statements pane, you can also run a command file
by typing:

READ ’c:\filename.sql’

where c:\filename.sql is the path, name, and extension of the file. Single
quotation marks (as shown) are required only if the path contains spaces.

v To run a command file in batch mode:

♦ Supply a command file as a command-line argument for
Interactive SQL.

For example, the following command runs the command file
myscript.sql against the sample database.

dbisql -c "dsn= ASA 8.0 Sample" myscript.sql

Chapter 7 Using Interactive SQL

101

Using SQL escape syntax in Interactive SQL
Interactive SQL supports JDBC escape syntax. This escape syntax allows
you to call stored procedures from Interactive SQL regardless of the database
management system you are using. The general form for the escape syntax is

{{ keyword parameters }}

The braces must be doubled. This doubling is specific to Interactive SQL.
There must not be a space between successive braces: "{{" is acceptable, but
"{ {" is not. As well, you cannot use newline characters in the statement. The
escape syntax cannot be used in stored procedures because they are not
executed by Interactive SQL.

You can use the escape syntax to access a library of functions implemented
by the JDBC driver that includes number, string, time, date, and system
functions.

For example, to obtain the name of the current user in a database
management system-neutral way, you would type the following:

select {{ fn user() }}

The functions that are available depend on the JDBC driver that you are
using. The following tables list the functions that are supported by jConnect,
and by the JDBC-ODBC bridge.

Numeric
functions

String
functions

System
functions

Time/Date
functions

ABS ASCII DATABASE CURDATE

ACOS CHAR IFNULL CURTIME

ASIN CONCAT USER DAYNAME

ATAN DIFFERENCE CONVERT DAYOFMONTH

ATAN2 LCASE DAYOFWEEK

CEILING LENGTH HOUR

COS REPEAT MINUTE

COT RIGHT MONTH

DEGREES SOUNDEX MONTHNAME

EXP SPACE NOW

FLOOR SUBSTRING QUARTER

LOG UCASE SECOND

LOG10 TIMESTAMPADD

jConnect
supported
functions

Using SQL escape syntax in Interactive SQL

102

Numeric
functions

String
functions

System
functions

Time/Date
functions

PI TIMESTAMPDIFF

POWER YEAR

RADIANS

RAND

ROUND

SIGN

SIN

SQRT

TAN

Numeric
functions

String
functions

System
functions

Time/Date
functions

ABS ASCII IFNULL CURDATE

ACOS CHAR USERNAME CURTIME

ASIN CONCAT DAYNAME

ATAN DIFFERENCE DAYOFMONTH

ATAN2 INSERT DAYOFWEEK

CEILING LCASE DAYOFYEAR

COS LEFT HOUR

COT LENGTH MINUTE

DEGREES LOCATE MONTH

EXP LOCATE_2 MONTHNAME

FLOOR LTRIM NOW

LOG REPEAT QUARTER

LOG10 RIGHT SECOND

MOD RTRIM WEEK

PI SOUNDEX YEAR

POWER SPACE

RADIANS SUBSTRING

RAND UCASE

ROUND

JDBC-ODBC
bridge supported
functions

Chapter 7 Using Interactive SQL

103

Numeric
functions

String
functions

System
functions

Time/Date
functions

SIGN

SIN

SQRT

TAN

TRUNCATE

A statement using the escape syntax should work in Adaptive Server
Anywhere, Adaptive Server Enterprise, Oracle, SQL Server, or another
database management system to which you are connected from
Interactive SQL.

For example, to obtain database properties with the sa_db_info procedure
using SQL escape syntax, you would type the following in the
SQL Statements pane in Interactive SQL:

{{CALL sa_db_info(1) }}

Using SQL escape syntax in Interactive SQL

104

105

C H A P T E R 8

Selecting Data from Database Tables

This chapter introduces queries, which retrieve data from a database. It
describes how to retrieve data from a single table.

$ For information about selecting data from multiple related tables, see
"Selecting Data from Multiple Tables" on page 123. In addition, "Selecting
Aggregate Data" on page 135 describes how to group your data and perform
calculations on the data in one or more columns.

Topic Page

Introduction 106

Selecting a complete table 108

Selecting columns from a table 110

Ordering query results 113

Selecting rows from a table 116

About this chapter

Contents

Introduction

106

Introduction
All interaction between applications (clients) and database servers is carried
out by sending SQL statements to the database server, which returns
information to the client.

The SELECT statement retrieves information from a database for use by the
client application. SELECT statements are also called queries. The
information is delivered to the client in the form of a result set. The client
application can then process the result set. For example, Interactive SQL
displays the result set in the Results pane. Result sets consist of a set of rows,
just like tables in the database.

 SELECT statements can become highly complex in applications retrieving
very specific information from many tables. This chapter uses only simple
SELECT statements: more advanced queries are described in later tutorials.

$ For the full syntax of the SELECT statement, see "SELECT statement"
on page 526 of the book ASA SQL Reference Manual.

About this chapter

If you want to know… Then see…

How to enter query results "Ordering query results" on page 113

How to select columns from a table "Selecting columns from a table" on
page 110

How to select rows from a table "Selecting rows from a table" on
page 116

How to compare dates in queries "Comparing dates in search
conditions" on page 117

How to use pattern matching "Pattern matching in search
conditions" on page 118

How to match rows by sound "Matching rows by sound" on
page 119

How to use compound search conditions "Using compound search conditions"
on page 120

Where to find information about
shortcuts for search conditions

"Shortcuts for compound search
conditions" on page 120

You should run the Adaptive Server Anywhere software on your computer
while you read and work through the examples in this chapter.

Notes

Chapter 8 Selecting Data from Database Tables

107

Each example instructs you to type commands into Interactive SQL and
describes what you will see on your computer screen. If you cannot run the
software as you read the tutorials, you will still be able to learn about SQL,
but you will not have the opportunity to experiment on your own.

The examples assume that you have started Interactive SQL and are
connected to the sample database.

$ For instructions, see "Adaptive Server Anywhere Quick Start" on
page 3.

Selecting a complete table

108

Selecting a complete table
The simplest SELECT statement retrieves all the data in a single table. This
SELECT statement has the following syntax:

SELECT * FROM table-name

where table-name should be replaced with the name of the table you are
querying. The asterisk (*) is a short form for a list of all columns.

v List all products sold by the company:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

SELECT * FROM Product

The SELECT statement retrieves all the rows and columns of the
product table, and displays them on the Results tab in the Results pane:

id name description size color quantity unit_price

300 Tee Shirt Tank Top Small White 28 9

301 Tee Shirt V-neck Medium Orange 54 14

302 Tee Shirt Crew Neck One size fits all Black 75 14

400 Baseball Cap Cotton Cap One size fits all Black 112 9

...

The Product table contains seven columns. Each column has a name,
such as color or id. There is a row for each product that the company
sells, and each row has a single value in each column. For example, the
product with ID 301 is a Tee Shirt. It is a V-neck style in medium size,
and is orange in color.

♦ Table names are case insensitive The table name Product starts with
an upper case P, even though the real table name is all lower case.
Adaptive Server Anywhere databases can be created as case-sensitive or
case-insensitive in their string comparisons, but are always case
insensitive in their use of identifiers such as table names and column
names.

$ For information on creating databases, see "Creating a database"
on page 29 of the book ASA SQL User’s Guide, or "The Initialization
utility" on page 465 of the book ASA Database Administration Guide.

Notes

Chapter 8 Selecting Data from Database Tables

109

♦ SQL keywords are case insensitive You can enter select or Select
instead of SELECT. In the documentation, upper case letters are
generally used for SQL keywords.

♦ Line breaks are not important You can type the statements all on one
line, or break them up by pressing ENTER at the end of each line. Some
SQL statements, such as the SELECT statement, consist of several parts,
called clauses. In many examples, each clause is placed on a separate
line for easier reading, so the statement in the example is commonly
written as follows in the documentation:

SELECT *
FROM product

♦ Row order in the result set is insignificant There is no guarantee of
the order in which rows are returned from the database, and no meaning
to the order. If you wish to retrieve rows in a particular order, you must
specify the order in the query.

$ For more information, see "Ordering query results" on page 113.

Try querying other tables in the sample database, such as the employee,
customer, contact, or sales_order tables.

Exercise

Selecting columns from a table

110

Selecting columns from a table
You can limit the columns that a SELECT statement retrieves by listing the
desired columns immediately after the SELECT keyword. This SELECT
statement has the following syntax:

SELECT column-name-1, column-name-2,...
FROM table-name

where column-name-1, column-name-2, and table-name should be replaced
with the names of the desired columns and table you are querying.

The list of result-set columns is called the select list. It is separated by
commas. There is no comma after the last column in the list, or if there is
only one column in the list. Limiting the columns in this way is sometimes
called a projection.

v List the name, description, and color of each product:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

SELECT name, description, color
FROM product

name description color

Tee Shirt Tank Top White

Tee Shirt V-neck Orange

Tee Shirt Crew Neck Black

Baseball Cap Cotton Cap Black

...

The columns appear in the order in which you typed them in the SELECT
statement. If you want to rearrange the columns, simply change the order of
the column names in the statement. For example, to put the description
column on the left, use the following statement:

SELECT description, name, color
FROM product

Rearranging
columns

Chapter 8 Selecting Data from Database Tables

111

Using calculated columns

The columns of the result set do not need to be just columns in tables. They
can also be expressions calculated from the underlying data. You can
combine table columns into a single result-set column, and you can use a
wide variety of functions and operators to control the results you get.

v List the value in stock of each product:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

SELECT id, (unit_price * quantity) as value
FROM product

id value

300 252

301 756

302 1050

400 1008

… …

♦ Columns can be given an alias By default the column name is the
expression listed in the select list, but for calculated columns the
expression is cumbersome and not very informative. Here the calculated
column is renamed in the select list as value. value is the alias for the
column.

♦ Other operators are available In the above example, the
multiplication operator is used to combine the columns. You can use
other operators, including the standard arithmetic operators as well as
logical operators and string operators.

For example, the following query lists the full names of all customers:

SELECT id, (fname || ’ ’ || lname) as "Full name"
FROM customer

The || operator concatenates strings. In this query, the alias for the
column has spaces, and so must be surrounded by double quotes. This
rule applies not only to column aliases, but to table names and other
identifiers in the database.

$ For a complete list of operators, see "Operators" on page 10 of the
book ASA SQL Reference Manual.

Notes

Selecting columns from a table

112

♦ Functions can be used In addition to combining columns, you can
use a wide range of built-in functions to produce the results you want.

For example, the following query lists the product names in upper case:

SELECT id, UCASE(name)
FROM product

id UCASE(product.name)

300 TEE SHIRT

301 TEE SHIRT

302 TEE SHIRT

400 BASEBALL CAP

... ...

$ For a complete list of functions, see "Alphabetical list of functions"
on page 104 of the book ASA SQL Reference Manual.

Chapter 8 Selecting Data from Database Tables

113

Ordering query results
Unless otherwise requested, the database server returns the rows of a table in
an order that has no meaning. Often it is useful to look at the rows in a table
in a more meaningful sequence. For example, you might like to see products
in alphabetical order.

You order the rows in a result set by an ORDER BY clause to the end of the
SELECT statement. This SELECT statement has the following syntax:

SELECT column-name-1, column-name-2,...
FROM table-name
ORDER BY order-by-column-name

where column-name-1, column-name-2, and table-name should be replaced
with the names of the desired columns and table you are querying, and where
order-by-column-name is a column in the table. As before, you can use the
asterisk as a short form for all the columns in the table.

v List the products in alphabetical order:

♦ In Interactive SQL, type the following in the SQL Statements pane:

SELECT id, name, description
FROM product
ORDER BY name

id name description

400 Baseball Cap Cotton Cap

401 Baseball Cap Wool cap

700 Shorts Cotton Shorts

600 Sweatshirt Hooded Sweatshirt

...

♦ The order of clauses is important The ORDER BY clause must
follow the FROM clause and the SELECT clause.

♦ You can specify either ascending or descending order The default
order is ascending. You can specify a descending order by adding the
keyword DESC to the end of the clause, as in the following query:

SELECT id, quantity
FROM product
ORDER BY quantity DESC

Notes

Ordering query results

114

id quantity

400 112

700 80

302 75

301 54

600 39

... ...

♦ You can order by several columns The following query sorts first by
size (alphabetically), and then by name:

SELECT id, name, size
FROM product
ORDER BY size, name

id name size

600 Sweatshirt Large

601 Sweatshirt Large

700 Shorts Medium

301 Tee Shirt Medium

...

♦ The ORDER BY column does not need to be in the select list The
following query sorts products by unit price, even though the price is not
included in the result set

SELECT id, name, size
FROM product
ORDER BY unit_price

id name size

500 Visor One size fits all

501 Visor One size fits all

300 Tee Shirt Small

400 Baseball Cap One size fits all

...

Chapter 8 Selecting Data from Database Tables

115

♦ If you do not use an ORDER BY clause, and you execute a query
more than once, you may appear to get different results This is
because Adaptive Server Anywhere may return the same result set in a
different order. In the absence of an ORDER BY clause, Adaptive
Server Anywhere returns rows in whatever order is most efficient. This
means the appearance of result sets may vary depending on when you
last accessed the row and other factors. The only way to ensure that rows
are returned in a particular order is to use ORDER BY.

Using indexes to improve ORDER BY performance

Sometimes there is more than one possible way for the Adaptive Server
Anywhere database server to execute a query with an ORDER BY clause.
You can use indexes to enable the database server to search the tables more
efficiently.

An example of a query that can be executed in more than one possible way is
one that has both a WHERE clause and an ORDER BY clause.

SELECT *
FROM customer
WHERE id > 300
ORDER BY company_name

In this example, Adaptive Server Anywhere must decide between two
strategies:

1 Go through the entire customer table in order by company name,
checking each row to see if the customer id is greater than 300.

2 Use the key on the id column to read only the companies with id greater
than 300. The results would then need to be sorted by company name.

If there are very few id values greater than 300, the second strategy is better
because only a few rows are scanned and quickly sorted. If most of the id
values are greater than 300, the first strategy is much better because no
sorting is necessary.

Creating a two-column index on id and company_name could solve the
example above. Adaptive Server Anywhere can use this index to select rows
from the table in the correct order. However, keep in mind that indexes take
up space in the database file and involve some overhead to keep up to date.
Do not create indexes indiscriminately.

$ For more information, see "Using indexes" on page 146 of the book
ASA SQL User’s Guide.

Queries with WHERE
and ORDER BY
clauses

Solving the
problem

Selecting rows from a table

116

Selecting rows from a table
You can limit the rows that a SELECT statement retrieves by adding a
WHERE clause to your query. This is sometimes called applying a
restriction to the result set. The WHERE clause includes a search condition
that specifies the rows to be returned. This SELECT statement has the
following syntax:

SELECT column-name-1, column-name-2,...
FROM table-name
WHERE search-condition

where, as before, column-name-1, column-name-2, and table-name should be
replaced with the names of the desired columns and table you are querying.
The search-condition is described more below. If you use an ORDER BY
clause, it must come after the WHERE clause.

v List all products colored black:

♦ In Interactive SQL, type the following in the SQL Statements pane:

SELECT *
FROM product
WHERE color = ’black’

id name description size color quantity unit_price

302 Tee Shirt Crew Neck One size fits all Black 75 14

400 Baseball Cap Cotton Cap One size fits all Black 112 9

501 Visor Plastic Visor One size fits all Black 28 7

...

♦ The WHERE clause includes a search condition to select rows. In this
case the search condition is color = ’black’. Other search conditions
are described in the following sections.

$ For information on search conditions, see "Search conditions" on
page 24 of the book ASA SQL Reference Manual.

♦ The single quotes around black are required. They indicate that black is
a character string. Double quotes have a different meaning. Double
quotes can be used to make otherwise invalid strings valid for column
names and other identifiers.

$ For information about strings, see "Strings" on page 9 of the book
ASA SQL Reference Manual.

Notes

Chapter 8 Selecting Data from Database Tables

117

♦ The sample database is not case sensitive, so you would get the same
results whether you searched for BLACK, black, or Black.

♦ How you order clauses is important. The SELECT list is followed by the
FROM clause, followed by the WHERE clause, and then the ORDER
BY clause. Typing the clauses in a different order gives a syntax error.

Try some queries that combine what you have learned in this chapter. Here is
one query that lists the names and birth dates of all employees named John.

SELECT (emp_fname || ’ ’ || emp_lname) as Name,
 birth_date
FROM employee
WHERE emp_fname = ’John’
ORDER BY birth_date

Name birth_date

John Letiecq 4/27/1939

John Sheffield 9/25/1955

Comparing dates in search conditions

You can use operators other than equals to select a set of rows that satisfy the
search condition. The inequality operators (<, >) can be used to compare
numbers, dates, and even character strings.

v List all employees born before March 13, 1964:

♦ In Interactive SQL, type the following in the SQL Statements pane:

SELECT emp_lname, birth_date
FROM employee
WHERE birth_date < ’March 13, 1964’
ORDER BY birth_date DESC

emp_lname birth_date

Ahmed 12/12/1963

Dill 7/19/1963

Rebeiro 4/12/1963

Garcia 1/23/1963

Pastor 7/14/1962

... ...

Exercise

Selecting rows from a table

118

♦ Automatic conversion to dates The Adaptive Server Anywhere
database server knows that the birth_date column contains dates, and
automatically converts the string ’March 13, 1964’ to a date.

♦ Ways of specifying dates There are many ways of specifying dates.
The following are all accepted by Adaptive Server Anywhere:

’March 13, 1964’

’1964/03/13’

’1964-03-13’

You can tune the interpretation of dates in queries by setting a database
option. Dates in the format yyyy/mm/dd or yyyy-mm-dd are always
recognized unambiguously as dates, regardless of the DATE_ORDER
setting.

$ For information on controlling allowable date formats in queries,
see "DATE_ORDER option" on page 564 of the book ASA Database
Administration Guide, and "Setting options" on page 536 of the book
ASA Database Administration Guide.

♦ Other comparison operators For a complete list of available
comparison operators, see "Comparison operators" on page 10 of the
book ASA SQL Reference Manual.

Pattern matching in search conditions

Pattern matching is a versatile way of identifying character data. In SQL, the
LIKE keyword is used to search for patterns. Pattern matching employs
wildcard characters to match different combinations of characters.

v List all employees whose last name begins with BR:

♦ In Interactive SQL, type the following in the SQL Statements pane:

SELECT emp_lname, emp_fname
FROM employee
WHERE emp_lname LIKE ’br%’

emp_lname emp_fname

Breault Robert

Braun Jane

The % in the search condition indicates that any number of other
characters may follow the letters BR.

Notes

Chapter 8 Selecting Data from Database Tables

119

v List all employees whose last name begins with BR, followed by
zero or more letters and a T, followed by zero or more letters:

♦ In Interactive SQL, type the following in the SQL Statements pane:

SELECT emp_lname, emp_fname
FROM employee
WHERE emp_lname LIKE ’BR%T%’

emp_lname emp_fname

Breault Robert

The first % sign matches the string eaul, while the second % sign
matches the empty string (no characters).

Another special character that can be used with LIKE is the _ (underscore)
character, which matches exactly one character. For example, the pattern
’BR_U%’ matches all names starting with BR and having U as the fourth letter.
In Braun the _ character matches the letter A and the % matches N.

$ For more information, see "LIKE conditions" on page 26 of the book
ASA SQL Reference Manual.

Matching rows by sound

With the SOUNDEX function, you can match rows by sound. For example,
suppose a phone message was left for a name that sounded like "Ms.
Brown". Which employees in the company have names that sound like
Brown?

v List employees with a last name that sound like Brown:

♦ In Interactive SQL, type the following in the SQL Statements pane:

SELECT emp_lname, emp_fname
FROM employee
WHERE SOUNDEX(emp_lname) = SOUNDEX(’Brown’)

emp_lname emp_fname

Braun Jane

The algorithm used by SOUNDEX makes it useful mainly for
English-language databases.

$ For more information, see "SOUNDEX function" on page 182 of the
book ASA SQL Reference Manual.

Selecting rows from a table

120

Using compound search conditions

Search conditions can be combined using the AND and OR logical operators
to make compound search conditions. Each individual piece of the search
condition is sometimes called a predicate.

v List all employees born before March 13, 1964, except the employee
named Whitney:

♦ In Interactive SQL, type the following in the SQL Statements pane:

SELECT emp_lname, birth_date
FROM employee
WHERE birth_date < ’1964-3-13’
AND emp_lname <> ’whitney’

emp_lname birth_date

Cobb 12/4/1960

Jordan 12/13/1951

Breault 5/13/1947

Espinoza 12/14/1939

Dill 7/19/1963

Francis 9/12/1954

Shortcuts for compound search conditions

SQL has two short forms for compound search conditions. The first,
BETWEEN, is used when you are looking for a range of values. For example
the following two queries are equivalent:

SELECT emp_lname, birth_date
FROM employee
WHERE birth_date BETWEEN ’1963-1-1’ AND ’1965-3-31’

and

SELECT emp_lname, birth_date
FROM employee
WHERE birth_date >= ’1963-1-1’
AND birth_date <= ’1965-3-31’

The second short form, IN, may be used when looking for one of a number
of values. The following two statements are equivalent:

SELECT emp_lname, emp_id
FROM employee

Using the short
form BETWEEN

Using the short
form IN

Chapter 8 Selecting Data from Database Tables

121

WHERE emp_lname IN (’yeung’,’bucceri’,’charlton’)

and

SELECT emp_lname, emp_id
FROM employee
WHERE emp_lname = ’yeung’
OR emp_lname = ’bucceri’
OR emp_lname = ’charlton’

Selecting rows from a table

122

123

C H A P T E R 9

Selecting Data from Multiple Tables

This chapter describes database queries that look at information in more than
one table. To do this, SQL provides the JOIN operator. There are several
different ways to join tables together in queries, and this chapter describes
some of the more important ones.

Topic Page

Introduction 124

Joining tables using the cross product 126

Using the ON phrase to restrict a join 127

Joining tables using key joins 129

Joining tables using natural joins 131

Joining tables using outer joins 133

About this chapter

Contents

Introduction

124

Introduction
Sometimes it is necessary to view data from multiple related tables. This
chapter explains how to use a join to view the data in a useful and
meaningful way.

About this chapter

If you want to know… Then see…

How to display a list of tables "Displaying a list of tables" on
page 124

How to display all combinations of data
from two tables

"Joining tables using the cross
product" on page 126

How to make a join useful "Using the ON phrase to restrict a
join" on page 127

How to join two tables in which the join’s
foreign keys have the same name

"Joining tables using key joins" on
page 129

How to join tables on columns with the
same names

"Joining tables using natural joins" on
page 131

Displaying a list of tables

In Interactive SQL, you can display a list of tables by pressing the F7 key.

Chapter 9 Selecting Data from Multiple Tables

125

Highlight a table and click Show Columns to see the columns for that table.
The ESCAPE key takes you back to the table list, and pressing it again will
take you back to the SQL Statements pane. Pressing ENTER instead of
ESCAPE copies the highlighted table or column name into the SQL
Statements pane at the current cursor position.

Press ESCAPE to leave the list.

$ For a diagram of the tables in the sample database, see "The sample
database" on page 52.

Joining tables using the cross product

126

Joining tables using the cross product
One of the tables in the sample database is sales_order, which lists the orders
placed to the company. Each order has a sales_rep column, containing the
employee ID of the sales representative responsible for the order. There are
648 rows in the sales_order table and 75 rows in the employee table.

The cross product join is a simple starting point for understanding joins, but
not very useful in itself.

v List all data in the employee and sales_order tables:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

SELECT *
FROM sales_order CROSS JOIN employee

The results of this query, which appear on the Results tab in the
Interactive SQL Results pane, match every row in the employee table
with every row in the sales_order table. Since there are 75 rows in the
employee table and 648 rows in the sales_order table, there are
75 × 648 = 48,600 rows in the result of the join. Each row consists of all
columns from the sales_order table followed by all columns from the
employee table. This join is called a full cross product.

Subsequent sections describe how to construct more selective joins. The
more selective joins can be thought of as applying a restriction to the cross
product table.

$ For more information, see "Cross joins" on page 239 of the book ASA
SQL User’s Guide.

Chapter 9 Selecting Data from Multiple Tables

127

Using the ON phrase to restrict a join
The ON phrase applies a restriction to the rows in a join, in much the same
way that the WHERE clause applies restrictions to the rows of a query.

The ON phrase allows more useful joins than the CROSS JOIN to be
constructed. For example, you can apply the ON phrase to a join of the
sales_order and employee table to retrieve only those rows for which the
sales_rep in the sales_order table is the same as the one in the employee
table in every row of the result. Then each row contains information about an
order and the sales representative responsible for it.

v List all sales orders with their dates, and the employee responsible
for each:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

SELECT employee.emp_lname,
 sales_order.id,
 sales_order.order_date
FROM sales_order JOIN employee
 ON sales_order.sales_rep = employee.emp_id

emp_lname id order_date

Chin 2008 4/2/2001

Chin 2020 3/4/2001

Chin 2032 7/5/2001

Chin 2044 7/15/2000

Chin 2056 4/15/2001

...

The table name is given as a prefix to identify the columns. Using the table
name prefix clarifies the statement, and is required when two tables have a
column with the same name.

The results of this query contain only 648 rows (one for each row in the
sales_order table). Of the 48,600 rows in the cross product, only 648 of them
have the employee number equal in the two tables.

The ordering of the results has no meaning. You could add an ORDER BY
clause to impose a particular order on the query.

The ON clause includes columns that are not included in the final result set.

Notes

Using the ON phrase to restrict a join

128

$ For more information, see "Explicit join conditions (the ON phrase)"
on page 236 of the book ASA SQL User’s Guide.

Chapter 9 Selecting Data from Multiple Tables

129

Joining tables using key joins
Many common joins are between two tables related by a foreign key. The
most common join restricts foreign key values to be equal to primary key
values.

The KEY JOIN operator joins two tables based on foreign key relationship.
In other words, Adaptive Server Anywhere generates an ON clause that
equates the primary key column from one table with the foreign key column
of the other.

The example in the previous section restricts foreign key values in the
sales_order table to be equal to the primary key values in the employee
table.

SELECT employee.emp_lname,
 sales_order.id,
 sales_order.order_date
FROM sales_order JOIN employee
 ON sales_order.sales_rep = employee.emp_id

The query can be more simply expressed using a KEY JOIN:

SELECT employee.emp_lname,
 sales_order.id,
 sales_order.order_date
FROM sales_order KEY JOIN employee

KEY JOIN is just a shortcut for typing the ON clause; the two queries are
identical. Key join is the default when you specify JOIN but do not specify
CROSS, NATURAL, KEY, or use an ON clause.

If you look at the diagram of the employee database, lines between tables
represent foreign keys. You can use the KEY JOIN operator anywhere two
tables are joined by a line in the diagram.

$ For a diagram of the sample database, see "The sample database" on
page 52.

Two or more tables can be joined using join operators. The following query
uses four tables to list the total value of the orders placed by each customer.
It connects the four tables customer, sales_order, sales_order_items, and
product using the single foreign-key relationships between each pair of
these tables.

v List companies and the total value of their orders:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

Joining more than
two tables

Joining tables using key joins

130

SELECT company_name,
 SUM(sales_order_items.quantity *
 product.unit_price) AS value
FROM ((customer KEY JOIN sales_order)
 KEY JOIN sales_order_items)
 KEY JOIN product
GROUP BY company_name

company_name value

Bensoul’s Boutique 1332

Bush Pro Shop 2940

Sterling & Co. 6804

Ocean Sports 3744

… …

Your result set may appear in a different order. There is no significance to
the order of the rows in the result set.

The example uses the SUM operator, which is an aggregate function.
Aggregate functions work with GROUP BY clauses to return values for each
row group. In this example, the sum of sales_order_items.quantity *
product.unit_price—that is, the total amount of money paid per product
type—is calculated for each company_name, thereby returning each
company's sales.

The parentheses in the FROM clause help to clarify the order in which the
joins are made.

$ For more information on aggregate functions, see "A first look at
aggregate functions" on page 137.

$ For more information on complex key joins, see "Key joins" on
page 259 of the book ASA SQL User’s Guide.

Notes

Chapter 9 Selecting Data from Multiple Tables

131

Joining tables using natural joins
The NATURAL JOIN operator joins two tables based on common column
names. In other words, Adaptive Server Anywhere generates an ON clause
that equates the common columns from each table.

v List all employees and their departments:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

SELECT emp_lname, dept_name
FROM employee NATURAL JOIN department

emp_lname dept_name

Whitney R & D

Cobb R & D

Breault R & D

Shishov R & D

Driscoll R & D

... ...

Adaptive Server Anywhere looks at the two tables and determines that the
only column name they have in common is dept_id. The following ON
CLAUSE is internally generated and used to perform the join:

FROM employee JOIN department
ON employee.dept_id = department.dept_id

NATURAL JOIN is just a shortcut for typing the ON clause; the two queries
are identical.

This join operator can cause problems by equating columns you may not
intend to be equated. For example, the following query generates unwanted
results:

SELECT *
FROM sales_order NATURAL JOIN customer

The result of this query has no rows. Adaptive Server Anywhere internally
generates the following ON clause:

FROM sales_order JOIN customer
ON sales_order.id = customer.id

Errors using
NATURAL JOIN

Joining tables using natural joins

132

The id column in the sales_order table is an ID number for the order. The id
column in the customer table is an ID number for the customer. None of
them matched. Of course, even if a match were found, it would be a
meaningless one.

$ For more information, see "Natural joins" on page 255 of the book ASA
SQL User’s Guide.

Chapter 9 Selecting Data from Multiple Tables

133

Joining tables using outer joins
In the previous examples, you created joins that returned rows only if they
satisfied the join conditions. These joins are called inner joins, and are the
default. Sometimes, you may wish to preserve all the rows in one table. To
do this, you use an outer join.

You can specify a right outer join, which preserves all the rows in the right
table; a left outer join, which preserves the left table; or a full outer join,
which preserves all the rows in both tables.

v List all customers, and the dates of any orders they have placed:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

SELECT lname, order_date, city
FROM customer KEY LEFT OUTER JOIN sales_order
WHERE customer.state = ’NY’
ORDER BY order_date

lname order_date city

Thompson (NULL) Bancroft

Reiser 1993-01-22 Rockwood

Clarke 1993-01-27 Rockwood

Mentary 1993-01-30 Rockland

… … …

The statement includes all customers, whether or not they have placed an
order. If a particular customer has placed no orders, each column in the result
that corresponds to order information contains NULL.

$ For more information, see "Outer joins" on page 241 of the book ASA
SQL User’s Guide.

Joining tables using outer joins

134

135

C H A P T E R 1 0

Selecting Aggregate Data

This chapter describes how to construct queries that tell you aggregate
information. Examples of aggregate information are as follows:

♦ The total of all values in a column.

♦ The number of distinct entries in a column.

♦ The average value of entries in a column.

Topic Page

Summarizing data 136

A first look at aggregate functions 137

Applying aggregate functions to grouped data 138

Restricting groups 140

About this chapter

Contents

Summarizing data

136

Summarizing data
Some queries examine aspects of the data in your table that reflect properties
of groups of rows rather than of individual rows. For example, you may wish
to find the average amount of money that a customer pays for an order, or to
see how many employees work for each department. For these types of tasks,
you use aggregate functions and the GROUP BY clause.

About this chapter

If you want to know… Then see…

How to view summary information about
an entire table

"A first look at aggregate functions"
on page 137

How to view summary information about
groups in a table

"Applying aggregate functions to
grouped data" on page 138

How to view summary data about a
restricted set of groups in a table

"Restricting groups" on page 140

Chapter 10 Selecting Aggregate Data

137

A first look at aggregate functions
Aggregate functions return a single value for a set of rows. If there is no
GROUP BY clause, an aggregate function returns a single value for all the
rows that satisfy other aspects of the query.

v List the number of employees in the company:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

SELECT COUNT(*)
FROM employee

COUNT(*)

75

The result set consists of only one column, with title COUNT(*), and
one row, which contains the total number of employees.

v List the number of employees in the company and the birth dates of
the oldest and youngest employee:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

SELECT COUNT(*), MIN(birth_date), MAX(birth_date)
FROM employee

COUNT(*) MIN(employee.birth_date) MAX(employee.birth_date)

75 1/2/1936 1/18/1973

The functions COUNT, MIN, and MAX are called aggregate functions.
Each of these functions summarizes information. In total, there are six
aggregate functions: MIN, MAX, COUNT, AVG, SUM, and LIST. All but
COUNT have the name of a column as a parameter. As you have seen,
COUNT has an asterisk as its parameter.

$ For more information, see "Aggregate functions" on page 94 of the
book ASA SQL Reference Manual.

Applying aggregate functions to grouped data

138

Applying aggregate functions to grouped data
In addition to providing information about an entire table, aggregate
functions can be used on groups of rows. The GROUP BY clause arranges
rows into groups, and aggregate functions return a single value for each
group of rows.

v List the sales representatives and the number of orders each has
taken:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

SELECT sales_rep, count(*)
FROM sales_order
GROUP BY sales_rep
ORDER BY sales_rep

sales_rep count(*)

129 57

195 50

299 114

467 56

... ...

A GROUP BY clause tells Adaptive Server Anywhere to partition the set of
all the rows that would otherwise be returned. All rows in each partition, or
group, have the same values in the named column or columns. There is only
one group for each unique value or set of values. In this case, all the rows in
each group have the same sales_rep value.

Aggregate functions such as COUNT are applied to the rows in each group.
Thus, this result set displays the total number of rows in each group. The
results of the query consist of one row for each sales rep ID number. Each
row contains the sales rep ID, and the total number of sales orders for that
sales representative.

Whenever GROUP BY is used, the resulting table has one row for each
column or set of columns named in the GROUP BY clause.

$ For more information, see "The GROUP BY clause: organizing query
results into groups" on page 213 of the book ASA SQL User’s Guide.

A common error with GROUP BY is to try to get information that cannot
properly be put in a group. For example,

Example

A common error
with GROUP BY

Chapter 10 Selecting Aggregate Data

139

-- This query is incorrect
SELECT sales_rep, emp_lname, COUNT(*)
FROM sales_order KEY JOIN employee
GROUP BY sales_rep

gives the following error:

Function or column reference to ’emp_lname’ in the select list must also
appear in a GROUP BY

An error is reported because Adaptive Server Anywhere cannot be sure that
each of the result rows for an employee with a given ID all have the same
last name.

To fix this error, add the column to the GROUP BY clause.

SELECT sales_rep, emp_lname, COUNT(*)
FROM sales_order KEY JOIN employee
GROUP BY sales_rep, emp_lname
ORDER BY sales_rep

If this is not appropriate, you can instead use an aggregate function to select
only one value, as shown:

SELECT sales_rep, MAX(emp_lname), COUNT(*)
FROM sales_order KEY JOIN employee
GROUP BY sales_rep
ORDER BY sales_rep

The MAX function chooses the maximum (last alphabetically) last name
from the detail rows for each group. This statement is valid because there can
be only one distinct maximum value. In this case, the same last name appears
on every detail row within a group.

Restricting groups

140

Restricting groups
You have already seen how to restrict rows in a result set using the WHERE
clause. You restrict the rows in groups using the HAVING clause.

v List all sales representatives with more than 55 orders:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

SELECT sales_rep, count(*) as orders
FROM sales_order KEY JOIN employee
GROUP BY sales_rep
HAVING count(*) > 55
ORDER BY orders DESC

sales_rep orders

299 114

129 57

1142 57

467 56

Order of clauses
A GROUP BY must always appear before a HAVING clause. If both are
present, a WHERE clause must appear before a GROUP BY clause.

HAVING clauses and WHERE clauses can both be used in a single query.
Conditions in the HAVING clause logically restrict the rows of the result
only after the groups have been constructed. Criteria in the WHERE clause
are logically evaluated before the groups are constructed, and so save time.

$ For more information, see "The HAVING clause: selecting groups of
data" on page 218 of the book ASA SQL User’s Guide.

Combining WHERE and HAVING clauses

Sometimes you can specify the same set of rows using either a WHERE
clause or a HAVING clause. In such cases, one method is not more or less
efficient than the other. The optimizer always automatically analyzes each
statement you type and selects an efficient means of executing it. It is best to
use the syntax that most clearly describes the desired result. In general, that
means eliminating undesired rows in earlier clauses.

Chapter 10 Selecting Aggregate Data

141

To list all sales reps with more than 55 orders and an ID of more than 1000,
type the following statement.

SELECT sales_rep, count(*)
FROM sales_order KEY JOIN employee
WHERE sales_rep > 1000
GROUP BY sales_rep
HAVING count(*) > 55
ORDER BY sales_rep

The following statement produces the same results.

SELECT sales_rep, count(*)
FROM sales_order KEY JOIN employee
GROUP BY sales_rep
HAVING count(*) > 55 AND sales_rep > 1000
ORDER BY sales_rep

Adaptive Server Anywhere detects that both statements describe the same
result set, and so executes each efficiently.

Example

Restricting groups

142

143

C H A P T E R 1 1

Selecting Data Using Subqueries

This chapter shows how to use the results of one query as part of another
SELECT statement. This is a useful tool in building more complex and
informative queries.

Topic Page

Introducing subqueries 144

Introduction 145

Single-row and multiple-row subqueries 147

Using subqueries instead of joins 149

About this chapter

Contents

Introducing subqueries

144

Introducing subqueries
A relational database allows you to store related data in more than one table.
The chapter "Selecting Data from Multiple Tables" on page 123 outlines one
way of extracting data from related tables. A second method involves
subqueries—queries that appear in another query's WHERE clause or
HAVING clause. Subqueries make some queries easier to write than joins,
and there are queries that cannot be written without using subqueries.

About this chapter

If you want to know… Then see…

When subqueries are used "Introduction" on page 145

How to compare column values to a
single value returned by a subquery

"Single-row and multiple-row
subqueries" on page 147

How to use a subquery instead of a join "Using subqueries instead of joins"
on page 149

Chapter 11 Selecting Data Using Subqueries

145

Introduction
Subqueries use the results of one query as part of another query. This section
illustrates a situation where subqueries can be used by building a query that
lists order items for products that are low in stock.

There are two queries involved in producing this list. This section first
describes them separately, and then shows the single query that produces the
same result.

v List all products for which there are less than 20 items in stock:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

SELECT id, description, quantity
FROM product
WHERE quantity < 20

id description quantity

401 Wool cap 12

The query shows that only wool caps are low in stock.

v List all order items for wool caps:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

SELECT *
FROM sales_order_items
WHERE prod_id = 401
ORDER BY ship_date DESC

id line_id prod_id quantity ship_date

2082 1 401 48 7/9/2001

2053 1 401 60 6/30/2001

2125 2 401 36 6/28/2001

2027 1 401 12 6/17/2001

...

This two-step process of identifying items low in stock and identifying
orders for those items can be combined into a single query using subqueries.

Introduction

146

v List all order items for items that are low in stock:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

SELECT *
FROM sales_order_items
WHERE prod_id IN

(SELECT id
FROM product
WHERE quantity < 20)

ORDER BY ship_date DESC

id line_id prod_id quantity ship_date

2082 1 401 48 7/9/2001

2053 1 401 60 6/30/2001

2125 2 401 36 6/28/2001

2027 1 401 12 6/17/2001

...

The subquery in the statement is the phrase enclosed in parentheses:

(SELECT id
FROM product
WHERE quantity < 20)

The subquery makes a list of all values in the id column in the product table,
satisfying the WHERE clause search condition.

The subquery returns a set of rows, but only a single column. The IN
keyword treats each value as a member of a set and tests whether each row in
the main query is a member of the set.

Chapter 11 Selecting Data Using Subqueries

147

Single-row and multiple-row subqueries
There are constraints on the number of rows and columns that a subquery
may return. If you use IN, ANY, or ALL, the subquery may return several
rows, but only one column. If you use other operators, the subquery must
return a single value.

Two tables in the sample database are concerned with financial results. The
fin_code table is a small table holding the different codes for financial data
and their meanings:

To list the revenue items from the fin_data table, type the following:

SELECT *
FROM fin_data
WHERE fin_data.code IN

 (SELECT fin_code.code
FROM fin_code
WHERE type = ’revenue’)

year quarter code amount

1999 Q1 r1 1023

1999 Q2 r1 2033

1999 Q3 r1 2998

1999 Q4 r1 3014

2000 Q1 r1 3114

This example has used qualifiers to clearly identify the table to which the
code column in each reference belongs. In this particular example, the
qualifiers could have been omitted.

Two other keywords can be used as qualifiers for operators to allow them to
work with multiple rows: ANY and ALL.

The following query is identical to the successful query above:

SELECT *
FROM fin_data
WHERE fin_data.code = ANY

(SELECT fin_code.code
FROM fin_code
WHERE type = ’revenue’)

While the =ANY condition is identical to the IN condition, ANY can also be
used with inequalities such as < or > to give more flexible use of subqueries.

A multiple-row
subquery

Single-row and multiple-row subqueries

148

The ALL keyword is similar to the word ANY. For example, the following
query lists financial data that is not revenues:

SELECT *
FROM fin_data
WHERE fin_data.code <> ALL

(SELECT fin_code.code
FROM fin_code
WHERE type = ’revenue’)

This is equivalent to the following command using NOT IN:

SELECT *
FROM fin_data
WHERE fin_data.code NOT IN

(SELECT fin_code.code
FROM fin_code
WHERE type = ’revenue’)

In general, subquery result sets are restricted to a single column. The
following example does not make sense because Adaptive Server Anywhere
would not know which column from fin_code to compare to the
fin_data.code column.

-- this query is incorrect
SELECT *
FROM fin_data
WHERE fin_data.code IN

(SELECT fin_code.code, fin_code.type
FROM fin_code
WHERE type = ’revenue’)

While subqueries used with an IN condition may return a set of rows, a
subquery used with a comparison operator must return only one row. For
example the following command results in an error since the subquery
returns two rows:

-- this query is incorrect
SELECT *
FROM fin_data
WHERE fin_data.code =

(SELECT fin_code.code
FROM fin_code
WHERE type = ’revenue’)

A common error
using subqueries

Single-row
subqueries

Chapter 11 Selecting Data Using Subqueries

149

Using subqueries instead of joins
Suppose you need a chronological list of orders and the company that placed
them, but would like the company name instead of their customer ID. You
can get this result using a join as follows:

To list the order id, date, and company name for each order since the
beginning of 2001, type the following:

SELECT sales_order.id,
sales_order.order_date,
customer.company_name

FROM sales_order
KEY JOIN customer

WHERE order_date > ’2001/01/01’
ORDER BY order_date

id order_date company_name

2473 1/4/2001 Peachtree Active Wear

2474 1/4/2001 Sampson & Sons

2106 1/5/2001 Salt & Pepper’s

2475 1/5/2001 Cinnamon Rainbow’s

2036 1/5/2001 Hermanns

$ For more on joins, see "Selecting Data from Multiple Tables" on
page 123.

The following statement obtains the same results using a subquery instead of
a join:

SELECT sales_order.id,
sales_order.order_date,
(SELECT company_name FROM customer

WHERE customer.id = sales_order.cust_id)
FROM sales_order
WHERE order_date > ’2001/01/01’
ORDER BY order_date

The subquery refers to the cust_id column in the sales_order table even
though the sales_order table is not part of the subquery. Instead, the
sales_order.cust_id column refers to the sales_order table in the main body
of the statement. This is called an outer reference. Any subquery that
contains an outer reference is called a correlated subquery.

Using a join

Using a subquery

Using subqueries instead of joins

150

A subquery can be used instead of a join whenever only one column is
required from the other table. (Recall that subqueries can only return one
column.) In this example, you only needed the company_name column so
the join could be changed into a subquery.

If the subquery might have no result, this method is called an outer join. The
join in previous sections of the tutorial is more fully called an inner join.

To list all customers in Washington state, together with their most recent
order ID, type the following:

SELECT company_name, state,
(SELECT MAX(id)

FROM sales_order
WHERE sales_order.cust_id = customer.id)

FROM customer
WHERE state = ’WA’

company_name state MAX(sales_order.id)

Custom Designs WA 2547

It’s a Hit! WA (NULL)

The It’s a Hit! company placed no orders, and the subquery returns NULL
for this customer. Companies who have not placed an order are not listed
when inner joins are used.

You could also specify an outer join explicitly. In this case, a GROUP BY
clause is also required.

SELECT company_name, state,
MAX(sales_order.id)

FROM customer
KEY LEFT OUTER JOIN sales_order

WHERE state = ’WA’
GROUP BY company_name, state

Using an outer join

151

C H A P T E R 1 2

Updating the Database

This chapter describes how to make changes to the contents of your database.
It includes descriptions of how to add rows, remove rows, and change the
contents of rows, as well as how to make changes permanent or correct
changes you have made.

Topic Page

Introduction 152

Adding rows to a table 153

Modifying rows in a table 154

Deleting rows 155

Grouping changes into transactions 156

Integrity checking 159

About this chapter

Contents

Introduction

152

Introduction
This chapter describes how to make changes to the data in your database.
There are three basic operations:

♦ Insert You can add rows to tables to include new data.

♦ Delete You can delete rows in tables to remove data.

♦ Update You can modify existing rows in tables.

Each operation is carried out by executing a SQL statement.

About this chapter

If you want to know… Then see…

How to add rows to your table "Adding rows to a table" on page 153

How to update rows in your table "Modifying rows in a table" on
page 154

How to delete rows in your table "Deleting rows" on page 155

How to implement transactions "Grouping changes into transactions"
on page 156

How Adaptive Server Anywhere checks
for errors in your data

"Integrity checking" on page 159

Chapter 12 Updating the Database

153

Adding rows to a table
Suppose that the company decides to sell a new product, a brown acrylic
vest. This action requires you to add data to the product table of the sample
database.

v Add a brown acrylic vest to the product table:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

INSERT
INTO product (id, name, description, size, color,
quantity, unit_price)
VALUES (800, ’Vest’, ’Acrylic Vest’, ’Extra Large’,
’Brown’, 42, 20.00)

If you make a mistake and forget to specify one of the columns,
Adaptive Server Anywhere reports an error.

You can also add new rows to database tables from the result set in
Interactive SQL.

$ For more information, see "Editing table values in Interactive SQL" on
page 84.

The NULL value is a special value used to indicate that something is either
not known or not applicable. Some columns are allowed to contain the
NULL value, and others are not.

NULL values in
columns

Modifying rows in a table

154

Modifying rows in a table
In most databases, you need to update records that are already stored in the
database. For example, the manager ID should change when employees are
transferred between departments, as well as the department ID.

v Transfer employee #195 to department 400 in Interactive SQL:

♦ In Interactive SQL, type the following in the SQL Statements pane and
press F5 to execute the statement.

UPDATE employee
SET dept_id = 400, manager_id = 1576
WHERE emp_id = 195

The statement carries out both updates at the same time for employee
Marc Dill (employee ID 195).

Since Adaptive Server Anywhere updates all rows that satisfy the conditions
of the WHERE clause, sometimes more than one row is updated at one time.
For example, if a group of sales employees are transferred into marketing
and have their dept_id column updated, the following statement sets the
manager_id for all employees in the marketing department to 1576.

UPDATE employee
SET manager_id = 1576
WHERE dept_id = 400

For employees already in the marketing department, no change is made.

You can also modify rows from the result set in Interactive SQL.

$ For more information, see "Editing table values in Interactive SQL" on
page 84.

Chapter 12 Updating the Database

155

Deleting rows
Sometimes you will want to remove rows from a table. Suppose Rodrigo
Guevara (employee ID 249) leaves the company. The following statement
deletes Rodrigo Guevara from the employee table.

DELETE
FROM employee
WHERE emp_id = 249

With UPDATE and DELETE, the search condition can be as complicated as
you need. For example, if the employee table is being reorganized, the
following statement removes from the employee table all male employees
hired between March 3, 1989 and March 3, 1990.

DELETE
FROM employee
WHERE sex = ’m’
 AND start_date between ’1988-03-03’
 AND ’1989-03-03’

Since you have made changes to the database that you do not want to keep,
you should undo the changes as follows:

ROLLBACK

You can also delete rows from database tables from the Interactive SQL
result set.

$ For more information, see "Editing table values in Interactive SQL" on
page 84.

Grouping changes into transactions

156

Grouping changes into transactions
Adaptive Server Anywhere expects you to group your commands into
transactions. You commit a transaction to make changes to your database
permanent. When you alter your data, your alterations are not made
permanent right away. Instead, they are stored in your transaction log and
are made permanent when you enter the COMMIT command.

Knowing which commands or actions signify the start or end of a transaction
lets you take full advantage of transactions.

Transactions start with one of the following events:

♦ The first statement following a connection to a database.

♦ The first statement following the end of a transaction.

Transactions complete with one of the following events:

♦ A COMMIT statement makes the changes to the database permanent.

♦ A ROLLBACK statement undoes all the changes made by the
transaction.

♦ A statement with a side effect of an automatic commit is executed:
Database definition commands, such as ALTER, CREATE,
COMMENT, and DROP all have the side effect of an automatic
commit.

♦ A disconnection from a database performs an implicit rollback.

Interactive SQL provides you with two options which let you control when
and how transactions end:

♦ If you set the option AUTO_COMMIT to ON, Interactive SQL
automatically commits your results following every successful statement
and automatically performs a ROLLBACK after each failed statement.

♦ The setting of the option COMMIT_ON_EXIT controls what happens to
uncommitted changes when you exit Interactive SQL. If this option is
set to ON (the default), Interactive SQL does a COMMIT; otherwise it
undoes your uncommitted changes with a ROLLBACK statement.

If you are using a data source
By default, ODBC operates in autocommit mode. Even if you have set the
AUTO_COMMIT option to OFF in Interactive SQL, ODBC’s setting will
override Interactive SQL’s. You can change ODBC’s setting using the
SQL_ATTR_AUTOCOMMIT connection attribute. ODBC autocommit is
independent of the CHAINED option.

Starting
transactions

Completing
transactions

Options in
Interactive SQL

Chapter 12 Updating the Database

157

Adaptive Server Anywhere also supports Transact-SQL commands, such as
BEGIN TRANSACTION, for compatibility with Sybase Adaptive Server
Enterprise.

$ For further information, see "An overview of Transact-SQL support"
on page 384 of the book ASA SQL User’s Guide.

Making changes permanent

The COMMIT statement makes all changes permanent.

You should use the COMMIT statement after groups of statements that make
sense together. For example, if you want to transfer money from one
customer’s account to another, you should add money to one customer’s
account, then delete it from the other’s, and then commit, since in this case it
does not make sense to leave your database with less or more money than it
started with.

You can instruct Adaptive Server Anywhere to commit your changes
automatically by setting the AUTO_COMMIT option to ON. This is an
Interactive SQL option. When AUTO_COMMIT is set to ON, Adaptive
Server Anywhere must update the database after every insert, update, and
delete statement you make to it. This can slow down performance
considerably. Therefore, it is a good idea to leave the AUTO_COMMIT
option set to OFF.

Use COMMIT with care
When trying the examples in this tutorial, be careful not to COMMIT any
changes until you are sure that you want to change the database
permanently.

$ For more information about Interactive SQL options, see
"Interactive SQL options" on page 548 of the book ASA Database
Administration Guide.

Canceling changes

Any uncommitted change you make can be cancelled. SQL allows you to
undo all of the changes you made since your last commit with the
ROLLBACK statement.

The ROLLBACK statement undoes all changes you have made to the
database since the last time you made changes permanent (see "Making
changes permanent" on page 157).

Grouping changes into transactions

158

$ For more information on Interactive SQL options, see "Interactive SQL
options" on page 548 of the book ASA Database Administration Guide.

Transactions and data recovery

Suppose that a system failure or power outage suddenly takes your database
engine down. Adaptive Server Anywhere is carefully designed to protect the
integrity of your database in such circumstances. It provides you with a
number of independent means of restoring your database. For example, it
provides you with a log file which you may store on a separate drive so that
should the system failure damage one drive, you still have a means of
restoring your data. In addition, when you use a log file, Adaptive Server
Anywhere does not have to update your database as frequently, which
improves your database’s performance.

Transaction processing allows the database server to identify states in which
your data is in a consistent state. Transaction processing ensures that if, for
any reason, a transaction is not successfully completed, then the entire
transaction is undone, or rolled back. The database is left entirely unaffected
by failed transactions.

Adaptive Server Anywhere’s transaction processing ensures that the contents
of a transaction are processed securely, even in the event of a system failure
in the middle of a transaction.

$ For a detailed description of data recovery mechanisms, see "Backup
and Data Recovery" on page 299 of the book ASA Database Administration
Guide.

Chapter 12 Updating the Database

159

Integrity checking
Adaptive Server Anywhere automatically checks for some common errors in
your data.

Inserting duplicate data

For example, suppose you attempt to create a department, but supply a
dept_id value that is already in use:

To do this, enter the command:

INSERT
INTO department (dept_id, dept_name, dept_head_id)
VALUES (200, ’Eastern Sales’, 902)

The INSERT is rejected as it would make the primary key for the table not
unique. Since dept_id field is a primary key, duplicate values are not
permitted.

Inserting values that violate relationships

The following statement inserts a new row in the sales_order table, but
incorrectly supplies a sales_rep ID that does not exist in the employee table.

INSERT
INTO sales_order (id, cust_id, order_date,

sales_rep)
VALUES (2700, 186, ’1995-10-19’, 284)

There is a one-to-many relationship between the employee table and the
sales_order table, with a join between the sales_rep field of the sales_order
table and the emp_id field of the employee table. Only after a record in the
table containing the primary key for the join (the employee table) has been
entered can a corresponding record on table containing the foreign key (the
sales_order table) be inserted.

The primary key for the employee table is the employee ID number. The
sales rep ID number in the sales_rep table is a foreign key for the employee
table, meaning that each sales rep number in the sales_order table must
match the employee ID number for some employee in the employee table.

When you try to add an order for sales rep 284 you get an error message:

No primary key value for foreign key ’ky_so_employee_id’ in table
’sales_order’

Foreign keys

Integrity checking

160

There isn’t an employee in the employee table with that ID number. This
prevents you from inserting orders without a valid sales rep ID. This kind of
validity checking is called referential integrity checking as it maintains the
integrity of references among the tables in the database.

$ For more information on primary and foreign keys, see "Relations
between tables" on page 13.

Errors on DELETE or UPDATE

Foreign key errors can also arise when doing update or delete operations. For
example, suppose you try to remove the R&D department from the
department table. The dept_id field, being the primary key of the department
table, constitutes the ONE side of a one-to-many relationship (the dept_id
field of the employee table is the corresponding foreign key, and hence
forms the MANY side). A record on the one side of a relationship may not
be deleted until all corresponding records on the MANY side are deleted.

DELETE
FROM department
WHERE dept_id = 100

An error is reported indicating that there are other records in the database
that reference the R&D department, and the delete operation is not carried
out.

primary key for row in table ’department’ is referenced in another table

In order to remove the R&D department, you need to first get rid of all
employees in that department:

DELETE
FROM employee
WHERE dept_id = 100

You can now perform the deletion of the R&D department.

You should cancel these changes to the database (for future use) by entering
a ROLLBACK statement:

ROLLBACK WORK

All changes made since the last successful COMMIT WORK will be
undone. If you have not done a COMMIT, then all changes since you started
Interactive SQL will be undone.

The same error message is generated if you perform an update operation that
makes the database inconsistent.

For example, the following UPDATE statement causes an integrity error:

UPDATE department

Example: DELETE
errors

Example: UPDATE
errors

Chapter 12 Updating the Database

161

SET dept_id = 600
WHERE dept_id = 100

In all of the above examples, the integrity of the database was checked as
each command was executed. Any operation that would result in an
inconsistent database is not performed.

It is possible to configure the database so that the integrity is not checked
until the COMMIT WORK is done. This is important if you want to change
the value of a referenced primary key; for example, changing the R&D
department’s ID from 100 to 600 in the department and employee tables. In
order to make these changes, the database has to be inconsistent in between
the changes. In this case, you must configure the database to check only on
commits.

$ For more information, see "WAIT_FOR_COMMIT option" on
page 608 of the book ASA Database Administration Guide.

You can also define foreign keys in such a way that they are automatically
fixed. In the above example, if the foreign key from employee to department
were defined with ON UPDATE CASCADE, then updating the department
ID would automatically update the employee table.

In the above cases, there is no way to have an inconsistent database
committed as permanent. Adaptive Server Anywhere also supports
alternative actions if changes would render the database inconsistent.

$ For more information, see the chapter "Ensuring Data Integrity" on
page 65 of the book ASA SQL User’s Guide.

Example: checking
the integrity after
the COMMIT
WORK is complete

Integrity checking

162

163

C H A P T E R 1 3

System Tables

This chapter describes the system tables, several special tables found in
every Adaptive Server Anywhere database. These system tables describe all
the tables and columns in the database. The database server automatically
updates the system table as the database structure is changed.

Topic Page

The system tables 164

The SYSCATALOG view 165

The SYSCOLUMNS view 166

Other system tables 167

About this chapter

Contents

The system tables

164

The system tables
Adaptive Server Anywhere stores important information about your database
in system tables. The data from tables can be viewed in the same way that
the data from other tables can be viewed, but you can not update data from
the system tables.

About this chapter

If you want to know… Then see…

Where to find a listing of all the tables in
the database

"The SYSCATALOG view" on
page 165

Where to find information about the
columns in a table

"The SYSCOLUMNS view" on
page 166

How to find other information about the
tables in your database

"Other system tables" on page 167

Chapter 13 System Tables

165

The SYSCATALOG view
SYSCATALOG is a view that holds a more readable form of the system table
SYSTABLE. It lists all the tables in the database. You can view the data from
the SYSCATALOG view in the same way that you view the data from any
other table in your database.

$ For more information on viewing data, see "Selecting a complete table"
on page 108.

The owner of the system tables and views is the special user ID SYS, and the
owner of the company tables is DBA. In addition, there is a set of views
owned by the special user ID dbo, which provide an emulation of the Sybase
Adaptive Server Enterprise system catalog; these tables are not discussed in
this section.

Recall that DBA is the user ID you used when connecting to the database
from Interactive SQL. So far, you have simply typed the table names
employee and department; SQL looked in SYSCATALOG for tables with
those names created by DBA. In this example, by typing SYS.SYSCATALOG,
you specified that SYSCATALOG was created by the user ID SYS. Note the
similarity to the way column names are qualified, such as employee.emp_id.

The other columns in this table contain other important information. For
example, the column named Ncols is the number of columns in each table,
and the column named tabletype identifies the table as a base table or a
view.

The owner of the
system tables

Other columns in
the system table

The SYSCOLUMNS view

166

The SYSCOLUMNS view
Another important system table is a view called SYSCOLUMNS. This is a
readable form of the system table SYSCOLUMN. It describes all the columns
in all the tables in the database. To see the contents of a table, type the
following command, in which tablename represents the name of the table
whose columns you wish to list:

SELECT *
FROM sys.syscolumns
WHERE tname = tablename

For example,

SELECT *
FROM sys.syscolumns
WHERE tname = ’employee’
ORDER BY colno

This statement lists all the columns in the employee table. If you look at the
columns to the right, you can see from the Coltype column that some
columns in the employee table contain character information while others
contain integer and date information.

You can also view columns in the Interactive SQL Lookup Table Name
dialog, or in Sybase Central.

v To view the columns in a table or view (Interactive SQL):

1 Invoke the list of tables by pressing F7.

2 Select the table whose columns you wish to view.

3 Click Show Columns.

v To view the columns in a table or view (Sybase Central):

1 In the left pane of Sybase Central, select a database and open its Tables
folder.

2 Select a table and open its Columns folder.

3 You can now view and modify the columns.

Chapter 13 System Tables

167

Other system tables
There are several other system tables in the database that are not be described
in the tutorial. You can find out their names by examining
SYS.SYSCATALOG and looking at them if you want.

$ For a full description of each of the system tables, see "System Tables"
on page 595 of the book ASA SQL Reference Manual.

Other system tables

168

169

C H A P T E R 1 4

Microsoft Visual Basic Quick Start

This chapter describes how to develop a simple database application using
Adaptive Server Anywhere and Microsoft Visual Basic.

Topic Page

Tutorial: Developing a Visual Basic application 170

About this chapter

Contents

Tutorial: Developing a Visual Basic application

170

Tutorial: Developing a Visual Basic application
This brief tutorial is based on Visual Basic 6.0. The complete application can
be found in the Visual Basic project
Samples\ASA\VBStarter\ASAStarter.vbp.

Visual Basic provides several data access technologies. In this tutorial, we
use the Microsoft ADO Data Control with the Adaptive Server Anywhere
OLE DB provider to access the Adaptive Server Anywhere sample database
from Visual Basic.

v To develop a database application with Visual Basic:

1 Start Visual Basic, choosing a Standard Executable project.

2 Add the Microsoft ADO Data Control 6.0 to your tool palette:

♦ From the Project menu, choose Components.

♦ Select the Microsoft ADO Data Control 6.0 component from the
list.

♦ Click OK to add the control to the palette.

Chapter 14 Microsoft Visual Basic Quick Start

171

3 Add the ADO Data Control to the form, as follows:

4 Configure the ADO Data Control:

Property Value

ConnectionString Provider=ASAPROV;DSN=ASA 8.0
Sample

CursorLocation 2 - asUseServer

CursorType 1 - adOpenKeyset

RecordSource SELECT * FROM EMPLOYEE

The ConnectionString uses the Adaptive Server Anywhere OLE DB
Provider (ASAProv) to connect to the ASA 8.0 Sample data source. The
cursor settings take advantage of Adaptive Server Anywhere cursors
rather than using the client-side cursors.

5 Add two text boxes to the form, as follows:

6 Bind the text boxes to the ADO Data Control:

♦ Set the DataSource property for each to be Adodc1.

♦ Set the DataField property for the left-hand text box to emp_fname,
which is the column holding the employee’s first name.

Tutorial: Developing a Visual Basic application

172

♦ Set the DataField property for the right-hand text box to
emp_lname, which is the column holding the employee’s last name.

7 Save the project.

8 Run the sample:

♦ Choose Run➤Start to run the application.

The application connects to the Adaptive Server Anywhere sample
database and puts the name of the first employee in the text boxes,
as follows:

♦ You can use the buttons on the ADO Data Control to scroll through
the rows of the result set.

You have now created a simple Visual Basic application that works with
Adaptive Server Anywhere.

$ For a detailed discussion of how to use ADO and Visual Basic to
access data in an Adaptive Server Anywhere database, see the whitepaper
Accessing Data in Adaptive Server Anywhere Using ADO and Visual Basic,
which is available at http://www.sybase.com/detail?id=1017429.

173

Glossary

The relational database server component of SQL Anywhere Studio.

In SQL Remote or MobiLink, an article is a database object that represents a
whole table, or a subset of the columns and rows in a table. Articles are
grouped together in a publication.

$ See also: "replication" on page 186, "publication" on page 184.

A permanent table for data. Tables are sometimes called base tables to
distinguish them from temporary tables and views.

$ See also: "temporary table" on page 189, "view" on page 190.

A guideline based on real-world requirements. Business rules are typically
implemented through check constraints, user-defined data types, and the
appropriate use of transactions.

$ See also: "constraint" on page 175, "user-defined data type" on
page 190.

A restriction that enforces specified conditions on a column or set of
columns.

$ See also: "constraint" on page 175, "foreign key constraint" on
page 178, "primary key constraint" on page 184, "unique constraint" on
page 190.

The point at which all changes to the database are saved to the database file.
At other times, committed changes are saved only to the transaction log.

A software architecture where one application (the client) obtains
information from and sends information to another application (the server).
The two applications often reside on different computers connected by a
network.

Adaptive Server
Anywhere (ASA)

article

base table

business rule

check constraint

checkpoint

client/server

174

A combination of a character set and a sort order that defines the properties
of text in the database. For Adaptive Server Anywhere databases, the default
collation is determined by the operating system and language on which the
server is running; for example, the default collation on English Windows
systems is 1252LATIN1. A collation, also called a collating sequence, is
used for comparing and sorting strings.

A text file containing SQL statements. Command files can be built manually,
or they can be built automatically by database utilities. The dbunload utility,
for example, creates a command file consisting of the SQL statements
necessary to recreate a given database.

A database file that has been compressed to a smaller physical size using the
utility dbshrink. Compressed databases are read-only. To make changes to a
compressed database file, you must use an associated write file. You can
expand compressed database files into normal database files using the utility
dbexpand.

The simultaneous execution of two or more independent, and possibly
competing, processes. Adaptive Server Anywhere automatically uses locking
to isolate transactions and ensure that each concurrent application sees a
consistent set of data.

$ See also: "transaction" on page 189, "lock" on page 181, "isolation
level" on page 180.

In SQL Remote replication, a trigger that fires when an update conflict is
detected, before the update is applied. Conflict triggers are fired when the
values in the VERIFY clause of an UPDATE statement fail to match the
current values in the database.

$ See also: "replication" on page 186, "trigger" on page 189.

A unique number that identifies a given connection between a client
application and the database. You can determine the current connection ID
using the following SQL statement:

select connection_property(’Number’)

A set of parameters that are required to connect to a database, such as user
name, password, and server name, that is stored and used as a convenience.

collation

command file

compressed
database file

concurrency

conflict trigger

connection ID

connection profile

175

In database replication, a database that stores the master copy of the data.
The consolidated database contains all of the data, while remote databases
usually contain only subsets of the data. In case of conflict or discrepancy,
the consolidated database is considered to have the primary copy of all data.

$ See also: "replication" on page 186.

A restriction on the values contained in a particular database object, such as a
table or column. For example, a column may have a uniqueness constraint,
which requires that all values in the column be different. A table may have a
foreign key constraint, which specifies how the information in the table
relates to data in some other table.

$ See also: "check constraint" on page 173, "foreign key constraint" on
page 178, "primary key constraint" on page 184, "unique constraint" on
page 190.

The act of competing for resources. For example, in database terms, two or
more users trying to edit the same row of a database contend for the rights to
edit that row.

The name of a table or view that is used in the FROM clause of a query—
either its original name, or an alias that is defined in the FROM clause.

A named linkage to a result set, used to access and update rows from a
programming interface. In Adaptive Server Anywhere, cursors support
forward and backward movement through the query results. Cursors consist
of two parts: the cursor result set, typically defined by a SELECT statement;
and the cursor position.

$ See also: "cursor result set" on page 175, "cursor position" on page 175.

A pointer to one row within the cursor result set.

$ See also: "cursor" on page 175, "cursor result set" on page 175.

The set of rows resulting from a query that is associated with a cursor.

$ See also: "cursor" on page 175, "cursor position" on page 175.

The subset of SQL statements for modeling the structure of a database. DDL
statements create, modify, and remove database objects, including users.

consolidated
database

constraint

contention

correlation name

cursor

cursor position

cursor result set

data definition
language (DDL)

176

The format of data, such as CHAR or NUMERIC. In the ANSI SQL
standard, data types can also include a restriction on size, character set, and
collation.

$ See also: "user-defined data type" on page 190.

The subset of SQL statements for retrieving and updating the contents of a
database.

A collection of tables that are related by primary and foreign keys. The tables
hold the information in the database. The tables and keys together define the
structure of the database. A database-management system accesses this
information.

$ See also: "foreign key" on page 178, "primary key" on page 184,
"database-management system" on page 176, "relational database-
management system" on page 185.

The user with the permissions required to maintain the database. The DBA is
generally responsible for all changes to a database schema, and for managing
users and user groups. The role of database administrator is automatically
built into databases as user ID DBA with password SQL.

A communication channel between a client application and the database. A
valid user ID and password are required to establish a connection. The
privileges granted to the user ID determine the actions that can be carried out
during the connection.

A database is held in one or more database files. There is an initial file, and
subsequent files are called dbspaces. Each table, including its indexes, must
be contained with a single database file.

$ See also: "dbspace" on page 177.

A collection of programs that allow you to create and use databases.

$ See also: "relational database-management system" on page 185.

The name given to a database when it is loaded by a server. The default
database name is the root of the initial database file.

$ See also: "database file" on page 176.

data type

data manipulation
language (DML)

database

database
administrator (DBA)

database
connection

database file

database-
management
system (DBMS)

database name

177

A component of a database that contains or receives information. Tables,
indexes, views, procedures, and triggers are database objects.

A special user that owns the system objects not owned by SYS.

$ See also: "database administrator" on page 176, "SYS" on page 188.

A computer program that regulates all access to information in a database.
Adaptive Server Anywhere provides two types of servers: network servers
and personal servers.

The level of permission that enables a user to carry out administrative
activity in the database. The DBA user has DBA authority by default.

$ See also: "database administrator" on page 176.

An additional database file that creates more space for data. A database can
be held in up to 13 separate files (an initial file and 12 dbspaces). Each table,
together with its indexes, must be contained in a single database file. The
SQL command CREATE DBSPACE adds a new file to the database.

$ See also: "database file" on page 176.

A programming interface for C programs. Adaptive Server Anywhere
embedded SQL is an implementation of the ANSI and IBM standard.

An alternate login name and password used when communicating with a
remote server. By default, Adaptive Server Anywhere uses the names and
passwords of its clients whenever it connects to a remote server on behalf of
those clients. However, this default can be overridden by creating external
logins. External logins are alternate login names and passwords used when
communicating with a remote server.

In SQL Remote replication, the act of unloading the appropriate structure
and data from the consolidated database. This information is used to
initialize the remote database.

In MobiLink synchronization, the act of unloading the appropriate structure
and data from a reference database.

$ See also: "replication" on page 186.

database object

database owner
(dbo)

database server

DBA authority

dbspace

embedded SQL

external login

extraction

178

Switching to a redundant or standby server, system, or network on failure or
unplanned termination of the active server, system, or network. Failover
happens automatically, and is often built-in to continuously available
systems.

In SQL Remote replication, a message system that uses shared files for
exchanging replication messages. This is useful for testing and for
installations without an explicit message-transport system (such as MAPI).

$ See also: "replication" on page 186, "MAPI" on page 181.

One or more columns in a table that duplicate the primary key values in
another table. Foreign keys establish relationships between tables.

$ See also: "primary key" on page 184, "foreign table" on page 178.

A restriction on a column or set of columns that specifies how the data in the
table relates to the data in some other table. Imposing a foreign key
constraint on a set of columns makes those columns the foreign key.

$ See also: "constraint" on page 175, "check constraint" on page 173,
"primary key constraint" on page 184, "unique constraint" on page 190.

The table containing the foreign key.

$ See also: "foreign key" on page 178.

A backup of the entire database, and optionally, the transaction log. A full
backup contains all the information in the database and thus provides
protection in the event of a system or media failure.

$ See also: "incremental backup" on page 179.

A restriction on join results based on the keyword KEY or NATURAL. For a
natural join, the generated join condition is based on common column names
in the two tables. For a key join, the condition is based on a foreign key
relationship between the two tables.

$ See also: "join" on page 180, "join condition" on page 180.

A type of temporary table for which data definitions are visible to all users
until explicitly dropped. Global temporary tables let each user open their
own identical instance of a table. By default, rows are deleted on commit,
and rows are always deleted when the connection is ended.

failover

FILE

foreign key

foreign key
constraint

foreign table

full backup

generated join
condition

global temporary
table

179

$ See also: "temporary table" on page 189, "local temporary table" on
page 180.

The level of permission that allows a user to grant permissions to other users.

A string of characters used to reference a database object, such as a table or
column. An identifier may contain any character from A through Z, a
through z, 0 through 9, underscore (_), at sign (@), number sign (#), or dollar
sign ($).

A backup of the transaction log only, typically used between full backups.

$ See also: "transaction log" on page 189.

A sorted set of keys and pointers associated with one or more columns in a
base table. An index on one or more columns of a table can improve
performance.

A reporting and data maintenance tool that lets you create sophisticated
forms, reports, graphs, cross-tabs, and tables, as well as applications that use
these reports as building blocks.

A join in which rows appear in the result set only if both tables satisfy the
join condition. Inner joins are the default.

$ See also: "join" on page 180, "outer join" on page 183.

A login feature that allows the same single user ID and password to be used
for operating system logins, network logins, and database connections.

Adherence to rules that ensure that data is correct and accurate, and that the
relational structure of the database is intact.

$ See also: "referential integrity" on page 185.

An Adaptive Server Anywhere application that allows you to query and alter
data in your database, and modify the structure of your database.
Interactive SQL provides a pane for you to enter SQL statements, as well as
panes that display information about how the query was processed and the
result set.

grant option

identifier

incremental backup

index

InfoMaker

inner join

integrated login

integrity

Interactive SQL

180

The degree to which operations in one transaction are visible to operations in
other concurrent transactions. There are four isolation levels, numbered 0
through 3. Level 3 provides the highest level of isolation. Level 0 is the
default setting.

Java archive file. A compressed file format consisting of a collection of one
or more packages used for Java applications. It includes all the resources
necessary to install and run a Java program in a single compressed file.

The main structural unit of code in Java. It is a collection of procedures and
variables grouped together because they all relate to a specific, identifiable
category.

A Java implementation of the JavaSoft JDBC standard. It provides Java
developers with native database access in multi-tier and heterogeneous
environments.

$ See also: "JDBC" on page 180.

Java Database Connectivity. A SQL-language programming interface that
allows Java applications to access relational data.

A basic operation in a relational system that links the rows in two or more
tables by comparing the values in specified columns.

A restriction that affects join results. You specify a join condition by
inserting an ON clause or WHERE clause immediately after the join. In the
case of natural and key joins, Adaptive Server Anywhere generates a join
condition.

$ See also: "join" on page 180, "generated join condition" on page 178.

Adaptive Server Anywhere provides four types of joins: cross join, key join,
natural join, and joins using an ON clause.

$ See also: "join" on page 180.

A type of temporary table that exists only for the duration of a compound
statement or until the end of the connection. Local temporary tables are
useful when you need to load a set of data only once. By default, rows are
deleted on commit.

isolation level

JAR file

Java class

jConnect

JDBC

join

join condition

join type

local temporary
table

181

$ See also: "temporary table" on page 189, "global temporary table" on
page 178.

A concurrency control mechanism that protects the integrity of data during
the simultaneous execution of multiple transactions. Adaptive Server
Anywhere automatically applies locks to prevent two connections from
changing the same data at the same time, and to prevent other connections
from reading data that is in the process of being changed.

You control locking by setting the isolation level.

$ See also: "isolation level" on page 180, "concurrency" on page 174,
"integrity" on page 179.

A log of transactions maintained by Adaptive Server Anywhere. The log file
is used to ensure that the database is recoverable in the event of a system or
media failure, to improve database performance, and to allow data
replication using SQL Remote.

$ See also: "transaction log" on page 189, "transaction log mirror" on
page 189, "full backup" on page 178.

Log Transfer Manager. See "Replication Agent" on page 186.

Microsoft’s Messaging Application Programming Interface. A message
system used in several popular e-mail systems such as Microsoft Mail.

In SQL Remote replication, a protocol for exchanging messages between the
consolidated database and a remote database. Adaptive Server Anywhere
includes support for the following message systems: FILE, MAPI, FTP,
SMTP, and VIM.

$ See also: "replication" on page 186, "FILE" on page 178, "MAPI" on
page 181.

In SQL Remote replication, a database object that specifies how remote users
communicate with the publisher of a consolidated database. A consolidated
database may have several message types defined for it; this allows different
remote users to communicate with it using different message systems.

$ See also: "replication" on page 186, "consolidated database" on
page 175, "MAPI" on page 181.

Data about data. Metadata describes the nature and content of other data.

lock

log file

LTM

MAPI

message system

message type

metadata

182

$ See also: "schema" on page 187.

A session-based synchronization technology designed to synchronize
UltraLite and Adaptive Server Anywhere databases with many
industry-standard SQL database-management systems from Sybase and other
vendors.

$ See also: "UltraLite" on page 190.

A MobiLink user is a name that identifies a particular MobiLink client
database in the synchronization system. The client supplies this name and,
optionally, an associated password when it connects to the MobiLink
synchronization server. MobiLink user names are entirely independent of
database user names.

A widely-used network operating system defined by Novell. NetWare
generally employs the IPX/SPX protocol, although the TCP/IP protocol may
also be used.

A database server that accepts connections from computers sharing a
common network.

$ See also: "personal server" on page 183.

The refinement of a database structure to eliminate redundancy and improve
organization according to rules based on relational database theory.

In Sybase Central, the hierarchy of database objects. The top level of the
object tree shows all products that your version of Sybase Central supports.
Each product expands to reveal its own sub-tree of objects.

$ See also: "Sybase Central" on page 188.

Open Database Connectivity. A standard Windows interface to
database-management systems. ODBC is one of several interfaces supported
by Adaptive Server Anywhere.

A Microsoft program included with Windows operating systems for setting
up ODBC data sources.

A specification of the data a user wants to access via ODBC, and the
information needed to get to that data.

MobiLink

MobiLink user

NetWare

network server

normalization

object tree

ODBC

ODBC
Administrator

ODBC data source

183

A join that preserves all the rows in a table. Adaptive Server Anywhere
supports left, right, and full outer joins. A left outer join preserves the rows
in the table to the left of the join operator, and returns a null when a row in
the right table does not satisfy the join condition. A full outer join preserves
all the rows from both tables.

$ See also: "join" on page 180, "inner join" on page 179.

In Java, a collection of sets of related classes.

In SQL Remote replication, a mode by which the publisher of the
consolidated database can directly change remote databases with SQL
statements. Passthrough is set up for specific remote. In normal passthrough
mode, all database changes made at the consolidated database are passed
through to the selected remote databases. In passthrough only mode, the
changes are made at the remote databases, but not at the consolidated
database.

A value reflecting the performance of the database system. The CURRREAD
statistic, for example, represents the number of file reads issued by the
engine that have not yet completed.

A database server that runs on the same computer as the client application. A
personal database server is typically used by a single user on a single
computer, but it can support several concurrent connections from that user.

In Sybase Central, a way to access and administer a product. Plug-ins are
usually installed and registered automatically with Sybase Central when you
install the respective product. Typically, a plug-in appears as a top-level
container, in the Sybase Central main window, using the name of the product
itself; for example, Adaptive Server Anywhere.

$ See also: "Sybase Central" on page 188.

A database modeling application. PowerDesigner provides a structured
approach to designing a database or data warehouse.

A Sybase product for building and managing a Web application linked to a
database.

A Sybase product for developing Java applications.

outer join

package

passthrough

performance
statistic

personal server

plug-in module

PowerDesigner

PowerDynamo

PowerJ

184

A conditional expression that is optionally combined with the logical
operators AND and OR to make up the set of conditions in a WHERE or
HAVING clause. In SQL, a predicate that evaluates to UNKNOWN is
interpreted as FALSE.

A column or list of columns whose values uniquely identify every row in the
table.

$ See also "foreign key" on page 178.

A uniqueness constraint on the primary key columns. A table can have only
one primary key constraint.

$ See also: "constraint" on page 175, "check constraint" on page 173,
"foreign key constraint" on page 178, "unique constraint" on page 190,
"integrity" on page 179.

The table containing the primary key in a foreign key relationship.

A local table containing metadata used to access a table on a remote database
server as if it were a local table.

$ See also: "metadata" on page 181.

In SQL Remote or MobiLink, a database object that identifies replicated
data. In MobiLink, publications exist only on the clients. A publication
consists of articles. Periodically, the changes made to each publication are
replicated to all subscribers to that publication. SQL Remote users can
receive a publication by subscribing to it. MobiLink users can synchronize a
publication by creating a synchronization subscription to it.

$ See also: "replication" on page 186, "article" on page 173, "publication
update" on page 184.

In SQL Remote replication, a list of changes made to one or more
publications in one database. A publication update is sent periodically as part
of a replication message to the remote database(s).

$ See also: "replication" on page 186, "publication" on page 184.

In SQL Remote replication, the single user in a database who can exchange
replication messages with other replicating databases.

predicate

primary key

primary key
constraint

primary table

proxy table

publication

publication update

publisher

185

$ See also: "replication" on page 186.

A SQL statement or group of SQL statements that access and/or manipulate
data in a database.

$ See also: "SQL" on page 187.

A Web server plug-in that routes requests and responses between a client and
the MobiLink synchronization server. This plug-in also implements
load-balancing and failover mechanisms.

Adherence to rules governing data consistency, specifically the relationships
between the primary and foreign key values in different tables. To have
referential integrity, the values in each foreign key must correspond to the
primary key values of a row in the referenced table.

$ See also: "primary key" on page 184, "foreign key" on page 178,
"Adaptive Server Anywhere" on page 173.

A type of database-management system that stores data in the form of related
tables.

$ See also: "database-management system" on page 176.

In SQL Remote replication or MobiLink synchronization, a database that
exchanges data with a consolidated database. Remote databases may share
all or some of the data in the consolidated database.

$ See also: "replication" on page 186, "consolidated database" on
page 175.

In SQL Remote, a level of permission required by the Message Agent. In
MobiLink, a level of permission required by the Adaptive Server Anywhere
synchronization client (dbmlsync). When the Message Agent or
synchronization client connects as a user who has this authority, it has full
DBA access. The user ID has no additional permissions when not connected
through the Message Agent or synchronization client.

$ See also: "DBA authority" on page 177.

query

redirector

referential integrity

relational database-
management
system (RDBMS)

remote database

remote DBA
authority

186

In SQL Remote replication, the permission to exchange replication messages
with the publishing database. Granting remote permissions to a user makes
that person a remote user. You must specify a message type, an appropriate
remote address, and a replication frequency. In general terms, remote
permissions can also refer to any user involved in SQL Remote replication
(for example, the consolidated publisher and remote publisher).

$ See also: "replication" on page 186.

In SQL Remote replication, a database user in the consolidated database that
has been granted remote permissions and is associated with one particular
remote database in the replication setup. To create a remote user, an ordinary
database user is granted remote permissions. Doing so not only identifies the
existence of a particular remote database, but also specifies the message type
and address with which to communicate with that particular remote site.

When remote databases are created by means of extraction from a
consolidated database, each remote user in the consolidated database
becomes the publisher of the data in one particular remote database.

$ See also: "SQL Remote" on page 187, "consolidated database" on
page 175, "publisher" on page 184.

The sharing of data among physically distinct databases. Sybase has three
replication technologies: MobiLink, SQL Remote, and Replication Server.

In Replication Server, the program, also called Log Transfer Manager
(LTM), that reads a database transaction log and sends committed changes to
Replication Server.

In SQL Remote replication, a setting for each remote user that determines
how often the publisher’s message agent should send replication messages to
that remote user.

$ See also: "replication" on page 186, "remote user" on page 186.

In SQL Remote or Replication Server, a communication sent between a
publishing database and a subscribing database. Messages contain data,
passthrough statements, and information required by the replication system.

$ See also: "passthrough" on page 183, "replication" on page 186,
"publication update" on page 184.

remote permission

remote user

replication

Replication Agent

replication
frequency

replication
message

187

A Sybase connection-based replication technology that works with Adaptive
Server Anywhere and Adaptive Server Enterprise. It is intended for near-real
time replication between a small number of databases.

In conceptual database modeling, a verb or phrase that describes a
relationship from one point of view. You can describe each relationship with
two roles. Examples of roles are "contains" and "is a member of."

The name of a foreign key. This is called a role name because it names the
relationship between the foreign table and primary table. By default, the role
name is the table name, unless another foreign key is already using that
name, in which case the default role name is the table name followed by a
three-digit unique number. You can also create the name yourself.

$ See also: "foreign key" on page 178.

A record of the changes made during each uncommitted transaction. In the
event of a ROLLBACK request or a system failure, uncommitted
transactions are reversed out of the database, returning the database to its
former state. Each transaction has a separate rollback log, which is deleted
when the transaction is complete.

$ See also: "transaction" on page 189.

A trigger that executes once for each row that is changed.

$ See also: "trigger" on page 189, "statement-level trigger" on page 188.

The structure of a database, including tables, columns, and indexes, and the
relationships between them.

In Windows operating systems, a way of running applications when the user
ID running the application is not logged on.

The language used to communicate with relational databases. ANSI has
defined standards for SQL, the latest of which is SQL-99 (also called SQL3).
SQL stands, unofficially, for Structured Query Language.

A message-based replication technology for two-way replication between
consolidated and remote databases. The consolidated database must be
Adaptive Server Anywhere or Adaptive Server Enterprise. The remote
databases must be Adaptive Server Anywhere.

Replication Server

role

role name

rollback log

row-level trigger

schema

service

SQL

SQL Remote

188

A string containing SQL keywords designed for passing instructions to a
DBMS.

$ See also: "schema" on page 187, "SQL" on page 187, "database-
management system" on page 176.

A trigger that executes after the entire triggering statement is completed.

$ See also: "trigger" on page 189, "row-level trigger" on page 187.

A program comprised of a sequence of SQL instructions, stored in the
database and used to perform a particular task.

A SELECT statement that is nested inside another SELECT, INSERT,
UPDATE, or DELETE statement, or another subquery.

There are two types of subquery: correlated and nested.

In SQL Remote replication, a link between a publication and a remote user,
allowing the user to exchange updates on that publication with the
consolidated database.

In MobiLink synchronization, a synchronization subscription is a link in a
client database between a publication and a MobiLink user allowing the data
described by the publication to be synchronized.

$ See also: "publication" on page 184, "remote user" on page 186,
"MobiLink user" on page 182.

A database management tool that provides Adaptive Server Anywhere
database settings, properties, and utilities in a graphical user interface.
Sybase Central can also be used for managing other Sybase products,
including MobiLink.

The process of replicating data between databases using MobiLink
technology.

In SQL Remote, synchronization is used exclusively to denote the process of
initializing a remote database with an initial set of data.

$ See also: "MobiLink" on page 182, "SQL Remote" on page 187.

A special user that owns most of the system objects. You cannot log in as
SYS.

SQL statement

statement-level
trigger

stored procedure

subquery

subscription

Sybase Central

synchronization

SYS

189

Database objects owned by SYS or dbo.

A table, owned by SYS or dbo, that holds metadata. System tables, also
known as data dictionary tables, are created and maintained by the database
server.

A type of view, included in every database, that presents the information
held in the system tables in an easily understood format.

A table that is created for the temporary storage of data. There are two types:
global and local.

$ See also: "local temporary table" on page 180, "global temporary table"
on page 178.

A sequence of SQL statements that comprise a logical unit of work. A
transaction is processed in its entirety or not at all. Adaptive Server
Anywhere supports transaction processing, with locking features built in to
allow concurrent transactions to access the database without corrupting the
data. Transactions end either with a COMMIT statement, which makes the
changes to the data permanent, or a ROLLBACK statement, which undoes
all the changes made during the transaction.

A file storing all changes made to a database, in the order in which they are
made. It improves performance and allows data recovery in the event the
database file is damaged. For best results, the transaction log should be kept
on a different device from the database files.

An optional identical copy of the transaction log file, maintained
simultaneously. Every time a database change is written to the transaction
log file, it is also written to the transaction log mirror file.

A mirror file should be kept on a separate device from the transaction log, so
that if either device fails, the other copy of the log keeps the data safe for
recovery.

$ See also: "transaction log" on page 189.

A special form of stored procedure executed automatically when a user
executes a query that modifies the data.

$ See also: "row-level trigger" on page 187, "statement-level trigger" on
page 188, "conflict trigger" on page 174, "integrity" on page 179.

system object

system table

system view

temporary table

transaction

transaction log

transaction log
mirror

trigger

190

A deployment technology for Adaptive Server Anywhere databases, aimed at
small, mobile, and embedded devices. Intended platforms include cell
phones, pagers, and personal organizers.

A restriction on a column or set of columns requiring that all non-null values
are different. A table can have multiple unique constraints.

$ See also: "foreign key constraint" on page 178, "primary key
constraint" on page 184, "constraint" on page 175.

Unloading a database exports the structure and/or data of the database to text
files (SQL command files for the structure, and ASCII comma-separated
files for the data). You unload a database with the Unload utility.

In addition, you can unload selected portions of your data using the
UNLOAD statement.

A data type that users create to specify a base data type, and optionally a
default value, check condition, and nullability. User-defined data types, also
called user-defined domains, can be applied to columns to enforce
consistency throughout the database.

$ See also: "data type" on page 176.

To test for particular types of file corruption of a database, table, or index.

A SELECT statement that is stored in the database as an object. It allows
users to see a subset of rows or columns from one or more tables. Each time
a user uses a view of a particular table, or combination of tables, it is
recomputed from the information stored in those tables. Views are useful for
security purposes, and to tailor the appearance of database information to
make data access straightforward.

The Microsoft Windows family of operating systems, including Windows
95, Windows 98, Windows Me, Windows CE, Windows NT, Windows
2000, and Windows XP.

A family of operating systems produced by Microsoft for mobile devices.

An internal storage area for interim results during query optimization.

UltraLite

unique constraint

unload

user-defined data
type

validate

view

Windows

Windows CE

work table

191

A file used to record changes to a read-only database. Often used with
compressed databases.

$ See also: "compressed database file" on page 174.

write file

192

193

Index

A
Adaptive Server Anywhere

applications, 32
glossary definition, 173
hallmarks, 28
intended uses, 27
internals, 43
introduction, 26
programming interfaces, 38
quick start, 3
system requirements, 29

adding
new rows in Interactive SQL, 85
rows, 153

ADO
data control, 170
development tools, 42

aggregate functions
applying to grouped data, 138
introduction, 137

aliases
for columns, 111

alphabetical order
ORDER BY clause, 113

ALTER statement
automatic commit, 156

APIs
Adaptive Server Anywhere, 38
ADO, 42
embedded SQL, 40
JDBC, 42
ODBC, 40

OLE DB, 42
Open Client, 41

architecture of database applications, 37

articles
glossary definition, 173

ASA
glossary definition, 173

asademo.db file
about, xiv, 52

attributes
tables, 13

AUTO_COMMIT option
grouping changes in Interactive SQL, 156

automatic commit
ALTER statement, 156
COMMENT statement, 156
data definition statements, 156
DROP statement, 156

availability
Adaptive Server Anywhere components, 34

B
base tables, 15

glossary definition, 173

batch operations
Interactive SQL, 100

BETWEEN conditions
WHERE clause, 120

binary large objects
about, 64

C–C

194

bitmaps
storing as blobs, 64

BLOBs
about, 64

business rules
glossary definition, 173

C
canceling Interactive SQL commands, 88

cardinality
relationships and, 66

case sensitivity
SQL, 108
table names, 108

check constraints
glossary definition, 173

checking
data integrity, 159

checkpoints
glossary definition, 173

clearing
SQL Statements pane, 88

client/server
glossary definition, 173

collations
glossary definition, 174

columns
about, 12
aliases, 111
allowing NULL, 64
calculated, 111
data types, 63
looking up in Interactive SQL, 90
ordering, 110
selecting from a table, 110
truncating in Interactive SQL, 95

combining
multiple statements in Interactive SQL, 89

command files
building, 89, 99
glossary definition, 174

overview, 89, 99
SQL Statements pane, 89, 99

command history window
recalling commands in Interactive SQL, 91

command line utilities
introduction, 34

command sequence communication protocol
about, 39
diagram, 38

commands
canceling in Interactive SQL, 88
editing in Interactive SQL, 91
executing in Interactive SQL, 88, 108
getting in Interactive SQL, 108
Interactive SQL, 88
interrupting in Interactive SQL, 88
loading in Interactive SQL, 100, 108
logging in Interactive SQL, 92
previous, 91
recalling in Interactive SQL, 91
saving in Interactive SQL, 100, 108
stopping in Interactive SQL, 88

COMMENT statement
automatic commit, 156

COMMIT statement
about, 157
transactions, 156

communication protocols
Adaptive Server Anywhere, 39

comparisons
about, 116
introduction, 117
using subqueries, 147

completing transactions, 156

components
availability, 34

compound search conditions
using, 120

compressed database files
glossary definition, 174

D–D

195

computed columns
adding to new rows in Interactive SQL, 86
recalculated in Interactive SQL, 85
updating in Interactive SQL, 85

conceptual database models
definition of, 58

concurrency
glossary definition, 174

conditions
GROUP BY clause, 140
pattern matching, 118
search, 116, 120

configuring
Interactive SQL, 94

conflict triggers
glossary definition, 174

connecting your application to its database, 69

connection IDs
glossary definition, 174

connection profiles
glossary definition, 174

connections
introduction, 70

consolidated databases
glossary definition, 175

constraints
glossary definition, 175

contention
glossary definition, 175

conventions
documentation, xi

copying
rows in Interactive SQL, 86

correlated subqueries
defined, 149

correlation names
glossary definition, 175

COUNT function
applying to grouped data, 138

create database wizard
using, 59

creating
databases, 58
simple ODBC data sources, 71

cross products
introduction, 126

cursor positions
glossary definition, 175

cursor result sets
glossary definition, 175

cursors
glossary definition, 175
specifying type for plan in Interactive SQL, 97

D
data definition language

glossary definition, 175

data definition statements
automatic commit, 156

data manipulation language
glossary definition, 176

data recovery
transactions, 158

data sources
introduction, 71

data types
about, 12
choosing, 63
glossary definition, 176

database administrator
glossary definition, 176

database applications
architecture, 37

database connections
glossary definition, 176

database files
glossary definition, 176
introduction, 44

database name
glossary definition, 176

E–E

196

database objects
about, 15
glossary definition, 177

database owner
glossary definition, 177

database servers
connecting to, 69
differences between personal and network, 31
glossary definition, 177
internals, 43
quick start, 4
running, 69

database sizes
multi-gigabyte databases, 27

database-management system
glossary definition, 176

databases
client application, 20
components, 20
creating, 58
design concepts, 58
designing, 49
files, 44
glossary definition, 176
language interface, 20
objects, 15
queries, 18
relational, 12
server, 20
SQL, 17
system tables, 19

databases and applications, 11

dates
combining, 120
compound, 120
search conditions, 120
search conditions introduction, 117

DBA authority
glossary definition, 177

dbeng8
limitations, 31

dbisql utility
about, 75

DBMS
glossary definition, 176

dbspaces
glossary definition, 177

DDL
glossary definition, 175

debugger [dbprdbg] utility
introduction, 33

debugging
introduction, 33

DELETE statement
about, 155
errors, 160
examples, 160

deleting
rows from tables, 86
rows using Interactive SQL, 86

designing
databases, 49, 58

designing and building your database, 49

developing
SQL statements, 76

DML
glossary definition, 176

documentation
conventions, xi
SQL Anywhere Studio, viii

DROP statement
automatic commit, 156

E
editing

table values in Interactive SQL, 84

embedded databases
requirements, 27

embedded SQL
development tools, 40
glossary definition, 177

ending transactions, 156

entering
Interactive SQL commands, 88
multiple statements in Interactive SQL, 89

F–I

197

error handling
Interactive SQL, 94

errors
Interactive SQL, 88

escape syntax
Interactive SQL, 101

executing
commands in Interactive SQL, 88
queries more than once, 115

exporting data
Interactive SQL options, 96

external logins
glossary definition, 177

extraction
glossary definition, 177

F
failover

glossary definition, 178

feedback
documentation, xv
providing, xv

FILE
glossary definition, 178

finishing transactions, 156

foreign key constraints
glossary definition, 178

foreign key creation wizard
using, 68

foreign keys
about, 14
defined, 13
glossary definition, 178
inserts, 159

foreign tables
glossary definition, 178

full backups
glossary definition, 178

function keys
Interactive SQL, 80

functions
SOUNDEX function, 119

G
generated join conditions

glossary definition, 178

global temporary tables
glossary definition, 178

glossary, 173

go
statement delimiter, 90

grant options
glossary definition, 179

GROUP BY clause
aggregate functions, 138
errors, 138

grouped data, 137

grouping changes into transactions, 156

H
hardware requirements

Adaptive Server Anywhere hallmarks, 28

HAVING clause
GROUP BY clause and, 140
WHERE clause and, 140

HPC
Windows CE support, 29

HPC Pro
Windows CE support, 29

I
icons

used in manuals, xii

identifiers
glossary definition, 179

importing data
Interactive SQL options, 96

J–J

198

IN conditions, 120

incremental backups
glossary definition, 179

indexes
glossary definition, 179
introduction, 115

inequality
testing for, 117

InfoMaker
glossary definition, 179

inner joins
glossary definition, 179

INSERT statement
examples, 159
introduction, 153

inserting
rows into tables in Interactive SQL, 85

integrated logins
glossary definition, 179

integrity
checking, 159
glossary definition, 179

Interactive SQL
about, 75
batch operations, 100
canceling commands, 88
column length, 95
combining multiple statements, 89
command files, 99
commands overview, 88
configuring, 94
copying rows, 86
deleting rows, 86
displaying a list of procedures, 90
displaying a list of tables, 90, 124
displaying data, 83
editing table values, 84
effects of exiting, 156
error handling, 94
executing commands, 88, 108
function keys, 80
getting commands, 108
glossary definition, 179
grouping changes into transactions, 156
inserting rows, 85

interrupting commands, 88
introduction, 33
JDBC escape syntax, 101
keyboard shortcuts, 80
loading commands, 100, 108
logging commands, 92, 94
looking up column names, 90
looking up procedure names, 90
looking up table names, 90
main window description, 78
Messages pane options, 97
multiple result sets, 95
opening multiple windows, 80
Options dialog, 94
overview, 76
quick start, 8
recalling commands, 91
reported errors, 88
Results pane options, 95
running scripts, 100
saving commands, 100, 108
setting preferences, 94
SQL Statements pane, 108
starting, 78
stopping commands, 88
toolbar description, 79
truncating columns, 95
updating computed columns, 85

internals
Adaptive Server Anywhere, 43
database server, 43

introduction to Adaptive Server Anywhere, 25

isolation levels
glossary definition, 180

ISQL. See Interactive SQL

J
JAR files

glossary definition, 180

Java classes
glossary definition, 180

Java debugger
introduction, 33

jConnect
glossary definition, 180

K–N

199

JDBC
development tools, 42
escape syntax in Interactive SQL, 101
glossary definition, 180

JDBC escape syntax
using in Interactive SQL, 101

join conditions
glossary definition, 180

join types
glossary definition, 180

joins
glossary definition, 180
introduction, 124
or subqueries, 149

K
key joins

introduction, 129

keyboard shortcuts
Interactive SQL, 80

keys
about, 13
foreign, 13
primary, 13

L
LIKE conditions

introduction, 118

loading
commands in Interactive SQL, 100

local temporary tables
glossary definition, 180

locks
glossary definition, 181

log files
glossary definition, 181

Log Transfer Manager
glossary definition, 186

logging
commands in Interactive SQL, 92

looking up
columns in Interactive SQL, 90
procedures in Interactive SQL, 90
tables in Interactive SQL, 90

Lookup Table Name dialog
displaying a list of tables, 124

LTM
glossary definition, 186

M
many-to-many relationships

defined, 67

MAPI
glossary definition, 181

message systems
glossary definition, 181

message types
glossary definition, 181

metadata
glossary definition, 181
system tables, 19

Microsoft Visual Basic quick start, 169

MIPS chip
Windows CE support, 29

mobile computing
requirements, 27

MobiLink
glossary definition, 182

MobiLink users
glossary definition, 182

multiple result sets
viewing in Interactive SQL, 95

N
natural joins

errors, 131
introduction, 131

O–P

200

NetWare
glossary definition, 182

network server
about, 31
glossary definition, 182
platform support, 31

network software requirements, 29

newsgroups
technical support, xv

normalization
glossary definition, 182

NULL
allowing in columns, 64, 153
appearance in Interactive SQL, 95

O
object trees

glossary definition, 182

ODBC
development tools, 40
glossary definition, 182
introduction to data sources, 71

ODBC Administrator
glossary definition, 182

ODBC data sources
glossary definition, 182

OLE DB
development tools, 42

OLE DB and ADO programming interfaces, 169

ON phrase
introduction, 127

one-to-many relationships
definition of, 66

one-to-one relationships
definition of, 66

Open Client
development tools, 41

opening multiple Interactive SQL windows, 80

operating systems
supported, 29

optimization of queries
Adaptive Server Anywhere hallmarks, 28

options
Interactive SQL, 94

options dialog
configuring Interactive SQL, 94

ORDER BY clause
examples, 113
required to ensure rows always appear in same

order, 115
using indexes to improve performance, 115

outer joins
glossary definition, 183
introduction, 133

outer references
defined, 149

P
packages

glossary definition, 183

parameters
to functions, 137

passthrough
glossary definition, 183

passwords
connecting to a new database, 59

pattern matching
introduction, 118

performance monitoring
Adaptive Server Anywhere hallmarks, 28

performance statistics
glossary definition, 183

personal server
about, 31
glossary definition, 183
limitations, 31
platform support, 31

Q–R

201

plans
appearance in Interactive SQL, 97
Interactive SQL options, 97
setting cursor type in Interactive SQL, 97

platforms
supported, 29

plug-in modules
glossary definition, 183

PowerDesigner
glossary definition, 183

PowerDynamo
glossary definition, 183

PowerJ
glossary definition, 183

PPC
Windows CE support, 29

predicates
glossary definition, 184
introduction, 120

preferences
Interactive SQL, 94

primary key constraints
glossary definition, 184

primary keys, 13
glossary definition, 184

primary tables
glossary definition, 184

procedures
looking up in Interactive SQL, 90

program group
Adaptive Server Anywhere, 34

programming interfaces
Adaptive Server Anywhere, 38
ADO, 42
embedded SQL, 40
JDBC, 42
ODBC, 40
OLE DB, 42
Open Client, 41
supported in Adaptive Server Anywhere, 38

projections
defined, 18

proxy tables
glossary definition, 184

publication updates
glossary definition, 184

publications
glossary definition, 184

publisher
glossary definition, 184

Q
queries

defined, 18
glossary definition, 185
Interactive SQL, 88
SELECT statement, 106

quick start
Adaptive Server Anywhere, 3
database server, 4
developing a Visual Basic application, 170
Interactive SQL, 8
Sybase Central, 6

R
RDBMS

defined, 12
glossary definition, 185

recalling
commands in Interactive SQL, 91

recovery
Adaptive Server Anywhere hallmarks, 28

Redirector
glossary definition, 185

referential integrity
glossary definition, 185

relational database-management system
defined, 12
glossary definition, 185

S–S

202

relational databases
about, 13
concepts, 12
terminology, 13

relations
entities, 13

relationships
about, 66
cardinality of, 66
many-to-many, 67
one-to-many, 66
one-to-one, 66

remote databases
glossary definition, 185

remote DBA authority
glossary definition, 185

remote permissions
glossary definition, 186

remote users
glossary definition, 186

replication
glossary definition, 186

Replication Agent
glossary definition, 186

replication frequency
glossary definition, 186

replication messages
glossary definition, 186

Replication Server
glossary definition, 187

requirements
Adaptive Server Anywhere, 29

restrictions
defined, 18

result sets
copying rows, 86
deleting rows, 86
editing table values in Interactive SQL, 84
executing a query more than once, 115
inserting rows, 85
troubleshooting, 115

retrieving
commands in Interactive SQL, 91

role names
glossary definition, 187

roles
glossary definition, 187

rollback logs
glossary definition, 187

ROLLBACK statement
about, 157
introduction, 155
transactions, 156

rolling back
transactions, 156

row-level locking
Adaptive Server Anywhere hallmarks, 28

row-level triggers
glossary definition, 187

rows
about, 12
adding, 153
adding using Interactive SQL, 85
copying in Interactive SQL, 86
deleting using Interactive SQL, 86
editing values in Interactive SQL, 84
inserting in Interactive SQL, 85
selecting from a table, 116

running
command files, 99
Interactive SQL commands, 88
SQL scripts, 99, 100

S
sample database

about, 52
about asademo.db, xiv

saving
commands in Interactive SQL, 100
transaction results, 156

schemas
defined, 58
glossary definition, 187

S–S

203

scripts
running in Interactive SQL, 100

search conditions
date comparisons, 117
GROUP BY clause, 140
introduction, 116
pattern matching, 118
shortcuts for, 120
subqueries, 145

select list
calculated columns, 111
column names, 111

SELECT statement
Interactive SQL, 83
introduction, 106
subqueries, 145

selecting aggregate data, 135

selecting data from database tables, 105

selecting data from multiple tables, 123

selecting data using subqueries, 143

selecting rows from a table, 116

selections
defined, 18

services
glossary definition, 187

sorting
query results, 113

SOUNDEX function
about, 119

SQL
about, 17
developing queries, 76
glossary definition, 187

SQL and database computing, 17

SQL Anywhere Studio
documentation, viii

SQL Remote
glossary definition, 187

SQL statements
glossary definition, 188

Start menu
Adaptive Server Anywhere, 34

starting
Interactive SQL, 78
transactions, 156

statement-level triggers
glossary definition, 188

stored procedures
glossary definition, 188

subqueries
comparisons, 147
correlated subqueries, 149
glossary definition, 188
introduction, 145
or joins, 149
troubleshooting, 148

subscriptions
glossary definition, 188

summarizing data, 136

support
newsgroups, xv

supported platforms
Adaptive Server Anywhere, 29

Sybase Central
glossary definition, 188
introduction, 32
quick start, 6

synchronization
glossary definition, 188

SYS
glossary definition, 188

SYSCATALOG view
about, 165

SYSCOLUMNS view
about, 166

system failures
transactions, 158

system objects
glossary definition, 189

system requirements
Adaptive Server Anywhere, 29

T–U

204

system tables
defined, 19
glossary definition, 189
introduction, 164
SYSTABLE, 167

system views
glossary definition, 189
SYSCATALOG, 165
SYSCOLUMNS, 166

T
table values

editing in Interactive SQL, 84

tables
about, 12
characteristics, 12
designing, 60
foreign keys, 14
looking up in Interactive SQL, 90

TDS communication protocol
diagram, 38

technical support
newsgroups, xv

temporary files
introduction, 44

temporary tables
glossary definition, 189

toolbars
Interactive SQL, 79

transaction log
glossary definition, 189
introduction, 44

transaction log mirror
glossary definition, 189

transaction processing
Adaptive Server Anywhere hallmarks, 28
data recovery, 158

transactions
completing, 156
data recovery, 158
glossary definition, 189

grouping changes, 156
starting, 156

triggers
glossary definition, 189

troubleshooting
GROUP BY clause, 138
natural joins, 131
result set appears to change, 115
subqueries, 148

truncating
columns in Interactive SQL, 95

tuples, 13

tutorials
designing a database, 58
developing a Visual Basic application, 170

U
UltraLite

glossary definition, 190

unique constraints
glossary definition, 190

unload
glossary definition, 190

UPDATE statement
errors, 160
examples, 160
introduction, 154

updating
data, 151
values in Interactive SQL, 84

updating the database, 151

user IDs
new databases, 59

user-defined data types
glossary definition, 190

using Interactive SQL, 75

using Interactive SQL to display data, 83

utilities
introduction, 34

V–W

205

V
validate

glossary definition, 190

values
editing in Interactive SQL, 84

views
glossary definition, 190
SYSCATALOG, 165
SYSCOLUMNS, 166

Visual Basic
quick start, 170

W
WHERE clause

BETWEEN conditions, 120
date comparisons introduction, 117
deleting rows, 155
examples, 116
HAVING clause and, 140

modifying rows in a table, 154
pattern matching, 118

wildcards
pattern matching, 118

Windows
glossary definition, 190
supported operating systems, 29

Windows CE
glossary definition, 190
supported devices, 29
supported versions, 29

wizards
create database, 59
foreign key creation, 68

work tables
glossary definition, 190

workgroup computing
requirements, 27

working with SQL statements in Interactive SQL, 88

write files
glossary definition, 191

W–W

206

	Adaptive Server Anywhere Getting Started
	About This Manual
	SQL Anywhere Studio documentation
	The SQL Anywhere Studio documentation set
	Documentation formats

	Documentation conventions
	Syntax conventions
	Graphic icons

	The Adaptive Server Anywhere sample database

	1. Adaptive Server Anywhere Quick Start
	Step 1: Start the Adaptive Server Anywhere database server
	Step 2: Start Sybase Central
	Step 3: Start Interactive SQL

	2. Databases and Applications
	Relational database concepts
	Database tables
	Relations between tables
	Other database objects

	SQL and database computing
	Queries
	Other SQL statements
	The system tables

	The pieces of a database system
	How the pieces fit together
	Personal applications and embedded databases
	Client/server applications and multi-user databases

	3. Introduction to Adaptive Server Anywhere
	Introduction to Adaptive Server Anywhere
	Adaptive Server Anywhere intended uses
	Adaptive Server Anywhere hallmarks
	Adaptive Server Anywhere system requirements
	Network software requirements

	The Adaptive Server Anywhere database server
	Adaptive Server Anywhere applications
	Sybase Central
	Interactive SQL
	Database debugger
	Utilities
	Availability of components
	The SQL Anywhere program group

	4. The Architecture of Database Applications
	Application programming interfaces
	Supported interfaces and protocols
	ODBC applications
	Embedded SQL applications
	OLE DB applications

	Inside Adaptive Server Anywhere
	Inside the database server

	5. Designing and Building Your Database
	Introduction
	About this chapter

	The sample database
	Tutorial: Design and build a simple database
	Lesson 1: Create a database file
	Lesson 2: Connect to your database
	Lesson 3: Design and create a table
	Lesson 4: Identify and create primary keys
	Lesson 5: Design column properties
	Lesson 6: Design and create relationships between tables

	6. Connecting Your Application to its Database
	Introduction to connections
	Creating an ODBC data source

	7. Using Interactive SQL
	Introduction to Interactive SQL
	About this chapter

	Starting Interactive SQL
	Using the Interactive SQL toolbar
	Opening multiple windows
	Keyboard shortcuts

	Using Interactive SQL to display data
	Editing table values in Interactive SQL
	Copying rows from the Interactive SQL result set

	Working with SQL statements in Interactive SQL
	Canceling an Interactive SQL command
	Combining multiple statements
	Looking up tables, columns, and procedures
	Recalling commands
	Logging commands

	Configuring Interactive SQL
	General tab
	Results tab
	Import/Export tab
	Messages tab
	Plan tab

	Running command files
	Writing output to a file
	Executing command files
	Saving, loading, and running command files

	Using SQL escape syntax in Interactive SQL

	8. Selecting Data from Database Tables
	Introduction
	About this chapter

	Selecting a complete table
	Selecting columns from a table
	Using calculated columns

	Ordering query results
	Using indexes to improve ORDER BY performance

	Selecting rows from a table
	Comparing dates in search conditions
	Pattern matching in search conditions
	Matching rows by sound
	Using compound search conditions
	Shortcuts for compound search conditions

	9. Selecting Data from Multiple Tables
	Introduction
	About this chapter
	Displaying a list of tables

	Joining tables using the cross product
	Using the ON phrase to restrict a join
	Joining tables using key joins
	Joining tables using natural joins
	Joining tables using outer joins

	10. Selecting Aggregate Data
	Summarizing data
	About this chapter

	A first look at aggregate functions
	Applying aggregate functions to grouped data
	Restricting groups
	Combining WHERE and HAVING clauses

	11. Selecting Data Using Subqueries
	Introducing subqueries
	About this chapter

	Introduction
	Single-row and multiple-row subqueries
	Using subqueries instead of joins

	12. Updating the Database
	Introduction
	About this chapter

	Adding rows to a table
	Modifying rows in a table
	Deleting rows
	Grouping changes into transactions
	Making changes permanent
	Canceling changes
	Transactions and data recovery

	Integrity checking
	Inserting duplicate data
	Inserting values that violate relationships
	Errors on DELETE or UPDATE

	13. System Tables
	The system tables
	About this chapter

	The SYSCATALOG view
	The SYSCOLUMNS view
	Other system tables

	14. Microsoft Visual Basic Quick Start
	Tutorial: Developing a Visual Basic application

	Glossary
	Index

